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Abstract. Ecologically relevant streamflow characteristics (SFCs) of ungauged catchments are often estimated from simulated 10 

runoff of hydrologic models that were originally calibrated on gauged catchments. However, SFC estimates of the gauged 

donor catchments and subsequently the ungauged catchments can be substantially uncertain when models are calibrated using 

traditional approaches based on optimization of statistical performance metrics (e.g. Nash-Sutcliffe model efficiency). An 

improved calibration strategy for gauged catchments is therefore crucial to help reducing the uncertainties of estimated SFCs 

for ungauged catchments. The aim of this study was to improve SFC estimates from modelled runoff time series in gauged 15 

catchments by explicitly including one or several SFCs in the calibration process. Different types of objective functions were 

defined consisting of the Nash-Sutcliffe model efficiency, single SFCs or combinations thereof. We calibrated a bucket-type 

runoff model (HBV model) for 25 catchments in the Tennessee River basin and evaluated the proposed calibration approach 

on 13 ecologically relevant SFCs representing major flow regime components and different flow conditions. While the model 

generally tended to underestimate the tested SFCs related to mean and high-flow conditions, SFCs related to low flow were 20 

generally overestimated. The highest estimation accuracies were achieved by a SFC-specific model calibration. Estimates of 

SFCs not included in the calibration process were of similar quality when comparing a multi-SFC calibration approach to a 

traditional model efficiency calibration. For practical applications, this implies that SFCs should preferably be estimated from 

targeted runoff model calibration and modelled estimates need to be carefully interpreted. 

1 Introduction 25 

Reliable runoff information is fundamental for many water resources-related tasks such as flood prevention, drought 

mitigation, management of drinking water supply and hydropower, or river restoration. Runoff modelling is a tool that can be 

used to create runoff time series when observed time series are not available. Runoff simulations usually focus on either 

representing the general shape of the hydrograph or on accurately simulating specific streamflow characteristics relevant to a 

respective application. However, the extraction of streamflow characteristics (SFCs) from a simulated time series may produce 30 
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poor estimates when these characteristics were not included in model calibration. Ecologically relevant SFCs are properties of 

the annual streamflow hydrograph defining the structure and functioning of aquatic and riparian biodiversity (Richter et al., 

1996; Poff et al., 1997). The accurate prediction of streamflow characteristics is a core determinate to defining how streamflow 

and aquatic communities relate. A large number of SFCs have been suggested to characterize ecologically relevant aspects of 

the flow regime (Tharme, 2003) and have become the basis for decision-support systems integrating resource management 5 

with ecological response (Cartwright et al., 2017). 

Multivariate regression or runoff models are used to estimate SFCs when observed streamflow time series data are not available 

(Hailegeorgis and Alfredsen, 2016). The estimation of SFCs with linear regression usually relates a single SFC to catchment 

characteristics such as climate, land cover, geographic, and geologic variables (e.g., Sanborn and Bledsoe, 2006; Carlisle et 

al., 2010; Knight et al., 2012). This approach is inflexible in a sense that the regression is SFC-specific and does not allow for 10 

analysis of potential water-use and land management (Murphy et al., 2013). These disadvantages can be partially overcome 

by applying runoff models. Simulated streamflow time series from runoff models can be used to calculate any SFC and by 

changing model input and parameters different scenarios  such as climate change, groundwater withdrawals, land use and 

riverine change can be simulated (Poff et al., 2010; Murphy et al., 2013; Olsen et al., 2013; Shrestha et al., 2014).  While 

statistical models such as multiple linear regressions often provide greater accuracy (Murphy et al., 2013), runoff models 15 

provide opportunities for also evaluating climate or land-use change scenarios. 

Runoff models are used in both ecohydrology and hydrological modelling as tools to simulate specific aspects of the runoff 

regime. The terms, SFCs or ecological flow indices, are often used to refer to such specific aspects of the flow regime in 

ecohydrology studies, whereas the more recently introduced term, hydrological signatures, has been used in hydrological 

modelling (Jothityangkoon et al., 2001; Wagener et al, 2007). Hydrological signatures can often support a physical 20 

interpretation of the way a catchment functions and are seen as valuable metrics especially for modelling ungauged catchments 

(Jothityangkoon et al., 2001), for selecting appropriate model structures (Euser et al., 2013) or guide model parameter selection 

in a meaningful way (Yilmaz et al., 2008), and for classifying catchments (Wagener et al., 2007; Sawicz et al., 2011). 

Regardless of the terminology and the ultimate goal, the basic goal is the quantification of certain aspects of a streamflow time 

series. In this paper, we use the term SFC as equivalent to hydrological signature, but generally prefer the term SFC to 25 

emphasize their ecological relevance.  

Estimated streamflow characteristics are prone to significant errors when calculated from simulated time series (Murphy et al., 

2013; Shrestha et al., 2014; Vis et al., 2015). This is due in part to the objective functions used for evaluating the model error 

such as the commonly used model efficiency (Nash and Sutcliffe, 1970) or volume error, which do not ensure that a model is 

reproducing particular streamflow characteristics. These objective functions subsequently guide model parameter calibration, 30 

which strongly influences the simulated hydrograph (for an overview see Pfannerstill et al., 2014) in terms of annual, seasonal, 

and monthly volumes and magnitudes. For example, Vis et al. (2015) compared model simulation from calibrations based on 

only the model efficiency with calibrations based on the combination of multiple objectives such as model efficiency, model 

efficiency of log-transformed flow, volume error and Spearman rank correlation. All these calibration approaches tended to 



3 

 

overestimate low-flows and underestimate medium and high-flow related SFCs. Estimation accuracy varied greatly between 

SFCs with absolute biases between 3% and 33%. Large differences in estimation accuracy are also reported by Shrestha et al. 

(2014) and Ryo et al. (2015). Their multi-objective calibration approach resulted in runoff simulations favouring high-flows 

at the expense of the estimation accuracy of low-flows. The large variability in estimated SFC accuracy as well as the bias in 

the estimates can generally be observed independent of the model used to simulate the runoff time series (Caldwell et al., 5 

2015). A remedy to this large variability and bias is to incorporate SFCs into model calibration schemes. For example, 

Westerberg et al. (2011) and Pfannerstill et al. (2014) focused on specific evaluation points or segments of the flow-duration 

curve (FDC) during model calibration. Both studies report better overall performance for the simulated hydrograph with a 

FDC-based calibration compared to a more traditional calibration approach using, for example, the model efficiency (Nash 

and Sutcliffe, 1970). However, runoff models calibrated using FDC have to be constrained by additional SFCs if one is 10 

interested in the exact timing of events or when snow-related runoff processes are of importance (Westerberg et al., 2011). 

Yilmaz et al. (2008) combined information on different segments of the FDC with the runoff ratio and the rainfall-runoff lag 

time to guide model parameter selection in terms of primary catchment functions. These hydrologically meaningful signatures 

generally improved hydrograph simulation, but their value was limited for the process of vertical redistribution of excess 

rainfall in the catchment. In a recent study, Kiesel et al. (2017) compared estimates of ecologically relevant SFCs simulated 15 

from model calibrations using different objective functions including SFCs and the Kling-Gupta efficiency (Gupta et al., 2009). 

They found that including all SFCs of interest into the model calibration resulted in better SFC estimates than a calibration 

using the Kling-Gupta efficiency. Instead of aiming at a well-simulated, general hydrograph, Hingray et al. (2010) and Olsen 

et al. (2013) focused on certain aspects of the streamflow regime that were considered most important. Their results, which 

are echoed by Murphy et al. (2013), suggest that the runoff model performs reasonably well for the aspects on which it is 20 

calibrated, whereas it only modestly represents other runoff characteristics. Hence, developing an approach to increase the 

accuracy of estimated SFCs from runoff model time series continues to be an open challenge in hydrological modelling. 

This study extends on the study of Vis et al. (2015) where various combinations of traditionally used objective functions were 

evaluated with respect to a suite of ecologically relevant SFCs. Their model calibrations with the model efficiency (Reff) 

outperformed multi-objective model calibrations (different combinations of Reff, of log-transformed flow, volume error and 25 

Spearman rank correlation) for the investigated SFCs. It was furthermore hypothesized that the explicit consideration of SFCs 

in runoff model calibration could reduce bias in estimated SFCs. The main objective of this study was therefore to assess the 

potential for a runoff model calibrated using specific aspects of the flow regime to more accurately estimate a suite of SFCs 

as compared to using a model efficiency based calibration approach. The general approach was based on the idea that most 

information essential for estimating SFCs is preserved in the simulated hydrograph by including selected SFCs in model 30 

calibration. Our modelling approach relies on catchments with observed runoff time series and therefore does not answer the 

question of how to simulate SFCs in ungauged or altered catchments. However, the prediction of runoff for ungauged 

catchments benefits from an improved and informed calibration strategy for gauged catchments, which is used in the 
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subsequent regionalisation. For regionalization approaches we refer to studies such as Yadav et al. (2007), Viglione et al. 

(2013) or Westerberg et al. (2016). 

The following questions are addressed in this paper: 

(1) How well is a single SFC simulated when that SFC is used as the model objective function? (Objective function is 

the SFC of interest) 5 

(2) How well is a single SFC simulated when the model objective function contains one or multiple other SFCs? 

(Objective function can include the SFC of interest, but generally contains one or multiple other SFCs) 

(3) How does the accuracy of estimated SFCs vary between traditional calibration approaches and those where the SFCs 

of interest are included? (Objective functions are different combinations of SFC(s) and the model efficiency) 

Throughout this study, we refer to traditional and ‘SFC based’ objective functions. Traditional objective functions were defined 10 

as efficiency criteria based on statistical performance metrics computed from (transformed) model residuals (e.g Reff or volume 

error). In contrast, ‘SFC based’ objective functions evaluate specific hydrograph aspects, such as event frequencies, timing or 

variability of runoff, that are of ecological relevance in our study region. 

2 Materials and methods 

2.1 Catchment locations and characteristics 15 

The study catchments are all located in the 106000 km2 Tennessee River basin in the southeastern United States (Fig. 1), which 

is one of the most diverse temperate freshwater ecosystems in the world (Abell et al., 2000). A large number of endemic fish 

species and a unique assemblage of mussels, crayfish and salamanders make the Tennessee River basin an excellent area for 

ecohydrological studies (Abell et al., 2000). From a study published by Knight et al. (2008), 25 catchments in the Tennessee 

River basin having observed streamflow time series (U.S. Geological Survey, 2016b), precipitation (U.S. Department of 20 

Commerce, 2007a), temperature (U.S. Department of Commerce, 2007b) and potential evaporation data (Rotstayn et al., 2006) 

were selected. The catchment areas range between 100 and 4800 km2 with elevations ranging from 174 to 937 m (U.S. 

Geological Survey, 2016a). Land cover for the study catchments is predominantly hardwood forest and pasture. Air 

temperature and precipitation varies between catchments according to both catchment elevation and longitude. Mean annual 

air temperature in the 25 catchments varies between 9.3 and 14.7° C, and annual precipitation varies from 1500 to 2020 mm 25 

with autumn being slightly drier and less than 8% of annual precipitation falling as snow. Runoff is highest in winter and 

lowest in summer, ranging from 400 to 1300 mm a-1 (millimeters per year). Variability in soil thickness (Omernik, 1987), 

regolith thickness, karst development and topographic slope (Hoos, 1990; Wolfe et al., 1997; Law et al., 2009) are documented 

as asserting the most influence on runoff. 
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2.2 Selection of SFCs 

Thirteen SFCs assessed in this study were chosen for use in model scenarios based on discernible functional connections with 

fish community diversity (Knight et al., 2008; Knight et al., 2014). This set of 13 SFCs represents each of the major flow 

regime components commonly used in ecological studies (e.g. Olden and Poff, 2003; Arthington et al., 2006; Caldwell et al., 

2015): magnitude, ratio, frequency, variability and date (Table 1). For this study the SFCs were additionally grouped according 5 

to flow conditions (mean, low and high flow), because different aspects of the hydrograph have been shown to be sensitive to 

the objective function used for model calibration (for an overview see Pfannerstill et al., 2014). The SFCs were calculated 

using the U.S. Geological Survey (2014) EflowStats R-package. Please note that some of the tested SFCs (DH13, ML20, 

MA26, DH16 and FL2) are defined as scaled with the median, mean or total runoff. The scaling leads to SFC values that are 

dependent on flow magnitudes. The magnitude of the simulation error for DH13, ML29, MA26, DH16 and FL2 is therefore 10 

dependent on runoff magnitudes, whereas the sign of the simulation error is not affected by the normalization. 

2.3 The runoff model 

The HBV (Hydrologiska Byråns Vattenavdelning) model (Bergström, 1976; Lindström et al., 1997) is a bucket-type 

hydrologic model for simulating continuous runoff series. Model inputs are daily rainfall and air temperature, as well as daily 

potential evaporation values. Hydrologic processes are represented by four different routines corresponding to snow, soil water, 15 

groundwater, and runoff routing, with a combined total of 16 parameters. In the snow routine, snow accumulation and 

snowmelt are calculated by a degree-day method. Snowmelt together with rainfall and potential evaporation are input to the 

soil-water routine, where the actual evaporation and the groundwater recharge are computed based on the soil-moisture storage. 

The groundwater (or response) routine consists of a connected shallow and deep groundwater reservoir and simulates peak 

flow, intermediate runoff and baseflow. These three runoff components are taken together and transformed by a triangular 20 

weighting function during the routing process to calculate the runoff at the catchment outlet. Runoff can be modelled in a semi-

distributed way by separating a catchment into elevation bands. Thereby, the snow and soil-water routines are calculated for 

each elevation band, whereas the groundwater storage and the runoff routing routines are treated as a lumped representation 

of the entire catchment. HBV exists in different versions, whereby the general structure of the model remains the same. The 

version applied in this study is HBV-light (Seibert and Vis 2012). Like for all bucket-type models, parameters in the HBV 25 

model cannot be determined a priori, they are identified by model calibration instead. More detailed information on the HBV 

model can be found in Bergström (1976), Lindström et al. (1997) and Seibert and Vis (2012). 

2.4 Modelling approach 

2.4.1 Model setup 

For each of the 25 catchments the number of elevation bands was defined by splitting the catchment into elevation zones of 30 

200 m. Elevation zones covering less than 5% of the catchment area were merged with the adjacent elevation zone. For the 
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resulting elevation bands, air temperature and rainfall were computed with a lapse rate of 0.6° C per 100 m and 10% per 100 

m, respectively. Potential evaporation was assumed to be uniform over the whole catchment.  

Model simulations were run for two time periods, one lasting from the hydrological years (1st of October until 30th of 

September) 1984 to 1996 and the other lasting from 1997 to 2009. The approximately three years preceding each simulation 

period (January 1982 to September 1984 and January 1995 to September 1997 respectively) served to establish state variables 5 

of the model. A warm-up period was needed to ensure that the different state variables at the beginning of the simulation period 

were consistent with the preceding meteorological conditions and parameter values. The two simulation periods were used for 

model calibration and validation. For calibration, a genetic algorithm (Seibert, 2000) was used and the range of possible 

parameter values was specified based on previous studies (Lindström et al., 1997; Seibert, 1999; Table 2 in Vis et al., 2015). 

The 100 independent calibration trials allowed to account for parameter uncertainty or equifinality (Beven and Freer, 2001) 10 

and resulted in a set of 100 calibrated parameter sets for each objective function (Fig. 2). 

2.4.2 Choice of objective functions for model calibration 

The complete model calibration process was conducted for 25 catchments and using data from all five different types of 

objective functions (see Table 2 for the exact equations) that focused on different aspects of the hydrograph. In the first step, 

model parameters were constrained maximizing the model efficiency (Reff, Nash and Sutcliffe, 1970). The model efficiency is 15 

the most widely used objective function in hydrological modelling, and it served as a benchmark for the objective functions 

that included SFCs. Model calibration with Reff tends to reduce simulation errors in magnitude and timing of high-flow 

conditions at the expense of errors in low-flow conditions (Legates and McCabe, 1999; Krause et al., 2005). 

Next, a new efficiency measure that consisted of one single SFC (ISingle) was defined to explicitly incorporate individual SFCs 

in model calibration (Table 2). Each of the 13 selected SFCs was used separately for model calibration resulting in 13 versions 20 

of ISingle. Additionally each SFC efficiency measure was combined with Reff, whereby both metrics were equally weighted 

(ISingle_Reff). The use of a single SFC as the objective function allowed calibration to focus on a specific aspect of the hydrograph, 

while adding Reff helped to improve the overall shape of the hydrograph including the magnitude and timing of events.  

Based on the results from the individual SFCs, an objective function consisting of equally weighted normalized SFCs was 

defined (IMulti, Table 2). This ‘SFC based’ efficiency measure was again combined with Reff (IMulti_Reff). For the resulting 25 

combined objective function, the same weights were assigned to each metric to make sure the individual SFCs had sufficient 

influence on the model calibration and were not dominated by Reff. The number of SFCs constituting IMulti was not previously 

fixed. Instead, a minimum number of SFCs was selected so that the resulting objective function was both robust and 

informative. These two requirements for the objective function could be achieved by only including SFCs that are robust and 

informative. A SFC was considered as robust when the SFC calculated from a model simulation with ISingle had relatively small 30 

errors over the full range of catchments in both validation time periods compared to other SFCs. A SFC was regarded as being 

informative, when it also yielded relatively good simulations for other SFCs. Robustness and information value of a SFC was 
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therefore assessed relative to other SFCs enabling acceptable trade off solutions for all SFCs with a minimum number of SFCs 

being potentially representative for (most of ) the thirteen SFCs. 

2.4.3 Evaluation of model performance  

Model performance in calibration and validation was evaluated by means of normalized SFC error, Reff and mean absolute 

relative error (MARE) (see Table 3 for the exact equations). These evaluation criteria were calculated for all 100 runoff 5 

simulations based on the five different types of objective functions in both validation time periods and for all 25 catchments. 

For the interpretation of the results, the median model efficiency of each objective function, validation period and catchment 

was selected as representative value for the model efficiency distribution. Simulation uncertainty stemming from the 100 

parameter sets was assessed by a two-sided binomial test with the null hypothesis that the probability for over- and 

underestimation of a SFC is equal to 50%. 10 

As there are significant differences in the SFC ranges, a normalization was needed that allowed comparison of the different 

SFCs. Instead of normalizing in terms of relative error, an approach was applied that normalizes the SFC estimation error. The 

normalization of a SFC was computed as the absolute simulation error divided by the range of possible values for that SFC in 

the respective catchment (Table 3). To calculate these SFC ranges, 10000 Monte Carlo simulations were run for each respective 

catchment using randomly chosen parameter values from the previously identified parameter space (Lindström et al., 1997; 15 

Seibert, 1999; Table 2 in Vis et al., 2015). The Monte Carlo simulations represented the potential variation in a certain SFC if 

no information was available to constrain the runoff model. The range was then calculated as the difference between the 10th 

and 90th percentiles of the simulated SFC values. 

3 Results 

The HBV model was capable of reproducing the observed runoff for the study catchments reasonably well. Model calibration 20 

on Reff resulted in Reff values between 0.68 and 0.89 with a median of 0.79. The corresponding Reff values in validation ranged 

from 0.62 to 0.86 with a median of 0.77. 

3.1 The use of single SFCs as objective functions in model calibration 

3.1.1 Estimation accuracy using SFC-specific model calibrations  

Model calibration results for the 13 SFCs confirmed that HBV-light is capable of estimating different SFCs with a high level 25 

of precision if the respective SFC was used as an objective function (ISingle) for model calibration (the 13 absolute nSFCs varied 

between 0.000 and 0.005 for calibrations with ISingle). Both ISingle and the combined objective function ISingle_Reff clearly 

outperformed model calibrations based on Reff with regard to the estimation of SFCs (Fig. 3a). However, calibration with ISingle 

yielded poor model performances when evaluated in terms of Reff whereas Reff efficiencies of calibrations with either ISingle_Reff 

or Reff were comparable (Fig. 3a).  30 
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Validation results (Fig. 3b) exhibited a similar pattern in model performance as the calibration results. The median absolute 

normalized error of the 13 SFCs was relatively low for model runs based on the objective functions ISingle and ISingle_Reff 

compared to model calibration with Reff. The comparable SFC estimation accuracy of ISingle and ISingle_Reff that often 

outperformed model simulations with Reff confirms the value of SFCs for model calibration aiming at a respective SFC. An 

exceptional behaviour can be observed for MH10, where the estimation accuracy was negatively affected by a calibration 5 

based on the SFC itself (Fig. 5a-c).  

3.1.2 How informative is a SFC for estimating any SFC? 

The calibrations for all 13 versions of ISingle and ISingle_Reff resulted in total in 26 different runoff simulations that were evaluated 

by calculating the normalized SFC error for the calibration and validation periods. The SFC TA1 (stability of runoff; Fig. 4a 

and b) was selected as a representative example to illustrate that the use of SFCs as a single objective function (ISingle) generally 10 

resulted in poor SFC estimates for those SFCs not included in ISingle in both model calibration and validation when compared 

to model calibrations with ISingle_Reff or Reff. Estimation accuracies from calibrations with ISingle_Reff and Reff were often of 

comparable magnitude. Error magnitudes from the three described objective function types (ISingle, ISingle_Reff and Reff) could 

vary considerably between time periods (illustrated by triangles and circles respectively in Fig. 4a and b). 

3.2 The use of multiple SFCs for model calibration  15 

Figure 6a shows simulation results for the objective function ISingle for all 25 catchments and both modelling time periods. The 

five SFCs with the highest robustness (less variability in error; Fig. 6a) were RA7, ML20, FH6, E85 and MA41. All these five 

SFCs could be used for the objective function IMulti, however E85 (lowest 15% of daily runoff) was discarded as potential SFC 

for IMulti because of its redundant information with ML20 (base flow). The information value of the remaining four SFCs for 

each of the 13 SFCs is presented in Fig. 6b. All 13 SFCs were relatively well simulated by model calibrations with ISingle of 20 

either RA7, ML20, FH6, or MA41 (coloured circles in Fig. 6b) compared to calibrations with other SFCs.  

Median estimates of the 13 SFCs in the calibration period were slightly lower when the model was calibrated with IMulti rather 

than IMulti_Reff. Both of these objective functions led to better model performance for SFCs than calibrating with Reff alone (Fig. 

3a). Model performance for the validation period with IMulti_Reff had lower median error for SFCs than the error associated with 

using IMulti as objective function (Fig. 3b). The comparison of IMulti and IMulti_Reff for all SFCs separately (Fig. 7a) revealed that 25 

for most SFCs both objective functions resulted in similar estimates. ISingle_Reff was better for estimating SFCs than IMulti_Reff, 

especially for SFCs not included in the IMulti_Reff objective function (Fig. 7b). Comparing simulations from IMulti_Reff and Reff 

revealed a smaller median error of the SFCs when calibrating with IMulti_Reff (Fig. 3b and 7c). Yet, for most SFCs not explicitly 

incorporated into the objective function IMulti_Reff, the objective function Reff performed equally well or slightly better than 

IMulti_Reff (Fig. 7c). 30 
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3.3 Estimation accuracy for SFCs 

Figure 8 provides an overview (median of all 25 catchments) of how well SFCs were simulated by presenting the results for 

both modelling time periods and all five objective function types. Error magnitudes ranged between -25% and 25% for the 

majority of SFCs. Considerably higher estimation accuracy was achieved for ML20 (-5% to 2%), whereas estimation 

accuracies were lowest for MH10 and TL1 with error magnitudes up to 40% and 77% percent, respectively. For some SFCs 5 

(e.g. MA26 and TL1) the error tended to be higher in one of the two modelling time periods whereas for other SFCs (e.g. RA7 

and MH10) the objective function had a distinct influence on the error magnitude. There was no evidence that the estimation 

accuracy depends on flow components (magnitude, ratio, frequency, variability and date) or flow conditions (low, medium 

and high flow). 

The median error (illustrated by stars in Fig. 8) was used for the evaluation of the under- or overestimation of SFCs. Among 10 

the tested SFCs, an underestimation was observed for all five SFCs representing high-flow conditions as well as for three of 

four mean-flow related SFCs. With one exception, low-flow SFCs were overestimated.  This overall pattern was less evident 

when evaluating each objective function and time period separately (Fig. 8 and Fig. 9). The SFCs DH16 and MH10 indicate 

two typically observed deviations in the overall pattern. DH16 is an example of a SFC that could be regarded as being clearly 

underestimated by the model, because of its negative bias in nine out of ten cases (median values in Fig. 9a). However, for 15 

objective functions or modelling time periods with a low magnitude in the median bias, the underestimation of the SFC was 

not statistically significant. Even in case of a median pointing to statistically significant underestimation, there might be a 

substantial number of catchments for which DH16 was overestimated. A second commonly observed phenomenon is shown 

by the SFC MH10 (Fig. 9b). While MH10 had mostly small but statistically significant median errors, there were many 

catchments with considerably higher errors. Although MH10 was the most extreme example, it illustrates that small median 20 

errors do not guarantee good results for all catchments. 

4 Discussion 

4.1 On the importance of the choice of the objective function  

The results demonstrated that the objective function used for model calibration strongly influences the estimation accuracy of 

SFCs. This finding confirms the findings of previous studies (e.g. Hingray et al., 2010; Westerberg et al., 2011; Murphy et al., 25 

2013; Olsen et al., 2013; Pfannerstill et al., 2014; Shrestha et al., 2014; Caldwell et al., 2015; Vis et al., 2015) and points out 

the importance of making a careful choice of the objective function for model calibration. The benefit of optimizing one 

specific SFC lies in the relatively accurate estimation of the respective SFC compared to a calibration with Reff or a multi-SFCs 

objective function. Model calibration on one single SFC clearly emphasizes the hydrograph aspects of the selected SFC 

possibly neglecting an adequate representation of other hydrograph characteristics. This implies that calibrations with ISingle 30 

can lead to poor model performance for SFCs not included in the objective function. The fact that a calibration with Reff and a 
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calibration with multiple SFCs lead to comparable estimates for most SFCs indicates that the main hydrological processes of 

the catchments are similarly well represented with the two approaches. Considering that SFCs not incorporated in the objective 

function IMulti showed little change compared to calibrations with Reff brings into question the benefit of including SFCs into 

model calibration instead of applying a traditional calibration approach when aiming at estimating a suite of SFCs. This is 

surprising because the SFCs selected for IMulti or IMulti_Reff provide information on high-flows, recession rate, percentage of base 5 

flow and annual runoff volume and therefore should help constraining the model with respect to different important runoff 

processes. These results are different from those of Yilmaz et al. (2008) and Pfannerstill et al. (2014) whose multi-metric 

runoff model calibration resulted in an improved general shape of the hydrograph. Although their calibration approach was 

mainly based on various segments of the flow duration curve, it is unclear why the conclusions differ that much. From the 

above discussion it becomes evident that calibrating a runoff model for estimating many different SFCs from one single 10 

hydrograph is a trade-off between finding a parameterization that is general enough to represent different aspects of the 

hydrograph and that simultaneously emphasizes specific SFCs. These trade-off situations are common as perfect model 

parameterizations are usually not possible due to a variety of uncertainty sources, such as model structural uncertainty and 

input and runoff data uncertainty (Beven, 2016).  

A noticeable result from the current study is the distinct difference in model performance in calibration and validation when 15 

using the objective function ISingle. While almost perfect fits are achieved in calibration for all catchments and SFCs, model 

errors tend to be much higher in validation with a considerable spread between catchments as well as a clear difference 

depending on the SFC. This observation confirms that the model is able to simulate the SFCs well, but also outlines that a 

good model calibration does not imply robust simulations in validation. In general, it seems that SFCs that are strongly related 

to physical catchment properties (e.g. rate of streamflow recession) are the most robust, followed by SFCs representing average 20 

flow condition with a moderate robustness. SFCs that are a measure of more extreme high-flow conditions are the least robust, 

possibly because these conditions are subject to inter-annual weather changes and are more difficult to model due to their 

dynamic behaviour. A low robustness could also indicate that the model structure might be suboptimal for some catchments. 

The two least robust SFCs are MH10 and TL1. MH10 simulations with ISingle yield by far the poorest results of all objective 

function types with very large normalized error in both positive and negative directions. In comparison, the high estimation 25 

errors for TL1 depend on the modelling time period. The high estimation errors for TL1 in period 2 stem from years where the 

minimum runoff was simulated in late winter while the observed minimum was in late fall. By visually analyzing the 

temperature and runoff time series, it can be hypothesized that such model simulations mainly happened in years with 

successive weeks of continuously little precipitation during late winter. Such prolonged drier periods occurred more often in 

one of the two modelling time periods and thus evoked the distinct bias in model accuracy depending on the simulation period. 30 

Both TL1 and MH10 are calculated from a single value per year, as opposed to e.g. RA7, which is based on all recessions. In 

model calibration, many parameter sets are derived that perfectly simulate this single value. However, a good simulation of 

either TL1 or MH10 is not so much dependent on an accurate representation of dominant runoff processes. Thus, model results 
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for the validation period using input data of identical quality can fail to accurately simulate either SFC because of parameter 

sets ‘tuned’ to the data as opposed to being based on modelling the process. 

4.2 Model performance regarding SFCs  

The runoff model tends to underestimate SFCs related to mean and high-flow conditions, while SFCs representing low-flow 

conditions are generally overestimated. These results are consistent with those of Olsen et al. (2013), Caldwell et al. (2015), 5 

Vis et al. (2015) and Kiesel et al. (2017) and can partly be explained by the model behaviour characterized by a less pronounced 

runoff response to precipitation events but increased groundwater discharge to the stream during drier periods compared to the 

observed data (Vis et al., 2015). The observations that average flow conditions are better simulated than extremes (Caldwell 

et al., 2015; Vis et al., 2015) or that high-flow related SFCs are more accurately estimated than those related to low flow 

(Shrestha et al., 2014; Ryo et al., 2015) cannot be confirmed with our results. None of these earlier studies explicitly included 10 

SFCs into model calibration and the deviating results could be attributed to the differing approaches to defining the objective 

function(s). This presumption is supported by the previously described differences in results of Vis et al. (2015) although they 

applied the same runoff model, catchments and SFCs. 

4.3 How to select SFCs for a multi-index calibration approach 

The current study supports the assumption that including SFCs into model calibration helps to preserve most hydrograph 15 

aspects relevant to those SFCs. Thus, an objective function based on several SFCs is expected to result in a hydrograph from 

which a suite of SFCs can be calculated. Not knowing which SFCs will be relevant for a given study, a guideline as to which 

SFCs the model calibration could be based on would be helpful. The first step towards a guideline consists of selecting SFCs 

that are potentially valuable for model calibration. This selection was based on the concept of robustness and information value 

of SFCs, which is comparable to the approach used by Euser et al. (2013) who assessed the realism of model structures. Like 20 

Euser et al. (2013), results from the current study indicated that high robustness was not necessarily related to high information 

value, emphasizing the importance of selecting SFCs by jointly evaluating robustness and information value. The concept of 

information value and robustness favours simulations that preserve important hydrograph characteristics as can be seen from 

the slightly improved median estimation accuracy of SFCs with the objective functions IMulti or IMulti_Reff compared to 

estimations with Reff only. 25 

A model calibrated on certain flow conditions (low, medium and high flow) is beneficial for SFCs representing these flow 

conditions (see e.g. Murphy et al., 2013), so it was hypothesized that the information value of the selected SFCs is highest for 

SFCs belonging to the same group of flow conditions. The confirmation of this hypothesis would allow to draw general 

conclusions about a minimum number of SFCs required for model calibration. Surprisingly the results did not reveal any 

pattern related to flow conditions and thus no recommendation for the final selection of SFCs can be made. It seems that the 30 

selection of SFCs for an informative and robust objective function depends on the type and the combination of SFCs one is 

interested in. Since this study was based on a limited number of SFCs it could be interesting to test the hypothesis by analyzing 
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a greater number of SFCs. Testing a larger number of SFCs might reveal relations that are difficult to see with a small sample. 

Furthermore, more knowledge about the effect of single SFCs or the combination of SFCs used as objective functions on 

runoff simulations could be gained by using synthetic data and a modelling approach where an excellent hydrograph fit is 

possible (e.g. ‘HBV-land’ in Seibert and Vis, 2012). 

4.4 Objective functions, their estimation accuracy and consequences for practical applications 5 

The emphasis of SFC-related modelling studies changed from estimating single SFCs to simulating a suite of SFCs (Olden 

and Poff, 2003). The modelling design of this study combined both approaches for the same SFCs and catchments and thus 

enabled a direct comparison of the results. Ideally, the runoff model could be calibrated to simulate a hydrograph for each 

catchment from which any SFC can be calculated. Such an approach ensures a relatively small calibration effort, which is 

especially valuable if one is interested in modelling many catchments and/or various scenarios. However, results indicate that 10 

SFCs related to a more generally calibrated model (e.g. Reff, IMulti or IMulti_Reff) are less accurate than when they are estimated 

from hydrographs based on targeted model calibrations (e.g. ISingle or ISingle_Reff). This fact has substantial implications for the 

later application of simulated SFCs in decision-support systems for integrated resource management. As stated by Carlisle et 

al. (2010), with high errors in SFC estimates, only considerable flow departures from natural conditions can be detected. Also, 

inaccurate SFC values can impede the generation of more robust flow alteration – ecosystem change relationships that are 15 

ultimately needed for sustainable flow management guidelines (Arthington et al., 2006; Poff and Zimmermann, 2010; Gillespie 

et al., 2015; Cartwright et al., 2017).  

As with regional statistical approaches, incorporating SFCs into model objective functions implies that a modeller knows 

which SFCs are relevant and that the model must be recalibrated if one is interested in additional SFCs. The advantage of 

runoff models over multivariate regressions and observed streamflow series includes their use for climate scenario analysis or 20 

for simulating runoff in ungauged catchments with the latter being one of the ultimate aims in the ELOHA framework (Poff 

et al., 2010). Modelling SFCs gets even more challenging when moving from a gauged to an ungauged catchment. An 

appropriate calibration strategy targeted to the main simulation goal is crucial for any subsequent regionalization. 

4.5 Choice of the runoff model for estimating SFCs 

When comparing SFCs estimated from simulations of different runoff models, the question can be raised whether the results 25 

depend on the selected model. This question is especially important for resource managers who need to make decisions based 

on model results from different studies (Caldwell et al., 2015). A comparison of runoff models with different spatial scales 

that rely on different data inputs was conducted by Caldwell et al. (2015). Their results do not indicate that a certain runoff 

model is more suited for predicting SFCs than others, but rather that the calibration process probably has as much influence as 

the model structure. Thus, it can be assumed that the conclusions of this study would be similar if a different calibrated runoff 30 

model was applied. 
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5 Conclusions 

In this study, we evaluated the value of using SFCs for the calibration of a runoff model used to estimate SFCs. The results 

suggest that the choice of the objective function used for model calibration strongly influences the estimation accuracy of 

SFCs. While the model was capable of correctly simulating any of the tested SFCs, a good reproduction of a particular SFC 

was generally achieved when this SFC was included in the objective function. SFC estimates from model simulations with an 5 

objective function consisting of a representative selection of SFCs resulted in comparable accuracies to the estimates from 

model runs based on the commonly used model efficiency when evaluated against SFCs not included in the objective function. 

Estimates of SFCs that are less dependent on the short-term weather input or SFCs representing average flow conditions were 

more robust than other SFCs. Since the results imply that one has to consider significant uncertainties when simulated time 

series are used to derive SFCs that were not included in the calibration, we strongly recommend calibrating the runoff model 10 

explicitly for the SFCs of interest. 
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Table 1. Description of streamflow characteristics used to calibrate the runoff model (adapted from Knight et al., 2014; U.S. Geological 

Survey, 2014) [mm d-1, millimeters per day; -, no units; a-1, per annum; %, percent] 

Streamflow characteristic Abbre-

viation 

Further explanation Flow 

condition 

Unit 

Magnitude   

Mean annual runoff MA41 Mean annual daily runoff  mean-flow [mm d-1] 

Maximum October runoff MH10 Mean of October runoff maxima for each year  high-flow [mm d-1] 

Lowest 15% of daily runoff E85 Daily mean runoff that is exceeded 85% of the 

time for the period of record  

low-flow [mm d-1] 

Rate of runoff recession RA7 Median change in log of runoff for days in 

which the change is negative across the period 

of record  

mean-flow [mm d-1] 

Ratio   

Average 30-day maximum 

runoff 

DH13 Mean annual maximum of a 30-day moving 

average runoff divided by the median for the 

entire record  

high-flow [-] 

Base flow ML20 Ratio of total base flow to total flow. Base 

flow is the minimum flow magnitude in a 5-

day window if 90% of that minimum flow 

magnitude is less than the minimum flow 

magnitude of the 5 day-window before and 

after the considered window  

low-flow [-] 

Stability of runoff TA1 Measure of the constancy of a flow regime by 

dividing daily flows into predetermined flow 

classes. The 11 flow classes capture flow 

ranging from flow less than 0.1 times the 

logarithmic mean flow to flow more than 2.25 

times the logarithmic mean flow 

mean-flow [-] 

Frequency   

Frequency of moderate floods FH6 Average number of high-flow events per year 

that are equal to or greater than three times the 

median annual flow for the period of record  

high-flow 

 

[a-1] 

Frequency of larger floods FH7 Average number of high-flow events per year 

that are equal to or greater than seven times the 

median annual flow for the period of record  

high-flow [a-1] 

Variability   

Variability of March runoff MA26 Standard deviation for March runoff over the 

period of record divided by the mean runoff 

for March over the period of record 

mean-flow 

 

[%] 

Variability in high-flow pulse 

duration 

DH16 Standard deviation for the yearly average 

high-flow pulse duration (daily flow greater 

than the 75th percentile) divided by the mean 

of the yearly average high-flow pulse duration 

multiplied by 100 

high-flow 

 

[%] 

Variability of low-flow pulse 

count 

FL2 Standard deviation for the average number of 

yearly low-flow pulses (daily flow less than 

the 25th percentile) divided by the mean low-

flow pulse counts multiplied by 100 

low-flow [%] 
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Date   

Timing of annual minimum 

runoff 

TL1 Julian date of annual minimum flow 

occurrence  

low-flow [Julian 

day] 
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Table 2. Objective functions used in model calibration. Objective functions were calculated with observed (obs) and simulated (sim) runoff 

(Q) or SFCs (I). 

 

  

Objective function Abbreviation Definition Optimal value 

Model efficiency Reff 1 −
∑(𝑄obs − 𝑄sim)2

∑(𝑄obs − 𝑄obs
̅̅ ̅̅ ̅̅ )2

 1 

    

Efficiency for each 

individual SFC1  
ISingle 

1 −
|𝐼obs − 𝐼sim|

𝐼obs
 

 

1 

    

SFC and model 

efficiency 
ISingle_Reff 0.5 (𝐼Single + 𝑅eff) 1 

    

Efficiency for the 

selected SFCs2 
IMulti 

1

𝑛
 (𝐼Single1

+. . . +𝐼Single_n) 1 

    

SFCs and model 

efficiency 
IMulti_Reff 

𝑛 − 1

𝑛
 𝐼Multi +

1

𝑛
 𝑅eff 1 

1For each of the 13 SFCs a specific ISingle exists. 

2IMulti consists of the n most robust and informative SFCs. 
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Table 3. Performance measures used in model evaluation. Performance measures were calculated with observed (obs) and simulated (sim) 

runoff (Q) or SFCs (I). 

Performance measure Abbreviation Definition Optimal value 

Model efficiency Reff 1 −
∑(𝑄obs − 𝑄sim)2

∑(𝑄obs − 𝑄obs
̅̅ ̅̅ ̅̅ )2

 1 

    

Mean absolute relative 

error1 
MARE 1 −

1

𝑛
∑

|𝑄obs − 𝑄sim|

𝑄obs
 1 

    

Normalized SFC error2 nSFC 
𝐼obs − 𝐼sim

𝑅obs
 0 

1 n is the number of days. 

2 R is the range of possible values of a SFC for the respective catchment. 
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Figure 1. Location of the 25 study catchments in the Tennessee River basin (Table 1 in Vis et al. (2015) for more information). 
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Figure 2. Flow chart of the modelling approach consisting of calibration, validation and evaluation in time period 1 (1984 - 1996) and time 

period 2 (1997 - 2009) and completed for each of the five objective function types Reff, ISinlge, ISingle_Reff, IMulti, IMulti_Reff. 
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Figure 3. Model performance in a) calibration and b) validation in terms of absolute normalized SFC errors (nSFC), Reff and MARE 

depending on the objective function used in calibration. Model performance is shown as the difference between a model calibration with Reff 

and model calibrations with ISingle, ISingle_Reff, IMulti or IMulti_Reff (positive values indicate that model calibration with ISingle, ISingle_Reff, IMulti or 5 
IMulti_Reff resulted in better model performance than model calibration with Reff; negative values indicate that model calibration with ISingle, 

ISingle_Reff, IMulti or IMulti_Reff resulted in poorer model performance than model calibration with Reff). Model performance values correspond to 

the median of the 25 catchments and the mean of both modelling time periods. 
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Figure 4. Absolute normalized TA1 error (nSFC) in a) calibration and b) validation calculated from model calibrations with the objective 

functions ISingle and ISingle_Reff. Absolute normalized SFC errors correspond to the median of the 25 catchments and are shown separately for 

both modelling time periods (triangles for period 1 (1984 - 1996) and circles for period 2 (1997 - 2009)). The x and plus symbols represent 5 
the median of period 1 and period 2 respectively. (Absolute normalized TA1 error for model calibrations with the objective function Reff was 

0.08 (period 1) and 0.05 (period 2) in calibration and 0.002 (period 1) and 0.15 (period 2) in validation.)  
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Figure 5. Comparison of absolute normalized SFC errors (nSFC) in validation calculated from model calibrations with the objective 

functions Reff, ISingle and ISingle_Reff. Absolute normalized SFC errors correspond to the median of the 25 catchments and the mean of both 

modelling time periods. 
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Figure 6. a) Robustness: normalized SFC errors (nSFC) in validation calculated from model calibrations with the objective function ISingle 

for the respective SFC. Values are shown for all 25 catchments and both modelling time periods (triangles for period 1 (1984 - 1996) and 

circles for period 2 (1997 - 2009)). b) Information value: absolute normalized SFC errors (nSFC) in validation calculated from model 5 
calibrations with all 13 objective functions ISingle. Model performance values correspond to the median of the 25 catchments and the mean 

of both modelling time periods. Each open circle represents one of the 13 SFC used for ISingle. The coloured circles refer to the final selection 

of SFCs for the objective function IMulti. 
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Figure 7. Comparison of absolute normalized SFC errors (nSFC) in validation calculated from model calibrations with the objective 

functions Reff, ISingle_Reff, IMulti and IMulti_Reff. Absolute normalized SFC errors correspond to the median of the 25 catchments and the mean of 

both modelling time periods. 
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Figure 8. Normalized SFC errors (nSFC) in validation depending on the objective function used in calibration. Model performance values 

correspond to the median of the 25 catchments and are shown for both modelling time periods (period 1 (1984 - 1996) on the left side and 

period 2 (1997 - 2009) on the right side). 
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Figure 9. a) Normalized DH16 errors (nSFC) and b) normalized MH10 errors (nSFC) in validation depending on the objective function used 

in calibration. Normalized SFC errors are shown for all 25 catchments and for both modelling time periods (period 1 (1984 - 1996) on the 

left side and period 2 (1997 - 2009) on the right side). Colours indicate the significance of the results assessed by a two-sided binomial test 

at a confidence level of 0.95. Note the difference in the y-axis. 5 


