Authors’ response to editor’s comments

Thanks for the continued efforts revising this potentially very interesting manuscript. To be
fully honest, I have to say that the revisions in this and especially also the previous rounds are
a bit on the minimalistic side. There are several comments where more substantial changes
and/or new computations would be possible/desired.

During prior reviews we received constructive feedback regarding the structure of the manuscript
and readability. Referee #3 has provided positive feedback and noted improved readability.
However, we acknowledge that certain aspects of the manuscript benefit from further restructuring
and a deeper analysis of uncertainty. We feel confident we have addressed the editors concerns in
this round of review. Changes to the manuscript include:

» splitting of results/discussion section into separate sections (Sect. 5 and 6) per the editor’s
recommendation,

* the addition of new calculations concerning estimates of radiative forcing in snow from BC
mixing ratios found in Scandinavian snowpacks (see Sect. 6.2.2.),

* amore critical discussion regarding the model improvement which results from accounting
for BC radiative forcing and associated uncertainty (see Sect. 6.2.3. and 6.3), and
importantly,

* acompletely new analysis of uncertainty using the GLUE approach assessing uncertainty of
model predictions coming from the parameter space prior and posterior to the usage of
radiative forcing calculations from LAISI (see Sect. 6.2.3 and 6.3).

There are still multi-letter variable names (Eq 5, 6, 10), please follow the author guidelines.
We have replaced the multi-letter variables.

All reviewers state that the manuscript is hard to read. Splitting results and discussion would
clearly help to make the manuscript more readable (if you do not believe me, almost all
scientific writing advice books recommend this for 'normal’ journal papers!)

We have restructured the manuscript according to the Editor’s recommendation, i.e. split the former
results/discussion section into separate sections of results and discussion (now Sect. 5 and 6).

"the efficiency of the model when compared to real discharge data might not be accurate”
The point raised by the reviewer here is that there is a clear risk of being right for the wrong
reason (see J. Kirchner, 2006, WRR). Since you want to make the point that including BC
leads to better simulations it is crucial that the rest of the model works for the right reasons.
Otherwise the improved fit might just be because some other error is compensated.

In order to address this, we have conducted new simulations to estimate uncertainty coming from
the model parameters using the GLUE method (Beven, 1992). We have included an extended
discussion about the problem of being right for the wrong reason, i.e. discussion potential
implications from structural deficits of the model. It should be noted that while we do find in our
case study that the simulations were improved when incorporating BC, we recognize that better
simulations do not always result from increased complexity and there is an appropriate time and
place to apply such complexity. Our main intent is not to argue this is essential for improved
forecasting, but rather to provide a mechanism to address the potential impacts of LAISI in a more
robust manner than presently available today.

While it is good that model uncertainties now are better discussed than in previous versions,



the reviewer comments actually would have motivated more new calculations. Especially a
quantification of uncertainties would be useful. (see Pappenberger and Beven, 2006)

As described above, we have quantified uncertainties prior and posterior using radiative forcing
from LAISI calculations due to model parameter uncertainty — a large source of uncertainties in
conceptual modelling. We agree that this analysis, in conjunction with the refined discussion about
further uncertainties, further improves the quality of the manuscript and appreciate the
encouragement of the editor to include such an analysis.
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Abstract. Light absorbing impurities in snow and ice (LAISI) originating from atmospheric deposition enhance the snow melt
by increasing the absorption of short wave radiation. The consequences are a shortening of the snow duration due to increased
snow melt and, at the catchment scale, a temporal shift in the discharge generation during the spring melt season.

In this study, we present a newly developed snow algorithm for application in hydrolgical models that allows for an additional
class of input variables: the deposition mass flux of various species of light absorbing aerosols. To show the sensitivity of
different model parameters, we first use the model as 1-D point model forced with representative synthetic data and investigate
the impact of parameters and variables specific to the algorithm determining the effect of LAISI. We then demonstrate the
significance of the radiative forcing by simulating black-earbon-the effect of black carbon (BC) deposited on snow of a remote
south Norwegian catchment over a six years period, from September 2006 to August 2012. Our simulations suggest a significant
impact of BC in snow on the hydrological cycle. Results show an average increase in discharge of 2.5 %, 9.9 %, and 21.4 %,
depending on the applied model scenario, over a two months period during the spring melt season compared to simulations
where radiative forcing from LAISI is not considered. The increase in discharge is followed by a decrease in discharge due to
faster decrease of the catchment’s snow covered fraction and a trend to earlier melt in the scenarios where radiative forcing
from LAISI is applied. Using a reasonable estimate of critical model parameters, the model simulates realistic BC mixing ratios
in surface snow with a strong annual cycle, showing increasing surface BC mixing ratios during spring melt as consequence of
melt amplification. However, we further identify large uncertainties in the representation of the surface BC mixing ratio during

snow melt and the subsequent consequences for the snowpack evolution.

1 Introduction

The representation of the seasonal snowpack is of outstanding importance in hydrological models aiming for application in
cold or mountainous environments. In many mountain regions, the seasonal snowpack contributes a major portion of the water
budget, with a contribution of up to 50 % and more to the annual discharge (e.g., Junghans et al., 2011). Snow melt plays a
key role in the dynamic of the hydrology of catchments of various high mountain areas such as the Himalayas (Jeelani et al.,
2012), the Alps (Junghans et al., 2011) and the Norwegian mountains (Engelhardt et al., 2014), and is an equally important

contributor to stream flow generation as rain in these areas. Furthermore, timing and magnitude of the snow melt are major
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predictors for flood (Berghuijs et al., 2016) and land slide (Kawagoe et al., 2009) forecasts, and important factors in water
resource management and operational hydropower forecasting. Lastly, the extent and the temporal evolution of the snow cover
is a controlling factor in the processes determining the growing-season of plants (Jonas et al., 2008). For all these reasons, a
good representation of the seasonal snowpack in hydrological models is paramount. However, there are large uncertainties in
many variables specifying the temporal evolution of the snowpack, and the snow albedo is one of the most important among
those due to the direct effect on the energy input to the snowpack from solar radiation (Anderson, 1976). Fresh snow reflects
most of the incoming solar radiation in the near UV and visible spectrum (Warren and Wiscombe, 1980). However, as snow
ages and snow grain size increases, the snow albedo will drop as a result of the altered scattering properties of the larger
snow grains (Flanner and Zender, 2006). Furthermore, ambient conditions also play a large role. The ratio of diffuse and
direct incoming shortwave radiation, the zenith angle of the sun, and the albedo of the underlying ground in combination
with the snow thickness can have a large impact on the snow albedo (Warren and Wiscombe, 1980). Of recent significance

is the role light absorbing impurities, or particles, which absorb in the range of the solar spectrum, have on albedo when
present in the snowpack fartherealled EATSE(e.g., Flanner et al., 2007; Painter et al., 2007; Skiles et al., 2012) . These light
(LAISI

can originate from fossil fuel combustion and forest fires €in the form of black carbon, BC, and organic carbon (Bond et al.,

2013; AMAP, 2015), mineral dust (Painter et al., 2012), volcanic ash (Rhodes et al., 1987), organic compounds in soils (Wang

absorbing impurities in snow and ice

et al., 2013), and biological activity (Lutz et al., 2016), and have species-specific radiative properties.

As LAISI lower the snow albedo, the effect on the snow melt has the potential to alter the hydrological characteristics of
catchments where snow melt significantly contributes to the water budget. Recent research investigates the impact of LAISI
on discharge generation in mountain regions on different scales. Qian et al. (2011) used a global climate model to simulate the
effect black carbon and dust in snow have on the hydrological cycle ever-of the Tibetan Plateau and found a significant impact
on the hydrology, with runoff increasing during late winter/early spring and decreasing during late spring/early summer due
to a trend to earlier melt dates. Oaida et al. (2015) showed by implementing radiative transfer calculations to determine snow
albedo in the Simple Simplified Biosphere (SSiB) land surface model implementation of the Weather Research and Forecasting
(WREF) regional climate model that physically based snow albedo representation can be significantly improved by considering
the deposition of light absorbing aerosols in the snowpack evolution. Qian et al. (2009) simulated hydrological impacts due to
BC deposition in the western United States using WRF coupled with chemistry (WRF-Chem). They found a decrease in net
snow accumulation and spring snowmelt due to BC-in-snow induced increase in surface air temperature.

Only a few studies developed model approaches to resolve the impact of LAISI on the snow melt discharge generation at
the catchment scale. Painter et al. (2010) showed that dust, transported from remote places to the Colorado river basin, can
have severe implications on the hydrological regime due to disturbances to the discharge generation from snow melt during the
spring time, shifting the peak runoff in spring by several weeks and leading to earlier snow free catchments and a decrease in
annual runoff. Kaspari et al. (2015) simulated the impact of BC and dust in snow on glacier melt on Mount Olympus, USA,

by using measured concentrations in summer horizons and determining the radiative forcing via a radiative transfer model;
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indieating-, Results indicate enhanced melt during a year of heavy nearby forest firesand-, coinciding with an increase of
observed discharge from the catchment.

Despite these efforts, the direct integration of deposition mass fluxes of light absorbing aerosols in a catchment model is still
lacking. To date, there is no rainfall-runoff model with focus on runoff forecast at the catchment scale that is able to consider
aerosol deposition mass fluxes alongside snowfall.

On the other hand, there is evidence that including the radiative forcing of LAISI has the potential to further the quality
of hydrological predictions: Bryant et al. (2013) showed that during the melt period errors in the operational stream flow
prediction of the National Weather Service Colorado Basin River Forecast Center are linearly related to dust radiative forcing
in snow and concluded that implementing the effect of LAISI on the snow reflectivity could improve hydrological predictions
in regions prone to deposition of light absorbing aerosols on snow, which emphasizes the need for the development of a suitable

model approach. Furthermore, we continuously move toward hydrological models with a increasing complex representation of

the physical processes involved in the evolution of the seasonal snowpack. Factors-thatimpact-the-snowpackevelution-come
ﬁ%%ﬁmmwy%m

such as the impact atto albedo due to the

deposition of aerosols, that may alter the timing and character of discharge generation at the catchment scale.

In this study we address this deficiency by introducing a rainfall-runoff model with a newly developed snow algorithm that

allows for a new class of model input variables: the deposition mass flux of different species of light absorbing aerosols. The
model integrates snowpack dynamics forced by LAISI and allows for analysis at the catchment scale. The algorithm uses a
radiative transfer model for snow to account dynamically for the impact of LAISI on the snow albedo and the subsequent
impacts on the snow melt and discharge generation. Aside from enabling the user to optionally apply deposition mass fluxes as
model input, the algorithm depends on standard atmospheric input variables (precipitation, temperature, short wave radiation,
wind speed, and relative humidity). To enable a critical evaluation of the newly developed snowpack algorithm, we conduct
two independent analyses: i) a 1-D sensitivity study of critical model parameters, and ii) a catchment scale analysis of the
impact of LAISI. In both analysis we use BC in snow from wet and dry deposition as a proxy for the impact of LAISI.

We first present an overview over the hydrological model used in this study and the newly developed snow algorithm to treat
LAISI in the-snrewpaek+in-Sect. 2. A description of the catchment used for our study and the input data sets is given in Sect. 3.
Sect. 4 describes the 1-D model experiments and the model settings ﬂﬂekeahbfaﬂeffpfeees&m the case study Lastly, our results

ocether—with-the-disecusston—frstFf he-m experiments wed-by-the-cases ‘1nSect Sand

are presented
discussed in Sect. 6.
2 Modelling framework and the-snowpack algorithm

In the following section we provide descriptions of the hydrologic model (Sect. 2.1) and the formulation of a novel snowpack

module used for the analyses (Sect. 2.2).
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2.1 Hydrologic Model Framework

For the analysis, we use Statkraft’s hydrologic forecasting toolbox (Shyft; https://github.com/statkraft/shyft), a model frame-
work developed for hydropower forecasting (Burkhart et al., 2016; Ghimirey, 2016; Westergren, 2016). Shyft provides the
implementation of many well-known hydrological routines (conceptual parameter models, and more physically based ap-
proaches), and allows for distributed hydrological modelling. Standard model input variables are temperature, precipitation,
wind speed, relative humidity, and shortwave radiation.

The methods used herein to simulate hydrological processes are (i) a single-equation implementation to determine the
potential evapotranspiration, (ii) a newly developed snowpack algorithm using an online radiative transfer solution for snow
to account for the effect of LAISI on the snow albedo, and (iii) a first order nonlinear differential equation to calculate the
catchment response to precipitation, snow melt and evapotranspiration. (i) and (iii) are described in more detail herein, while
(ii) is described in detail in Sect. 2.2.

To determine the potential evapotranspiration, E,,,;, we use the method according to Priestley and Taylor (1972)

(1)

a
B =2, 2\Ca)
PN S(T) +y

R, 6]

with a = 1.26 being a dimensionless empirical multiplier, -y the psychrometric constant, s(7,) the slope of the relationship

between the saturation vapour pressure and the temperature T;, A the latent heat of vaporization and R,, the net radiation.
The catchment response to precipitation and snow melt is determined using the approach of Kirchner (2009), who describes

catchment discharge from a simple first order nonlinear differential equation. Following Kirchner (2009), we solve the log-

transformed formulation

d(in(Q)) P-FE
T at fg(Q)(iQ -1) )

due to numerical instabilities of the original formulation. In Eq. (2), @ is the catchment discharge, E' the evapotranspiration,
and P the precipitation.

We assume that the sensitivity function, g(@), has the same form as described in Kirchner (2009):

In(g(Q)) = c1 + e2ln(Q) + e3(In(Q))* ©)

with c1, co and c3 being the only catchment specific parameters, which we estimate by standard model calibration of simulated
discharge against observed discharge. In contrast to Kirchner (2009)’s approach, we use the liquid water eutflew-response
from the snow routine instead of precipitation P in Eq. (2) (Kirehner(2009)-Kirchner, 2009 used snow-free catchmentsin-his
analysis). The outflowresponse from the snow routine can be liquid precipitation, melt water, or a combination of both.
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2.2 A new snowpack module for LAISI

To account for snow in the model, we developed a snow-algorithm to solve the energy balance

oF

E:Kin(lfa)+Lin+Lout+Hs+Hl+R (4)

with the incoming shortwave radiation flux Kj,,, the incoming and outgoing longwave radiation fluxes Z;r-and-E;#.L;, and
L oys, the sensible and latent heat fluxes H and H;j, and the heat contribution from rain Rfluxes-are-considered-to-be-positive
9L is the net energy flux into ¢or out of )-the
snowpack(ftuxes-the snowpack. Fluxes are considered to be positive when dlrected into the snowpack jand as such an energy
source.

L;, and L, are calculated using the Stephan-Boltzmann law, with L;,, depending on the air temperature 7;, and L, on
the snow surface temperature 7, calculated as Tss = 1.16-7, —2.09 (Hegdahl et al., 2016). The latent and sensible heat fluxes
are calculated using a bulk-transfer approach that depends on wind speed, temperature, and relative humidity (Hegdahl et al.,
2016).

The main addition provided in the algorithm described herein is the implementation of a radiative transfer solution for the
dynamical calculation of snow albedo, c. The implementation allows a new class of model input variables, wet and dry depo-
sition rates of light absorbing aerosols. From this, the model is able to simulate the impact of dust, black carbon, volcanic ash,

or other aerosol deposition on snow albedo, snow melt, and runoff. To account for the mass balance of LAISkn-the-srowpack
, while maintaining a representation of sub-grid snow variability and snow cover fraction (SCF), the-energy-balance-based
snow-algorithamunderhies-a tiling approach is applied, where a grid-cell’s snowfall is apportioned to sub-grid unitsfeltewing-.
Energy-balance calculations are then conducted within each tile. Currently, a gamma distribution is used to distribute snowfall

In-thefollowing-we present—(i)-anintroductionto-Below, we introduce the radiative transfer calculations required to represent

LAISI in-the-snowpaek-(Sect. 2.2.1), and Gi)-provide further details of the sub-gridscale tiling approach to represent snowpack
spatial variability (Sect. 2.2.2).

2.2.1 Aerosols in the snowpack

Wiscombe and Warren (1980) and Warren and Wiscombe (1980) developed a robust and elegant model for snow albedo that
remains today as a standard. Critical to their approach was the ability to account for: (i) wide variability in ice absorption
with wavelength, (ii) the forward scattering of snow grains, and (iii) both diffuse and direct beam radiation at the surface.
Furthermore, and of particular importance to the success of the approach, the model relies on observable parameters.

Both the albedo of clean snow and the effect of LAISI on the snow albedo strongly depend on the snow grain-effeetiveradius
tor-optical-grain-size)-optical grain radius r (Warren and Wiscombe, 1980), which alters as snow ages. r can be related to the
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specific surface area (SSA);representing-A; via_
3

T:ﬁ7 (5)

with p;.. the density of ice. A, represents the ratio of surface area per unit mass of the snow grain (Roy et al., 2013);-

3
B IOZCCSSA

ce

In our model, we compute the evolution of SSA-A, in dry snow following Taillandier et al. (2007) as

SSAA(t) =[0.629- SS A A o —15.0- (Ts — 11.2)] — [0.076 - SSAg A, o — 1.76 - (T — 2.96)]

100 bt exp | 03715540 —15.0- (T, — 112) ~0.371- Ago ~15.0- (T, — 11.2) ©
Pl 0,076 554, — 1.76 - (T, —2.96) 0.076- A, —1.76- (T, —2.96) | [

where ¢ is the age of the snow layer (hours), 5:5Aqis-the-5SA-A, ¢ is Ag at t=0 (cm? g=1), and T is the snow temperature
(°C). The evolution of SSA-A, in wet snow is calculated according to Eq. 5 and Brun (1989) as

. C1+CQ-@3

r2.dr

Ar )

where C1=1.1- 1073 mm3 d~! and Cy = 3.7-10~5 mm3 d—! are empirical coefficients. © is the liquid water content of snow in
mass percentage. 55Aq-A; o is set to 73.0 m? kg~! (Domine et al., 2007) and we set the minimum snowfall required to reset
the-SAA-A, to 5 mm snow water equivalent (SWE).

To solve for the effect of light absorption of LAISI in-the-snewpaek-on the snow albedo, we have integrated a twe-layer
2-layer adaption of the Snow, Ice, and Aerosol Radiative (SNICAR) model (Flanner et al., 2007, 2009) into the energy and
mass budget calculations. By providing the solar zenith angle of the sun, the eptical-grain-size-snow optical grain radius ref
snow, mixing ratios of LAISI in the snow layers and SWE of each layer, SNICAR is-calculates the snow albedo for a number of
spectral bands. To achive this, SNICAR utilizes the theory from Wiscombe and Warren (1980) and the two-stream, multilayer
radiative approximation of Toon et al. (1989). Following Flanner et al. (2007), our implementation of SNICAR uses five spectral
bands (0.3-0.7,0.7-1.0, 1.0-1.2, 1.2-1.5, and 1.5-5.0 wmypm) in order to maintain computational efficiency. Flanner et al. (2007)
compared results from the 5 bands scheme to the default 470 bands scheme in SNICAR and concluded that relative errors are
less than 0.5%. The incident flux were simulated offline assuming mid-latitude winter clear- and cloudy-sky conditions.

The absorbing effect of LAISI is most efficient when the LAISI reside at or close to the snow surface (Warren and Wis-
combe, 1980). As snow melts LAISI can remain near the surface due to inefficient melt scavenging, which leads to an increase
in the near surface concentration of LAISI and thus a further decrease in the snow albedo ;— the so called melt amplifica-
tion (e.g., Xu et al., 2012; Doherty et al., 2013; Sterle et al., 2013; Doherty et al., 2016). Field observations suggest that the
magnitude of this effect is determined by the particle size and the hydrophobicity of the respective LAISI (Doherty et al.,
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2013). Conway et al. (1996) observed vertical redistribution and the effect on the snow albedo by adding volcanic ash and
hydrophilic and hydrophobic BC to the snow surface of a natural snowpack. Flanner et al. (2007) used the results from
Conway-etal—Conway et al. (1996) to determine the scavenging ratios, specifying the ratio of BE-LAISI contained in the
melting snow that is flushed out with the-melt water, of both hydrophilic and hydrophobic BC. They found the scavenging
ratio for hydrophobic BC, kpp0p. to be 0.03, and for hydrophilic BC, k44, 0.2. Doherty et al. (2013) found similar results by
observing BC mixing ratios close to the surface of melting snow. Reeent-However, more recent studies report efficient removal
of BC with melt water (Lazarcik et al., 2017), revealing large gaps in the understanding of the process.

To represent the evolution of LAISI mixing ratieratios near the snow surface, we treat LAISI in two layers in our model:~i)-a
surface-tayer-with-, The surface layer has a time invariant maximum thickness (further called maximum surface layer thickness).
In-the-surfacelayer-the-concentration-The mixing ratio of each LAISI species in this layer is calculated from a uniform mixing

of the layer’s snow with either falling snow with a certain mixing ratio of aerosol (wet deposition), or aerosol from atmospheric
dry deposition. (it)-A-bettomtayerrepresenting-The second layer (bottom layer) represents the snow exceeding the maximum
thickness of the surface layer. Following Krinner et al. (2006), we apply a maximum surface layer thickness of 8 mm SWE.
Krinner et al. (2006) suggests this value based on observations of 1 cm thick dirty layers in alpine firn cores used to identify
summer horizons. Due to potential accumulation of LAISI in surface snow via dry deposition and melt amplification, we expect
the simulated surface mixing ratios of LAISI to be sensitive to the maximum surface layer thickness of our model. For this
reason, we use a factor of 2 to the maximal surface layer thickness to account for the uncertainty of this model parameter.

To allow for melt amplification in the model, we include LAISI mass fluxes between the two layers during snow accu-
mulation and snow melt. Generalizing Jacobson (2004)’s representation of LAISI mass loss due to meltwater scavenging for
multiple snow layers(Flanner-et-al52007)-, we characterize the magnitude of melt scavenging using the scavenging ratio k£ and

calculate the temporal change of BE-LAISI mass m in the surface layer as

dmg
dt

= *kqus +Da (8)

and the change of BE-LAISI mass m in the bottom layer as

% = k(gscs — qvep)- ©)

Herein, ¢ and g, are the mass fluxes of melt water from the surface to the bottom layer and out of the bottom layer,
respectively, and ¢, and c; are the mass mixing ratios of BE-LAISI in the respective layer. D is the atmospheric deposition
mass flux. A value for £ of <1 is equal to a scavenging efficiency of less than 100% and hence allows for accumulation of LAISIT

in the surface layer during melt. In our analysis, we account for hydrophobic and hydrophilic BChy-distinguishing-between-the

position). By
following Flanner et al. (2007), we set kppop to 0.03 and kpp,y to 0.2, and account for the large uncertainty in those estimates

by using an order of magnitude variation on kj,j0, and kppq. Like Flanner et al. (2007), we treat aged, hydrophilic BC as
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sulphate coated to account for the net increase in the mass absorption cross section (MAC) by 1.5 at A=550 nm compared
to hydrophobic BC caused by the ageing of BC (reducing effect on MAC) and particle coating from condensation of weakly
absorbing compounds (enhancing effect on MAC) suggested by Bond et al. (2006). As a consequence, hydrophilic BC absorbs
stronger than hydrophobic BC under the same conditions. On the other hand, hydrophilic BC undergoes a more efficient melt

scavenging. The competing mechanisms are subjects of the 1-D sensitivity study in Sect. 5.1.3.

2.2.2  Sub-grid variability in snow depth and snow cover

Hewever—%uehﬁppfeaehe%deﬂe%hlorwvgggvtg\ allow for explicit treatment of snow layers ;-which-isrequired-when-simulating
the-mixing ratios-of EAISIn-eurmedelwhile representing sub-grid snow variability, we follow (Aas et al., 2017) by-assuming

and assume that the sub-grid spatial distribution of each single event of solid precipitation follows a certain probability dis-

tribution function. From this distribution we calculate multiplication factors, which then are used to assign the snowfall of

a model grid cell to a number of sub-grid computational elements, the so called tiles (Aas et al., 2017). The snow algo-
rithm described herein is executed for each of the tiles separately—This—implies-that-, providing a mechanism to account

for snow spatial distribution while preserving conservation of mass. Therefore, variables related to the snow state, such as
SWE, liquid water content, impurity-contentLAISI mixing ratios, and snow albedo differ among the tiles. Fhis-also-alows

to-stmulate-the-sub-grid-vartability-in-impurity-eontent—To calculate the multiplication factors, we assume that the sub-grid

redistributed snow follows a gamma distribution (see e.g., Kolberg and Gottschalk, 2010; Gisnas et al., 2016), determined

by the coefficient of variation (CV) -
snow maximum, Gisnas et al. (2016) used Winstral and Marks (2002)’s terrain-based parametrization to model snow redistri-
bution in Norway by accounting for wind effects during the snow accumulation period over a digital elevation model with

10 m resolution. Gisnas-et+

Gisnas-et-al+26046)—In the case study presented in Sect. 5.2, we use the CV values from Gisnas et al. (2016) to derive a linear

relationship between the model grid cell’s elevation and the corresponding CV value by simple linear regression (see Fig.1a),
which results in a R2-value of 0.71 and a p-value of smaller than 2.0e-5 for the study area. The linear relationship is only
applied to grid cells with an areal forest cover fraction of lower than or equal to 0.5. For grid cells with a forest cover fraction
of higher than 0.5, a constant snow CV value of 0.17 is used, following the findings of Liston (2004) for high latitude, moun-
tainous forest. Examples of multiplication factors for forested grid cells and forest free grid cells for a-different CV values are

shown in Fig. 1b.
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3 Site description, meteorologic model input, and atmospheric deposition data

We selected the unregulated upper Atna catchment for our analysis. Fhis-The catchment is located in a high elevation region
of southern Norway (feft-Fig. 2). The watershed covers an area of 463 km? and ranges in elevation from 700 masl at the
outlet at lake Atnsjoen to over 2000 masl in the Rondane mountains in the western part of the watershed(rightFig—2), with
approximately 90 % of the area above the forest limit. The average annual precipitation in the watershed during the study
period is approximately 655 mm;where-mostpreeipitationfalls-asrainin-sammer. The mean annual discharge is approximately
11 m3s~!, with low flows of 1-3 m®s~! during the winter months and peak flows of over 130 m3s~! during the spring melt
season.

For the meteorological model input of precipitation, temperature, relative humidity, and wind speed we use daily observa-
tions from the Norwegian Water Resources and Energy Directorate (NVE) and the Norwegian Meteorological Institute (MET).
Four meteorological stations are located in the watershed at elevations between 701 and 780 masl along the Atna river, two
of these measuring precipitation and two measuring temperature{see-rightFig—2). Observations of relative humidity and wind
speed originate from two stations at locations close by the catchment (not shown in right-Fig. 2). Further information about
the stations are given in Table 1. Due to poor availability of continuous solar radiation observations in Norway, we use grid-
ded global radiation data from the Water and Global Change (WATCH) Forcing Data methodology applied to ERA-Interim
reanalysis data (WFDEIL; Weedon-et-al(20614)-Weedon et al., 2014 ) with a resolution of 0.5°. We-use-BC-aerosol-deposition

in-more-detatl-Hn-Seet—3-1H—Discharge observations are from a station located at the outlet of the catchment at lake Atnsjoen

and are used for model calibration and validation. In the following section (3.1) we present the development of atmospheric

deposition rates of BC, which we use as a proxy for LAISI, due to a lack of available deposition rates for other species. For
the 1-D sensitivity study of Sect. 5.1 we developed representative model input based on the meteorological conditions in this

catchment.
3.1 Atmospheric deposition of black carbon from the REMO-HAM model

The wet and dry deposition rates of BC for the study area are generated using the regional aerosol-climate model REMO-HAM
(Pietikdinen et al., 2012). The core of the model is a hydrostatic, three-dimensional atmosphere model developed at the Max
Planck Institute for Meteorology in Hamburg. With the aerosol configuration, the model incorporates the HAM (Hamburg
Aerosol Module) by Stier et al. (2005) and Zhang et al. (2012). HAM calculates the aerosols distributions using 7 log-normal
modes and includes all the main aerosol processes.

For the simulations, we follow the approach of Hienola et al. (2013), but with changes to the emission inventory: Hienola
et al. (2013) used emissions based on the AeroCom emission inventory for the year 2000 (see Dentener et al., 2006). In the
REMO-HAM simulations conducted herein, emissions are made by the International Institute for Applied Systems Analysis

(ITASA) and are based on the Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants (ECLIPSE) V5a inven-
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tory for the years 2005, 2010, and 2015 (years in between were linearly interpolated) (Klimentet-al52016b;-a)-(Klimont et al., 2016a, b) .

We updated also other emissions modules (wildfire, aviation, and shipping) following the approaches presented in Pietikdinen
et al. (2015). The only difference to Pietikdinen et al. (2015) in this work is that we used the Global Fire Emissions Database
(GFED) version 4 based on an updated version of van der Werf et al. (2010).

REMO-HAM was used for the same European domain as in Pietikédinen et al. (2012) using 0.44° spatial resolution (50 km),
27 vertical levels and 3 minutes time step. The ERA-Interim re-analysis data was utilized at the lateral boundaries for mete-
orological forcing (Dee et al., 2011) and for the lateral aerosol forcing, data from the global aerosol-climate model ECHAM-
HAMMOZ (version echam6.1.0-ham?2.2) was used. ECHAM-HAMMOZ was simulated in a nudging mode, i.e. the model’s
meteorology was forced to follow ERA-Interim data, and the ECLIPSE emissions were used (plus other updated emission
modules shown in Pietikdinen et al. (2015)). The boundaries of REMO-HAM were updated every 6 hours for both meteo-
rological and aerosol related variables. Simulations with REMO-HAM were conducted for the time period of 01.07.2004 -
31.08.2012 and the time period used in the analysis herein is from 01.09.2006 onwards. The initial state for the model was
taken from the boundary data, except for the soil parameters which were taken from a previous long-term simulation for the
same domain (a so called warm-start). The output frequency of REMO-HAM was 3 hours and the total BC deposition flux was

calculated from the accumulated dry and wet deposition and sedimentation fluxes-

7, and resampled to dail
time resolution. Herein, dry deposition refers to the sum of REMO-HAM dry deposition and sedimentation.

4 Moedel-Modelling experiments and calibration

Our analysis is conducted in two partsin-Seet—5—Firstwe-present-. First, in a 1-D sensitivity studyinvestigating-the-impaet-,
we investigate the sensitivity of parameters and variables specific to the algerithm-determining-the-effeet-of LAISIHLAIST

algorithm presented in Sect. 5-4)2.2. We then demonstrate the significance-of BC-insnow radiative foreing-en-impact of BC
at the catchment scale in a case study by simulating the impact of wet and dry deposition of BC on snow melt and discharge

generation in a remote south Norwegian catchment (Sect. 5.2).

We assume uncertainties of the LAISI radiative forcing in snow to originate mainly from the model representation of surface
layer thickness, melt scavenging of BC, and uncertainties in the deposition input data. To account for the uncertainties, we
declare minimum (min), central (mid), and maximum (max) effect estimates to each of the critical parameters, outlined together
with further model parameters in Table 2. The min, mid, and max estimates are both subjects of analysis in the sensitivity study
(further described in Sect. 4.1) and used in the case study to give an uncertainty estimate of the LAISI effect on the hydrologic
variables (further described in Sect. 4.2). We investigate the impact of BC impurities on the response variables by comparing
the results from Aerosol Radiative Forcing model experiments ("ARF" scenarios) to simulations in which all BC deposition

rates are set to zero ("no-ARF" scenario).

4.1 1-D sensitivity study experiments
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Fer-The results of the 1-D sensmvny study are presented in Sect. 5.1, we-use-synthetic-input-datato-study-theevelutionof
ify-herein we describe the configurations to conduct our analysis.
Ihgmggggﬁ&gé%wst(molawthe impact of different model settings:-the-tmpaet-of parameters: (i) the-maximum surface
layer thickness (parameter max
SUBSCRIPTNBlayer; see Table 2), (ii) the-seavengingratiosolescavenging ratio, and (iii) the impact of the scavenging ratio
with respect to the BC species —(parameters ko and Kp,pip).

Our approach evaluates these parameters and the evolution of the snowpack under constant melting conditions. We run the
model-1-D simulations with model parameters as outlined in Table 2 if-net-otherwise-speetfied—

The-modelinput-apphiedfor-melting-and forcing data based on synthetic input data. The synthetic forcing data set is based

on the average meteorological conditions during the melt season from mid March until mid July of the Atnsjoen catchment. In

our sensitivity experimantsexperiments, all snowpacks have 250 mm SWE of snow with a mixing ratio of 35 ng g~! in both
surface and bottom layer at melt onset. These values are representative of the upper 50% of tiles at winter snow maximum in
the Atnsjoen catchment during the study period of the case study. During the melt period, we exclude fresh snowfall and dry
deposition, in order to isolate the effect of the tested model parameters on the snowpack evolution under melt conditions. This

might-may lead to an underestimation of total BC mass in the snow column.

SUBSCRIPTNBsurface.

SUBSCRIPTNBlayer) of the model, we run simulations with synthetic forcing and use maximal surface layer thicknesses of 4.0
mm SWE (max estimate, see Tabel 2), 8.0 mm SWE (mid estimate), 16.0 mm SWE (min estimate). Additionally we include
a single layer model with a vertically uniform distribution of BC in the analysis and for comparison a simulation with clean
SNOW.

To explore the sensitivity to scavenging ratio, we apply different BC scavenging ratios in the range of the uncertainty of
hydrophilic BC, which covers a wide range from very sufficient scavenging to inefficient scavenging. The scavenging ratios
applied are based on the analysis conducted by Flanner et al. (2007) using data from Conway et al. (1996) . The mid estimate
for the hydrophilic BC scavenging ratio (k,4=0.2) also compares well to field observations from Doherty et al. (2013) . We
further include in the analysis Flanner etal. (2007) s upper bound uncertainty estimate for hydrophilic BC (2.0; efficient
scavenging), the lower bound estimate (0.02; inefficient scavenging), and for comparison a scenario in which BC does not
undergo any scavenging (0.0).

Hydrophilic BC absorbs stronger than hydrophobic BC under the same conditions due to an increased MAC for hydrophilic
BC resulting from ageing of the aerosol during atmospheric transport (Bond et al., 2006) . On the other hand, hydrophilic
BC undergoes more efficient melt scavenging (Flanner et al., 2007) , which impacts the snowpack evolution significantly. To
explore this competing interplay we apply the mid estimate of the scavenging ratio of hydrophobic BC (kpp0p=0.03) to both

the hydrophobic BC and the hydrophilic BC species. In this manner we explore the isolated effect of the different absorption

roperties of the two species. We further apply the mid estimate for hydrophilic BC scavenging ratio (k,;:;=0.2) to hydrophilic
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BC to quantify the gross effect. As in other cases, we include the no-ARF scenario to highlight the overall effect on the albedo
and melt of the different scenarios.

4.2 Case study model setup and calibration

We investigate the impact of BC aerosol deposition on the catchment hydrology of a Norwegian catchment over a study
period of 6 years, from September 2006 to September-August 2012. The station based input data described above (Sect. 3) is
interpolated to the simulation grid cells (1x1 km? and accordingly smaller cells at the catchment boarders; rightsee Fig. 2)
using Shyft’s interpolation algorithms. For temperature Bayesian Kriging (Diggle and Ribeiro, 2007) is used. For precipitation,
BC deposition rates, wind speed, and relative humidity interpolation to the model grid cells is via inverse distance weighting.
A 5% increase in precipitation for every 100 m increase in altitude (Fgrland;+979)-is used for the precipitation interpolation

To calibrate the model against observed discharge, we first run a split-sample calibration (Klemes, 1986) using the first 3
years (1 September 2006 to 31 Oetober-August 2009) of the study period as calibration period and the following 3 years (1
September 2009 to 31 Oetober-August 2012) for model validation. For parameter estimation, we use the BOBYQA algorithm
for bound constrained optimization (Powell, 2009). To asses the predictive efficiency of the model we use the Nash-Sutcliffe

model efficiency (NSE) -

SE QL —QL)?
S (QL— Qo)

where Q! and Q! are the observed and simulated discharge at time t, respectively, and Q) is the mean observed discharge

NSEEys=1- (10)

over the assessed period.

Model calibration is run with mid-estimates-mid estimates for all model parameters impacting the handling and effect of
LAIST in-the-snowpaek-and aerosol depositions as simulated from REMO-HAM during model calibration. Those parameters
and further model parameters, including the parameters estimated during calibration, are listed in the left column of Table 2.
We investigate the uncertainty in the effect of EATSEBC on snow melt by using the min and max effect parameter estimates
from Table 2, while holding constant all other model parameters as estimated during calibration. To assess the gross effect of

LAISI we compare the simulations to equivalent simulations in which ARF is not included.

5 ResultsandDiseussion

In the-feHowingwefirst-presentin-Sect. 5.1 th
development-of-a-meltingsnowpack-by-using-our-new-we present the results from our sensitivity study based on the newl
developed snow algorithm as a single point model. We-thenpresent-the-The results of the case study are presented in Sect. 5.2,

where we examine the significance of the LAISI radiative forcing for hydrological processes by simulating the impact of BC

deposition on the snow melt and discharge generation in a snow dominated mountain catchment(Seet—5-2).
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5.1 1-D sensitivity studies

5.1.1 Sensitivity to surface layer thickness

shows the effect of the different maximum surface layer thicknesses (parameter max

SUBSCRIPTNBsurface
SUBSCRIPTNBlayer) on the melting snowpack —with-mid-estimates-forfurther-model-parameters-with other parameters set

according to Table 2. The maximum surface layer thickness strongly determines the surface BC mixing ratio over the melt

season. During snow melt, surface BC increases up to a factor of circa 10, 20, and about 30 for maximum surface layer
thicknesses of 16.0 mm SWE, 8.0 mm SWE, and 4.0 mm SWE, compared to the pre-melt season BC mixing ratio (35 ng g~ 1).
Fer-the For those three 2-layer scenarios (green, purple and red curves in Fig. 3a), the resulting differenee-on-the-differences

in albedo and melt rate are small, even though the increase in surface layer mixing ratio during the melt season differs strongly

among the scenarios.

it-, the surface BC mixing ratio increases
slower and stays comparably low in contrast to the two-tayer-2-layer models until shortly before meltouttsotid-yelow-tine-in

abserption-effieieney. This leads to a less pronounced decrease of albedo compared to the twe-layermedels{selid-yeHow-line
in-the-top-graph-ef Fig-—3a)-2-layer models and thus to a shorter meltout shift compared to a clean snowpack than-in-the2-tayer
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mekpeﬂed—ﬁu%feﬁdf&shm%a%aetefﬂaefease%eﬂveeﬁéﬂﬁd%—feﬂ)f about 5 days (yellow curves in Fig. 3a), whereas the

2-layer scenarios -

meltouts of about 7 days.

5.1.2 Sensitivity to scavenging ratio of BC

any-seavenging(0:6)—In the range of investigated scavenging ratios, we find sensitivity of the BEsurface-surface BC mixing
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ratio, the albedo, and the subsequent snow melt to this parameter (Fig. 3b). When applying a melt scavenging factor typical for
hydrophobie BCA(purple-tines-in-graphs-ofFig—3bthe lower bound of hydrophilic BC (0.02, purple lines) there is little effect
compared to the scenario without melt scavenging (green lines;-both-). Both show circa a factor 30 increase in surface BC

concentration to the end of the melt season and only little differences in the development of albedo and snow melt)—Hewever;

a-. Similar results are achieved when using the mid estimate scavenging factor for hydrophobic BC (0.03, not shown). A
distinction exists when using a-seavengingratio-estimate-the mid estimate scavenging factor for hydrophilic BC (0.2, red line).
In contrast to no scavenging and hydrophebie-the lower bound hydrophilic scavenging, surface BC does not increase as rapidly
during the melt period (red-line;central-graph-of Fig—3b)-and in fact is completely flushed when applying the-max-estimate
ofhydrophilie seavenging-a melt scavenging factor typical for the upper bound of hydrophilic BC (yellow line, the surface

concentration drops continuously during the melt period).
The changes in the scavenging ratio lead to a considerable effect on the albedo and the snow melttmeltott, Meltout is delayed

by circa 0.5 (purple lines), 3 (red lines), and 8 days (yellow lines) for scavenging ratios of 0.03, 0.2, and 2.0, respectively,
compared to no scavenging (green linesinFig-—3b}). Compared to the no-ARF experiment (black lines), the presence of BC

causes an earlier meltout of circa 9.5, 7, and 2 days for scavenging ratios of 0.03, 0.2, and 2.0, respectively, in our simulation.
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spowpack-evolution—signifieantly—The column of graphs in Fig. 3c iHustrates-illustrate the net effect of these-competing

proeesses-by-applying-the-the competing processes of more efficient absorption resulting from a larger MAC with more efficient
wash out. A mid estimate of the scavenging ratio of hydrophobic BC (0.03) te-both-is applied and shown for the hydrophobic

BC (green curve) and the hydrophilic BC (purple curves) species. hn-this-manner-these-These curves show the isolated effect
of the different absorption properties of the two species. We-further-apply-Further, the mid estimate scavenging ratio for hy-
drophilic BC seavengingratio-(0.2) to-hydrophilie BC{red-eurves)is also shown using radiative properties of hydrophilic BC
to quantify the gross effect —As-in-othereases;we-inetade-the-(red curves). The no-ARF scenario (black curves) to-highlight
the-overall-effect-on-the-albedo-and-melt-of-the-different-seenarioshighlights the overall impacts.

The isolated effect of the stronger absorption of hydrophilic BC leads to an earlier meltout by circa two days compared to
hydrophobic BC (purple and green curves in graphs of Fig. 3c). However, when applying the mid estimate of the scavenging
ratio for hydrophilic BC (0.2), the combined effects leads to a masking of the isolated effect of stronger absorption by hy-
drophilic BC (and vice versa). During the melt period, snow albedo, melt rate and the snowpack SWE barely differ between
the scenarios with the mid estimate scavenging for hydrophobic and hydrophilic BC applied (red and green curvesin-tep-and
bottom-graphs-ef-Fig—3¢). This reveals that both scenarios, hydrophobic BC with low scavenging efficiency and hydrophilic

BC with high scavenging efficiency, lead roughly to an earlier meltout by circa 6 days —We-interpret-this-thata-cleardistinetion

e-both-species-mightplay-a-secondary-role-in-the-determination-of-the-overallimpaet-of BC-on-snow-meltcompared

to the no-ARF scenario.
5.2 Case study: Impact of BC deposition on the hydrology of a south Norwegian catchment

5.2.1 Performance of the model

In the split-sample test, the model performsreasonably-well-performance is acceptable during both calibration and validation,
with NSEs of 0.86 during the calibration period (green line in Fig. 4a) and 0.82 during the validation period (red line in Fig. 4a).

However, in the winter season (circa November until March) the model generally underestimates the discharge and peaks in the

beginning of the melt season are slightly underestimated. The scatter plot in Fig. 5 confirms the underestimation of low flow

er-different scenarios explored within

the case study, all LAISI-relevant parameters are fixed to mid estimates and model parameters optimized for the full period
(1 September 2006 to 31 Oetober-August 2012; Fig. 4b) -whichresultsresulting in a NSE of 0.84. We-use-mid-estimatesfor

alHEATSTrelevant-parameters—The optimized parameters are listed in Table 2. Note that switching ARF off entirely (no BC
deposition) leads to a slight decrease of the model quality (NSE of 0.83 over the whole period; not shown).

situations. For the

5.2.2 Evolution of surface BC mixing ratio

For the min—and-mid-seenario-min and mid estimate, the model simulates an average annual surface BC mixing ratio of about

1

18 ng g~ ! and 71 ng g, respectively.

16



10

15

20

25

30

35

. The evolution of surface albedo driven by BC deposition is distinct in the accumulation period vs. the melt period. Dur-
ing the snow accumulation period (circa until end of March), only slight differences in albedo are noticeable. The average
annual snow albedo from January 1%¢ until March 22"% is 0.871 for the no-ARF experiment-scenario (Fig. 6a), while during

the same time period, min, mid, and max seenarios-estimates show relative albedo reductions of 0.003, 0.010, and 0.014, re-

spectively from the no-ARF case. F

—At the beginning of the melt
period, surface layer concentrations of min, mid, and max estimate average to 12, 49, and 98 ng g~! (Fig. 6b). Fime series-of

ongly-depended-on-the-apphed-seavengingratiosas-we-demeonstrated-in-the1-D-sensitivity-study —Seet—5-Hbecomes

increasingly larger over time. During the melt season, the mid-seenarie-mid estimate spatially averaged surface BC mixing ratio
increases from 49 ng g~ to about 250 ng g~ ! (factor 5 increase) at the end of the melt season (beginning of July). Observations

o Onooc—Ll o
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ofsurface-BC€-The distinctly different evolution of surface BC in snow at the end of the melt season and among the three
scenarios causes large differences in albedo decrease relative to the no-ARF case of about 0.03, 0.1 and over 0.3 for the min,

mid, and max seenarioestimate, respectively.

5.2.3 BC induced radiative forcing

The radiative forcing in snow (RFS) induced by the presence of BC is calculated from the average radiative forcing over
snow bearing tiles only. The RFS represents the additional uptake of energy from solar radiation per area snow cover due to
the presence of BC in the snow compared to clean snow with the same properties. Fig. 7a shows the daily mean RFS and
demonstrates the increase effeet-of RFS during snow melt. Low RFS is observed during the snow accumulation period then
steadily increasing through spring snow melt, reaching values of approximately 8, 18, and 57 Wm™2 for the min, mid, and max

seenartosestimates, respectively (see red solid line and shaded area in Fig. 7a). 3 i ase HE-Spri

and low solar irradiate.

However, most relevant for discharge generation (see Sect. 5.2.4), is the catchment-wide total daily energy uptake due to

BC, or surface radiative forcing, calculated as the mean radiative forcing over all grid cells. As the snow cover fraction (SCF)
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in the catchment drops during spring (dotted line and yellow shaded area in Fig. 6 and 7), the effect of the RFS on the melt
generation is limited by the increasing area of bare ground. The net effect is shown in Fig. 7b. The catchment mean daily-energy
uptake-surface radiative forcing due to the presence of BC in snow shows a strong annual cycle and reaches a maximum of
1.3, 4.9, and 8.8 Wm~?2 (min, mid, and max seenarioestimates, respectively) around the beginning of May. Radiativeforeing

5.2.4 BC impact on catchment discharge and snow storage

Fig. 8a shows the simulated daily discharge and catchment SWE averaged over the 6 years simulation period for the mid (red
lines);-min, min, and max estimates (bounds of the shaded areas);-, and the no-ARF scenario (black lines). The differences in
daily discharge and catchment SWE of the min, mid, and max seenarios-estimates to the no-ARF scenario are shown in Fig. 8b.
All simulations with ARF show higher daily discharge from end of March until end of May and lower discharge from end of
May until mid August relative to the no-ARF simulation. For the rest of the year, no effect on the discharge is noticeable. The
net impact of RFS results in a shift in the timing of discharge. Higher discharge early in the melt season is observed, yet offset
by lower discharge following May. The cumulative annual discharge remains nearly identical.

Min, mid, and max seenarios-estimates all show the change from higher to lower discharge compared to the no-ARF scenario
approximately at the same time (at the end of May; see blue marker in Fig. 8b). Therefore, we can quantify the absolute and
relative effect of RFS on the discharge during the two periods: the early melt season from circa March 22 until May 29 and
the late melt season from circa May 30 until August 10 (Fig. 8b and see Table 3). This yields an average percentage increase
in daily discharge of 2.5 %, 9.9 % and 21.4 % for the min, mid, and max seerario-estimates for the early melt season and a
decrease in discharge of -0.8 %, -3.1 %, and -6.7 % during the late melt season.

The differences in discharge among the scenarios can be explained by understanding the evolution of the snowpack. In the
all scenarios the catchment SWE (Fig. 8a) reaches a peak reduction relative to the no-ARF scenario of -4.6 %, -13.4 % and
-34.4 % at mid May. The average difference in catchment SWE of the min, mid, and max seenarios-estimates compared to the
no-ARF scenario during the entire melt season is -1.5, -5.1, and -10.3 mm; or an average of 2.1 %, 7.4 %, and 15.1 % (see
Table 3). From mid May on, the differences in catchment SWE between scenarios drop continuously, which is equivalent to a

higher catchment averaged snow melt rate in the no-ARF scenario compared to the ARF scenarios.
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6 Discussion

The objective of this work is to provide a mechanism to assess the impact of light absorbing aerosols on runoff at the
catchment scale in a rainfall-runoff modelling context. Prior investigations into LAISL indicate potentially significant impacts
to the cryosphere (Flanner et al., 2007) with potential impacts to water resources (Qian et al., 2009, 2011) . Earlier studies on
hydrologic impacts at the catchment scale have used altered radiative forcings to evaluate the impact on the timing of snow.
melt and hydrology (Painter et al., 2010; Skiles et al., 2012) . With the approach presented herein, we seek to fill a gap between
land-surface model approaches (e.g., Oaida et al., 2013) and approaches which apply modified radiative forcings to provide a
novel tool for hydrologic forecasting.

6.1 Parameter sensitivit

To assess the sensitivity of the newly introduced algorithm and parameters. we conducted a sequence of 1-d sensitivity studies.
In this context, we are able to remove complexities that arise when conducting a distributed simulation at the catchment scale.

We found the greatest sensitivity to lie in the parametrization of scavenging, as it relates to how likely the aerosol is to remain
at the snow surface during melt. Field measurements indicate that only a fraction of BC is flushed out with the melt water and
BC can accumulate near the snow surface (e.g.. Xu et al., 2012; Doherty et al., 2013; Sterle et al., 2013: Doherty et al., 2016) .
Our model is able to simulate this process by taking the scavenging ratio of BC during meltwater movement into account
Eq. 8 and 9). In the literature, the scavenging efficiency of BC is discussed controversially. Flanner et al. (2007) ’s estimates
for scavenging ratios of hydrophilic and hydrophobic BC. which are used in this study, are based on data from field experiments
using artificially added soot (Conway et al., 1996) . However, from-—mid-May-on—we-see—a—deerease—inthe-differences—in
catchment-SWEbetween-theARF-and-parameters derived from artificially added soot might not be directly transferable to

the scavenging properties of naturally occurring BC. Even though field observations from Doherty et al. (2013) agree well
with the estimates of Flanner et al. (2007) , and further studies highlight the importance of BC retention in the snowpack

.g., Xuet al., 2012; Sterle et al., 2013)

These uncertainties are identified in our simulations as results show large differences in BC evolution and day of meltout at
the boundaries of the applied scavenging ratios (Fig. 3b). Compared to the no-ARF seenarios-texperiment (black lines), the
presence of BC causes an earlier meltout for all scavenging ratios applied, spanning from 2 days (upper boundary scavenging)
to about 9.5 days (lower boundary scavenging). Remarkable is that even when applying efficient melt scavenging (2.0, upper
boundary of hydrophilic BC), resulting in nearly all BC removed from the snow, the melt out still happens circa two days
carlier compared to the no-ARF experiment.

Further complicating the effect is the fact that hydrophilic BC (which undergoes more efficient melt scavenging) has a larger
MAC (enhanced absorption) compared to hydrophobic BC (Flanner et al., 2007) . Qur results suggest distinguishing between
species may play a secondary role in the determination of the overall impact of BC on snow melt due to the compensating
effect of stronger scavenging accompanied with stronger absorption and vice versa (Fig. 3¢).

, a large uncertainty remains on the magnitude of this effect (Lazarcik et al., 2017) .
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The 1-d model experiments further show that the definition of at least two layers for the snowpack model is important to

allow for accumulation of impurities at the snow surface. This result in itself is not original, numerous prior studies have

identified the importance of having multiple layers (Krinner et al., 2006; Flanner et al., 2007; Oaida et al., 2015) . However.

we further find that the model surface layer thickness (parameter max.

SUBSCRIPTNBsurface

SUBSCRIPTNBlayer; see Table 2) has great impact on the evolution of surface mixing ratios of BC, while at the same time the
effect on albedo and snow melt is small. This results from the fact that for all 2-layer models the surface layer thickness is much
thinner than the penetration depth of shortwave radiation. For example, in clean snow with an optical grain radius of 50 um,
the radiative intensity diminishes to 1/e of its surface value (the so called penetration depth) in 25.5 mm SWE. For snow with
an optical grain radius of 1000 ym, the penetration depth increases to 117 mm SWE (both results from Flanner et al., 2007 ,
assuming a wavelength of 550 nm and a solar zenith angle of 60°). Thus, BC in the surface layer absorb efficiently in all
2-layer scenarios and the difference in the albedo is relatively large compared to the no-ARF scenario (solid black line in
top_graph of Fig. 3a), but relatively small among the 2-layer scenarios (solid green, purple, and red curves in top graph of

. 3a) due to the aerosol being distributed uniforml

a critical difference when a single layer model is used (yellow curves in Fi

throughout the snowpack instead of allowing accumulation at the surface. Thus, a large fraction of the BC is located at depths.
where the radiative intensity is much lower than in the top few mm of the snowpack, leading to a weaker absorption efficiency.
and results in a less pronounced decrease of albedo compared to 2-layer models and thus to a shorter meltout shift compared

Observations of BC in melting snow support the accumulation of BC near the surface (Xu et al., 2012; Doherty et al., 2013; Sterle et al.,

In a sequence of snow pits, Sterle et al. (2013) showed that during the ablation season, BC mixing ratios increase significantly
near the snow surface (sampled in the top two centimeter) relative to bulk BC concentrations. They suggest that most likely a
large fraction of previously deposited BC becomes concentrated near the surface. Delaney et al, (2015) also report of surface
BC increase during melt, to which BC being trapped at the snow surface is likely to contribute. BC increase in surface snow.
of up to an order of magnitude (Sterle et al,, 2013; Doherty et al., 2016) and more (Xu et al., 2012) have been observed in
natural snow during melt. Over most of the melt period. our results show a factor increase between 5 and 15 for the 2-layer
scenarios, which alignes well with observations. Higher values are mainly predicted shortly before meltout, when the snowpack
is typically very thin and effects on discharge generation due to high increase in surface BC should be small.

We argue therefore the importance of providing, at a minimum, a separate surface layer, but recognize simulated surface
mixing ratios of BC are highly sensitive to the thickness of this layer. Since evaluation of model predictions for BC in snow is

commonly performed by comparing simulated with observed BC mixing ratios in surface snow (e.g., Flanner et al., 2007; Forsstrom et al., -
., Doherty et al., 2010; Aamaas et al., 2011; For:

ically 2to 5 cm,e.

This raises an interesting challenge given that the surface layer assumed in models is not a measurable property of snow. A
comparison of model simulations with observations should therefore include some quantification of the uncertainty resultin
from the layer thickness parametrization.

this is a critical result. Snow is often sampled in top few centimeters (t
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6.2 Hydrologic response to BC deposition in a snowfall dominated catchment

We are interested in addressing the impact of BC deposition — and potentially other light absorbing aerosols — to the hydrolo
of snowfall dominated catchments. Studies have shown the potential impact LAISI may have on the timing of snowmelt
, 2007, 2009,

5 Given the importance of snow for water resources for a significant portion of the population (Barnett et al., 2005; Sturm et al., 2017) and
Paliwal et al., 2016; Bond et al., 2013

Skiles et al., 2012; Painter et al., 2012) while others have argued the impact to climate may be signficant (Flanner et al.

the rapid growth of BC emissions in certain regions of the world (e.g. our aim is to

provide a mechanism to include this process in hydrologic forecasting to better address future impact studies.
Forsstrom et al, (2013) found BC seasonal mean snowpack concentrations from about 10 ng ¢~ to 80 ng g~ ! for different
measurement locations and time periods in mainland Scandinavia, Generally our results are within those presented in Forsstrom et al. (2013
10 though our max estimate lies above. However, Flanner et al. (2007) evaluated the global impact of the radiative forcing of
BC in snow using a model which was compared with globally distributed surface BC measurements. For south Norway,
Flanner et al. (2007) predicted an annual mean surface BC concentration between 46 and 215 ng g~ " for the year 1998, placing
our simulations fully within a reasonable range of prior reported values.
The impact resulting from BC deposition in our study is seen in the timing of the annual water balance. Inclusion of
15 ARF generally increases early season melt and causes the snowpack to melt out earlier. Comparing the ARF and no-ARF
scenarios we see a general shift in the discharge, with the ARFE scenario producing greater discharge early in the season,
and having less discharge after June. Such a shift in seasonal water balance will potentially have impacts to soil moisture
and agriculture (Blankinship et al., 2014) , as well as regional climate
uncertainties associated with conceptual hydrologic modelling that may impact the applicability of these results (Beven and Binley, 1992 ;
20 see also uncertainty discussion in Sect. 6.3), we feel it provides a novel mechanism to address LAISI in a manner that, to date,
is not available otherwise. As a reality check of the catchment scale —Fhe-dynamies-drivenbythe- SCH-of the-eatchment
incorporation of BC deposition on albedo, radiative forcing, and snowpack storage.

ian et al., 2011) . While we recognize significant

6.2.1 Surface BC and albedo

25 Albedo s acritical parameter in any snow melt model, having significant control over the energy balance. During the accumulation
period, the average albedo of each scenario lies within the range of albedo of fresh snow with small optical grain radius
combined with a high solar zenith angle (Gardner and Sharp, 2010) and is thus reasonable for a high latitude snowpack during
snow accumulation. The differences in snow albedo during the accumulation season are mostly due to differences in aerosol
deposition and in the maximum surface layer thickness of the snowpack. The time series of mid estimate modelled surface BC

is within the range of values for locations in mainland Scandinavia presented in Forsstrom et al. (2013) during the accumulation

period. The min estimate predicts values at the lower bound and lies in the range of the background surface BC level found

in Svalbard in the European High Arctic (5 ng g”', Aamaas etal., 2011 ; 30 ng g, Clarke and Noone, 1985 ). Compared
to Forsstrom et al. (2013) . the surface BC level of the max estimate seems to exceed the range of values reasonable for

30
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mainland Scandinavia during snow accumulation and reflects a range of values that is rarely found in snowpacks outside
Asia (Doherty et al., 2010; Forsstrom et al., 2013; Wang et al., 2013; AMAP, 2015) .
During the melt season, the evolution of surface BC yields end of the melt season reductions in albedo relative to the no-ARF

case of about 0.03, 0.1, and over 0.3 for the min, mid, and max estimate, respectively. This has two reasons: (i) with increasin

rain radius during the melt season, the absorbing effect of BC gets more efficient due to deeper penetration of radiation
into the snowpack leading to a stronger effect of the BC deposition on albedo. Snow of larger grains has a larger extinction

coefficient and more effective forward scattering properties (Flanner et al., 2007) . (ii) with the start of the melt season there is a

widespread decrease of snow thickness, allowing BC to accumulate in the surface layer. This latter effect is strongly dependent
on the applied scavenging ratios, as we demonstrated in the 1-D sensitivity study (Sect. 5.1). During the melt season, the mid
estimate spatially averaged surface BC mixing ratio increases from 49 ng g to about 250 ng g" (factor 5 increase) at the
end of the melt season (beginning of July). Observations from Forsstrom et al. (2013) indicate that surface BC concentrations
around 250 ng g~ " are well within the range of reasonable values for a melting Scandinavian snowpack. Furthermore, an
increase in surface BC by a factor of 5 and higher during snow melt is in line with observed BC trends in melting snow from
different locations (Doherty et al., 2013, 2016; Xu et al,, 2012) . From this, we argue that our mid estimate simulation predicts
a seasonal cycle in surface BC that is within reason..

For the max estimate, the increase is from roughly 100 ng g ! to over 2500 ng g " (factor 25 increase). This strong seasonal
cycle in surface BC is beyond what is observed for both, absolute BC values in Scandinavian snowpacks and increase relative
to surface BC during snow accumulation. The min estimate, on the other hand, leads to a decrease in BC surface mixing ratio.

Even though many studies report of an increase in surface BC during snow melt (e.

there exist observations showing that a large fraction of BC can be flushed efficiently from the snowpack with the beginnin

ost-depositional enrichment processes and their significance on

of snow melt (Lazarcik et al., 2017) . This indicates that

determining surface BC trends in melting snow require further exploration. We argue that the min estimate thus marks a
reasonable lower bound estimate for the seasonal evolution of surface BC.

We recognize our max estimate results in a strong increase in surface BC mixing ratios mostly due to low BC scavenging
with melt (note the strong increase from end of March on in Fig. 6

s-). This divergent

evolution of surface BC mixing ratios in the min, mid, and max estimates reveals uncertainty in the representation of the fate of

BC in snow during melt, which is also reflected in the literature (Doherty et al., 2013, 2016; Xu et al., 2012; Lazarcik et al., 2017) .

2

2

6.2.2 BC induced radiative forcin

The strong increase in RFS (Fig.7a) and surface radiative forcing (Fi

i) the aforementioned decrease in snow albedo due to the increase in surface BC concentrations (e.g. melt amplification and

the increasing optical grain radius in melting snow as discussed in Sect. 5.2.2) and, (ii) the increasing daily solar irradiation

due to a lower solar zenith angle and longer days.

.7b) during spring melt results from the combination of
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Annual mean surface radiative forcing in this study are 0.284, 0.844. and 1.391 Wm~2 for the min, mid, and max estimates.
Averaged over entire Scandinavia (including Finland), Hienola et al. (2016) calculated lower values around 0.145 Wm 2.

However, Hienola et al. (2016) ’s study includes large areas with shorter snow cover. Since the surface radiative forcin

strongly depended on the snow cover evolution, higher values compared to Hienola et al. (2016) are expected due to the lon,
lasting snow cover in our case study region. The mid estimate annual cycle of surface radiative forcing due to the presence of

ian et al. (2011) reports of similar

BC in the study region is of similar magnitude of what is found over the Tibetan Plateau.

snow cover duration and maximum mean forcing during May of over 6 Wm ™2 using a global climate model. Due to the
enerally much lower snow covered fraction in Qian et al. (2011) ’s study region, however, RES is presumably significantl

higher on the Tibetan Plateau compared to our study region, which is in agreement with very high levels of BC reported
for the Tibetan Plateau (Qian et al., 2011) . Using a standalone version of SNICAR, we estimated RFS based on surface BC

mixing ratios from Forsstrom et al. (2013) measured during melt in the 5 cm of Scandinavian snowpacks to 4.7 to 18.2 W m 2

(and-95% confidence interval; details described in Appendix A). These values agree well with our min and mid estimate RES
Fig. 7), however, are significantly lower than our max estimate.

6.2.3 BC impact on catchment discharge and snow storage

We mention a shift in the seasonal water balance, with more melt early in the melt season resulting from enhanced RES.
However, from mid May the melt enhancement reduces and the differences in catchment SWE between the ARF and no-ARE
scenarios decreases (Fig. 8b). One would expect with more incoming radiation, later in the season, the RES effect to become
further enhanced. However, this counter-intuitive result becomes more clear when one considers the impact of fractional snow.
covered area and catchment scale processes. The dynamics driven by the faster development of SCFE (see Fig. 6a) is a limiting.
factor to the catchment averaged snow melt. By comparing Fig. 7a, which shows the snowpack RES enhancement, with Fig. 7b,
which shows total daily energy uptake in the catchment, we see that a threshold period is reached and total daily energy uptake

decreases, while RFS is continually increasing). Intuitively, one would expect more melting due to enhanced solar radiative
forcing. However, the SCF decrease with increased melt due to ARF counteracts the RFS effect itself, due to the reduction in

area from which snow can actually melt.

For discharge, this is manifested in the ARF scenarios as an enhancement during the beginning of the melt season may-simpty
be-attributed to RFS, whereas the decreased discharge later in the season is attributed to melt limitation caused by the SCF
retreatfaster growth of fractional bare ground areas.

to snow cover (Painter et al., 2007; Qian et al., 2014) . Our results suggest that also the hydrologic cycle of regions that have

Compared to observations, all simulations (ARF and no-ARF) tend to underestimate discharge during early melt season and

overestimate discharge during late melt season (Fig. 8a). However, the magnitude of over- and underestimation strongly differs
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between the scenarios. By including ARF the volume error is reduced in both the early melt season (by increasing melt), and
in late melt season (by subsequently decreasing melt generation in the catchment due to reduced SCF). Expressed as seasonal
mean volume error for early and late melt season, the difference to observed discharge is largest for the no-ARF scenario and
smallest for max-seenariothe max estimate. The max seenario-estimate reduces the volume error by -75.1% during early melt
season and -89.9% during late melt season, relative to the no-ARF scenario (see Table 4). The min and mid seenarios-estimates

also reduce the volume error. Thus, on average, an improvement in simulated discharge is achieved during the melt season

by accounting for BC RFS. Similar results are achicved when estimating model parameters using a no-ARF scenario (not
shown). However, we acknowledge that further studies are needed in order to be able to confirm a general model improvement
when accounting for ARF in snow dominated catchments. Certain mechanisms can lead to model improvements for the wrong.
reason when applying ARE (Kirchner, 2006) . Structural deficits of the model might lead to a negligence of processes that are
important for the spring melt generation. The implementation of ARF could then optimize the model towards the observations
and counteract errors coming (partly) from a missing process that is not related to ARF. A further potential mechanism is
related to the equifinality of conceptual models. These implications coming from model parameter uncertainty are discussed
in Sect 6.3 alongside with further sources of uncertainty.

6.3 Uncertainties

There are numerous challenges associated with the development of an algorithm which mixes conceptual hydrologic parametrizations

with physically based algorithms. Both the literature and our analysis demenstrates numerous-uncertainties-and-we-urge-further
mixing-ratio-highlight aspects that warrant a deeper investigation of ARF-induced uncertainty. The intent with this work is
to introduce a new algorithm, however as indicated in Pappenberger and Beven (2006) , we feel it is important to provide

an initial assessment of the uncertainty introduced with the addition of ARF terms. To achieve this we have conducted a

Generalized Likelihood Uncertainty Estimation (GLUE; Beven and Binley, 1992 ) which provides an assessment of the degree

of variability in behavioral models resulting from equifinality of parameters.

With respect to the implementation of a physical albedo model, the treatment of the darkening effect of LAIST adds additional
degrees of freedom to the parameter space of the model due to the introduction of new parameters (scavenging ratios, surface
layer thickness, BC input scaling factor; see bottom 4 parameters in Table 2). In order to investigate the abilities and limits of
the model with and without ARF to reflect the observed discharge, we quantify the parameter uncertainty prior and posterior
Fi
melt and summer because various parameters only play an active role in calculating discharge during snow melt. Including
ARF calculation in the model leads to a shift of the uncertainty band to higher values during April and May, and lower values
during June and July, due increased melt under the impact of ARF. From mid-May to mid-June, the ARF induced shift in the
uncertainty band leads to observations being within or closer to the border of the uncertainty bands (shaded box in Fig. 9),
which can be interpreted as an improvement to the model. This would imply that in the model without ARF, albedo decays not
sufficiently enough during spring in order to generate enough snow melt, resulting in an underestimation of discharge in April

to the implementation of ARF calculations . 9; details in Appendix B). Uncertainties are generally largest during snow
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and May. However, we admit that further testing is needed to draw a more accurate conclusion, as discussed above. Perhaps
more importantly, it appears that we have not increased uncertainty much by adding complexity. In general with and without
ARF the results are acceptable, however, we enable the inclusion of a potentially important variable, particularly with respect
to increased emissions due to population growth.

In our case study, further uncertainties result from mixing ratios of BC in the snowpack due to prescribed BC deposition
and LAISI other than BC not accounted for in the model:

i) - prescribed BC deposition

In the approach presented here, we use prescribed BC deposition mass fluxes. Even though this is common practice
(e.g., Goldenson et al., 2012; Lee et al., 2013; Jiao et al., 2014), it was showing by Doherty et al. (2014) that the decou-
pling of aerosol deposition from the water mass flux of falling snow can lead to an overestimation of surface mixing ra-

tios by a factor of 1.5-2.5. However, we would like to highlight an important difference between our approach and the one

{Dehertyetal;20+4)-Doherty et al. (2014) claim to be problematic: First, the high bias in surface snow BC mixing ratios

described by (Peherty-et-al520614)-Doherty et al. (2014) refers to global climate model simulations with prescribed aerosol
deposition rates (wet and dry), where the input aerosol fields are interpolated in time from monthly means. Therefore, the

episodic nature of aerosol deposition due to wet deposition is generally absent in the preseribed-aeresol-prescribed aerosol
fields. The coupling of the interpolated fields with highly variable meteorology (in particular precipitation) results in the high
bias (Doherty et al., 2014). In our case study, on the other hand, we use deposition fields originating from the regional aerosol
climate model REMO-HAM, forced with ERA-Interim reanalysis data at the boundaries. REMO-HAM output is 3-hourly,
which we re-sampled to daily means in order to have consistency between the deposition fields and the observed daily pre-
cipitation used as input data in the hydrological simulations. The daily timestep allows us to preserve the episodic nature of
aerosol deposition. Moreover, the daily BC wet deposition rates should not be biased due to major inaccuracies in precipitation
as REMO-HAM has been shown to reproduce the Scandinavian precipitation realistically (Pietikdinen et al., 2012). The high
bias occurring when using interpolated monthly averages as input should therefore be minimized.

Additionally, and significantly, {Deherty-et-al52044)-Doherty et al. (2014) (and the critiques therein) address an objective
with consideration to climate impacts. Our analysis is focused on the impact to the hydrological cycle. Our simulations suggest
that BC RFS is mostly important during spring time, where surface BC mixing ratio are predominantly controlled by melt
processes, and not by deposition processes (as shown in Fig. 3 and Fig. 6b).

ii) - LAISI other than BC

By including only BC deposition in our simulation, we likely underestimate the additional effect of further LAISI species
such as mineral dust (Di Mauro et al., 2015; Painter et al., 2010), mixing of the snow with soil from the underlying ground or
local sources (Wang et al., 2013) and biological processes (Lutz et al., 2016). Neglecting additional RFS from LAISI other than
BC is likely to result in an underestimation of the overall effect of LAISI on snow melt and discharge generation. Especially
the contribution from dust is critical since it has been shown that in many regions such as the Rocky Mountains (Painter
et al., 2012), Utah (Doherty et al., 2016), the southern edge of the Himalayas (Gautam et al., 2013), and Svalbard (Forsstréom

et al., 2013), dust can play a significant role in terms of RFS or even is the dominating LAISI. For Norway, however, analysis
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conducted by Forsstrom et al. (2013) indicate that dust might only play a minor role. By comparing samples from Svalbard and
near Tromsg@, Norway, Forsstrom et al. (2013) showed that there exits a distinctive difference between the Arctic Archipelago
and the mainland. BC mixing ratio from mineral-dust-rich Svalbard measured by the thermal/optical method used in Forsstrém
et al. (2013) averaged about half the mixing ratio of insoluble light-absorbing particulates (including dust) measured by an
optical method (ISSW: Integrating Sphere/Integrating Sandwich; e.g., Deherty-et-al+2040)-Doherty et al., 2010 ). Samples
collected close to Tromsg, on the other hand, resulted in BC that averaged about 1.3 times the ILAP mixing ratios. Due to the
fact that the ISSW method overestimates BC for samples containing dust, Forsstrom et al. (2013) argues that the comparison
of both methods can be used to draw conclusions about the pollution regime. Yet, due to the small number of samples and
the single-location analysis, this needs to be addressed more in future studies in order to identify the relative importance of
different LAISI species.

With respect to our study, we acknowledge that including only BC is a significant-shortcoming with respect to the overall
effect of LAISI. However, by demonstrating the significant effect of BC on accelerating snow melt and discharge generation,

our study gives a conservative estimate of the effect of LAISI and urges a more detailed investigation.

7 Conclusions

Herein we presented a newly developed snow algorithm for application in hydrologic models that allows a new class of
model input variables: the deposition rates of light absorbing aerosols. By coupling a radiative transfer model for snow to an
energy balance based snowpack model, we are providing a tool that can be used to determine the effect of various species of
LAISI at the catchment scale. In this analysis we have focused solely on BC and acknowledge it therefore likely represents
a conservative estimate. This work presents a novel analysis of the impact of BC deposition to snow on the hydrologic cycle
through 1-D sensitivity studies and catchment scale hydrologic modelling. From a 1-D model study, presented in Sect. 5.1, we

conclude that:

i- the implementation of at least two layers (a thin surface layer and a bottom layer) is of outstanding importance to capture
the potential effect of melt amplification on the near surface LAISI evolution. The maxtmum-parametrization of the
surface layer thickness (in SWE) has a rather little effect on the snow albedo and melt rate as long as it is sufficiently
small (e.g. smaller than the penetration depth of shortwave radiation). However, the evolution of the LAISI surface
mixing ratio is highly sensitive to the maximum-surface layer thickness. For this reason, we suggest to include a surface

layer thickness variation in model studies when comparing simulated to observed LAISI mixing ratios sampled in the

snow-surfacetop few centimeters of snow.

ii - The determination on how LAISI is washed out of the snowpack with melt water has great effect on the evolution of
LAISI concentration near the surface, snow albedo and melt rate. Due to rare observations of this effect under controlled
conditions the uncertainties are high and our findings show the need for more detailed understanding of the processes

involved due to the high importance for the overall effect of LAISI in-the-srowpack-on the snowpack evolution.
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To demonstrate the significance of the-radiativefereingfromBC-BC radiative forcing for the hydrologic cycle at the catch-
ment scale we demonstrated the effect of BC deposition and the subsequent implications for snow melt and discharge generation

due-to-impacts-on-the snow-albedo-on a remote Norwegian mountain catchment. The study indicates that inclusion of BC in
snow is likely to have a significant impact on melt timing, and that the effect on the discharge generation leads to a shift in the
annual water balance. Our simulations further suggest that melt amplification can have severe implications on the-impaetofBC
en-both, the snowpack evolution and the discharge regime of a catchment, which means that the seasonal cycle of surface BC
mixing ratio is of great importance. However, large uncertainties are connected with the representation of surface enrichment
of BC. A more robust understanding of the fate of the-BC in melting snow is essential to fully assess impacts to the hydrologic
cycle.

Including radiative forcing from BC in the simulations leads to a reduction in volume error during the early and late melt
season in our simulations. We conclude from our study that hydrological modelling can potentially be improved by including
the effect of LAISI, especially when the model approach implicates a physically based representation of the snowpack in
general and the snow albedo in particular. However, more research in the area of catchment scale impact of LAISI is needed to

support this. The approach and algorithm presented in this analysis provides a tool to target this in future applications.

Appendix A: Radiative forcing in snow estimated from Forsstrom et al. (2013

In order to calculate radiative forcing in snow (RFS) from surface concentrations during melt reported in Forsstrom et al. (2013
several assumptions have been made. For each input variable, a certain reasonable range is estimated, suiting to snow properties
during melt conditions:

e snow optical grain radius: 500-1000 pm
e snow density: 400-600 ke m—3
e BC mixing ratio; 50-200 ng g ~! (from Forsstrom et al., 2013

Forsstrom et al. (2013) reports of 6 time series of BC surface concentrations sampled in the top 5 cm of the snowpack. All
of which cover the snow melt period at 3 locations in Scandinavia, however, only one location can be considered as remote
without pollution from local sources (Abisko, Sweden). The range of BC concentrations during melt is estimated from this
location. Global radiation during spring is estimated to 210 W m~2. The value has been calculated from the input time series
of our study region, in order to receive comparable results. The daily mean solar zenith angle has been set to 60° and BC
concentration below the top 5 cm to 0. since no further information is available. The latter might lead to an underestimation of
RFS and results can be seen as a conservative estimate. 1000 realizations with SNICAR have been conducted using different

input variable sets, with random values for each input variable according to a uniform distributing in the stated range. Resultin
RFS values are presented as 95% confidence interval to 4.7 to 18.2 W m~?. The mean is 11.2 W m_?,
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Appendix B: Parameter uncertainty with GLUE

We determine parameter uncertainty using the Generalized Likelihood Uncertainty Estimation (GLUE) method (Beven and Binley, 1992) .

Lower and upper bounds of parameters used in the calculation are shown in Table Al. We use the Nash-Sutcliffe model
efficiency (Eq. 10) as likelihood function and choose a threshold value of 0.74 (0.1 below best calibration result) for accepting
parameter sets as behavioral parameter sets. To identify the impact of ARF on model uncertainty, we run GLUE twice, first
without ARF applied, and in a second round of simulations accounting for ARF. Random parameter sets are created by
choosing parameters according to a uniform distribution in the range of the parameter bounds. For each of the two uncertainty.

estimations, a total of 10000 model realizations was drawn of which 1435 (no-ARF) and 1831 (ARF) parameter sets were rated

as behavioral parameter sets. This accounts for about 14% and 18% of the total samples, respectively.
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Figure 1. Left: elevation versus coefficients of variation (CV) of sub-grid snow distribution from Gisnas et al. (2016) of forest free areas in
the Atnsjoen catchment (dots) and the relationship between the CVs and the elevation resulting from simple linear regression analysis (black

line). Right: solid precipitation multiplication factors for the sub-grid snow tiles for different CVs.
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Figure 2. Location of the Atnsjoen catchment in Norway (black box in left map) and overview map of the Atnsjoen catchment (right).
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Figure 3. Snow albedo (top row of graphs; solid lines) and melt rate (top row of graphs; dashed lines), BC mixing ratio in the surface layer
and factor increase of the mixing ratio during melt compared to the pre-melt BC mixing ratio (central row of graphs), and snowpack SWE
(bottom row of graphs) for simulations forced with synthetic data based on the average meteorological conditions during the melt season
from mid March until mid July of the Atnsjoen catchment and different model configurations: (a) different values for maximum surface
layer thickness; (b) scavenging ratio; and (c) BC species with different melt scavenging ratios applied (phob and phil in legend stands for
hydrophobic and hydrophilic BC, respectively). The black lines in all graph show simulation results of model runs without ARF applied
(no-ARF).

Table 1. Information about observational stations.

Station name Station ID  Operator  Observational variable Elevation
Atnsjoen 1 8720 MET precipitation 749
Atndalen-Eriksrud 8770 MET precipitation 731
Atnsjoen 2 2.32.0 NVE temperature 701

Li Bru 2.479.0 NVE temperature 780
Fokstuga 16610 MET wind speed; relative humidity 973
Kvitfjell 13160 MET wind speed 1030
Venabu 13420 MET relative humidity 930

37



._.SOfa)— obs — sim (validation)

7 | —— sim (calibratjon)

2007 2008 2009 2010 2011 2012
b)

2007 2008 2009 2010 2011 2012

Figure 4. Simulated (green and red curves) and observed (black curve) daily discharge from the Atnsjoen watershed. Graph (a) is showing the
simulation results for 3 years of calibration (green) and 3 years of validation (red). Graph (b) is showing the results for the 6 years calibration
period. Parameters estimated in the latter are used in the case study. Parameters not included in the optimization are set to mid-estimate-mid

estimate values during the calibration process (see Table 2).
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Figure 5. Comparison of observed and simulated daily discharge Q of the Atnsjoen catchment. The dashed black line demonstrates perfect

agreement between simulation and observation.
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Figure 6. (a) Simulated mean catchment snow albedo (solid lines) and snow covered fraction (SCF; dashed lines) for the mid (red lines),
low and high (shaded) estimates and for the scenario without ARF (no-ARF; black lines) averaged over the 6 years period. (b) Concentration

of BC in the surface layer of the model for the mid (solid line), min (lower bound of shaded area) and max (upper bound of shaded area)

estimates.
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Figure 7. Catchment snow covered fraction (SCF; dashed lines) and (a) simulated mean radiative forcing in snow and (b) total daily energy
uptake in the catchment due to BC for the mid (solid red lines), min (lower bound of shaded area) and max (upper bound of shaded area)

estimates averaged over the 6 years period (daily means presented in Watts per square meter catchment area).
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Figure 8. (a) Simulated daily discharge (Q; solid lines) and catchment mean snow water equivalent (SWE; dashed lines) for the mid (red
lines), low and high (shaded) estimates and for the scenario without ARF (no-ARF; black lines) averaged over the 6 years period. (b)
Differences in daily discharge and SWE of ARF scenarios to the scenario without ARF (no-ARF). The blue marker in (a) and (b) separates

the periods where BC in snow has an enhancing (left of marker) and a decreasing (right of marker) effect on the discharge.
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Figure 9. 95% confidence interval of discharge due to parameter uncertainty when allowing for ARF (red) and disregarding ARF (grey)
calculated using the Generalized Likelihood Uncertainty Estimation (GLUE) method and averaged over the 6 years simulation period. The
shaded box marks the period of the melt season, where observations tend to lie outside the uncertainty bounds of the no-ARF simulations.
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Table 2. Model parameters used in sensitivity and case study. Parameters optimized during calibration are marked with *. Further parameters

were pre-set and not open for calibration. Parameters with different values in the minimum (min), central (mid), and maximum (max) BC

radiative forcing estimates are marked with **.

Parameter Description and unit min estimate optimized/set max estimate
mid estimate

c1 ¥ kirchner parameter 1 (see Eq. 3) [-] -4.298

co ¥ kirchner parameter 2 (see Eq. 3) [-] 0.3295

cs * kirchner parameter 3 (see Eq. 3) [-] -0.07757

ae_scale_factor * scaling factor for actual evapotranspiration [-] 1.43

tx * temperature threshold rain/snow [°C] -0.92

wind_const * determining wind profile [-] 6.32

wind_scale * determining wind profile [-] 1.12

snowfall_reset_depth minimum snowfall required to reset SSA-A; [mm SWE] 5.0

snow_cv_forest snow CV in forested area [-] 0.17

snow_cv_intercept intercept of linear elevation-CV relation [-] -6:656--0.05

snow_cv_slope slope of linear elevation-CV relation [rgfvi ] 0.00056

max_water fractional max water content of snow [-] 0.10

SSAsmo-Asg SSA-A, of fresh snowfall [m® kg™ '] 73.0

surface_magnitude Max snow depth for snow heat content [mm SWE] 33-6-30.0

max_surface_layer ** Maximum thickness of surface layer [mm SWE] 16.0 8.0 4.0

depo_factor ** Multiplication factor for deposition [-] 0.5 1.0 1.5

seavSUBSCRIPTNBphob-kypo, **  scavenging rationratio of hydrophobic BC [-] 0:03-0.3 0.03 0.003

seavSUBSCRIPTNBphil-kyp g ** scavenging rationratio of hydrophilic BC [-] 2.0 0.2 0.02

Table 3. Average change in discharge during the early (March 22 to May 29) and late (May 30 to August 10) melt season of min, mid, and

max seenario-estimates and average change in SWE during the melt season (March 22 to August 10) compared to the no-ARF scenario (zero

BC mass deposition).

scenario early melt season discharge  late melt season discharge  melt season SWE
[m?s™'] [%] [m?s™'] [%] [mm]  [%]
min estimate 0.2 2.5 -0.18 -0.8 -1.5 2.1
mid estimate 0.81 9.9 -0.74 -3.1 -5.1 -7.4
max estimate 1.74 21.4 -1.60 -6.7 -10.3 -15.1
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Table 4. Season mean volume error in discharge during the early (March 22 to May 29) and late (May 30 to August 10) melt season of

no-ARF, min, mid, and max scenario compared to observed discharge. The percentage change shows an increase (+) or decrease(-) of the

volume error compared to the no-ARF volume error.

scenario early melt season discharge  late melt season discharge
[m? s™] [%] [m? s™] [%]

no-ARF -2.32 - 1.78 -

min estimate -2.12 -8.7 1.60 -10.1

mid estimate -1.52 -34.7 1.04 -41.6

max estimate -0.57 -75.1 0.18 -89.8
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Table Al. Model parameter bounds used in the uncertainty estimation with the Generalized Likelihood Uncertainty Estimation (GLUE

method. Parameters used to determine ARF are marked with *.

Parameter Unit_ Lowerbound  Upper bound
a [-] J0 20
« [-] oL 10,
3 [-] 0.1 00,
g/g

SUBSCRIPTNBscale

SUBSCRIPTNBfactor. [-] 07 20,
% [°Cl 20 10
wind

SUBSCRIPTNBconst [-] 30 100,
wind

SUBSCRIPTNBscale [-] 035 20
snowfall

SUBSCRIPTNBreset

SUBSCRIPTNBdepth [mm SWEI 3.0, 0.
M

SUBSCRIPTNBcy

SUBSCRIPTNBforest. [-] 013 02
M

SUBSCRIPTNBcy

SUBSCRIPTNBintercept.  [-] 0.03 0.07
Snow

SUBSCRIPTNBcy

SUBSCRIPTNBslope (m_'] 0.0003 00007
&%

SUBSCRIPTNBwater [-] 035 015,
Asa. m’ kg1 500 100.0
surface

SUBSCRIPTNBmagnitude  [mm SWEI 200 400
@33(

SUBSCRIPTNBsurface

SUBSCRIPTNBlayer > [mmSWE]l 40, 160,
depo

SUBSCRIPTNBfactor *  [-] 035 13
Kongy . [-] 0003 03
Kopit % [-] 002, 20,
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