
Final answer to review comments on manuscript originally entitled “Land surface model 

performance1 using cosmic-ray and point scale soil moisture measurements for 

calibration” by Iwema et al. submitted to Hydrology and Earth System Sciences 

We thank the Editor and the reviewers for the positive comments and suggestions that significantly 

added to the quality of the manuscript. We address the comments of Referee #1 Roland Baatz 

below. The two comments by Anonymous Referee #3 (one figure reference and the title “Appendix 

3”) have been addressed in the revised manuscript. At the end of this answer a marked up version of 

the revised manuscript is included. 

Sincerely, 

Joost Iwema and co-authors 

 

Answer to comment by Referee #1 Roland Baatz 

We would like to thank the Referee for carefully reviewing the manuscript. A point-by-point reply to 

the comments is provided below with original comments shown in Italic font. 

 

The topic is of significant interest to the HESS readers as it combines advanced multi-scale 
measurements with land surface modeling. The manuscript is fluently written and represents a much 
needed study to advance hyper-resolution land surface models through calibration with scale-
consistent terrestrial soil moisture observations using cosmic ray neutron sensors.  
The authors have clearly addressed the points I have mentioned in the previous review and provided 
arguments for their case where appropriate. The manuscript improved meaningfully and should be 
published in HESS after minor revision. Please address the comments below. 
 
ANSWER: 
We thank the referee his encouraging comments. We have addressed the newly raised issues below. 
 

GENERAL: 
COMMENT:  Figure 6: Based on your Figure 6, I actually find that CRNS do improve modeled LE in 
most of the cases shown. Furthermore, pretty much in contrast to PS measurements. This is a 
contradiction to the conclusion and actually would strengthen the publication.  
I suggest splitting Figure 6 into two subfigures. You will recognize two point clouds:  

1 cloud for the PS which covers the entire area (=> no improvement to LE, but to SM)  
1 cloud for the CRNS which covers the better left corner (=> improved LE+SM) 

 The centers-of-mass for PS and CRNS points are different. This is not adequately reflected in the text. 
I would argue that your one-objective calibration with the CRNS improves LE overall (not at all sites, 
but overall), while PS data does not. This would be an excellent result for the present study but it is 
not drawn / concluded yet. It would be an example of a successful scale consistent calibration 
compared to the scale mismatch calibration with PS. 
 
ANSWER: We thank the reviewer for this interesting suggestion. However, we believe it is easier to 

compare the two calibration strategies when both are presented within the same subplot. With 

respect to the centres of mass, it is also easier to compare these when the two strategies are 

presented within the same plot. We have included the following sentence on lines 26-29 of page 11 

of the revised manuscript to mention the centres of mass: 



“The differences between the two calibration strategies can also be seen from the different 

locations of the centres-of-mass of the two point clouds. The cloud of the CRNS strategy is clearly 

located more to the lower left corner in Error! Reference source not found..” 

We mentioned in the manuscript that the single-objective calibrations with PS data did yield more 

improvement in latent heat flux than the single-objective calibrations with CRNS data (lines 3-4 of 

page 13). However, based on the results of the two-objective calibrations, we concluded these 

differences were not as substantial as seemed at first. To amplify the difference between the single-

objective calibration results and the results from the two-objective calibration, we changed in the 

Conclusions (page 15, lines 14-18): 

“The single-objective calibration of JULES parameters against Cosmic-Ray Neutron Sensor neutron 

counts yielded better simulated latent heat flux than single-objective calibration against point-scale 

soil moisture. The analysis of multi-objective calibrations (against (1) PS soil moisture and latent heat 

flux and (2) CRNS neutron counts and latent heat flux) however revealed that differences between 

calibrations with these two soil moisture observation methods did overall not yield substantially 

different surface energy flux estimations.” 

And we changed the following sentence in the abstract (page 1, lines 16-18): 

“Calibrations against the two soil moisture products alone did show an advantage for the Cosmic-

Ray technique. However, further analyses of two-objective calibrations with soil moisture and latent 

heat flux showed no substantial differences between both calibration strategies.” 

 

COMMENT: The finding that CRNS improve LE overall actually contradict to a few of the results and 
conclusion in the manuscript as is: 
 
p11 l22:“While calibration errors decreased for soil moisture, latent heat flux estimation improved 
for fourteen out of twenty-four calibrations (Figure 6). This means that an improvement in simulated 
soil moisture did not necessarily lead to better estimation of surface energy fluxes.” 

 
p15 l15: “The single-objective calibration of JULES parameters against point-scale soil moisture and 

Cosmic-Ray Neutron Sensor neutron counts did not necessarily yield an improvement in latent heat 

flux simulation. The analysis of these single-objective calibrations and multi-objective calibrations 

(against (1) PS soil moisture and latent heat flux and (2) CRNS neutron counts and latent heat flux) 

revealed that differences between calibrations with these two soil moisture observation methods did 

overall not yield substantially different surface energy flux estimations.” 

ANSWER: Note that we used “not necessarily” on p11 L19 of the previous version of the manuscript, 

which reflects the fact that CRNS calibration did not improve LE in all cases. 

Please see our answer to the previous comment for how we modified the sentence on p15, l15. 

 

COMMENT: Accordingly, few sentences of the results, conclusion and abstract need to be rewritten 
to include the new results. Furthermore I suggest to combine the new Figure 6 a+b with Figure 8 a+b 
(also split this one into PS + CRNS). 

 
ANSWER: We have updated the Conclusions and abstract sections accordingly as mentioned in our 

answers to the previous comments. Note that one of the key points in our paper is the impact of 



carrying out a two-objective calibration on model performance, in comparison with a single-

objective calibration. This is done by presenting their results separately. Hence, we have decided to 

keep Figure 8 unchanged in accordance to our decision about Figure 6 (explained above). 

 
COMMENT: There are some cases in which consistency throughout the manuscript would be 
beneficial e.g. RMSE or RMSD, always use “energy fluxes”, write “eddy” with or without capital letter. 
 

ANSWER: We use RMSD when we compare two observations and RMSE when we compare 

observations with simulations. We have updated Figure 3 for consistency. 

 
MINOR COMMENTS 
We thank the reviewer for the minor comments provided. We took all comments into account. 
The changes in the manuscript are highlighted in the marked-up version of the manuscript. Here 
below we focus on the comments that required a more detailed response only. 
 
COMMENT: p1 l16-19: I still see a beneficial, however limited effect on latent heat flux from the 
calibration of soil moisture. Quantify the even limited (but this is subjective) effect of calibrating soil 
parameters with the si in the abstract.  
 
ANSWER: Note we do not go in detail on how much actual improvement is observed because the 

key point here is to discuss the impact (in this case, lack of model improvement) when going from 

single-objective to two-objective calibration, suggesting a limited effect of calibrated soil parameters 

on soil moisture dynamics and surface fluxes, simultaneously. 

 
COMMENT: p2 l.6 (Blyth et al. 1993) – is there a newer reference available, as land surface models 
and stomatal resistance parameterization should have improved significantly from 1993.  
 

ANSWER: Please note that we use this reference as an example to support our point. However, we 

would like to keep this reference as is to show the knowledge that stomatal resistance measured at 

leaf level is not the same as canopy stomatal resistance has been existing for a while now. 

 
COMMENT: Figure 5: Why is the calibrated soil moisture in CRNS SM at WR site (lower part) so much 
noisier than the calibrated soil moisture at PS SM at WR site?  
 
ANSWER:  The soil moisture after calibration with CRNS neutron counts at WR is much noisier than 
after calibration with PS soil moisture because the CRNS observations are much noisier due to 
inherent uncertainties, as explained on lines 21-23 of page 9 of the new manuscript. At the WR site 
this effect is especially strong due to the relatively low neutron count and possibly due to temporal 
changes in other neutron mitigating factors. We have included a sentence in Section 3.2 of the new 
version of the manuscript explaining this specifically for site WR. 
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Abstract. At the so-called hyper-resolution scale (i.e. grid cells of 1 km2) land surface model parameters can be calibrated 

with Eddy-Covariance flux data and point-scale soil moisture data. However, measurement scales of Eddy-Covariance and 

point-scale data differ substantially. In our study, we investigated the impact of reducing the scale mismatch between surface 10 

energy flux and soil moisture observations by replacing point-scale soil moisture data with observations derived from Cosmic-

Ray Neutron Sensors made at larger spatial scales. Five soil and evapotranspiration parameters of the Joint UK Land 

Environment Simulator (JULES) were calibrated against point-scale and Cosmic-Ray Neutron Sensor soil moisture data 

separately. We calibrated the model for twelve sites in the USA representing a range of climatic, soil, and vegetation conditions. 

The improvement in latent heat flux estimation for the two calibration solutions was assessed by comparing to Eddy-15 

Covariance flux data and to JULES simulations with default parameter values. We found that Calibrations against the two soil 

moisture products alone did show an advantage for the Cosmic-Ray technique. However, further analyses of two-objective 

calibrations with soil moisture and latent heat flux showedsimulated latent heat fluxes did not differ substantially differences 

between both calibration strategies. This was mainly caused by the limited effect of calibrating soil parameters on soil moisture 

dynamics and surface energy fluxes. Other factors that played a role were limited spatial variability in surface fluxes implied 20 

by soil moisture spatio-temporal stability, and data quality issues. 

1 Introduction 

The land surface water and energy balances are coupled through the process of evapotranspiration. Soil moisture is one of the 

main water reservoirs near the land surface and can hence importantly control the surface water and energy balances. Soil 

moisture provides a first order (i.e. direct) control on evapotranspiration when there is insufficient water to meet the evaporative 25 

demand (Manabe et al., 1969; Budyko, 1956; Seneviratne et al., 2010). An indirect effect of soil moisture on surface energy 

flux partitioning is for instance the damping effect on soil and air temperature, which in its turn affects humidity, 

evapotranspiration, boundary-layer stability, and in some cases precipitation (Seneviratne et al., 2010). The control of soil 

moisture on temperature at seasonal scales is especially strong in transitional climate regions (Koster et al., 2004). 
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Land Surface Models (LSMs) solve the surface mass (including water), energy, and momentum balances to provide the weather 

and climate prediction models with lower boundary conditions. The land surface has been shown to play an important role in 

global atmospheric circulation (Koster et al., 2004). Because the soil moisture state and surface fluxes are so closely connected, 

it is important to accurately simulate these simultaneously (Henderson-Sellers et al., 1996; Richter et al., 2004; Seneviratne et 

al., 2010; Dirmeyer, 2011; Dirmeyer et al., 2013). 5 

The increasing complexity of land surface models over the past decades (Sellers, 1997; Seneviratne et al., 2010) has brought 

with it an increasing number of parameters, with values not easily defined with in-situ measurements because of scale 

mismatch. For instance, stomatal resistance measured at leaf level is not the same as canopy stomatal resistance needed for 

LSMs (Blyth et al., 1993). Soil hydraulic parameter values (e.g. soil hydraulic conductivity) are often obtained from laboratory 

experiments on soil cores for cubic centimetres to cubic decimetres. The soil properties and processes at this scale can however 10 

differ from those at the LSM grid cell sizes, which are often as large as hundreds to tens of thousands of square kilometres 

(Pitman 2003). Due to the different governing processes upscaling the soil hydraulic properties from soil core scale to field 

scale is non-trivial (Vinnikov 1996; Crow et al., 2012). 

In an effort to develop global hydrometeorological monitoring and prediction capabilities (Wood et al., 2011), hydrological 

models and LSMs are now increasingly being applied at the finer `hyper-resolution scale' with grid cells of about 1 km2. 15 

Typically, parameters are calibrated and validated at this hyper-resolution against in-situ measurements from sources such as 

eddy-covariance flux towers and point-scale (PS) soil moisture sensors (e.g. Time Domain Transmissivity; and Time Domain 

Reflectometry) (Stockli et al., 2008; Richter et al., 2004; Blyth et al., 2010; Blyth et al., 2011; Rosolem et al., 2013). Such 

calibration/validation data has become more widely available at hyperresolution scale (Baldocchi, 2001; Smith, 2012). 

However, the horizontal footprints of different measurement techniques' vary from each other: Eddy-covariance surface energy 20 

flux data represent a downwind footprint of 100 m2 to 1 km2, while in-situ soil moisture probes link to much smaller surface 

areas by representing a support volume (Blöschl and Sivapalan, 1995) of ~4 dm3 only (Running et al., 1999; Kurc and Small, 

2007; Vivoni et al., 2008). Soil moisture is spatially non-uniform within the eddy-covariance footprint due to heterogeneity in 

soil properties, vegetation, and topography. Therefore, soil moisture measurements best (i.e. most effectively) representing the 

soil below the eddy-covariance tower’s footprint should be used when the performance of a land surface model is evaluated . 25 

If soil moisture is measured at only a single or few locations with limited support volume, like with PS sensors, the measured 

soil moisture content might be different from the effective soil moisture state that controls the surface exchange processes. It 

is therefore often assumed that soil moisture measured at a scale closer to the footprint of an eddy-covariance tower is more 

informative than a single or a couple of PS sensor profiles for studying land-surface processes and constraining model 

parameters at scales of >~100 m2 (Robinson et al., 2008). This poses a potential scale mismatch issue when a single or a few 30 

PS sensors are used. On the other hand, past research has shown soil moisture measured at only one or a few points within an 

area of similar size as an eddy-covariance footprint, can have similar value to surface energy flux simulation as soil moisture 

measured at a larger scale (e.g. Vachaud et al., 1985; Teuling et al., 2006; Mittelbach and Seneviratne, 2012). These studies 

showed that points within a soil moisture observation network keep their rank with respect to the mean soil moisture (anomaly), 
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i.e. they either under –or overestimate the mean (anomaly), so-called spatio-temporal stability. The physical principle behind 

the spatio-temporal stability theory is that different time variant and hydrological processes either create or destroy spatial soil 

moisture variability whereas time invariant land surface characteristics induce an effective offset in the spatial variability 

(Albertson and Montaldo, 2003; Teuling and Troch, 2005; Vanderlinden et al., 2012). When soil moisture reaches values 

below the critical point (i.e. transpiration becomes moisture limited), spatial variability in soil moisture and fluxes is reduced 5 

(Teuling and Troch, 2005). Soil moisture dynamics was found to be a small portion of total soil moisture variability (Mittelbach 

and Seneviratne, 2012), while having a greater effect on surface energy fluxes than absolute soil moisture in land surface 

models (Dirmeyer et al., 1999; Teuling et al., 2009). The implication of the spatio-temporal stability theory therefore is that 

the spatial scale mismatch issue might have limited implications to surface energy flux simulation. The question which then 

rises is, 10 

does reduced observation scale mismatch improve LSM energy flux estimates? 

Based on the spatio-temporal stability theory, we phrased the following hypothesis for our research question: 

reduced observation scale mismatch does not lead to LSM energy fluxes estimates closer to eddy covariance observations. 

 

In recent years, new soil moisture measurement techniques have been developed that have, compared to point-scale soil 15 

moisture sensing techniques, a reduced scale mismatch with eddy-covariance surface energy flux measurements. Improvement 

in wireless technology and remote data collection technology have made the development of PS soil moisture sensor networks 

more feasible (Cardell-Oliver, 2005; Ritsema et al., 2009; Trubilowicz, 2009; Bogena et al., 2010; Robinson et al., 2008). 

Newer soil moisture sensor techniques, for instance one which makes use of the Global Positioning System (GPS; Larson et 

al 2008, 2010), and the Cosmic-Ray Neutron Sensor (CRNS; Zreda et al., 2008) have the advantage that their installation 20 

requires less time and work effort because only a single above ground sensor is needed. The CRNS (Zreda et al., 2008) is an 

above-ground passive sensor which utilises natural cosmic-ray neutron radiation to estimate soil moisture content in the top 

10-70 cm. The sensor’s footprint area has a radius of about 100 to 300 m surrounding the above-ground sensor (Desilets and 

Zreda, 2013; Köhli et al., 2015). Franz et al. (2012) showed soil moisture estimated from CRNS neutron counts differed less 

than 20% from the average of a co-located point scale soil moisture sensor network at a site in Arizona. Networks of CRNS 25 

have been established in various countries (e.g. Cosmic-ray Soil Moisture Observation System; COSMOS (Zreda et al., 2012), 

COSMOS-UK (Evans et al., 2016), the Australian National Cosmic-Ray Soil Moisture Monitoring Facility CosmOZ (Hawdon 

et al., 2004), and TERrestrial ENvironmental Observatoria; TERENO (Baatz et al., 2015)). Franz et al. (2012) showed soil 

moisture estimated from CRNS neutron counts differed less than 20% from the average of a co-located point scale soil moisture 

sensor network at a site in Arizona. 30 

Unlike wireless point scale sensor networks, both the GPS and CRNS technology provide an integrated soil moisture 

measurement over the entire support volume (Larson et al., 2008; Zreda et al., 2008). We chose to answer our research question 

using the CRNS technology because the COSMOS network provides publicly available data for multiple years at a range of 



4 

 

sites co-located with AmeriFflux/FLUXNET eddy-covariance towers (ORNL-DAAC, 2015). Twelve of these sites provided 

sufficient LSM forcing data, PS soil moisture data, CRNS data, and eddy-covariance LE and sensible heat flux (H) data.  

 

Before our modelling exercise we first compared the PS and CRNS data. The outcomes of this data analysis were mainly used 

to see if the results from the calibration and validation yielded larger differences in surface energy flux estimation at sites 5 

where the two soil moisture observation products showed higher deviation from each other. To investigate our research 

question we made the LSM simulated soil moisture content match the observed PS or CRNS data as closely as possible. We 

did this by calibrating parameters of the Joint UK Land Environment Simulator (JULES; Best et al., 2011) against point-scale 

and Cosmic-Ray Neutron data separately. We subsequently validated the results against eddy-covariance observed data over 

the same periods. To assess the change in soil moisture and surface energy fluxes after calibration we compared the calibrated 10 

runs against a default run with parameter values computed from a widely used soil properties database. We emphasise that we 

compared the two different soil moisture measurement techniques’ scales and not the techniques as such. 

2 Data and Methods 

2.1 Calibration and Validation data: PS, CRNS, and eddy-covariance data 

Point scale (PS) soil moisture and CRNS neutron count data from twelve AmeriFflux/COSMOS sites were used (Figure 1; full 15 

COSMOS site names are shown in this figure). These twelve sites covered eight of twenty Ecoclimatic domains of the US 

National Ecological Observatory Network (NEON; www.neonscience.org) (Figure 1). These twelve sites hence represent a 

variety of climates and land cover types, but also different soil types (Table 1). 

Hourly PS data for nine sites were obtained from the publicly available AmeriFflux Level 2 data source (ORNL). Data for the 

three California Climate Gradients sites (DC, CS, and SO) were obtained at http://www.ess.uci.edu/~california/ (data version 20 

3.4; Goulden et al., 2015). The number of PS profiles, the installation depths, and sensor types differed between the twelve 

study sites (Table A1.1 in Appendix 1). We used point scale soil moisture data from the soil layers up to 30 cm depth only for 

consistency among all sites. There were only two sites reporting soil moisture data at greater depths: WR at 50 cm, and MO at 

100 cm). Our main objective was to investigate the difference in information content due to two soil moisture measurement 

techniques’ different horizontal scales in relation to the eddy-covariance footprint, rather than to compare the measurement 25 

techniques themselves. Quality control was applied to filter out spurious and unrealistic data points due to sensor errors. The 

PS data was then interpolated to the JULES soil layer on which the model was calibrated. 

Hourly CRNS neutron count data were obtained from the COSMOS network website (www.cosmos.hwr.arizona.edu). 

Corrections were applied as by Zreda et al. (2012). Water vapour corrections (Rosolem et al., 2013) were applied with respect 

to dry air (Bogena et al., 2013). The quality control approach used for the PS analysis was also applied to CRNS neutron count 30 

data series to remove unrealistic points. Snow cover periods were also removed for the analysis. A 5-hour moving average 

window was applied to the observed CRNS neutron counts (following Shuttleworth et al., 2013; Rosolem et al., 2014). 
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We used the exact same data for the soil moisture data comparison as for the calibration (providing that both PS and CRNS 

were available in the same period). As validation data, latent heat (LE) flux hourly data from AmeriFflux Level 2 data source 

was used for nine sites. We used data version 3.4 (Goulden et al., 2015) for the three California Climate Gradients sites. Quality 

control was applied to the LE and H flux data to remove outliers and unrealistic data points. 

2.2 Soil moisture data comparison methodology 5 

To compare PS and CRNS soil moisture data we computed the Mean Squared Deviation (MSD) and its decomposition (Gupta 

et al., 2009) into: 

(1) The squared difference between the means (structural bias) 

(2) The squared difference between the standard deviations (indicates different seasonality) 

(3) A term relating to the coefficient of linear correlation (indicates different dynamics) 10 

Which yields the following equation: 

𝑀𝑆𝐷 = (𝜇𝑃𝑆 − 𝜇𝐶𝑅𝑁𝑆)
2 + (𝜎𝑃𝑆 − 𝜎𝐶𝑅𝑁𝑆)

2 + 2 ∙ 𝜎𝑃𝑆 − 𝜎𝐶𝑅𝑁𝑆 ∙ (1 − 𝑟) 

Where μ (m3m-3) is the observed mean, σ (m3m-3) is standard deviation, and r (-) is the coefficient of linear correlation. 

We however scaled the relative contributions of the three MSD components to the Root Mean Squared Deviation (RMSD) 

instead of MSD, to keep units of m3m-3. We then ranked the sites from lowest to highest RMSD. According to our hypothesis, 15 

we would expect to see a larger difference in simulated surface energy fluxes after calibration when the two soil moisture time 

series differ most. We compared PS soil moisture with CRNS soil moisture values computed from vertically homogeneous 

soil moisture values obtained from the observed neutron counts using the COsmic-ray SoiI Moisture Interaction Code 

(COSMIC; Shuttleworth et al., 2013). 

 20 

2.3 JULES forcing data and initial conditions 

JULES requires precipitation, air temperature, atmospheric pressure, wind speed, specific humidity, downward shortwave 

radiation, and downward longwave radiation as meteorological forcing data. Quality controlled hourly data was obtained from 

AmeriFflux Level 2 and the three California Climate Gradients sites. At some of the sites however, certain specific forcing 

data was not available from AmeriFflux and hence data from different sources were used (Table A1.2 of Appendix 1). 25 

Model input data was gap-filled following Rosolem et al. (2010) because JULES requires continuous time series except for 

precipitation where gaps were set to zero. For all sites gaps smaller than 3 hours were filled by linear interpolation. Larger 

gaps of up to 30 days were gap-filled using the average diurnal pattern of the preceding and following 15 days. In addition, 

some remaining gaps in Downward Shortwave Radiation and Downward Longwave Radiation at Wind River (WR) were filled 

using linear least squares relationships with NLDAS-2 data (http://disc.sci.gsfc.nasa.gov/uui/datasets?keywords=NLDAS). At 30 

Soaproot (SO) and Coastal Sage (CS) data gaps in the atmospheric pressure time series were filled with NLDAS data. At CS 

Formatted: Superscript
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NLDAS data were also used to gap fill air temperature. Gap filling at Santa Rita Creosote was done with data from the nearby 

Sahuarita site followed by the gap-filling procedure described above. 

2.4 Calibration and validation methodology 

2.4.1 Joint UK Land Environment Simulator (JULES) 

We used the Joint UK Land Environment Simulator (JULES; Best et al., 2011; Clark et al., 2011) in this study. JULES can be 5 

coupled as lower boundary condition to the UK Met Office Unified Model (Cullen, 1993). Within JULES choices can be made 

(e.g. canopy radiation model type) and certain modules (e.g. vegetation dynamics) can be switched on or off to operate at 

different levels of complexity. In addition, we chose the UK Variable resolution configuration (UKV) because it is the standard 

setting when JULES is run coupled with the UK Met Office Unified Model. The UKV land grid cell size is 1 km by 1 km. 

However, our study focused on JULES standalone simulations at the 12 grid points located at the sites investigated. The UKV 10 

setting employs the multi-layer canopy radiation module with surface heat capacity and snow beneath the canopy, the single 

canopy layer `big leaf’ approach for leaf-level photosynthesis (which computes radiation absorption with Beer’s law). Soil 

heat conductivity was calculated using the approach of Dharssi et al. (2009). We used the default JULES-UKV soil layering 

(Supplement 1, Figure S1.1). The hydraulic bottom boundary condition in JULES is free drainage. 

JULES computes the transport of water through the soil using a finite difference representation of the Richards’ equation. The 15 

vertical fluxes are computed with the Buckingham-Darcy equation. JULES-UKV uses the Mualem-Van genuchten (Van 

Genuchten, 1980; Mualem, 1983) soil water retention equations. The Van Genuchten equation calculates soil water content θ 

(m3m-3) from soil hydraulic pressure head ψ (m): 

𝜃−𝜃𝑟𝑒𝑠

𝜃𝑠𝑎𝑡−𝜃𝑟𝑒𝑠
=

1

[1+(𝛼Ψ)𝑛]1−1/𝑛
 ,            (1) 

with shape parameter n (-), α (m-1) representing the inverse of the water entry pressure, θres (m
3m-3) is the empirical residual 20 

soil moisture content (without physical meaning), and θsat (or smsat; m3m-3) is the saturated soil moisture content. In JULES 

parameter n is defined as b = 1/(n-1) and sathh=α-1 (m). 

The Mualem equation computes the unsaturated hydraulic conductivity K: 

𝐾 = 𝐾𝑠𝑎𝑡
𝜃−𝜃𝑟𝑒𝑠

𝜃𝑠𝑎𝑡−𝜃𝑟𝑒𝑠
[1 − (1 −

𝜃−𝜃𝑟𝑒𝑠

𝜃𝑠𝑎𝑡−𝜃𝑟𝑒𝑠

1/(1−
1

𝑛
)
)1−

1

𝑛]

2

,         (2) 

where Ksat (or satcon; mm·s-1) is the saturated hydraulic water conductivity. 25 

The values of the Mualem-Van Genuchten parameters need to be defined by the user for each grid cell/point based on soil 

characteristics. 

In JULES soil moisture directly interacts with transpiration (through root water uptake) and bare soil evaporation as described 

hereafter (see also Figure S1.2 of Supplement 1). JULES first computes the potential photosynthesis, which is a function of 

three limiting factors: Rubisco limitation, radiation limitation, and photosynthetic product transport limitation. The potential 30 
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photosynthesis is multiplied with a soil moisture reduction factor to obtain the actual photosynthesis. To obtain this soil 

moisture reduction factor the model first computes a limiting factor for each layer: 

𝛽
𝑖
= {

1, 𝜃𝑖 ≥ 𝜃𝑐𝑟𝑖𝑡
(𝜃𝑖−𝜃𝑤𝑖𝑙𝑡)

(𝜃𝑐𝑟𝑖𝑡−𝜃𝑤𝑖𝑙𝑡)
, 𝜃𝑤𝑖𝑙𝑡 < 𝜃𝑖 < 𝜃𝑐𝑟𝑖𝑡

0, 𝑥 ≤ 𝜃𝑤𝑖𝑙𝑡

,          (3) 

where θi is the unfrozen soil moisture content in layer i, θcrit is the critical point soil moisture content below which soil moisture 

is limiting the root water uptake (matrix water potential -330 cm in JULES), and θwilt is the wilting point soil moisture content 5 

below which no root water uptake occurs (-15000 cm in JULES). These reduction factors are multiplied with the root density 

in the layer. These weighted reduction factors are then summed to obtain the root zone soil moisture reduction factor. From 

the actual photosynthesis the plant stomatal conductance is computed. Separately the bare soil surface conductance, which is 

a function of the soil moisture content in the upper soil layer and the critical soil moisture, is computed. The surface 

conductance is then computed as a function of the stomatal conductance and the bare soil surface conductance. 10 

The potential evapotranspiration is also calculated separately. This variable is multiplied with the saturated land fraction to 

compute the free water evaporation (e.g. lake and canopy evaporation). The rest of the potential evapotranspiration is 

multiplied with the surface conductance to obtain the bare soil evaporation + plant transpiration. Together these fluxes are the 

actual evapotranspiration (water) or latent heat flux (energy). The amount of water drawn from the top soil layer through bare 

soil evaporation depends on the bare soil surface conductance. The distribution of the root water uptake between the layers 15 

depends on the weighted soil moisture limitation factor for each layer. The water extraction from the soil in its turn directly 

affects the soil moisture content in the different layers at the start of the next time step. These soil moisture contents then affect 

the soil moisture redistribution, surface runoff, and deep drainage. 

JULES-UKV also requires a number of initial conditions: the amount of unfrozen water and snow stored on the surface (on 

canopy and on soil surface; set to zero in this study), snow properties (set to JULES-UKV defaults), the surface temperature 20 

(set to the air temperature of the hour before the first simulation time step), the soil temperature of each layer (set to the soil 

temperature from AmeriFflux data the hour before initial time step) the soil water content in each layer (set to the soil water 

content from the PS observed moisture content of the hour before the first simulation time step and applied homogeneously 

throughout the profile). Soil moisture was spun up by running a maximum of five cycles and stopped when soil moisture 

convergence was lower than or equal to 10% compared to the previous cycle. 25 

2.4.2 Calibration and validation approaches 

At each site we calibrated JULES against observed PS observed soil moisture and against CRNS observed neutron counts 

respectively. We chose to calibrate simulated neutron counts against CRNS observed neutron counts using COSMIC 

(Shuttleworth et al., 2013) to translate simulated soil moisture profiles into equivalent neutron counts.  We computed the Root 

Mean Squared Error (RMSE) between simulated and observed hourly time series. To better match the observed soil 30 

moisture/neutron count time series, we calibrated five JULES parameters that influence the model soil moisture state (Figure 
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S1.2 of Supplement 2 These included Mualem-Van Genuchten shape parameter: (b), the water entry pressure parameter 

(sathh), and the saturation hydraulic conductivity (Ksat). The critical point (θcrit) and wilting point (θwilt) soil moisture content 

parameters from the evapotranspiration limitation factor were also calibrated. We chose these parameters because they are, in 

theory, directly linked to the movement of moisture in the soil and to the effects of soil moisture on transpiration in JULES. 

To assess the effects of calibration on soil moisture and surface energy flux simulation we compared the calibrated solutions 5 

against a default run at each site. The parameter values for the default case were derived from soil properties (percentages clay, 

loam, and organic matter) reported by the Harmonised World Soil Database (HWSD; FAO, 2009) for each of the twelve sites. 

These properties were used in the Wösten Pedotransfer fFunction (Wösten et al., 1997) to obtain values for b, sathh, and Ksat. 

Parameter values for θcrit and θwilt were subsequently obtained with the Van Genuchten formula. 

The parameter calibration ranges were the same for all sites (Table 2). They were constructed by computing the minimum and 10 

maximum parameter values for the entire soil texture triangle (based on Wösten Pedotranser Function).  Three organic matter 

contents were taken into consideration, yielding three triangles. Clay percentages above 70% were excluded to avoid extreme 

values for parameter b especially. The range for θcrit was set to 10-90 % of the saturated soil moisture content. The saturated 

soil moisture content was computed as a function of the dry soil bulk density (ρbd,dry): θsat =1 – ρbd,drybd / 2.65 (Brady and Weil, 

1996). Soil bulk density values obtained from the COSMOS network were used. This yielded different θcrit ranges in terms of 15 

soil moisture content (m3m-3) for different sites. The residual soil moisture content (defined implicitly in JULES) was set to 

zero because the Wösten Pedotransfer Function does not consider it. 

JULES’ remaining two ancillary parameters; the soil heat conductivity and soil heat capacity, were for each site computed as 

a function of soil properties (HWSD) with De Vries’ (1963) method. The bare soil albedo was set constant at 0.38 (-) for all 

sites. Plant Functional Type parameters were set to JULES defaults except for the e-folding rooting depth (depth above which 20 

86 % of plant roots are present) and the canopy height, at sites where more specific information was available from 

AmeriFflux/COSMOS site information or from site specific literature. 

We calibrated JULES using the BORG Multi-Objective Algorithm (BORG-MOEA or BORG; Hadka and Reed, 2013). This 

calibration tool was designed for multi-objective problems but also works for single-objective calibration. BORG employs 

multiple optimisation algorithms simultaneously to obtain convergence while also keeping the searched parameter space wide. 25 

The algorithm measures progress with the epsilon-progress technique, which uses the objective function space divided in boxes 

with sides of size epsilon. Epsilon is a user defined value for each objective function (we used epsilon values of 0.001 m3m-3 

for PS and 1 cph for CRNS, Kollat et al., 2012). Only if a new solution resides inside a box with a better objective function 

value, BORG considers it is progress. If no progress was obtained after 200 runs, the algorithm had stagnated. In this case the 

BORG algorithm triggers a restart, which consists of (among other techniques) changing population size to maintain a diverse 30 

population and to escape local optima. We used a maximum number of 3,000 runs and an initial population size of 100 runs. 

As validation metric we chose RMSE between the observed and simulated latent heat flux (LE). Because data quality issues 

with eddy-covariance data are often observed during night time (Goulden et al., 1996; 2006; 2012; Aubinet et al., 2010), we 

computed these metrics over day time hours only. We defined day time as downward shortwave radiation > 20 Wm-2. To avoid 
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extreme RMSE-EF values, we used hours with both observed and simulated LE values ≥ 1 Wm-2 only. Otherwise a few hours 

with small LE or H values would have dominated the RMSE values, while this would probably have been due to forcing or 

eddy-covariance data inconsistencies and would not relate to soil moisture temporal variability. 

 

It is known that single-objective calibration is often insufficient to constrain parameters to simulate different states and fluxes 5 

well (Gupta et al., 1999). In addition, Vereecken et al. (2008) argued that calibrating soil hydraulic parameters against soil 

moisture only does not guarantee better surface energy fluxes. To find out whether it was actually feasible to expect better 

surface energy flux simulation when soil moisture was improved we performed calibrations where we optimised the model for 

two objectives simultaneously. We employed the BORG algorithm to simultaneously optimise the RMSE of (day time) latent 

leat flux and the RMSE of all day soil moisture (using PS soil moisture and CRNS neutron counts separately). We analysed 10 

the trade-off between the two objective functions. We computed the compromise solution for each two-objective-calibration. 

Plotted within the normalised two-objective solution space, the compromise solution is the model run which has the smallest 

distance to the origin. This means no other solution can be obtained that yields a better approximation for one objective function 

without deteriorating the other. 

3 Results and Discussion 15 

3.1 Soil moisture data analyses 

In Figure 2 comparison between PS and CRNS soil moisture time series shows that the seasonal trends of the two soil moisture 

observation products were similar. The two soil moisture products however also differed from each other, in distinct ways at 

different sites. PS soil moisture observations were systematically higher than CRNS soil moisture observations at eight of 

twelve sites. At three sites (DC, SO, CS) PS soil moisture dried down quicker than CRNS soil moisture, while at ME the 20 

opposite behaviour was observed. At KE, MM, TR, and MO PS showed a higher seasonality signal (up to 50% higher) than 

CRNS. Peaks in PS soil moisture were at three sites (UM, KE, TR) up to twice as high as in CRNS soil moisture. In addition, 

the CRNS data appears noisier than the PS data, which is an effect of inherent randomness in neutron radiation reaching the 

CRNS sensor element (Zreda et al., 2012). This effect was more pronounced for lower neutron intensity. 

 .   25 

The differences seen in Figure 2 are also summarised inFigure 3Figure 3, which shows a gradual site to site increase in RMSD 

between observed PS and CRNS and soil moisture data series (RMSD-SMobs). Overall, bias contributed to 50% or more of the 

total error at seven out of twelve sites. 

Additional analyses indicated that differences between the two soil moisture estimates could not be clearly related to any 

differences inphysical site physical characteristics besidesother than the mean soil wetness. Dominant vegetation type seemed 30 

not to have an effect on the similarity between the two soil moisture data products: both forested and grass sites included those 

with relatively small RMSD-SMobs and those with relatively high RMSD-SMobs. Only bare/shrub covered sites (DC, SR, CS) 
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were all below the sites’ average RMSD-SMobs of 0.05 m3m-3. These four sites were however also relatively dry. No correlation 

between dominant land cover and decomposition was found. The grassy sites had the most even distributions between the 

three decomposition terms. Soil type and soil bulk density were also investigated for correlations with RMSD-SMobs, but no 

trends were discovered. Larger differences between PS and CRNS soil moisture could be expected at sites with more 

heterogeneous soil or vegetation. Static satellite photos of the sites from the COSMOS website did not indicate systematically 5 

more heterogeneous conditions at the sites where PS and CRNS soil moisture differed more. Site info (e.g. topography, 

presence of rocks) from COSMOS and AmeriFflux did also not clearly show more horizontally heterogeneous soil properties 

for those sites. The fact that the soil moisture time series of PS and CRNS differed from each other in various ways could be 

related to a number of issues. First, PS sensor types and numbers of sensors differed between the sites (Table A1 of Appendix 

A). Second, the installation methods may also have been different between the sites. FinallySecondly, the exact installation 10 

locations of the PS sensors may in certain cases have been for instance next to a macropore, or near roots, while at other sites 

they were coincidently installed in a homogeneous soil patch. 

The presence of neutron mitigating factorshydrogen pools other than soil moisture (e.g. atmospheric pressure, sensor type, 

biomass, intercepted water, and water in litter layer) also affect the observed CRNS neutron count. Because different hydrogen 

pools are more present at certain sites than at others, the uncertainty on neutron count observations varies between sites. The 15 

results did however not show effects of land cover and soil properties on the similarity between the two soil moisture products. 

Another factor is that, the quality of the calibration of COSMIC could possibly be different for different sites. Finally, at 

multiple sites, the PS and CRNS soil moisture time series were quite similarsimilar as shown with RMSE values. This could 

be expected at rather homogeneous sites. Moreover, Köhli et al. (2015) suggested the CRNS footprint to be around 150-200 

m instead of 300 m as reported by Desilets and Zreda (2013). In that case the differences between the two soil moisture 20 

observation techniques could be smaller than initially thought. 

We derived vertically constant CRNS soil moisture values from observed neutron counts with COSMIC. This method contains 

inherent uncertainty because in reality soil moisture is often not vertically homogeneous. The different lengths (between sites) 

of the time series used can have affected the metrics and sites’ ranking. However, we used at least one year of data at all sites. 

For these reasons these data analyses should be seen as a first simple comparison of the two data types only. The outcomes of 25 

the calibration (against PS and CRNS) and validation provide insight in the effects of the differences between the two soil 

moisture products on JULES’ surface energy flux partitioning and latent heat flux simulation. 

3.2 Single objective calibration against soil moisture observations 

). The degree to which the objective function (RMSE-SM; Figure 4) values decreased differed between sites and the two 

calibration strategies (PS or CRNS), with decreases of 21% (AR-PS) to 93% (UM-CRNS). While the errors of the default runs 30 

existed mostly of systematic bias, after calibration the difference in dynamics was the largest source of uncertainty and in 16 

out of 24 cases this contribution actually increased in absolute terms. The increase in difference in dynamics was due to the 

selected objective function (RMSE), which reduces the mean error between modelled and observed data. Previous research 
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(e.g. Teuling et al., 2009) has shown calibrating soil parameters has a large effect on simulated absolute soil moisture values 

(bias), but substantially less on soil moisture seasonality and dynamics. Our finding supports this. 

The RMSE values reduced relatively more for the CRNS calibration (70% on average over the twelve sites) than for the PS 

calibration (55% on average). The calibration method could possibly explain this. CRNS calibration was against observed 

neutron counts, while PS calibration was against observed soil moisture contents. Because neutron counts have an inverse 5 

relationship with soil moisture content, the PS calibration was possibly governed by avoiding larger errors occurring during a 

few brief soil moisture peaks. While focussing on getting the fitting for those peaks right, the PS calibration neglected the 

smaller errors during dry periods. This would then result in relatively smaller decrease in RMSE values than for the CRNS 

calibrations because those were fitted with heavier weights to the drier periods. 

Figure 4 also shows that the relative improvement was not systematically lower or higher for sites with higher similarity 10 

between the two observed soil moisture time series. (aActually the largest improvement was for the CRNS calibration at UM). 

Therefore, it appears that the quality of the default runs was hence predominated by the quality of the chosen default parameter 

values. 

Figure 5 shows soil moisture time series for four selected sites: UM was chosen because PS and CRNS soil moisture were 

most similar there, SR was a site with moderate difference, and at WR and MO PS and CRNS soil moisture were most different. 15 

Simulated soil moisture improved especially at UM and WR, where the default runs overestimated soil moisture contents. 

Simulated soil moisture dynamics became more similar to both PS and CRNS observed soil moisture dynamics, even though 

observed soil moisture dynamics differed from each other substantially at sites WR and MO. The relatively high noise in the 

CRNS soil moisture time series is due to the relatively low neutron count at this site, and possibly due to temporal variations 

in other hydrogen pools like water intercepted in the forest canopy and in the litter layer. 20 

3.3 Validation of the single-objective calibrations against eddy-covariance observations 

While calibration errors decreased for soil moisture, latent heat flux estimation improved for fourteen out of twenty-four 

calibrations (Figure 6). This means that an improvement in simulated soil moisture did not necessarily lead to better estimation 

of surface energy fluxes. Calibration against PS soil moisture improved RMSE-LE at six sites (UM, KE, DC, SR, SO, and 

ME), while calibration against CRNS neutron counts improved RMSE-LE at eight sites (KE, DC, SR, ME, SO, AR, MM, and 25 

WR). At five sites RMSE-LE improved after calibration against both PS soil moisture and CRNS neutron counts. Calibration 

yielded lower RMSE-LE after calibration against CRNS neutron counts than after calibration against PS soil moisture at all 

but three sites (UM, KE, and WR). Figure 6 also shows that RMSE-SM decreased substantially less (i.e. >20% difference) 

after calibration against PS soil moisture than after calibration against CRNS neutron counts (i.e. >20% difference between 

both strategies on the horizontal axis of Figure 6, which occurred at six sites). At five of these six sites the relative change in 30 

surface energy flux performance was also smaller (sites MO, AR, TR, ME, and SR). This indicates that further improvement 

in soil moisture simulation after calibration against PS data could have yielded better surface energy fluxes. The differences 
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between the two calibration strategies can also be seen from the different locations of the centres-of-mass of the two point 

clouds. The cloud of the CRNS strategy is clearly located more to the lower left corner in Figure 6. . 

In Figure 6 10% change in latent heat flux  estimation was chosen to distinguish substantial change from non-substantial 

change, derived from the approximate error in eddy-covariance data (Sellers and Hall, 1992; Finkelstein and Sims, 2001). 

Improvement in latent heat flux was actually substantial inIn just four cases for PS calibration and five cases for CRNS 5 

calibration the improvement in latent heat flux was actually substantial. Using this threshold also revealeds that RMSE-LE did 

not change substantially in six cases for calibrations with a more than 60% change in RMSE-SM, RMSE-LE did not change 

substantially in six cases. This again shows that a change in simulated soil moisture did not necessarily mean a substantial 

change in surface energy flux simulation. Analysis of the RMSE of evaporative fraction (EF=LE/(LE+H)), which shows the 

ability to simulate surface energy partitioning, yielded similar overall results as our analysis of the RMSE of latent heat flux 10 

(Supplement 2, Figure S2.1). 

One factor causing some of these limited improvements was that, when mean simulated root zone soil moisture (weighted with 

root density) increased after calibration, the values of the wilting point and critical point soil moisture parameters moved along 

(data not shown), yielding similar soil moisture stress. This happened for both calibration strategies at site KE, and for the 

calibration against CRNS neutron counts at sites MO and TR. This could relate to the limited value of simulated absolute soil 15 

moisture for surface energy flux estimation in land surface models (Dirmeyeret al., 2000; Koster et al., 2009). However, we 

also found the distance between wilting point values and critical point values to decrease after calibration. This occurred with 

a simultaneous decrease in standard deviation of the simulated soil moisture. The self-adjusting behaviour of the wilting point 

and critical point parameters was also indicated by parameter sensitivity analysis (Appendix 32), which showed soil moisture 

was substantially more sensitive to a change in critical point value than latent heat flux. 20 

Another issue, which occurred for instance for the PS calibration at SO and for the CRNS calibrations at site AR, was that 

while surface energy flux estimation improved for a certain period, it deteriorated for another period (data not shown). A third 

cause of limited improvement in surface energy flux estimation occurred for example at site ME (data not shown). Soil 

moisture stress was relatively limited (beta mostly above 0.6) and during periods of soil moisture stress, the latent heat flux 

was dominated by different stress factors. 25 

  

To see if validation results would be different if only those periods during which soil moisture stress occurred were evaluated, 

we also analysed the performance over these periods only (data not shown).  During these periods plant water uptake limitation 

factor β was below one (data not shown). Only at site SO did we see somewhat better performance during these periods 

compared to the original validation period, after both PS and CRNS calibration. 30 

We explored trends between relative improvement in surface energy flux estimation and soil wetness, precipitation, vegetation 

type, vegetation height, and soil characteristics. No clear trends were discovered. The only feature that could be distinguished 

was that for the two sites with a bare soil tile (DC and SR) PS and CRNS calibration improved EF and LE. Rooting depth did 

also not explain relative improvement in surface energy flux estimation. Finally, larger differences between the two observed 
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soil moisture time series did generally yield more different simulated surface energy flux time series, with a clear exception 

for site UM, where the two calibration approaches yielded more than 20% difference in change in RMSE-LE. 

In Figure 7 the monthly mean diurnal latent heat cycles of four sites (UM, SR, WR, and MO) are shown (night time data 

included but not used for calibration as discussed previously). Both calibration strategies yielded overestimation in March and 

April and underestimation from June to August at site UM. A month long gap in longwave and shortwave downward model 5 

forcing data occurred in April 2012. This might have affected the results for this site. At SR, both PS and CRNS calibration 

improved latent heat flux during periods of low evapotranspiration, while during the other periods only the CRNS calibrations 

yielded better results. AtT WR calibration against PS soil moisture yielded overestimation of latent heat flux, while CRNS 

calibration yielded too low latent heat flux. The PS calibration at MO yielded latent heat flux underestimation, whereas CRNS 

calibration did not change LE substantially. 10 

In summary, the single-objective calibrations against CRNS neutron counts yielded larger improvements in simulated surface 

energy fluxes than single-objective calibrations against PS soil moisture (Figure 6). Improvements in surface energy flux 

estimation were however substantial for four calibrations against PS soil moisture and five calibrations against CRNS neutron 

counts. Limited improvements in surface energy flux estimation after calibration could partly be attributed to the limited value 

of absolute soil moisture to estimate surface energy fluxes with land surface models. This seems reasonable because calibration 15 

mostly affected absolute soil moisture (Figure 4). This result corresponds with earlier research that showed model soil moisture 

dynamics and seasonality have a larger effect on surface energy flux simulation than absolute soil moisture (e.g. Teuling et al., 

2009; Dirmeyer et al., 1999). Previous research has also indicated that soil moisture alone is insufficient to estimate soil 

hydraulic parameters (Vereecken et al., 2008; 2015). Our findings support this for some sites. To better understand these 

implications, the two-objective simulations against soil moisture and latent heat flux simultaneously (discussed in the next 20 

section) provides further insight in these results. 

3.4 Two-objective calibration against soil moisture and latent heat flux 

The results from the two-objective calibrations suggest that differences in latent heat flux estimation improvement between 

compromise solutions for both two-objective calibration strategies were limited (Figure 8). Only at three sites were these 

differences more than 5% (at sites SR, DC, and UM). Improvements were substantial (according to our 10% threshold for 25 

improvement in RMSE of latent heat flux) for six calibrations with PS soil moisture and for eight calibrations with CRNS soil 

moisture. 

Scatterplots of normalised RMSE of latent heat flux (LE) and normalised RMSE of soil moisture for all sites are shown in 

Figure 9 and Figure 10 for the PS and CRNS two-objective calibration strategies respectively. The RMSE values were 

normalised with respect to the default solutions, which therefore have normalised RMSEs values of 1 (-). The black dots 30 

represent individual model runs and the default model run for each site is represented by a red cross. The single-objective 

calibration solution of each single-objective calibration solution is shown as a blue triangle and the compromise solution of 

each two-objective calibration is shown as a green triangle. These two figures showed that the differences between the 
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compromise solutions of the two calibration strategies observed for SR, DC, and UM in Figure 8, were less meaningful than 

analysis of Figure 8 only showed. 

These findings are based on the shapes of the black point clouds in Figure 9 and Figure 10. We first look at the left edges of 

the black point clouds. When these edges are close to vertical, a small deterioration in RMSE-SM or RMSE-N (e.g. less than 

0.05 (-)) would yield a large deterioration in normalised RMSE-LE (e.g. greater than 0.2 (-)). We observed this for three 5 

calibrations with PS soil moisture (SO, AR, and WR; indicated with pink line for WR) and in all these three cases, a less than 

0.05 (-) change in normalised RMSE-SM would have yielded worse simulated latent heat flux than with the default parameter 

set. Seven calibrations with CRNS neutron counts (UM, DC, SO, KE, SR, CS, and WR; indicated with pink line for WR) 

showed a close to vertical edge. In four cases (UM, DC, KE, and CS) this would have yielded worse simulated latent heat flux 

than with the default parameter set. A negative slope for this side of the point cloud means an improvement in soil moisture 10 

estimation would mean a deterioration in latent heat flux estimation. We observed such negative slope for four calibrations 

with PS soil moisture (CS, MM, TR, and MO; indicated with continuous black line for MO) and for two calibrations with 

CRNS neutron counts. 

Next, we look at the lower edges of the point clouds in Figure 9 and Figure 10. When this edge is horizontal, this means good 

latent heat flux estimation can be obtained for a wide range of soil moisture estimation performances (for instance site ME, 15 

indicated with pink lines in both figures). When this edge has a negative slope, this means the best latent heat flux estimation 

is obtained for worse soil moisture (for instance site TR, indicated with pink lines in both figures). We observed these two 

features for all two-objective calibrations. Single-objective calibration against latent heat flux would however only have 

necessarily yielded worse soil moisture than the default parameter set for six calibrations with respect to PS soil moisture (sites 

UM, KE, SR, TR, AR and WR) and two calibrations with respect to CRNS neutron counts (sites TR and AR). The implication 20 

of these results is that the quality of latent heat flux simulation did not depend strongly on the quality of soil moisture 

simulation. 

In summary, the two-objective calibrations against soil moisture (or neutron counts) and latent heat flux showed fewer 

substantial differences between calibration with PS soil moisture and calibration with CRNS neutron counts. These results 

indicate that the differences between both single-objective calibration strategies, which showed an advantage for CRNS 25 

observations, were possibly not as substantial as it seemed at first. The spatio-temporal stability theory, which implies limited 

spatial variability in surface energy fluxes, could be one explanation for this (Vachaud et al., 1985; Teuling et al., 2006; 

Mittelbach and Seneviratne, 2012; Albertson and Montaldo, 2003). Another factor that has possibly played a role is that the 

spatial scale advantage of the CRNS was masked out by the possibly lower quality of its measurements (see also Section 3.1). 

Different hydrogen pools than soil moisture affect the neutron measurements at various temporal resolutions (e.g. rainfall 30 

interception; Baroni and Oswald, 2015). However, PS sensors also have their limitations. Different (electromagnetic) PS 

sensors have different designs and properties, which affect the data quality (Robinson et al., 2008; Blonquist et al., 2005). Soil 

type and soil specific calibration also affect the accuracy and precision of the PS data. For instance, the relationship between 

electrical permittivity and soil moisture content is strong for quartz rich soils, but less accurate for clay soils (e.g. Ishida et al., 
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2000; Robinson et al., 2008). An issue that could have had effect on our results is the occurrence of gaps in the model forcing 

data. Gaps in observed meteorological data are often inevitable and must be filled for a land surface model to be run. 

Percentages of missing hours differed between 0% and 15% at our sites. Gaps larger than fifteen days filled with the moving 

window gap-filling procedure occurred mainly for downward shortwave and/or downward longwave radiation; at sites UM, 

KE, SR, DC, TR, and CS. At site WR a data gap of 29 days in precipitation and air pressure occurred. Especially the gap in 5 

precipitation data can have negatively affected the model results at this site. In this study we used PS sensor data in the upper 

30 cm of the soil only, even though data from deeper sensors was publicly available at two sites (WR and MO). This choice 

can have provided a disadvantage to the PS data in our comparison, especially at sites with deeper roots and during soil 

moisture limiting conditions in the upper soil. Investigating the role of deeper roots was however beyond the scope of this 

study. Our goal was to compare the effects of the difference in horizontal footprint on latent heat flux simulation after using 10 

the two different measurement techniques to calibrate model parameters. 

4 Conclusions 

We investigated whether the spatial scale mismatch between the surface energy flux data and soil moisture data could be 

reduced through the use of Cosmic-Ray Neutron Sensors (CRNS). Five soil and evapotranspiration parameters of LSM JULES 

were calibrated against Point Scale (PS) and CRNS soil moisture data separately, for twelve COSMOS/AmeriFflux sites with 15 

different climate, land cover, and soil properties. Next, at each site, the improvement in latent heat flux for the two calibration 

solutions was assessed by comparing the fit with eddy-covariance data and a version of LSM JULES runs with default 

parameter values based on a widely used soil database. Before the calibrations we compared the observed soil moisture data 

from the two sensor types. These analyses showed the differences between PS and CRNS soil moisture varied in 

naturehappened in different ways at the investigated sites. While at eight sites there were mainly systematic biases, at three 20 

other sites the seasonality was most different, and at one other sites different time series dynamics were the main cause of 

differences between the two soil moisture observations. 

The single-objective calibration of JULES parameters against Cosmic-Ray Neutron Sensor neutron counts point-scale soil 

moisture yielded better simulated latent heat fluxand than single-objective calibration against point-scale soil moistureCosmic-

Ray Neutron Sensor neutron counts did not necessarily yield an improvement in latent heat flux simulation. The analysis of 25 

these single-objective calibrations and multi-objective calibrations (against (1) PS soil moisture and latent heat flux and (2) 

CRNS neutron counts and latent heat flux) however revealed that differences between calibrations with these two soil moisture 

observation methods did overall not yield substantially different surface energy flux estimations. 

 These outcomes did not provide sufficient evidence to reject our null-hypothesis “reduced scale mismatch does not lead to 

LSM flux estimates closer to eddy covariance observations”. The spatio-temporal stability theory in soil moisture, on which 30 

our hypothesis was based, can possibly explain the limited differences in surface energy flux estimation. This theory implies 

that spatial variability in surface energy fluxes is relatively limited within an eddy-covariance tower footprint. Therefore 
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simulated surface energy fluxes after calibration against with point scale soil moisture data would not necessarily be better 

than simulated surface energy fluxes after calibrations against with CRNS soil moistureneutron count data. Another factor, 

related to this and that contributed to this result, was that cCalibrating soil parameters had mostly an effect on absolute soil 

moisture values rather than soil moisture dynamics. Soil moisture dynamics have a greater effect on surface energy flux 

simulation in land surface models than absolute soil moisture values do. Related to this we observed that after calibration the 5 

wilting point and critical point soil moisture parameter values adjusted themselves in a similar way as the root zone soil 

moisture did, yielding similar soil moisture control on transpiration despite changes in soil moisture values. In other cases we 

found calibration against soil moisture to improve surface energy fluxes during certain periods, but to deteriorate surface 

energy fluxes during other periods, yielding similar overall performance. Yet in other cases evapotranspiration was not limited 

by soil moisture stress. The potential scale advantage of the CRNS was possibly masked out by the possibly lower measurement 10 

quality of this sensor because other hydrogen pools than soil moisture affect the neutron count observations. Future use of 

CRNS soil moisture data could however benefit from improved knowledge on the effects of additional hydrogen pools (e.g. 

Baroni and Oswald, 2015) and of the sensor footprint (Köhli et al., 2015). In this study, our results are conditioned to a single 

land surface model (JULES). For additional understanding of the importance of both PS and CRNS measurements for 

simulated surface energy quantities flux simulation, this study can be extended to other models in the future. 15 
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Table 1: Site characteristics. Altitude from COSMOS website, land cover percentages from AmeriFflux and publications. 

Harmonised World Soil Database (HWSD) data was used to define default model parameter values (here only soil categories shown). 

Site Altitude 

(meter above 

sea level; 

COSMOS) 

Land cover (%) HWSD 

dominant soil 

type 

Site soil info 

(AmeriFflux, 

COSMOS, 

literature) 

Data sources 

Dominant Remaining 

UM 220 100% broadleaf  Loamy sand Deep well 

drained soils 

COSMOS, 

ORNL-

DAAC 

(2015) 

DC 1300 46% shrubs 46% bare, 

8% needleleaf 

Sandy loam  Anderson and 

Goulden 

(2012) 

SO 1160 63% needleleaf 37% shrubs Loam 0-10 cm thick 

organic litter 

layer, bedrock at 

1-2 m 

COSMOS, 

Goulden et al. 

(2012) 

KE 1531 100% C4-grass  Loam Coarse-loamy, 

limestone 

fragments 

ORNL-

DAAC 

(2015) 

ME 1253 100% needleleaf  Loamy sand Sandy, minimal 

organic 

COSMOS, 

ORNL-

DAAC 

(2015) 

SR 989 76% bare 24% shrubs Loam Silty clay loam COSMOS, 

Cavanaugh et 

al. (2011) 

CS 457 100% shrubs  Loam  Anderson and 

Goulden 

(2012) 

MM 288 100% broadleaf  Loam Well drained 

clay loam 

COSMOS, 

ORNL-

DAAC 

(2015) 

TR 177 60% C3-grass 40% 

broadleaf 

Loam Sandy clay 

loam, clay 

hardpan at 30-40 

cm 

COSMOS, 

ORNL-

DAAC 

(2015), 

Chen et al. 
(2008) 

AR 314 100% C4-grass  Loam Sandy COSMOS, 

ORNL-

DAAC 

(2015) 

WR 371 100% needleleaf trees  Loam 5-10 cm organic 

layer, silty sand 

COSMOS, 

ORNL-
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DAAC 

(2015) 

MO 219 100% broadleaf trees  Loam Silty loam COSMOS, 

ORNL-

DAAC 

(2015) 
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Table 2: Calibrated parameter definitions and calibration ranges. 

JULES parameter 

name 

Unit Role Range 

Minimum Maximum 

b - Mualem-Van 

Genuchten 

parameter (b=1/(n-

1)) 

0.63 24.43 

sathh m Mualem-Van 

Genuchten 

parameter (sathh=α-

1) 

0.09 28.01 

Ksat mm s-1 Mualem saturation 

hydraulic 

conductivity 

3·10-5 4.3·10-1 

θcrit m3m-3 Critical soil 

moisture content 
0.1·θsat 0.9· θsat 

θwilt m3m-3 Wilting soil 

moisture content 
0.1·θcrit 0.9· θcrit 
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Figure 1: Figure a shows the yearly mean precipitation, air temperature, and dominant land cover types for the twelve 

AmeriFflux/COSMOS sites used. At sites DC, SR, and TR two different land cover types were shown because they covered similar 

areas in size. The map below (b) shows the locations of the twelve sites within eight NEON Ecoclimatic Domains. Data sources: 

COSMOS, ORNL-DAAC (2015), Goulden et al. (2012), Anderson and Goulden (2012), Scott et al. (1990), Chen et al. (2008). 5 
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Figure 2: PS and CRNS observed soil moisture (SM; m3m-3) time series for the twelve study sites. Notice the PS soil moisture time 

series have been linearly interpolated from individual measurement depths to the corresponding JULES soil layers. CRNS soil 

moisture was obtained using COSMIC while assuming vertically homogeneous soil moisture. Daily precipitation (mm day-1) is also 

shown here for each site. 

 5 

Figure 3: Root Mean Squared Error (RMSE) between observed PS and CRNS soil moisture (SM; m3m-3). MSE decomposition 

(Gupta et al., 2009) was calculated and the fractions were then applied to the RMSE values. Sites are ranked from most similar to 

most different. 
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Figure 3: Root Mean Squared Deviation (RMSD) between observed PS and CRNS soil moisture (SM; m3m-3). MSD decomposition 

(Gupta et al., 2009) was calculated and the fractions were then applied to the RMSD values. Sites ranked from most similar to most 

different. 
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Figure 4: Objective function (Root Mean Square Error; RMSE (m3m-3)) values between observed PS/CRNS soil moisture and 

JULES simulated soil moisture. For each calibration the RMSE of the default run is shown from the horizontal axis down, and the 

result after calibration is shown in the upward directions. The different error contributions from the MSE decomposition are shown 

as stacked bar plots. 5 

  

Figure 5: Hourly soil moisture time series of JULES default and calibrated runs against observations (PS or CRNS) for four of 

twelve sites. 
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Figure 6: Relative change in Root Mean Square Error (RMSE) values after single-objective calibration against PS soil moisture and 

CRNS neutron count data. Change in RMSE between observed and simulated latent heat flux (LE) is plotted against change in 

RMSE between observed and simulated soil moisture. 5 
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Figure 7: Monthly mean diurnal latent heat flux (LE) cycles. The upper row contains PS calibrated solutions, the lower row shows 

the CRNS calibrated solutions. Monthly mean diurnal latent heat flux cycles. The upper row contains PS calibrated solutions, the 

lower row shows the CRNS calibrated solutions. 
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Figure 8: Relative change in Root Mean Square Error (RMSE) values after two-objective calibration against (1) PS soil moisture 

and latent heat flux and (2) against CRNS neutron count data and latent heat flux. Change in RMSE between observed and simulated 

latent heat flux (LE) is plotted against change in RMSE between observed and simulated soil moisture. 
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Figure 9: All runs from the two-objective calibrations against PS soil moisture and day time hourly latent heat flux (LE) at each site. 

Default run, PS-SM single objective calibrated run, and compromise solution runs are shown on top. All values were normalised to 

the values of the Default run. The plots were zoomed in to the area of 0 to 1.5 times the Default values.  5 

 



36 

 

 

 

Figure 10: Same as Figure 9 but for the two-objective calibrations against CRNS neutron counts (representing soil moisture) and 

day time hourly latent heat flux (LE) at each site. 

 5 

 

 

 

 

 10 
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Appendices 

Appendix 1: Additional Data and Methods tables and figures 

Table A1.1: PS types, installation depths, number of profiles. In the last column it is shown to which JULES layer the observations 

were linearly interpolated. 

Site Type Installation layers 

(cm below surface) 

Number of 

profiles 

Interpolated to 

JULES layer (cm) 

UMBS Campbell 

Scientific CS615 / 

CS616 

(reflectometer) 

0-30 average 1 0-10 

Desert Chaparral 

UCI 

Campbell 

Scientific CS616 

(reflectometer) 

0-30 average 4 0-10 

Soaproot Campbell 

Scientific CS615 

(reflectometer) 

0-30 average 4 0-10 

Kendall Stevens Water 

Hydra Probe 

5,15 1 0-10 

Metolius Campbell 

Scientific CS615 

(reflectometer) 

0-30 average 1 0-10 

Santa Rita 

Creosote 

Time Domain 

Resistivity 

2.5,12.5 6 0-10 

Coastal Sage UCI Campbell 

Scientific CS616 

(reflectometer) 

0-30 average 4 0-10 

Morgan Monroe Campbell 

Scientific CS615 

(reflectometer) 

0-30 average 1 0-10 

Tonzi Range ThetaProbe (ML2) 0,(20) 2 0-10,(10-35) 

ARM-1 Decagon Echo2 

EC-20 

(capacitance) 

10,25 2 10-35 

Wind River Campbell 

Scientific CS615 

(reflectometer) 

0-30 average 1 0-10 

Mozark Delta-T 10 1 0-10 

 5 

  



38 

 

Table A1.2: Data used per site for downward longwave radiation (Lwin), net radiation (Rnet), and atmospheric pressure (Patm). A is 

AmeriFflux Level 2, COSMOS is COSMOS website, and NLDAS is National Land Data Assimilation Systems Forcing data Phase 2 

(http://disc.sci.gsfc.nasa.gov/uui/datasets?keywords=NLDAS). 

Site Lw,in Rnet Patm 

UM A  A 

DC 
 

A COSMOS 

SO NLDAS  A 

KE  A A 

ME A  A 

SR A  A 

CS NLDAS  COSMOS 

MM A  A 

TR NLDAS  A 

AR A  A 

WR A  A 

MO A  A 

Appendix 3:  

Appendix 2: Parameter sensitivity analysis 5 

We investigated if a change in some parameters had a relatively small effect on soil moisture, while at the same time having a 

large effect on latent heat flux. In such case calibration could yield better soil moisture, but the parameter value might be 

inappropriate for latent heat flux. The inverse (influential on SM but not on LE) could also occur. We explored this by 

performing a sensitivity analysis with Morris’ method (Morris, 1991) as implemented in the SAFE Toolbox (Pianosi et al., 

2015) on the exact same parameter value ranges as used during the calibration. We computed the sensitivity indices (mean and 10 

standard deviations of the elementary effects) on the RMSE values (i.e. our Objective Functions) of simulated vs. observed PS 

soil moisture, simulated vs. observed CRNS neutron counts, and simulated vs. observed latent heat flux (day time only). 

The results (shown for four sites in Figure A2.2 of Appendix 2) were consistent across most sites: all three Objective Functions 

were most sensitive to changes in parameter b and least sensitive to the wilting point multiplier. Finch and Haria (2006) also 

found JULES parameter b to be most influential on soil moisture and latent heat, at a UK chalk site. The critical point soil 15 

moisture content was influential with respect to soil moisture / neutron counts but had at all sites less effect on latent heat flux. 

This could relate to the self-adjusting behaviour of the wilting point and critical point soil moisture described in Section 3.3. 

The lack of effect from the wilting point soil moisture content can probably be attributed to the use of the multiplier, despite 

being a common approach (Prihodko et al., 2008; Rosolem et al., 2012); a certain multiplier value could be good in combination 

with a certain value for the critical point but not for a different critical point value. 20 

We have evaluated the differences between default and calibrated parameters and their degree of physical realism in 

Supplement 3. If parameter values obtained after calibration were not physically feasible (e.g. representing a sandy soil while 

there was a clay soil) then, if model structure is assumed to represent biophysical processes sufficiently well, that could yield 
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undesirable results. ThWe wide ranges of parameter values, especially for the water entry pressure (sathh) and the saturation 

hydraulic conductivity. However, physically realistic parameters also often provide unrealistic results (Gupta et al., 1998). 
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Figure A2.1: Morris sensitivity indices for the five calibrated parameters at four sites: UM, SR, WR, and MO. The three Objective 

Functions are the RMSEs between simulated and observed PS soil moisture (PS-SM), CRNS neutron counts (CRNS-N), and latent 

heat flux (LE). The mean elementary effects (EEs), representing the main effects, are displayed along the horizontal axis. The 

standard deviations of the elementary effects, representing parameter interactions, are shown along the vertical axis. Values were 

normalised to the most influential parameter for each Objective Function. 5 

 


