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Abstract 

The Normalised Difference Vegetation Index (NDVI) is a useful tool for studying vegetation activity and 

ecosystem performance at a large spatial scale. In this study we use the Gravity Recovery and Climate 

Experiment (GRACE) total water storage (TWS) estimates to examine temporal variability of NDVI across 

Australia. We aim to demonstrate a new method that reveals the moisture dependence of vegetation cover at 

different temporal resolutions. Time series of monthly GRACE TWS anomalies are decomposed into different 

temporal frequencies using a discrete wavelet transform and analysed against time series of NDVI anomalies in 

a stepwise regression. The results show that combinations of different frequencies of decomposed GRACE TWS 

data explain NDVI temporal variations better than raw GRACE TWS alone. Generally, NDVI appears to be 

more sensitive to inter-annual changes in water storage than shorter changes, though grassland-dominated areas 

are sensitive to higher frequencies of water storage changes. Different types of vegetation, defined by areas of 

land use type show distinct differences in how they respond to the changes in water storage which is gene rally 

consistent with our physical understanding. This unique method provides useful insight into how NDVI is 

affected by changes in water storage at different temporal scales across land use types.  
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1. Introduction  

In many parts of the world, such as Australia, water storage is the dominant limiting factor in vegetation growth  

(Donohue et al., 2008, Nemani et al., 2003). As such, changes in water storage can lead to changes in vegetation 

mass and greenness (Yang et al., 2014). As vegetation plays a vital role in gross primary production and the 

carbon and hydrological cycles, studies of the temporal and spatial variation of veg etation are vital for 

understanding ecosystem performance and its climatic responses (Campos et al., 2013). As the climate and 

water resources change as a result of natural and anthropogenic influences, understanding how fluctuations in 

water storage are associated with biomass changes can have profound importance in the future.  

 



Previous studies have used different hydrological parameters to examine the effect of hydrological changes on 

ecosystem performance. Most commonly, precipitation and soil moisture have been used as defining variables 

(Chen et al., 2014, Huxman, 2004, Méndez-Barroso et al, 2009, Wang et al., 2007).  Both of these have shown 

generally meaningful correlations with ecosystem performance (by various measures such as Normalised 

Difference Vegetation Index (NDVI) and above-ground net primary production). However, both indicators have 

shown limitations. The total amount of precipitation is not necessarily used by vegetation in an ecosystem. Part 

of precipitation is lost from the ecosystem as runoff or soil evaporation (Liping et al., 1994). Only the part 

which is retained as soil moisture in the root zone can be viably consumed by vegetation, categorised as 

‘effective precipitation’ (Bos et al., 2009). For a given amount of rainfall the fraction of effective precipitation 

varies spatially due to differing geographical features, soil types, and vegetation cover conditions. Soil moisture 

gives a better representation of the water that is available to plants. However, in situ soil moisture data is 

generally limited and spatially (vertically and horizontally) sparse. Estimations from land surface models are 

often highly uncertain (Chen et al., 2013).  

 

Recently Yang et al. (2014) used monthly total water storage anomalies (TWS*) from the Gravity Recovery and 

Climate Experiment (GRACE) to examine hydrological controls on variability in surface vegetation. GRACE 

provides monthly global terrestrial water storage derived from variations in the earth’s gravity field. The authors 

suggested that where large surface water reservoirs do not exist, GRACE TWS changes are mostly from soil 

moisture and groundwater, making it ideal for examining hydrological controls on  vegetation activity. GRACE 

is found to be a good indicator of seasonal variability in surface greenness over mainland Australia (Yang et al., 

2014). For the period 2003-2010, for which GRACE data is available, changes in NDVI* are explained more 

strongly by GRACE TWS* than by precipitation, suggesting it poses a more direct influence on surface 

greenness and ecosystem performance.  

 

GRACE TWS gives the total relative water storage at a resolution of a few hundred kilometres. It is the sum of 

surface water, soil water, groundwater, ice etc. We previously developed an approach to ‘split’ GRACE TWS 

into shallow and deep subsurface storage components using a discrete wavelet decomposition (Andrew et al., 

2016). In this study, we aim to expand on the general findings of Yang et al. (2014) by decomposing GRACE 

TWS* into different temporal components and analysing them against NDVI*. Given that root zone water 

storage is the source of water to vegetation we hypothesize that decomposed TWS* data that reflects the 



temporal pattern of soil moisture in the root zone will perform better than the total TWS* in association with 

NDVI*.  

 

The questions we seek to address are (1) does the decomposed TWS* data show a better relationship to NDVI* 

than the ‘raw’ TWS* data; (2) how does the sensitivity of NDVI* in response to changes in TWS* vary 

spatially; and (3) which temporal components of TWS* are most significant in influencing NDVI* for different 

land use types across Australia.  

 

2. Data 

2.1 GRACE data 

We use gridded GRACE total water storage (TWS) data from The University of Texas Centre for Space 

Research (CSR), and NASA’s Jet Propulsion Laboratory (JPL). The gridded GRACE data sets are freely 

downloaded from the GRACE Tellus website (http://grace.jpl.nasa.gov/data/get-data/). Data is suitably post-

processed, including applying the recommended scaling correction (gain factors) (Swenson and Wahr, 2006). 

The scaling coefficients are in part designed to remove leakage errors (Landerer and Swenson, 2012). Monthly 

data from March 2003 to December 2014 is used. The average of the two data sets is calculated for each cell at 

each month to reduce the uncertainty. The data is presented spatially in 100 km by 100 km grid cells. Although 

this is not the true resolution of GRACE, with the appropriate gain factors applied the 100 km by 100 km 

gridded data is suitably recovered (Landerer and Swenson, 2012). An alternative would be to aggregate the 

other data set in this study (NDVI) to a larger scale to match true GRACE resolution, but this would increase  

errors in land-cover vegetation cover. We selected which cells should be included based on a shape file of 

Australia. If at least two thirds of the cell is part of the continent they are included, this eliminates some cells 

which covered only a small coastal land mass. 

There are a few occurrences of missing data in the GRACE data set. These months of missing data are filled 

with a simple temporal interpolation using the months either side. Because of the monthly temporal resolution 

this is deemed appropriate and maintains the average seasonal cycle well (Long et al., 2015).  

 

2.2 NDVI data 
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We use GIMMS 3g NDVI data for the same time period as the GRACE data. The data is downloaded from the 

NASA database. The NDVI data is produced at a higher spatial resolution (.25 by .25 degrees) than GRACE. 

This data is rescaled to match the GRACE cell size using the resampling tool in ArcGIS. Like the GRACE data, 

only cells which contain at least two thirds land are used, and missing data is filled by a temporal interpolation.  

 

2.3 Land use type data 

The moderate-resolution imaging spectroradiometer (MODIS) land use data is used to identify different land use 

types across Australia (product MCD12Q1). It is freely available online from http://glcf.umd.edu/data/lc/. In 

regards to rescaling and cell selection, the same procedures are applied as in the case of NDVI data. In 

Australia, MODIS land use type data defines 12 different classes of land use. This is reduced to five (or six 

including barren land) classes by grouping similar classes such as different types of forests. The resulting land 

use types are: forest, shrubland, savanna, grassland, and agricultural land (Table 1).  

 

Figure 1 shows the spatial distribution of different land use types across Australia, grouped as previously stated 

(Table 1). Note that no analysis is performed for areas considered barren, due to a lack of vegetation.  

 

3 Methodology 

3.1 Calculating anomalies 

For variables with strong seasonality, a statistical relationship between them does not necessarily mean that a 

physical relationship exists. Climatological anomalies of both GRACE TWS and NDVI are used in order to 

remove seasonality in the data which would otherwise result in large, but irrelevant and misleading correlations 

between variables examined in this study.  

The anomalies are calculated following the method of Yang et al. (2014),  

 *               –
 

  
          

               (1) 

where  * represents the climatological anomaly of X (i.e. raw GRACE TWS), i is the month, j is the year and n 

is the total number of years. 
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New lagged GRACE TWS* anomaly data sets are produced by offsetting the GRACE data from the NDVI data 

by one to six months. This is to allow any delays in NDVI response to water storage to be revealed (Farrar et al., 

1994). 

 

3.2 Wavelet decomposition 

GRACE TWS* is decomposed into different signals using a discrete wavelet transform. Introduced in the early 

1980s, a wavelet is a mathematical function used to divide data series into different -frequency components 

(Goupillaud et al., 1984). The method expresses decompositions as a multitude of smaller ‘waves’ at different 

frequencies (He et al., 2013). The Meyer wavelet is applied here to decompose GRACE TWS* into components 

at different temporal scales and is suitable for this temporal data (He & Guan, 2013). This is relatively easy to 

achieve by means of a simple MATLAB code using the ‘wavdec’ function. Data is decomposed into 

‘approximation’ and ‘detail’ components, each representing a different temporal scale. Approximation series 

maintain trends in the data while detail series neglect trends (Nalley et al., 2012).  The resulting time series are 

labelled A1, A2, A3, A4 and D1, D2, D3 D4 for approximations and details respectively, with the time scale 

increasing with the decomposition number e.g. A1/D1 (2-month scale), A2/D2 (4-month scale), A3/D3 (8-

month scale) and A4/D4 (16-month scale) (Fig.2).  Essentially, from 1 time series, eight new time series are’ 

made with four different temporal resolutions are produced. Four levels can be reasonably extracted given the 

data length and monthly frequency of the data. Further decomposition would result in roughly 3 and 6 year time 

scales which are too coarse for a time series of only 11 years of raw data. Because all but the lowest 

approximation levels contribute partly to details, we only use the lowest frequency approximation, along with all 

of the details. The sum of these (D1, D2, D3, D4, A4) equals the raw signal (Fig. 3). So, five wavelet 

decomposition series are used for GRACE data as well as six lagged series for each decomposition level giving 

a total of 35 water storage time series.  

 

3.3 Stepwise regression 

To evaluate which of the new decomposed time series correspond to different vegetation types, we used a 

stepwise regression for every cell. NDVI* is the dependent variable and the GRACE TWS* decompositions are 

taken as predictor variables. Given the time series of the data, 35 predictor variables is too many for a stepwise 

regression to function properly. The stepwise regression is run multiple times and the best predictor variables 

are chosen narrowing them down to nine. The choice is made based on the amount of cells selected for each 
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variable from the stepwise regression and how relevant they are given their spatial coherence. In general, the 

predictor variables excluded from the stepwise regression are not included in any cells across the country. The  

remaining variables are (subscript denotes lag in months) D10, D21, D30, D31, D32, D40, D41, A40, and A46. 

High frequency signals (D1, D2, A1, and A2) correspond to storage changes of shallow soil moisture, while low 

frequency signals such as D3, D4, A3 and A4 correspond to deeper soil moisture or even groundwater. 

Therefore, forests should correspond with low frequency changes; their roots are accessing water storage that is 

changing at a low frequency. Land covers dominated with grasses (shallow roots) should correspond to higher 

frequency signals where moisture change is more dynamic. 

 

4. Results 

As a proof of concept, the relationships between raw GRACE TWS* versus NDVI*, and decomposed GRACE 

TWS* versus NDVI* are compared (Fig. 4). The results for the decomposed TWS* data are based on a 

selection of decomposed time series selected by the stepwise regression. A time series example of the results 

from an individual cell is demonstrated in Figure 5. For each cell the correlation coefficient between NDVI* and 

the regression estimates ( r ) is calculated. In order for the tests to be comparable, lagged data is not included in 

the decomposed TWS dataset for this demonstration, it shows purely how decomposed data improves the 

relationship. A scatter of the r values shows a clear improvement in the relationship when decomposed GRACE 

TWS* data is used as opposed to raw, with all points above the 1:1 line. The Student-t tests confirmed that the 

stepwise regression results are statistically highly significant with a p value of .00014.  

 

Lagged data ensures that the relationship between NDVI* and TWS* is well represented, but the decomposed 

frequency of the TWS* data is the focus in this study. Though the stepwise regression is performed using nine 

variables including lags where suitable, the results herein are presented as only five variables, D1, D2, D3 L, D4L 

and A4L. For each detail or approximation level using different lags, one variable is created by combin ing the 

results of different lagged data sets together to present the results i.e. D3 L = D30+D31+D32.  

 

It is important to recognise how the variables that are included in the stepwise regression vary spatially to 

understand how vegetation responds to different temporal patterns of water storage across the continent. For a 

variable to be included in the stepwise regression it does not have to show a positive correlation. Figure 4 shows 

which variables are included in the regression for each cell across Aust ralia. Where no lagged data is used (D1 
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and D2) the colour denotes whether the coefficient is positive or negative. Where lagged data is used (D3 L, D4L 

and A4L) the colour denotes whether all coefficients for a cell had the same -/+ sign or not. Figure 4 shows that 

while A4L is included across most of the country, one of the lagged data sets, A4 6 has a large amount of negative 

coefficients included in the regression (see appendix 1). A possible explanation for this is that NDVI is 

susceptible to the ‘memory effect’, where past inputs and outputs affect responses in the system (Shook & 

Pomeroy, 2011).  

 

Overall, the number of cells covered by each different decomposition level increases as the decomposition time 

scale increases. This shows that in general, NDVI changes pertain to longer time-scale water storage changes 

and is not affected as much by changes on monthly time scale.  

 

While understanding which variables are used in each cell is important, it is more important to know their 

relative impact on NDVI*. The relative weight of each variable is calculated to show the importance of each on 

vegetation in different land use types. Of the included variables in each cell, the relative weight of each variable 

is calculated as  

W = 
       

     
       (2)                       

Where W is the relative weight,  X is the standard deviation of the decomposed data anomaly (X), C is the 

coefficient of X in the regression,  NDVI is the standard deviation of the NDVI anomaly. Figure 7 shows which 

variable has the highest relative weight in each cell. A4L is the dominant variable, covering the majority of the 

country, and is a low frequency trended signal. D2, a higher frequency signal is the second most dominant 

variable and shows generally clear spatial coherence. 

 

The relative weights for all cells of each land use type are combined and presented as a relative weight 

percentage per land use type (Fig. 8). Forested areas have only low frequency decompositions included, with 

A4L being the most dominant. This is expected as forests have deep root systems which tap into water stores 

which change slower than shallower soil moisture (Backer et al., 2003). Therefore, their water store is less likely 

to be affected by short-term rainfall or evaporation, relying more on long term hydrological trends and 

variabilities. Shrubland, savanna and grassland show nearly identical distributions of weights. Grassland shows 

a marginally higher percentage of the D1 and D2 variables, which is consistent with our physical understanding 

as they are fed by shallow soil moisture which varies at high temporal frequencies. While all are defined 



differently, the three land use types have overlapping characteristics, most commonly the widespread presence 

of short grasses (Friedl et al., 2002) and shallow root systems. These short grasses respond to changes in the 

shallow top layer of the soil which is influenced at high temporal frequencies by rainfall events and  evaporation. 

The similarity in the result of these three land use types suggests that they are hardly distinguishable by 

GRACE, likely due to the spatial extend of GRACE cells. For example, where sparse trees exist in a savanna, 

their lack of response to the shallow soil moisture may be negligible compared to the large coverage of grasses, 

thus showing a very similar pattern to grassland.  

 

5. Discussion 

Using wavelet decomposed GRACE TWS* data proved to improve the correlation between water storage and 

NDVI*. A previous study by Yang et al. (2014) showed that GRACE is a superior indicator of surface 

greenness than soil moisture or precipitation, which were earlier used as indicators (Chen et al., 2014, Huxman, 

2004). Temporal decomposition of GRACE TWS* produces a new temporal dimension that allows the data to 

be analysed to its full potential. As demonstrated in Fig. 4, the decomposed TWS* data is more closely 

associated with the surface greenness than the raw TWS*. Furthermore a better understanding of how surface 

greenness changes with water storage spatially and temporally is achieved, with different levels of 

decomposition existing in spatial clusters across the country. The dominance of A4L as the most highly 

weighted predictor variable indicates that generally vegetation responds to low frequency (inter -annual) changes 

in water storage across Australia. 

 

An interesting result is the large amount of negative coefficients produced from the stepwise regression for A46. 

Two possible explanations exist. A 6-month lag may correspond to the opposite seasons e.g. wet 6 months ago, 

dry now, potentially serving as an indicator of water storage potential. Alternatively, vegetative systems may be 

susceptible to the ‘memory effect.’ Specifically, this would suggest that for most of the continent, trends at the 

A4 scale (roughly annual) influences vegetation responses to water storage changes six months later in t hese 

areas. Such a memory effect can serve as an indicator of an ecosystem’s capacity to store water, as well as 

carbon and nitrogen (Schwinning et al., 2004).       

 

The weight distribution of different decompositions across land use types generally match es our physical 

understanding. Note firstly that all five land use types have A4 L as a large component of their total weight. This 
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is a further indication of the general response of vegetation to low frequency changes in water storage. Forested 

areas are only composed of A4L, D4L and D3L, and are ignorant of high frequency changes in water storage. 

This matches our physical understanding as forests have deeper root systems which rely on seasonal changes or 

long term hydrological trends. Interestingly, shrublands, grasslands and savannas show a near identical 

composition of relatively weighted decompositions, with grasslands showing a slightly higher weight percentage 

of D1 and D2. The three land use types are all grass dominated, with the addition of sparse trees and shrubs in 

savannas and shrublands. As the resolution of GRACE cannot pick up these additions, it is possible that they all 

appear as grassland, or at least skewed that way, as that is the dominant vegetation cover. The dominance of D1 

and D2 across these land use types is typical of relatively dynamic, grass dominated regions.  

  

The combination of weights that make up the total for agricultural land is less straightforward. D2 and A4 L 

contribute to large portions of the total. One major difference between agricultural land and the other land use 

types is the anthropogenic contributions to the land, including the additions of livestock grazing (Yates et al., 

2000). The other land use types are generally self-sufficient/limiting at the cell scale, so the interruption of the 

natural cycle of the vegetation in agricultural areas is a potential anomaly, disturbing any predictable 

composition of relative weights.   

 

Our method of using decomposed terrestrial water storage as an improved indicator of surface greenness has 

potential environmental benefits. It allows for an improved understanding of how vegetation responds to 

changes in water storage both spatially and temporally. This in turn serves as a better indicator of ecosystem 

performance and carbon fluxes. With predictions of terrestrial water storages to decline in the future (Oki and 

Shinjiro, 2006), the method could be highly useful for predicting carbon fluxes and ecosystem performance at a 

large scale based on future water storage estimates. Furthermore, the global mapping of GRACE and NDVI (as 

well as other vegetation indexes) means that it could be applied globally.    

 

6. Conclusion 

In this study we aimed to increase the understanding of large-scale ecosystem response to water storage by 

investigating the links between GRACE TWS* and NDVI* using a decomposed TWS* data. Combinations of 

decomposed GRACE TWS* data show an improved relationship with NDVI* compared to using raw GRACE 

TWS* data alone. Varying decomposed frequencies show spatial coherence in parts of the country, sometimes 



independently and sometimes overlapping other decomposed frequencies. Generally, NDVI is influenced by 

low frequency changes in water storage, however there are some areas which are also sensitive to high 

frequency changes. NDVI is susceptible to a memory effect which depends on previous TWS conditions, 6 

months generally. The total influence of NDVI changes is made up of storage changes over different time 

periods. These vary depending on the land use type and the results are aligned with our physical understanding. 

This analysis could be used further to continue to improve our understanding of vegetative responses to storage 

change in Australia and globally and benefit predictions of ecosystem performance and carbon fluxes.  
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Figures 

 

Figure 1: (a) The spatial distribution of various land use types across Australia and (b) the area covered by each 

land use type. 

Figure 2: An example of a wavelet decomposition from a cell in central South Australia (29°S 136°E). Notice 

the visible trends in the approximations, which are normalised in the details. 
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Figure 3: The structure of a wavelet decomposition; decomposition levels used in this study are highlighted in 

red. 

 

 

Figure 4: (a) The r values of the relationship between the raw TWS* and NDVI*. (b) The r values of the 

relationship between the decomposed TWS* and NDVI*. (c) A scatter plot of the r values of both relationships 

shows a clear improvement in the results when the decomposed data is used. 

Figure 5: An example of the time series from a single cell. The new estimate uses the coefficients from A4 0, 

A46 and D4 as selected by the stepwise regression. Pearsons coefficient (r) between the decomposed GRACE 

estimate and NDVI* is 0.872, compared with 0.665 when using raw GRACE TWS*. 
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Figure 6: Patterns of the coefficients for each decomposition level. For D1 and D2 no lags are used, red 

represents for these a positive coefficient and blue represents a negative coefficient. For D3 L, D4L and A4L 

(which include lags), red represents cells where all coefficients are positive. Blue represents cells where at least 

one lag had a negative coefficient. 

 

 

Figure 7: The variable with the highest relative weight in the regression for each cell across Australia. A4 is 

most dominant, however D2 is prominent in distinct areas throughout central Australia. D1, D3 L and D4L all 

occur but with little spatial coherence.  

 



 

Figure 8: The relative weight of each decomposed TWS* for each land use type. Forests are A4L dominated, 

shrublands, savannas and grasslands are very similar with relative equal weights of D1, D2 and A4 L, while 

agricultural land is dominated by D2 and A4L. 

 

Tables 

Table 1: Subcategories of land use types as defined by MODIS 

MODIS Land Use Type Classification in this study 

Evergreen needle leaf forest 

Evergreen broad leaf forest 

Deciduous needle leaf forest 

Deciduous broad leaf forest 

 

 

Forest 

Closed shrublands 

Open shrublands 

 

Shrubland 

Woody savanas 

Savanas 

 

Savana 

Grassland Grassland 



Cropland 

Cropland/Natural vegetation mosaic 

 

Agricultural land 

Barren Barren 

 

 

Appendix A

 

Figure A1: Coefficients for all 9 decomposition levels including lags. Red represents a positive coefficient and 

blue represents a negative coefficient. 

 
 



Dear Editor and reviewers, 

 

Thank you for taking the time to provide valuable feedback towards our manuscript entitled 

‘Large-scale vegetation responses to terrestrial moisture storage changes’. 

 

In this response document we provide details on the changes which have been made to the 

manuscript in response to each comment from the editor and each reviewer, or rebuttal to 

comments where appropriate. A revised version of the manuscript with additions/changes 

marked up as they have been made is included below. 

 

Response to comments from the Editor 

Dear authors, 

Thank you for your submission to HESS. We have received two sets of referee’s comments. 

Reviewer #2 is more critical. He is particularly concerned about the lack of clarity in the 

methodological approach, and mentions that this lack of clarity makes the discussion and 

interpretation of result difficult and therefore affects the value of the contribution. Reviewer 

#1 is more positive but has also listed some major concerns. 

 

I agree with the reviewers that there are some key aspects of the methodology that are not 

clear in the paper. The authors mention, in the responses to the reviewers, that they will 

incorporate more details in the revised paper, which might hopefully address the reviewer’s 

concerns.  

 

We have made an effort to make the methodology more clear (Section 3). In particular we 

have added 2 extra figures as suggested by the reviewers (figures 2 and 5) . 

 

The authors mention a paper under review, in response to the comments to reviewer #1. 

Please note that the paper methods and discussion cannot be based on unpublished 

methods/results. This paper needs to include all relevant information for the revision process, 

and it cannot be accepted if a relevant portion of the methodology depends or has been tested 

in a paper that is not available. The authors need to incorporate the information either in the 

main text or as supplementary material. It is also very important to notice that the results of 

the work presented in this manuscript should be relevant even if the other paper (now under 

review in journal of hydrology-JoH) is published. 

 

The paper mentioned is still under review with Journal of Hydrology. As such we have 

incorporated more information in the manuscript in place of referencing the other 

unpublished paper. To be clear, the paper under review with JoH uses a similar method by 

decomposing GRACE TWS data using wavelets. However, the focus of that paper is to use 

the wavelets to partition GRACE TWS data into different vertical components (i.e. shallow 

and deep soil moisture, groundwater etc). So while there is some overlap in the method, there 

is no overlap in aims, results of findings of this manuscript submitted to HESS. 

 

After the new manuscript is submitted addressing all the referees' concerns, it will be send 

back to the reviewers for further assessment of the revised manuscript.  

 



Response to comments from Reviewer #1 

 

General comments: This is an interesting study, which extends a previous analysis 

by Yang et al. (2014) to examine how different-frequency components of the GRACE 

signal affect the temporal changes of surface greenness. It is packed with information,  

concepts, and unifying principles that are of great potential value in water and carbon 

cycle science. I am generally supportive of publication. However, I have one major 

concern that is needed to be addressed by the authors. 

 

Major concern: It reads to me that the authors used a combination of different frequency 

components of the GRACE data to correlate with monthly NDVI anomaly. 

I still do not understand what is the scientific and physical basis of comparing monthly 

NDVI with water storage components at a longer time scale, for example, D1 for 2 

months and D4 for 16 months. 

 

We would hereby like to address your major concern by explaining better the scientific and 

physical basis of the comparison. The core idea in the paper is that high frequency signals 

(D1, D2, A1, and A2) correspond to storage changes of shallow soil moisture, while low 

frequency signals such as D3, D4, A3 and A4 correspond to deeper soil moisture or even 

groundwater. We previously proved this in another manuscript which is currently under 

review (revised version) for Journal of Hydrology. This is why forests mostly correspond 

with low frequency changes; their roots are accessing water storage that is changing at a 

lower frequency. Land covers (hence NDVI) dominated with shrubs and grasses (shallow 

roots) correspond to higher frequency signals where moisture change is more dynamic.  

 

A condensed excerpt of the above explanation has been added to the manuscript, end of 

section 3.3. 

 

Additional minor comments: 1. I would add a figure showing different components 

of the GRACE signal (i.e., A1-A4 and D1-D4). This will give readers a more intuitive 

understanding of these components. 

 

A figure such as you have suggested has been added and is now fig. 2.  

 

2. Section 2.3 Please specify which year of the MODIS Land cover data was used? 

 

MODIS land cover data from 2012 was used, this has now been specified in section 2.3 of the 

manuscript 

 

3. Page 7 Line 5. Should be TWS* data is better associated. Delete “the”.  

 

Addressed 

 

4. I am wondering if the higher-frequency GRACE 

components (i.e., level-1 and level-2) are more related with variations of soil moisture 

within shallower soil zones, and lower-frequency ones are more related with moisture 

changes within deep zones or 

 



Yes, what you have commented is absolutely correct. I hope this has been answered in our 

response to your major concern. We hope the additions to the methodology section of the 

manuscript have made this clearer. 

Response to comments from Reviewer #2 

 

Major Comments 

1. GRACE data do not have a sensitivity to a spatial resolution of 1-degree. The authors 

even divided Tasmania into three different land use types. I highly doubt there is any 

meaningful information from GRACE at the spatial scale down to 100 km. 

 

REBUTTLE: We agree that the 100 km x 100 km is not the true GRACE resolution. The 

true resolution is much coarser than 100km x 100km, closer to 300 km. The 100 km 

resolution stems from the original GRACE measurements, and the subsequent truncation and 

Gaussian averaging filters which are applied to produce TWS. In addition to the resolution 

loss, the algorithms applied to generate TWS also introduce “leakage” error (Landerer and 

Swenson 2012). 

Gridded gain factors have been produced based on land surface modelling (e.g., GLDAS-

NOAH) aiming to correct the leakage error. This gain factors have been made in the 1 by 1 

degree grids.  Thus, the gridded GRACE TWS products are provided in the same apparent 

resolution.  

Although it is not the true resolution of GRACE, Landerer and Swenson (2012) state that 

“The gain factors derived here are based on simulated TWS variations, and are independent 

of the actual GRACE observations. Their purpose is to extrapolate the GRACE data to finer 

spatial scales that are not well resolved by the current GRACE satellites. It is important to 

keep in mind that while these fine scales are not truly measured by GRACE, our gridded-

TWS estimates represent these scales to the degree to which a scaling relationship can 

recover them. This scaling relationship also enables us to quantify leakage and measurement 

errors based on signal patterns of TWS”. This further supports the use of such gridded 1 

degree TWS data. 

 

It is not uncommon to use the higher resolution gridded data when the relationships of two 

datasets of different spatial resolutions are investigated. In our case, we have NDVI of higher 

resolution (0.25 degree), and GRACE of lower resolution. We decide to use this gridded 

GRACE data because it is better than simply applying a disaggregation of GRACE data of 

original spatial resolution. Alternatively, we could aggregate NDVI data to match the original 

GRACE resolution, but this would lose NDVI information in investigating the relationship. 

 

A similar approach to what we adopted has been used in other published studies. For 

example, Yang et al. (2014) used gridded 1 degree GRACE data to investigate vegetation - 

TWS relationship. Becker et al. (2011), using the gridded 1 degree GRACE data, investigated 

the relationship between TWS and point measurements of water levels in Amazon River. Yi 

& Wen (2016) used the 1 degree GRACE TWS to develop a drought index for America. 

 

 



Tasmania is split into 3 different land use types based on the MODIS data set 

(MDC12Q1).The high resolution MODIS NDVI data is degraded to 1 degree resolution to 

match the 1degree GRACE TWS grids.  

 

 

In summary, we conclude that it is appropriate to use the 1 degree GRACE TWS product to 

investigate the dependence of NDVI on large-scale water storage in this study. 

 

2.This manuscript is difficult to assess partly because it does not provide a detail explanation  

of their approach. I do not understand Section 3. Temporal variations of 

vegetation cover (NDVI) and total water storage (GRACE) are dominantly at a seasonal 

frequency. The authors removed such largest variability in the data and examine 

only the residual data after removing climatology based on monthly data over many 

years. I do not understand the rationale of analyzing only the secondary signals (the 

residuals) to study vegetation response to terrestrial water storage. 

 

Further details have been added to section 3, we hope this, along with the 2 extra figures 

makes the approach clearer (See mark-ups in section 3 of manuscript. 

 

REBUTTLE/JUSTIFICATION of using anomalous data. 

For variables with strong seasonality, a statistical relationship between them does not 

necessarily mean a physical relationship exists. For example, temperature and precipitation of 

an area, without removing the seasonality, may have very strong correlation, but physically 

they are both a result of Earth’s revolution around the Sun. They do not necessarily have a 

direct physical relationship with one another.  

Thus, to examine the physical relationship between seasonal variables, it is a common 

approach to remove seasonality before the correlation analysis, as applied in many previous 

studies such as Yang et al. (2014), Zaitchik et al. (2008), Crowley et al. (2006).  

Specifically for vegetation, its condition is likely related to soil moisture, but may also be 

influenced by temperature and solar radiation. Without removing the seasonality, the 

statistical relationship between NDVI and TWS may include the influences of other seasonal 

variables (e.g., solar radiation and temperature). 

 

The decomposition of the GRACE data allows utilisation of GRACE information at different 

temporal frequencies. Generally, low frequency signals should correspond to deeper rooted 

vegetation where moisture changes are less dynamic and higher frequency signals should 

correspond to shallower rooted vegetation where moisture changes are more dynamic (though 

it is entirely possible for high frequency signals to also exist in forests and low frequency 

signals to exist in grasslands etc). We use this method to reveal the moisture dependence of 

different vegetation types at these temporal frequencies, this is a new and innovative method 

and has not been used for explaining NDVI changes. In the revised version (section 3 

methodology) we emphasise the anomaly calculation and its relevance. 

 

3. I am surprised that I do not see any time-series plot in their analyses. Also, I do 

understand what various time-scales indicated in Section 3.1 imply. 

 



Because we analyse so many cells it is not practical to show time series of data. However, we 

have added a time series of one cell to help further demonstrate the concept. This now 

appears as figure 5. 

4. Technical advance seems to be moderate (but, again, its validity is difficult to judge  

due to lack of sufficient explanation in Section 3) 

 

We are confident that the further explanation of the method in the paper and in the replies to 

the comments above shows the validity of the method. 

5. - Science quality is low to moderate. I am not convinced that this manuscript contains  

sufficient science advance or discovery that warrants publication in the journal HESS.  

Discussion in the last paragraph of Section 4 and Section 5 seem to be trivial and just  

descriptive without any quantification. 

 

REBUTTLE: In this manuscript we show (1) an advancement in understanding the moisture 

dependence of vegetation types in Australia; and (2) the application of a novel method 

expanding the use of GRACE data, this is the first time this method is applied to analyse 

NDVI data.  Both are innovative and making contributions to the wider scientific community. 

This study builds on previous works that have linked NDVI with precipitation, soil moisture 

and GRACE (Chen et al., 2014, Huxman, 2004, Méndez-Barroso et al, 2009, Wang et al., 

2007, Yang et al., 2014).  

 

Yang et al. (2014) is the first study using GRACE TWS to examine large-scale moisture 

storage effect on terrestrial vegetation performance. It has been cited by papers published in 

Review of Geophysics, Journal of Geophysical Research, Remote Sensing of Environment, 

Journal of Hydrology, and Environmental Research Letters. However, part of GRACE TWS 

is beyond the reach of root zones, which is irrelevant to vegetation functioning. In our 

manuscript, we address this issue by proposing a method to use the more shallow water 

storage signals of GRACE data. We clearly make an additional scientific advance by way of 

above points 1 and 2. The last paragraph in section 5 further discusses specific results. We 

have revised section 4 and 5 and taken care that the significance is more clearly stated, given 

that we used a new method to better reveal the large-scale biomass production (reflected in 

NDVI) and moisture storage (reflected in TWS), we believe that the results are not ‘trivial’. 

The last paragraph of section 5 highlights the application and contribution of the study 

presented. 

 

The significance of this study can be also seen from the number of views and downloads 

having occurred to the discussion paper. As of January 19
th

 2017, this discussion paper was 

downloaded 251 times compared  to 101, 126, and 185 times for three other papers (with 

subjects in ecohydrology, and remote sensing and GIS) published within the similar time 

frame in HESS for discussion.  
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Abstract 

The Normalised Difference Vegetation Index (NDVI) is a useful tool for studying vegetation activity and 

ecosystem performance at a large spatial scale. In this study we use the Gravity Recovery and Climate 

Experiment (GRACE) total water storage (TWS) estimates to examine temporal variability of NDVI across 

Australia. We aim to demonstrate a new method that reveals the moisture dependence of vegetation cover at 

different temporal resolutions. Time series of monthly GRACE TWS anomalies are decomposed into different 

temporal frequencies using a discrete wavelet transform and analysed against time series of NDVI anomalies in 

a stepwise regression. The results show that combinations of different frequencies of decomposed GRACE TWS 

data explain NDVI temporal variations better than raw GRACE TWS alone. Generally, NDVI appears to be 

more sensitive to inter-annual changes in water storage than shorter changes, though grassland-dominated areas 

are sensitive to higher frequencies of water storage changes. Different types of vegetation, defined by areas of 

land use type show distinct differences in how they respond to the changes in water storage which is gene rally 

consistent with our physical understanding. This unique method provides useful insight into how NDVI is 

affected by changes in water storage at different temporal scales across land use types.  

 

Keywords: Vegetation index, NDVI, GRACE, ecosystem performance, water storage, wavelet analysis, 

regression analysis, land use type  

 

1. Introduction  

In many parts of the world, such as Australia, water storage is the dominant limiting factor in vegetation growth  

(Donohue et al., 2008, Nemani et al., 2003). As such, changes in water storage can lead to changes in vegetation 

mass and greenness (Yang et al., 2014). As vegetation plays a vital role in gross primary production and the 

carbon and hydrological cycles, studies of the temporal and spatial variation of veg etation are vital for 

understanding ecosystem performance and its climatic responses (Campos et al., 2013). As the climate and 

water resources change as a result of natural and anthropogenic influences, understanding how fluctuations in 

water storage are associated with biomass changes can have profound importance in the future.  

 



Previous studies have used different hydrological parameters to examine the effect of hydrological changes on 

ecosystem performance. Most commonly, precipitation and soil moisture have been used as defining variables 

(Chen et al., 2014, Huxman, 2004, Méndez-Barroso et al, 2009, Wang et al., 2007).  Both of these have shown 

generally meaningful correlations with ecosystem performance (by various measures such as Normalised 

Difference Vegetation Index (NDVI) and above-ground net primary production). However, both indicators have 

shown limitations. The total amount of precipitation is not necessarily used by vegetation in an ecosystem. Part 

of precipitation is lost from the ecosystem as runoff or soil evaporation (Liping et al., 1994). Only the part 

which is retained as soil moisture in the root zone can be viably consumed by vegetation, categorised as 

‘effective precipitation’ (Bos et al., 2009). For a given amount of rainfall the fraction of effective precipitation 

varies spatially due to differing geographical features, soil types, and vegetation cover conditions. Soil moisture 

gives a better representation of the water that is available to plants. However, in situ soil moisture data is 

generally limited and spatially (vertically and horizontally) sparse. Estimations from land surface models are 

often highly uncertain (Chen et al., 2013).  

 

Recently Yang et al. (2014) used monthly total water storage anomalies (TWS*) from the Gravity Recovery and 

Climate Experiment (GRACE) to examine hydrological controls on variability in surface vegetation. GRACE 

provides monthly global terrestrial water storage derived from variations in the earth’s gravity field. The authors 

suggested that where large surface water reservoirs do not exist, GRACE TWS changes are mostly from soil 

moisture and groundwater, making it ideal for examining hydrological controls on  vegetation activity. GRACE 

is found to be a good indicator of seasonal variability in surface greenness over mainland Australia (Yang et al., 

2014). For the period 2003-2010, for which GRACE data is available, changes in NDVI* are explained more 

strongly by GRACE TWS* than by precipitation, suggesting it poses a more direct influence on surface 

greenness and ecosystem performance.  

 

GRACE TWS gives the total relative water storage at a resolution of a few hundred kilometres. It is the sum of 

surface water, soil water, groundwater, ice etc. We previously developed an approach to ‘split’ GRACE TWS 

into shallow and deep subsurface storage components using a discrete wavelet decomposition (Andrew et al., 

2016). In this study, we aim to expand on the general findings of Yang et al. (2014) by decomposing GRACE 

TWS* into different temporal components and analysing them against NDVI*. Given that root zone water 

storage is the source of water to vegetation we hypothesize that decomposed TWS* data that reflects the 



temporal pattern of soil moisture in the root zone will perform better than the total TWS* in association with 

NDVI*.  

 

The questions we seek to address are (1) does the decomposed TWS* data show a better relationship to NDVI* 

than the ‘raw’ TWS* data; (2) how does the sensitivity of NDVI* in response to changes in TWS* vary 

spatially; and (3) which temporal components of TWS* are most significant in influencing NDVI* for different 

land use types across Australia.  

 

2. Data 

2.1 GRACE data 

We use gridded GRACE total water storage (TWS) data from The University of Texas Centre for Space 

Research (CSR), and NASA’s Jet Propulsion Laboratory (JPL). The gridded GRACE data sets are freely 

downloaded from the GRACE Tellus website (http://grace.jpl.nasa.gov/data/get-data/). Data is suitably post-

processed, including applying the recommended scaling correction (gain factors) (Swenson and Wahr, 2006). 

The scaling coefficients are in part designed to remove leakage errors (Landerer and Swenson, 2012). Monthly 

data from March 2003 to December 2014 is used. The average of the two data sets is calculated for each cell at 

each month to reduce the uncertainty. The data is presented spatially in 100 km by 100 km grid cells. Although 

this is not the true resolution of GRACE, with the appropriate gain factors applied the 100 km by 100 km 

gridded data is suitably recovered (Landerer and Swenson, 2012). An alternative would be to aggregate the 

other data set in this study (NDVI) to a larger scale to match true GRACE resolution, but this would increase  

errors in land-cover vegetation cover. We selected which cells should be included based on a shape file of 

Australia. If at least two thirds of the cell is part of the continent they are included, this eliminates some cells 

which covered only a small coastal land mass. 

There are a few occurrences of missing data in the GRACE data set. These months of missing data are filled 

with a simple temporal interpolation using the months either side. Because of the monthly temporal resolution 

this is deemed appropriate and maintains the average seasonal cycle well (Long et al., 2015).  

 

2.2 NDVI data 
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We use GIMMS 3g NDVI data for the same time period as the GRACE data. The data is downloaded from the 

NASA database. The NDVI data is produced at a higher spatial resolution (.25 by .25 degrees) than GRACE. 

This data is rescaled to match the GRACE cell size using the resampling tool in ArcGIS. Like the GRACE data, 

only cells which contain at least two thirds land are used, and missing data is filled by a temporal interpolation.  

 

2.3 Land use type data 

The moderate-resolution imaging spectroradiometer (MODIS) land use data is used to identify different land use 

types across Australia (product MCD12Q1). It is freely available online from http://glcf.umd.edu/data/lc/. In 

regards to rescaling and cell selection, the same procedures are applied as in the case of NDVI data. In 

Australia, MODIS land use type data defines 12 different classes of land use. This is reduced to five (or six 

including barren land) classes by grouping similar classes such as different types of forests. The resulting land 

use types are: forest, shrubland, savanna, grassland, and agricultural land (Table 1).  

 

Figure 1 shows the spatial distribution of different land use types across Australia, grouped as previously stated 

(Table 1). Note that no analysis is performed for areas considered barren, due to a lack of vegetation.  

 

3 Methodology 

3.1 Calculating anomalies 

For variables with strong seasonality, a statistical relationship between them does not necessarily mean that a 

physical relationship exists. Climatological anomalies of both GRACE TWS and NDVI are used in order to 

remove seasonality in the data which would otherwise result in large, but irrelevant and misleading correlations 

between variables examined in this study.  

The anomalies are calculated following the method of Yang et al. (2014),  

 *               –
 

  
          

               (1) 

where  * represents the climatological anomaly of X (i.e. raw GRACE TWS), i is the month, j is the year and n 

is the total number of years. 
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New lagged GRACE TWS* anomaly data sets are produced by offsetting the GRACE data from the NDVI data 

by one to six months. This is to allow any delays in NDVI response to water storage to be revealed (Farrar et al., 

1994). 

 

3.2 Wavelet decomposition 

GRACE TWS* is decomposed into different signals using a discrete wavelet transform. Introduced in the early 

1980s, a wavelet is a mathematical function used to divide data series into different -frequency components 

(Goupillaud et al., 1984). The method expresses decompositions as a multitude of smaller ‘waves’ at different 

frequencies (He et al., 2013). The Meyer wavelet is applied here to decompose GRACE TWS* into components 

at different temporal scales and is suitable for this temporal data (He & Guan, 2013). This is relatively easy to 

achieve by means of a simple MATLAB code using the ‘wavdec’ function. Data is decomposed into 

‘approximation’ and ‘detail’ components, each representing a different temporal scale. Approximation series 

maintain trends in the data while detail series neglect trends (Nalley et al., 2012).  The resulting time series are 

labelled A1, A2, A3, A4 and D1, D2, D3 D4 for approximations and details respectively, with the time scale 

increasing with the decomposition number e.g. A1/D1 (2-month scale), A2/D2 (4-month scale), A3/D3 (8-

month scale) and A4/D4 (16-month scale) (Fig.2).  Essentially, from 1 time series, eight new time series are’ 

made with four different temporal resolutions are produced. Four levels can be reasonably extracted given the 

data length and monthly frequency of the data. Further decomposition would result in roughly 3 and 6 year time 

scales which are too coarse for a time series of only 11 years of raw data. Because all but the lowest 

approximation levels contribute partly to details, we only use the lowest frequency approximation, along with all 

of the details. The sum of these (D1, D2, D3, D4, A4) equals the raw signal (Fig. 3). So, five wavelet 

decomposition series are used for GRACE data as well as six lagged series for each decomposition level giving 

a total of 35 water storage time series.  

 

3.3 Stepwise regression 

To evaluate which of the new decomposed time series correspond to different vegetation types, we used a 

stepwise regression for every cell. NDVI* is the dependent variable and the GRACE TWS* decompositions are 

taken as predictor variables. Given the time series of the data, 35 predictor variables is too many for a stepwise 

regression to function properly. The stepwise regression is run multiple times and the best predictor variables 

are chosen narrowing them down to nine. The choice is made based on the amount of cells selected for each 
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variable from the stepwise regression and how relevant they are given their spatial coherence. In general, the 

predictor variables excluded from the stepwise regression are not included in any cells across the country. The  

remaining variables are (subscript denotes lag in months) D10, D21, D30, D31, D32, D40, D41, A40, and A46. 

High frequency signals (D1, D2, A1, and A2) correspond to storage changes of shallow soil moisture, while low 

frequency signals such as D3, D4, A3 and A4 correspond to deeper soil moisture or even groundwater. 

Therefore, forests should correspond with low frequency changes; their roots are accessing water storage that is 

changing at a low frequency. Land covers dominated with grasses (shallow roots) should correspond to higher 

frequency signals where moisture change is more dynamic. 

 

4. Results 

As a proof of concept, the relationships between raw GRACE TWS* versus NDVI*, and decomposed GRACE 

TWS* versus NDVI* are compared (Fig. 4). The results for the decomposed TWS* data are based on a 

selection of decomposed time series selected by the stepwise regression. A time series example of the results 

from an individual cell is demonstrated in Figure 5. For each cell the correlation coefficient between NDVI* and 

the regression estimates ( r ) is calculated. In order for the tests to be comparable, lagged data is not included in 

the decomposed TWS dataset for this demonstration, it shows purely how decomposed data improves the 

relationship. A scatter of the r values shows a clear improvement in the relationship when decomposed GRACE 

TWS* data is used as opposed to raw, with all points above the 1:1 line. The Student-t tests confirmed that the 

stepwise regression results are statistically highly significant with a p value of .00014.  

 

Lagged data ensures that the relationship between NDVI* and TWS* is well represented, but the decomposed 

frequency of the TWS* data is the focus in this study. Though the stepwise regression is performed using nine 

variables including lags where suitable, the results herein are presented as only five variables, D1, D2, D3 L, D4L 

and A4L. For each detail or approximation level using different lags, one variable is created by combin ing the 

results of different lagged data sets together to present the results i.e. D3 L = D30+D31+D32.  

 

It is important to recognise how the variables that are included in the stepwise regression vary spatially to 

understand how vegetation responds to different temporal patterns of water storage across the continent. For a 

variable to be included in the stepwise regression it does not have to show a positive correlation. Figure 4 shows 

which variables are included in the regression for each cell across Aust ralia. Where no lagged data is used (D1 
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and D2) the colour denotes whether the coefficient is positive or negative. Where lagged data is used (D3 L, D4L 

and A4L) the colour denotes whether all coefficients for a cell had the same -/+ sign or not. Figure 4 shows that 

while A4L is included across most of the country, one of the lagged data sets, A4 6 has a large amount of negative 

coefficients included in the regression (see appendix 1). A possible explanation for this is that NDVI is 

susceptible to the ‘memory effect’, where past inputs and outputs affect responses in the system (Shook & 

Pomeroy, 2011).  

 

Overall, the number of cells covered by each different decomposition level increases as the decomposition time 

scale increases. This shows that in general, NDVI changes pertain to longer time-scale water storage changes 

and is not affected as much by changes on monthly time scale.  

 

While understanding which variables are used in each cell is important, it is more important to know their 

relative impact on NDVI*. The relative weight of each variable is calculated to show the importance of each on 

vegetation in different land use types. Of the included variables in each cell, the relative weight of each variable 

is calculated as  

W = 
       

     
       (2)                       

Where W is the relative weight,  X is the standard deviation of the decomposed data anomaly (X), C is the 

coefficient of X in the regression,  NDVI is the standard deviation of the NDVI anomaly. Figure 7 shows which 

variable has the highest relative weight in each cell. A4L is the dominant variable, covering the majority of the 

country, and is a low frequency trended signal. D2, a higher frequency signal is the second most dominant 

variable and shows generally clear spatial coherence. 

 

The relative weights for all cells of each land use type are combined and presented as a relative weight 

percentage per land use type (Fig. 8). Forested areas have only low frequency decompositions included, with 

A4L being the most dominant. This is expected as forests have deep root systems which tap into water stores 

which change slower than shallower soil moisture (Backer et al., 2003). Therefore, their water store is less likely 

to be affected by short-term rainfall or evaporation, relying more on long term hydrological trends and 

variabilities. Shrubland, savanna and grassland show nearly identical distributions of weights. Grassland shows 

a marginally higher percentage of the D1 and D2 variables, which is consistent with our physical understanding 

as they are fed by shallow soil moisture which varies at high temporal frequencies. While all are defined 



differently, the three land use types have overlapping characteristics, most commonly the widespread presence 

of short grasses (Friedl et al., 2002) and shallow root systems. These short grasses respond to changes in the 

shallow top layer of the soil which is influenced at high temporal frequencies by rainfall events and  evaporation. 

The similarity in the result of these three land use types suggests that they are hardly distinguishable by 

GRACE, likely due to the spatial extend of GRACE cells. For example, where sparse trees exist in a savanna, 

their lack of response to the shallow soil moisture may be negligible compared to the large coverage of grasses, 

thus showing a very similar pattern to grassland.  

 

5. Discussion 

Using wavelet decomposed GRACE TWS* data proved to improve the correlation between water storage and 

NDVI*. A previous study by Yang et al. (2014) showed that GRACE is a superior indicator of surface 

greenness than soil moisture or precipitation, which were earlier used as indicators (Chen et al., 2014, Huxman, 

2004). Temporal decomposition of GRACE TWS* produces a new temporal dimension that allows the data to 

be analysed to its full potential. As demonstrated in Fig. 4, the decomposed TWS* data is more closely 

associated with the surface greenness than the raw TWS*. Furthermore a better understanding of how surface 

greenness changes with water storage spatially and temporally is achieved, with different levels of 

decomposition existing in spatial clusters across the country. The dominance of A4L as the most highly 

weighted predictor variable indicates that generally vegetation responds to low frequency (inter -annual) changes 

in water storage across Australia. 

 

An interesting result is the large amount of negative coefficients produced from the stepwise regression for A46. 

Two possible explanations exist. A 6-month lag may correspond to the opposite seasons e.g. wet 6 months ago, 

dry now, potentially serving as an indicator of water storage potential. Alternatively, vegetative systems may be 

susceptible to the ‘memory effect.’ Specifically, this would suggest that for most of the continent, trends at the 

A4 scale (roughly annual) influences vegetation responses to water storage changes six months later in t hese 

areas. Such a memory effect can serve as an indicator of an ecosystem’s capacity to store water, as well as 

carbon and nitrogen (Schwinning et al., 2004).       

 

The weight distribution of different decompositions across land use types generally match es our physical 

understanding. Note firstly that all five land use types have A4 L as a large component of their total weight. This 

Comment [T9]: ‘the’ has been 
deleted, reviewer 1 minor comment 3 



is a further indication of the general response of vegetation to low frequency changes in water storage. Forested 

areas are only composed of A4L, D4L and D3L, and are ignorant of high frequency changes in water storage. 

This matches our physical understanding as forests have deeper root systems which rely on seasonal changes or 

long term hydrological trends. Interestingly, shrublands, grasslands and savannas show a near identical 

composition of relatively weighted decompositions, with grasslands showing a slightly higher weight percentage 

of D1 and D2. The three land use types are all grass dominated, with the addition of sparse trees and shrubs in 

savannas and shrublands. As the resolution of GRACE cannot pick up these additions, it is possible that they all 

appear as grassland, or at least skewed that way, as that is the dominant vegetation cover. The dominance of D1 

and D2 across these land use types is typical of relatively dynamic, grass dominated regions.  

  

The combination of weights that make up the total for agricultural land is less straightforward. D2 and A4 L 

contribute to large portions of the total. One major difference between agricultural land and the other land use 

types is the anthropogenic contributions to the land, including the additions of livestock grazing (Yates et al., 

2000). The other land use types are generally self-sufficient/limiting at the cell scale, so the interruption of the 

natural cycle of the vegetation in agricultural areas is a potential anomaly, disturbing any predictable 

composition of relative weights.   

 

Our method of using decomposed terrestrial water storage as an improved indicator of surface greenness has 

potential environmental benefits. It allows for an improved understanding of how vegetation responds to 

changes in water storage both spatially and temporally. This in turn serves as a better indicator of ecosystem 

performance and carbon fluxes. With predictions of terrestrial water storages to decline in the future (Oki and 

Shinjiro, 2006), the method could be highly useful for predicting carbon fluxes and ecosystem performance at a 

large scale based on future water storage estimates. Furthermore, the global mapping of GRACE and NDVI (as 

well as other vegetation indexes) means that it could be applied globally.    

 

6. Conclusion 

In this study we aimed to increase the understanding of large-scale ecosystem response to water storage by 

investigating the links between GRACE TWS* and NDVI* using a decomposed TWS* data. Combinations of 

decomposed GRACE TWS* data show an improved relationship with NDVI* compared to using raw GRACE 

TWS* data alone. Varying decomposed frequencies show spatial coherence in parts of the country, sometimes 



independently and sometimes overlapping other decomposed frequencies. Generally, NDVI is influenced by 

low frequency changes in water storage, however there are some areas which are also sensitive to high 

frequency changes. NDVI is susceptible to a memory effect which depends on previous TWS conditions, 6 

months generally. The total influence of NDVI changes is made up of storage changes over different time 

periods. These vary depending on the land use type and the results are aligned with our physical understanding. 

This analysis could be used further to continue to improve our understanding of vegetative responses to storage 

change in Australia and globally and benefit predictions of ecosystem performance and carbon fluxes.  
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Figures 

 

Figure 1: (a) The spatial distribution of various land use types across Australia and (b) the area covered by each 

land use type. 

Figure 2: An example of a wavelet decomposition from a cell in central South Australia (29°S 136°E). Notice 

the visible trends in the approximations, which are normalised in the details. 
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Figure 3: The structure of a wavelet decomposition; decomposition levels used in this study are highlighted in 

red. 

 

 

Figure 4: (a) The r values of the relationship between the raw TWS* and NDVI*. (b) The r values of the 

relationship between the decomposed TWS* and NDVI*. (c) A scatter plot of the r values of both relationships 

shows a clear improvement in the results when the decomposed data is used. 

Figure 5: An example of the time series from a single cell. The new estimate uses the coefficients from A4 0, 

A46 and D4 as selected by the stepwise regression. Pearsons coefficient (r) between the decomposed GRACE 

estimate and NDVI* is 0.872, compared with 0.665 when using raw GRACE TWS*. 
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Figure 6: Patterns of the coefficients for each decomposition level. For D1 and D2 no lags are used, red 

represents for these a positive coefficient and blue represents a negative coefficient. For D3 L, D4L and A4L 

(which include lags), red represents cells where all coefficients are positive. Blue represents cells where at least 

one lag had a negative coefficient. 

 

 

Figure 7: The variable with the highest relative weight in the regression for each cell across Australia. A4 is 

most dominant, however D2 is prominent in distinct areas throughout central Australia. D1, D3 L and D4L all 

occur but with little spatial coherence.  

 



 

Figure 8: The relative weight of each decomposed TWS* for each land use type. Forests are A4L dominated, 

shrublands, savannas and grasslands are very similar with relative equal weights of D1, D2 and A4 L, while 

agricultural land is dominated by D2 and A4L. 

 

Tables 

Table 1: Subcategories of land use types as defined by MODIS 

MODIS Land Use Type Classification in this study 

Evergreen needle leaf forest 

Evergreen broad leaf forest 

Deciduous needle leaf forest 

Deciduous broad leaf forest 

 

 

Forest 

Closed shrublands 

Open shrublands 

 

Shrubland 

Woody savanas 

Savanas 

 

Savana 

Grassland Grassland 



Cropland 

Cropland/Natural vegetation mosaic 

 

Agricultural land 

Barren Barren 

 

 

Appendix A

 

Figure A1: Coefficients for all 9 decomposition levels including lags. Red represents a positive coefficient and 

blue represents a negative coefficient. 
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