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We thank the two anonymous reviewers for their extensive general and specific comments that
addresses important issues which help us to improve the manuscript significantly.

List of all relevant changes made the manuscript

Anonymous reviewer #2 comments

1. Performance measures related to sequencing such as MAE, RMSE, and Bias should be removed to
assess the skill of climate models because climate models provide historical scenarios (not historical
climate data) derived from the historical emission forcing and initial conditions. Therefore, the authors
need to include performance measures related to distribution (e.g. cdf or pdf) and long-term statistics
(e.g. mean and variance). Also the equation of RMSE needs to be corrected.

Reply from Authors: We, the authors understand the reviewers concern for removing the MAE, RMSE
and Bias and to include performance measures related to distribution (eg. cdf or pdf) and long-term
statistics as a performance measure to assess the skill of climate models. However, we believe that these
metrics are by far the most widely used and accepted of the many possible numerical metrics on model
residuals, which calculate the difference between observed and modelled data points (Bennett et al.,
2013; Liu et al., 2011). Furthermore, graphical representations of Box-Whisker plots and Kolmogorov-
Smirnov cumulative distribution test were applied to serve as a goodness of fit test as it is used to
compare the PDF of the observations to the PDF of the corrected precipitation (Simard and L’Ecuyer,
2011). The KS test checks the hypothesis that the two datasets come from the same distribution. These
plots provide a convenient visual summary of several statistical properties of the dataset as they vary
over time. The F-test and t-test are also applied on testing the equality of monthly variances of
precipitation and equality of monthly mean respectively as they are suited to evaluate properties and
characteristics of the whole dataset. This is shown in the manuscripts with track changes on page 11, 11-
131 and on page 12, 11-132.

Anonymous reviewer #1 comments

2. If possible, English can still be improved, e.g., to avoid long sentences, e.g. p1, 118 to 121; also to be
consistent is it 14.4 or +14.4%

Reply from authors: correction accepted. This is shown in the manuscript with track changes on page 1,
117 and 122 and all + signs are removed from the manuscript to be consistent (i.e. 14.4 % is accepted).
Editor comments

3. It would be also good to include the use of CDF-based metrics into the "recommendation™ part in
section 6 (if this does not contradict your understanding).
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Reply from authors: comment accepted. The authors recommended the use of probability distribution
function based metrics such as Brier score (BS) and the skill score (Sscore) which might enhance the
limitation of the paper. This is shown in the manuscript with track changes on page 19, 111-115.

4. Indeed RMSE formula (8) is wrong - division by n is forgotten.

Reply from authors: correction accepted. This is shown in the manuscript with track changes on page
11, 119.
5. Bias (Eq 9): typically PBIAS is used which not a difference which you use, but a ratio

PBIAS = 100 * [ sum( sim - obs ) / sum( obs ) ] would be useful to refer to a source that suggests and
justifies use of formula (9).

Reply from authors: Bias is simply the mean of the residuals whether the model tends to under or over
estimate the measured data, with an ideal value zero as suggested by (Bennett et al., 2013; Moriasi et
al., 2007). This is shown in the manuscript with track changes on pagell, 14-15.

6. Insec. 6, | would also clearly state the limitations of this work, and strengthen the "outlook™ (future
work, and there is enough to say here) which is now just one sentence.

Reply from authors: comment accepted. The limitation of the paper and future work is stated in the
manuscript with track changes on pagel9, 111-115.

7. Inter model --> inter-model

Inter Tropical Convergence Zone --> Intertropical Convergence Zone [this is a more widely sprad
variant of formulation] (or inter-tropical)
down scaling --> downscaling Reply from authors: correction accepted. This is shown in the

manuscript with track changes on page2, 119.
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Abstract. Climate change is becoming one of the most arguable and threatening issues in terms of global context and their
responses to environment and socio/economic drivers. However, a large uncertainty between different General Circulation
Models(GCMs) and coarse spatial resolution makes it difficult to use the outputs of GCMs directly specially for a
sustainable water management at regional scale, which introduces the need for downscaling techniques using multi-model
approach. This study aims i) to evaluate the comparative performance of two widely used statistical dewn
sealingdownscaling techniques namely Long Ashton Research Station Weather Generator (LARS-WG) and Statistical Bewn
SealingDownscaling Model (SDSM) ii) to down scale future climate scenarios of precipitation, maximum temperature
(Tmax) and minimum temperature (Tmin) of the UBNRB at finer spatial and temporal scale to suit for further hydrological

impact studies. The study—calibration and validation result illustrates that both dewn—sealingdownscaling techniques

(LARS-WG and SDSM) have shown comparable and good ability to simulate the current local climate variables—for-the
UBNRB. However—fFurther quantitative and qualitative comparative performance evaluation was done by equally weighted

and varying weights of statistical indexes_for precipitation only. The evaluation result showed that SDSM using canESM2

CMIP5 GCM was able to reproduce more accurate long term mean monthly precipitation but LARS-WG best performing in

capturing the extreme and distribution of daily precipitation in the whole data range.

Six selected multi-model CMIP3 GCMs namely: HadCM3, GFDL-CM2.1, ECHAM5-OM, CCSM3, MRI-CGCM2.3.2, and
CSIRO-MK3 GCMs were used for downscaling climate scenarios by LARS-WG model. The result from ensemble mean of
the six GCM showed an increasing trend for precipitation, Tmax and Tmin. The relative change of precipitation ranged from
1.0 % to 14.4% while the change for mean annual Tmax may increase from 0.4 °c to 4.3 °c and the change for mean annual
Tmin may increase from 0.3 °c to 4.1°%. The individual result of HadCM3 GCM has a good agreement with the result of
ensemble mean result. HadCM3 from CMIP3 using A2a and B2a scenarios and canESM2 from CMIP5 GCMs under
RCP2.6, RCP4.5 and RCP8.5 scenarios were downscaled by SDSM. The result from the two GCMs under 5 different

scenarios agree with the increasing direction of three climate variables (precipitation, Tmax and Tmin). The relative change
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of the downscaled mean annual precipitation range from 2.1 % to 43.8 % while the change for mean annual Tmax and Tmin

may increase in the range from 0.4 °c to 2.9 °c and from 0.3 °c to 1.6 °c respectively.

Key words: Climate Change, GCM, statistical dewn-seatingdownscaling, LARS- WG, SDSM, UBNRB

1. Introduction

The impacts of climate change on the hydrological cycle in general and on water resources in particular are of high
significance due to the fact that all natural and socio/economic system critically depend on water. The direct impact of
climate change can be variation and changing pattern of water resources availability and hydrological extreme events such as
floods and droughts, with many indirect effects on agriculture, food and energy production and overall water infrastructure
(Ebrahim et al., 2013). The impact may be worse on trans-boundary Rivers like Upper Blue Nile River where competition
for water is becoming high from different economic, political and social interests of the riparian countries and when runoff

variability of upstream countries can greatly affect the downstream countries (Kim, 2008; Semenov and Barrow, 1997).

According to IPCC (2007), between 75 and 250 million people are projected to be exposed to increased water stress due to
climate change in Africa by 2020. The increasing water demand of upstream countries in the Nile Basin coupled with
climate change impacts can affect the availability of water resources for downstream countries and in the basin, that could
result in resource conflicts and regional insecurities. Moreover, climate variability, the way climate fluctuates yearly and
seasonally above or below a long-term average value, caused by changes in forcing factors such as variation in seasonal
extent of the taterTropicak-Inter-tropical Convergence Zone (ITCZ) like El Nifio and La Nifia events, is already imposing a
significant challenge to Ethiopia by affecting food security, water and energy supply, poverty reduction and sustainable
socio-economic development efforts. To mitigate these challenges, the Ethiopian government is therefore carried out a series
of studies on Upper Blue Nile river Basin (UBNRB), which have been identified as an economic “growth corridor”, focused
on identifying irrigation and hydropower potential of the basin (BCEOM, 1998; USBR, 1964; WAPCQOS, 1990). As the
result, large scale irrigation and hydro-power projects including the Grand Ethiopian Renaissance Dam (GERD), the largest
hydroelectric power plant in Africa, have been identified and being constructed as mitigation measure for the impacts of
climate change. However, most studies were given less emphasis for climate change and its impact on the hydrology of the
basin, hence, identifying local impacts of climate change at basin level is quite important especially in UBNRB for the
sustainability of large scale water resource development projects, for proper water resource management leading to regional

security and looking for the possible mitigation measures otherwise the consequences becoming catastrophic.

To this end, several individual researches have been done to study the impacts of climate change on the water resources of

Upper Blue Nile River Basin. Taye et al. (2011) reviewed some of the research outputs and concluded that clear
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discrepancies were observed particularly on the projection of precipitation. For instance, the result obtained from (Bewket
and Conway, 2007; Conway, 2000; Gebremicael et al., 2013) reported, there is no significant trend observed on the amount
of seasonal and annual rainfall while (Mengistu et al., 2014) reported statistically non-significant increasing trends at annual
and seasonal rainfall. For the future projection, expected changes in precipitation amount is unclear. For instance, Kim
(2008) used the outputs of six GCMs for the projection of future precipitations and temperature, the result suggested that the
changes in mean annual precipitation from the six GCMs range from -11 % to 44 % with a change of 11 % from the
weighted average scenario at 2050s. On the other hand, the changes in mean annual temperature range from 1.4 °C to 2.6 °C
with a change of 2.3 °C from the weighted average scenario. Likewise, Yates and Strzepek (1998a) used 3 GCMs and the
result revealed that the changes in precipitation range from -5 % to 30 % and the change in temperature range from 2.2 °c to
3.5 °. Yates and Strzepek (1998b) also used 6 GCMs and the result showed in the range from -9 % to 55 % for precipitation
while temperature increased from 2.2 °c to 3.7 °c. Another study done by Elshamy et al. (2009), used 17 GCMs and the
result showed that Changes in total annual precipitation range between —15 % to +14 % but the ensemble mean of all models
showed almost no change in the annual total rainfall. While, all models predict the temperature to increase between 2 °C and
5 °C. Gebre and Ludwig (2014), used five biased corrected 50km x 50km spatial resolution GCMs for RCP4.5 and RCP8.5
scenarios to down scale the future climate change of four watersheds (Gilgel Abay, Gumara, Ribb and Megech) located in
Tana sub basin for the time period of 2030s and 2050s. The result suggested that the selected five GCMs disagree on the
direction of future prediction of precipitation but multimodal average monthly and seasonal precipitation may generally

increases over the watersheds.

For the historical context, the discrepancies could be due to the period and length of data analyzed and the failure to consider
stations which can represent the spatial variability of the basin and also errors induced from observed data. For the future
context, beside the above mentioned reasons, discrepancies could be due to the difference of GCMs and scenarios used for
downscaling, the downscaling techniques applied (can be dynamical and statistical), selection of representative predictors,

the period of analysis and spatial and temporal resolution of observed and predictor dataset.

To address uncertainty in projected climate changes, the (IPCC, 2014) thus recommends using a large ensemble of climate
change scenarios produced from various combinations of Atmospheric Ocean General Circulation Model (AOGCMs) and
forcing scenarios. However, it can become prohibitively time consuming to assess the climate change, using simultaneously
many climate change scenarios and many statistical dewn-sealingdownscaling models. As a result, researchers typically
assess the climate change and its impacts under only one or a few climate change scenarios selected arbitrarily with no
justification for instance used only A1B and A2 scenarios. Yet, there is no any hard rule to select an appropriate subset of

climate change scenarios among the wide range of possibilities (Casajus et al., 2016).
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GCMs perform reasonably well at larger spatial scales but poorly at finer spatial and temporal scales, especially
precipitation, which is of interest to hydrological impact analysis (Goly et al., 2014). Hence, the processes of downscaling
that ensures to narrow down the scale discrepancy between the coarse scale GCMs and the required local scale climate
variables for hydrological models should be investigated for their contribution which is missed in previous studies of climate
change analysis in the UBNRB. Many researchers have been tried to compare the comparative skill of dewn
sealingdownscaling methods in different study areas such as (Dibike and Coulibaly, 2005; Ebrahim et al., 2013; Fiseha et
al., 2012; Goodarzi et al., 2015; Hashmi et al., 2011; Khan et al., 2006; Qian et al., 2004; Wilby et al., 2004; Wilby and
Wigley, 1997; Xu, 1999). However, no single model has been found to perform well over all the regions and time scales.

Thus, evaluations of different models is critical to understand the applicability of the existing models.

Apart from the GCMs and downscaling techniques, most of the previous studies e.g (Beyene et al., 2010; Elshamy et al.,
2009; Kim, 2008), used CRU, NFS and other gridded data sets constructed based on the interpolation of a few stations in
Ethiopia, which is relatively less accurate as compared with the station based data (Worglul et al., 2014). Therefore, the
objective of this study is i) to evaluate the comparative performance of two widely used statistical down-seatingdownscaling
techniques namely Long Ashton Research Station Weather Generator (LARS-WG) and —Statistical Down
SealingDownscaling Model (SDSM) over UBNRB ii) down scale future climate scenarios of precipitation, maximum
temperature (Tmax) and minimum temperature (Tmin) at acceptable spatial and temporal resolution, which can be used
directly for further hydrological impact studies. This can be achieved through applying a multi-model approach, to minimize
the uncertainty of GCMs and incorporating acceptable number of weather stations which has long time series and reliable

observed climate data to minimize the errors coming from the less accurate gridded data sets.

Generally, downscaling methods are classified into dynamic and statistical downscaling (Fowler et al., 2007; Wilby et al.,
2002). Dynamic downscaling nests higher resolution Regional Climate Model(RCMs) into coarse resolution GCMs to
produce complete set of meteorological variables which are consistent with each other. The outputs from this method is still
not at required scale to what the hydrological model requires. Statistical downscaling overcomes this challenge moreover it
is computationally undemanding, simple to apply and provides the possibility of uncertainty analysis (Dibike et al., 2005;
Semenov et al., 1997; Wilby et al., 2002). Extensive details on the strength and weakness of the two methods can be found
in (Wilby et al., 2007; Wilby et al., 1997). Among the different possibilities, two well recognized statistical downscaling
tools, a regression based Statistical Down-Scaling Model (SDSM) (Wilby et al., 2002) and a stochastic weather generator
called Long Ashton Research Station Weather Generator (LARS-WG) (Semenov et al., 1997; Semenov et al., 2002) were
chosen for this study. They have been tested in various regions e.g., (Chen et al., 2013; Dibike et al., 2005; Dile et al., 2013;
Elshamy et al., 2009; Fiseha et al., 2012; Hashmi et al., 2011; Hassan et al., 2014; Maurer and Hidalgo, 2008; Yimer et al.,

2009) under different climatic conditions of the world.
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2. Description of Study Area

The Upper Blue Nile River Basin (UBNRB) extends from 7 ®45 'to 13 ° N and 34 °30 ' and 37 ®45 ' E see Figure 1. It is one
of the most important major basin of Ethiopia because it contributes to 45 % of the countries surface water resources, 20 %
of the population, 17 % of the landmass, 40 % of the nation’s agricultural product and large portion of the hydropower and
irrigation potential of the country (Elshamy et al., 2009). The whole UBNRB has an area coverage of 199,812 km?
(BCEOM, 1998). For this study Rahad, Gelegu and Dinder sub catchments that do not flow through the main river stem to
Sudan is excluded. Hence, the basin area coverage is 176,000_km? which is about 15% of total area of 1.12 million
km?(Awulachew et al., 2007) of Ethiopia . The elevation ranges between 489 m.a.s.l downstream on the western side to 4261

m.a.s.l upstream at Mount Ras Dashen in the north-eastern part.

The Upper Blue Nile River itself has an average annual run-off of about 49 BCM. In addition, the Dinder, Galegu and Rahad
rivers have a combined annual run-off of about 5 BCM. The rivers of the Upper Blue Nile River Basin contribute on average
about 62 percent of Nile total at Aswan. Together with the contributions of the Baro-Akobo and Tekeze rivers, Ethiopia
accounts for 86 percent of run-off at Aswan (BCEOM, 1998). The climate of Ethiopia is mainly controlled by the seasonal
migration of the Inter-tropical Convergence Zone (ITCZ) following the position of the sun relative to the earth and the
associated atmospheric circulation. It is also highly influenced by the complex topography. The whole UBNRB has long
term mean annual rainfall, minimum and maximum temperature of 1452 mmyr ', 11.4 °C and 24.7 °C respectively as
calculated by this study from 15 rainfall and 26 temperature gauging stations from the period 1984-2011. The mean seasonal
rainfall based on the above data showed about 238 mm, 1065 mm, and 148 mm occurred in Belg (October-January), Kiremit
(June-September), and Bega (February-May) respectively, in which about 74 % of rainfall concentrates between June and

September (Kiremit season).

3. Datasets
3.1 Local data sets

The historical precipitation, maximum and minimum temperature data for the study area were obtained from Ethiopian
Meteorological Agency (EMA), which were analyzed and checked for further quality control. A considerable length of time
series data were missed in almost all available stations and hence 15 rainfall and 25 temperature stations which have long
time series and relatively short time missing records were selected. Filling missed or gap records was the first task for further
meteorological data analysis. This task was done using the well-known methodology of inverse distance weighing method

(IDW). To check the quality of the data, the Double Mass Curve analysis (DMC) were used. DMC is a cross correlation
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between the accumulated totals of the gauge in question against the corresponding totals for a representative group of nearby

gauges.
3.2 Large scale datasets

A new version of the LARS-WG5.5 was applied for this study that incorporates predictions from 15 GCMs which were used
in the IPCC's Fourth Assessment Report (AR4) based on Special Emissions Scenarios SRES B1, A1B and A2 for three
time windows as listed in Tablel. However, the fifth phase of Coupled Model Inter Comparison Project (CMIP5) climate
models based on the new radiative forcing scenarios (Representative Concentration Pathway, RCP) which were used for
IPCC Fifth Assessment Report (AR5) were not incorporated into it at the time of the study.

As it is difficult to process all the incorporated 15 CMIP3 GCMs and as it is expected large differences in predictions of
climate variables among the GCMs, the performance of GCMs in simulating the current climate variables of the study area
(UBNRB) should be evaluated and best represented GCMs were selected. The MAGICC/SCEGEN computer program tool
was used for the performance evaluation of the 15 GCMs found in LARS WG5.5 database, as it is a standard method for
selecting models on the basis of their ability to accurately represent current climate, either for a particular region and/or for
the globe. In this study, we used a semi-quantitative skill score that rewards relatively good models and penalizes relatively
bad models as suggested by user manual Wigley (2008). The statistics used for model selection are pattern correlation (R?),
Root mean square error (RMSE), bias (B), and a bias-corrected RMSE (RMSE-corr). The analysis was done separately for
precipitation and temperature and finally an average score value was taken for model selection. Six best performed GCMs
have been selected for this study namely: HadCM3, GFDL-CM2.1, ECHAM5-OM, CCSM3, MRI-CGCM2.3.2, and
CSIRO-MKS3 in the order of their performance to construct future precipitation, maximum and minimum temperature in the
UBNRB for the time period of 2030s, 2050s and 2080s under A1B, A2 and B1 scenarios see Table 1.

Moreover, atmospheric large scale predictor variables used for representing the present condition were obtained from the
National Centre for Environmental Prediction (NCEP) reanalysis data set. CanESM2, second generation Canadian Earth
System Model (ESM) developed by Canadian Centre for Climate Modelling and Analysis (CCCma) of Environment Canada
that represents CMIP5 and HadCM3 outputs from the Hadley Centre, United Kingdom(UK) representing CMIP3 were

used in SDSM for the construction of daily local meteorological variables corresponding to their future climate scenario.

The reasons for selecting these two GCMs were due to the fact that they are models that made daily predictor variables
freely available to be directly fed into SDSM covering the study area with a better resolution. Additionally, HadCM3 is the
most used GCMs in previous studies such as (Dibike et al., 2005; Dile et al., 2013; Hassan et al., 2014; Yimer et al., 2009),
and HadCM3 ranked first in performance evolution done by MAGICC/SCEGEN computer program tools and its
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downscaled results match with the ensemble mean of the six GCMs used in LARS-WG model. Furthermore, they can
represent two different scenario generations describing the amount of green house gases(GHGS) in the atmosphere in the
future. HadCM3 GCM used emission scenarios of A2 (separated world scenario) in which the CO, concentration projected
to be 414ppm, 545ppm and 754ppm and B2 (the world of technological inequalities) where theCO, concentration to be
expected 406ppm, 486ppm and 581ppm at the time period of 2020s, 2050s and 2080s respectively (Semenov and
Stratonovitch, 2010) that were used in the CMIP3 for the IPCC’s AR4 (IPCC, 2007). While canESM2 represents the latest
and wide range of plausible radiative forcing scenarios, which include a very low forcing level (RCP2.6), where radiative
forcing peaks at approximately 3 Wm, approximately 490 ppm CO, equivalent before 2100 and then decline to 2.6Wm™;
two medium stabilization scenarios (RCP6 and RCP 4.5) in which radiative forcing is stabilised at 6Wm™ (approximately
850 ppm CO, equivalent) and 4.5 Wm™ ( approximately 650 ppm CO, equivalent) after 2100 respectively, and one very high
baseline emission scenario (RCP8.5) for which radiative forcing reaches >8.5 Wm™ (1370 ppm CO, equivalent) by 2100 and
continues to rise for some time that were used for the IPCC's AR5, (IPCC, 2014).

The NCEP dataset were normalized over the complete 1961-1990 period data, and interpolated to the same grid as HadCM3
(2.5° latitude x 3.75° longitude) and canESM2 (2.8125° latitude x 2.8125° longitude) from its horizontal resolution of (2.5°
latitude x 2.5° longitude), to represent the current climate conditions. NCEP reanalysis data were normalized and interpolated
as (Hassan et al., 2014):

_ (ut-ua) (1)

au

In which un is the normalized atmospheric variable at time t, ut is the original data at time t, ua is the multiyear average

during the period, and ou is the standard deviation.

The canESM2 outputs for three different climate scenarios namely: RCP 2.6, RCP 4.5 and RCP 8.5 for the period 2006-2100
while the outputs of HadCM3 for A2a (medium-high) and B2a (medium-low) emission scenarios for the period 1961-2099
were obtained on a grid by grid box basis for the study area from the Environment Canada website http://ccds-
dscc.ec.gc.ca/index.php?page=dst-sdi (the “a” in A2a and B2a refers the ensemble member in the HadCM3 A2 and B2
experiments). The archive of canESM2 and HadCM3 GCM output contains 26 daily predictor variables each as listed in
Table 2.
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4. Methodology
4.1 Description of LARS-WG Model

LARS-WG is a stochastic weather generator which can be used for the simulation of weather data at a single station under
both current and future climate conditions. These data are in the form of daily time-series for a group of climate variables,
namely, precipitation, maximum and minimum temperature and solar radiation (Chen et al., 2013; Semenov et al., 1997).
LARS-WG uses a semi-empirical distribution (SED) that is defined as the cumulative probability distribution function(CDF)

to approximate probability distributions of dry and wet series, daily precipitation, minimum and maximum temperatures.

EPM = {ag, a; hji =0, ...,.23} e, )

EPM is a histogram of the distribution of 23 different intervals (a;.;, &) where a;; < a; (Semenov et al., 2002), which offers
more accurate representation of the observed distribution compared with the 10 used in the previous version. By perturbing
parameters of distributions for a site with the predicted changes of climate derived from global or regional climate models, a
daily climate scenario for this site could be generated and used in conjunction with a process-based impact model for
assessment of impacts. In general, the process of generating synthetic weather data can be categorized in three distinct steps:
model calibration, model validation and scenario generation as represented in Figure 2Figure—2 (a), which are briefly
described by (Semenov et al., 2002) as follows.

The inputs to LARS-WG are the series of daily observed data (precipitation, minimum and maximum temperature) of the
base period (1984-2011) and site information (latitude, longitude and altitude). After the input data preparation and quality
control, the observed daily weather data at a given site were used to determine a set of parameters for probability
distributions of weather variables. These parameters are used to generate a synthetic weather time series of arbitrary length
by randomly selecting values from the appropriate distributions, having the same statistical characteristics as the original
observed data but differing on a day-to-day basis. The LARS-WG distinguishes wet days from dry days based on whether
the precipitation is greater than zero. The occurrence of precipitation is modelled by alternating wet and dry series
approximated by semi empirical probability distributions. The statistical characteristics of the observed and synthetic
weather data during calibration of the model are analyzed to determine if there are any statistically-significant differences
using Chi-square goodness of fit test (KS) and the means and standard deviation using t and F test respectively. This can be

done by changing the parameters of LARS-WG (number of years and seed number).

To generate climate scenarios at a site for a certain future period with selected emission scenario, the LARS-WG baseline
parameters, which are calculated from observed weather for a baseline period (1984-2011), are adjusted by the A-changes for

the future period and the emissions predicted by a GCM for each climatic variable for the grid covering the site. In this
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study, the local-scale climate scenarios based on the SRES A2, A1B and B1 scenario simulated by the selected six GCMs are
generated for the time periods of 2011-2030, 2046-2065, and 20802099 to predict the future change of precipitation and
temperature in UBNRB.

A -changes were calculated as relative changes for precipitation and absolute changes for minimum and maximum
temperatures (Eq. 3 and 4) respectively. No adjustments for distributions of dry and wet series and temperature variability
were made, because this would require daily output from the GCMs which is not readily available from LARS-WG data set
(Semenov et al., 2010).

ATi = (TGCM,FUT,i - Tsynt,Base,i) ............................ (3)

APi — pGCM,FUT,i _ (4)

Psynt,Buse,i

In above equations, AT; and AP; are climate change scenarios of the temperature and precipitation, respectively, for long-
term average for each month (1 < i < 12); Teemrur.ir Peemruri are the long term average temperature and precipitation
respectively simulated by the GCM in the future periods per month for three time periods; TSynth,Base,i Fsynth,Base,i arethe
long term average temperature and precipitation respectively simulated by the model in the period similar to observation
period (in this study 1984-2011) for each month. For obtaining time series of future climate scenarios, climate change

scenarios are added to the observationed values by employing the change factor (CF) method (Eq. 5 and 6) (in this study

1984-2011):
YA R (5)
e R (6)

T and P; time series of the future climate scenarios of temperature and precipitation (2011-2100) and T, and Py ; 0bserved
temperature and precipitation. So, in LARS-WG downscaling unlike SDSM, large-scale atmospheric variables are not
directly used in the model, rather, based on the relative mean monthly changes between current and future periods predicted

by a GCM, local station climate variables are adjusted proportionately to represent climate change (Dibike et al., 2005).

4.2 Description of SDSM

The SDSM is best described as a hybrid of the stochastic weather generator and regression based in the family of transfer
function methods due to the fact that a multiple linear regression model is developed between a few selected large-scale
predictor variables (Table 2) and local-scale predictands such as temperature and precipitation to condition local scale

weather parameters from large scale circulation patterns. The stochastic component of SDSM enables the generation of
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multiple simulations with slightly different time series attributes, but the same overall statistical properties(Wilby et al.,
2002). It requires two types of daily data, the first type corresponds to local predictands of interest (e.g. temperature,
precipitation) and the second type corresponds to the data of large-scale predictors (NCEP and GCM) of a grid box closest to

the station.

The SDSM model categorizes the task of downscaling into a series of discrete processes such as quality control and data
transformation, screening of predictor variables, model calibration and weather and scenario generation as shown in Figure
2Figure-2(b). Detail procedures and steps can be found (Wilby et al., 2002) for further reading. Screening potentially useful
predictor-predictand relationships for model calibration is one of the most challenging but very crucial stage in the
development of any statistical dewn-sealingdownscaling model. It is because of the fact that the selection of appropriate
predictor variables largely determines the success of SDSM and also the character of the downscaled climate scenario
(Wilby et al., 2007). After routine screening procedures, the predictor variables that provide physically sensible
meaning in terms of their high explained variance, correlation coefficient (r) and the magnitude of their probability (p

value) were selected.

The model calibration process in SDSM was used to construct downscaled data based on multiple regression equations given
daily weather data (predictand) and the selected predictor variables at each station. The model was structured as monthly
model for both daily precipitation and temperature using the same set of the selected NCEP predictors for the calibration
period. Hence, twelve regression equations were developed for twelve months. Bias correction and variance inflation factor
was adjusted until the model replicate the observed data. Model validation was carried out by testing the model using
independent data set. To compare the observed and simulated data, SDSM has provided summary statistics function that
summarizes the result of both the observed and simulated data. Time series of station data and large scale predictor variable
(NCEP reanalysis data) were divided into two groups; for the period from 1984-1995/ 1984-2000 and 1996-2001/ 2001-2005
for model calibration and validation of HadCM3/canESM2 GCMs respectively.

The Scenario Generator operation produces ensembles of synthetic daily weather series given observed daily atmospheric
predictor variables supplied by a GCM either for current or future climate (Wilby et al., 2002). The scenario generation
produced 20 ensemble members of synthetic weather data for 139 years (1961-2099) from HadCM3 A2a and B2a scenarios
and for 95 years (2006-2100) from canESM2 for RCP2.6, 4.5 and 8.5 scenarios, and the mean of the ensemble members was
calculated and used for further climate change analysis. The generated scenario was divided into three time windows of 30
years of data (2011-2040), (2041-2070) and (2071-2100) hence forth called 2030s, 2050s and 2080s, respectively.
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4.3 Down-scalingDownscaling model performance evaluation criteria

A number of statistical tests were carried out to compare the skills of the two dewn-scalingdownscaling models categorized
in to two main classes. First, quantitative statistical tests using metrics, such as mean absolute error (MAE), root mean

square error RMSE) and Bias (B). These metrics are by far the most widely used and accepted of the many possible

numerical metrics (Amirabadizadeh et al., 2016; Bennett et al., 2013) to evaluate the comparative performance of the models

to simulate the current climate variable of precipitation on the basis of long term monthly average defined by using Eq.7-

Eq.9. In this study Correlation and correlation-based measure such as coefficient of determination (R?) and coefficient of

efficiency (NSE) are not included due to the fact that these measures are oversensitive to extreme values and are insensitive

to additive and proportional differences between model simulations and observations (Legates and McCabe, 1999).

Evaluation was done in two steps as suggested by (Goly et al., 2014) i) equally weighted the metrics and ii) varying the
weights of metrics. For the case of equally weighted the following steps were applied. a) Compare the values of the
performance metrics among the models and give the rank (obtaining individual model rankings for each performance
metrics) at station level. Here, score 1 will be given to the model that has smaller metrics value and score 3 to the one having
larger value and 2 for the model having the value in between-. b) summing up the score pertained to each model across all
the stations. c) Once the final score are obtained for each evaluation metrics, the models are ranked again based on the totals
by summing up the metrics score value for each models.

_ XL IX-Yil

MAE = 82150 (77)

RMSE = /% LI 0. R A (88)

Bias = % D = (99)

n

In the above equations Xi and Yi are i-th observation and simulated data by the model, respectively. ux and py are the

average of all data of Xi and Yi in the study population and n is the number of all samples to be tested.

Additionally, varying weights technique was applied to the performance metrics as given in Eq. 10 to rank the models
according to their skills. To avoid the discrepancy in weighing the performance measures because of differences in the order
of their magnitudes, each performance measure is normalized (divided by the maximum value) and then the cumulative
weighted performance measure for each downscaling model is calculated (Goly et al., 2014). The weights of metrics are
arranged in such a way that more emphasizes is given to (MAE, RMSE), followed by Bias ( 0.5, 0.35and 0.15) respectively.

L MAE; RMSE; Biasj
Wi =Wyup——+Wrmsg soe — Bias e —
MAE max RMSE max Biasmax

where the index i refers to a downscaling model, Wi refers to overall performance measure, and 0 < Wi <1.
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Secondly, qualitative tests , comparing the skill of models in regard to capturing the distribution of the observed data to the
whole range and in capturing the extreme precipitation events. For this purpose, statistical metrics such as IRF, ABC, 99p,
95p, ldaymax, R1, R10, R20 and SDII -and -graphical representations of Box-Whisker plots and Kolmogorov-Smirnov_(KS)
cumulative distribution test were applied. te-serve-as-a-goodness-offit-test-for-the-distribution-of the-observed-and-simulated
precipitation—KS is used to compare the PDF of the observations to the PDF of the simulated precipitation (Simard et al.,

2011). These plots provide a convenient visual summary of several statistical properties of the dataset as they vary over time.

A scoring technique is applied to compare the accuracy of the models. In this scoring technique, the bias of an evaluation
metrics for each stations is used, score 1 will be given to the model that has smaller bias and score 3 to the one having larger
bias and 2 for the model having the value in between. Then after, evaluation was made using equally weighted method only
due to the assumption that the metrics have equal weights as discussed above for model ranking. For Kolmogorov-Smirnov
cumulative distribution test, the observed and the simulated precipitation data from each model were compared using p value
at significance level of 5% for each station. As the computed p-value is lower than the significance level alpha=0.05,
indicates the simulated fail to follow the same distribution as the observed. Furthermore, the F-test and t-test are applied on

testing the equality of monthly variances of precipitation and equality of monthly mean respectively.

IRF and ABC are recommended by Campozano et al. (2016), while 95p, 99p, 1day max, R1,R10, R20 and SDII are
recommended by Expert on Climate Change Detection and Indices (ETCCDI). The interquartile relative fraction (IRF): to

evaluate the modelled variability representation relative to the observed is defined as Eq.11:

Qm_Qm
e —-.-. (11)

where Q™5 and Q° are the 75"modeled and observed percentile; Q™; and Q% are the 25™modeled and observed percentile
respectively. A value of IRF > 1 represents overestimation of the variability, IRF = 1 is a perfect representation of the
variability, and IRF < 1 is an underestimation of the variability. The absolute cumulative bias (ACB): to evaluate the bias of
the 25", 50", and 75" percentiles is defined as Eq.12:

ACB=abs(Q" - Q)+ QP - Q) + (QR 4+ Q)i (12)

Where Q™; and Q° are the 75"modeled and observed percentile; Q™; and Q% are the 50" modeled and observed percentile
Q™ and Q°; are the 25"modeled and observed percentile respectively. A value of ACB = 0 is a perfect representation of the
modelled and observed distributions, while under or overestimation indicates a divergence of ACB from zero to positive
values. 95p and 99p are 95" and 99" percentile of daily precipitation amount respectively, 1 daymax is highest 1 day

precipitation amount, R1, R10 and R20 are number of precipitation days (=1mm), heavy precipitation days (10mm) and

14



10

15

20

25

30

extreme heavy precipitation days =220mm respectively and SDII is simple daily intensity index calculated as the ratio of total

precipitation to the number of wet days (=1mm).

5. Results and Analysis
5. 1 Calibration and validation of LARS-WG

To verify the performance of LARS-WG, in addition to the graphic comparison, some statistical tests were performed. The
Kolmogorov-Smirnov (KS) test is performed to test equality of the seasonal distributions of wet and dry series (WDSeries),
distributions of daily rainfall (RainD), and distributions of daily maximum (TmaxD) and minimum (TminD) temperature.
The F-test is performed on testing equality of monthly variances of precipitation (RMV) while the t test is performed on
verifying equality of monthly mean rainfall (RMM), monthly mean of daily maximum temperature (TmaxM), and monthly
mean of daily minimum temperature (TminM). All of the tests calculate a p-value, which is used to accept or reject the
hypotheses that the two sets of data (observed and generated) could have come from the same distribution at the 5%
significance level . Therefore, the average number of P values less than 5% recorded from 26 stations and percentage failed
from the total of 8 seasons or 12 months has been presented in Table 3. The result revealed that LARS-WG performs very
well for all parameters except RMM and RMV. On the other hand, an average of 2.2 % and 17.3% of the months of a year
were obtained a P value < 5 % for the monthly mean and variance of precipitation respectively. From these numbers, it can

be noted that the model is less capable in simulating the monthly variances than the other parameters.

For illustrative purpose, graphical representation of monthly mean and standard deviation of the simulated and observed
precipitation, Tmax and Tmin were constructed (see Figure 3), for randomly chosen Gondar station as it has been difficult to
present the result of all stations. It can be seen from the result that observed and simulated monthly mean precipitation, Tmax
and Tmin matches very well. However, as it is known for being difficult to simulate the standard deviations in most
statistical downscaling studies, the performance of the standard deviation is less accurate as compared to the mean (Figure
3(b).

5. 2 Screening variable, model calibration and validation of SDSM

Initially, offline correlation analysis was performed using SPSS software between predictands and NCEP re-analysis
predictors to identify an optimal lag and physically sensible predictors for climate variables of precipitation, Tmax and
Tmin. Analysis of the offline correlation revealed that an optimal lag or time shift does not improve the correlation of
predictands and predictors for this particular study. Average partial correlation of observed precipitation with predictors as

shown in Figure 5Figure-5 indicates all stations followed the same correlation pattern (both in magnitude and direction) that
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illustrates all stations can have identical physically sensible predictors with a few of exceptions. Furthermore, there exist a
number of predictors that have correlation coefficient values in the range of 20 % to 45 % for precipitation across all
stations. This range is considered to be acceptable when dealing with precipitation downscaling (Wilby et al., 2002) because

of its complexity and high spatial and temporal variability to downscale.

The predictor variables identified for each downscaling GCMs and for the corresponding local climate variables showed that
different large scale atmospheric variables control different local variables. For instance, set of temp, mslp, s500, s850, p8_v,
p500, shum are the most potential or meaningful predictors for temperature and s500, s850, p8 u, p_z, pzh, p500 for
precipitation of the study area respectively, which is consistent with the result of offline correlation analysis. After carefully
screening predictor variables, model calibration and validation was carried out. The graphical comparison between the
observed and generated rainfall, Tmax and Tmin were run to enhance the confidence of the model performance, as shown in
Figure 6 and Figure 7 for Gondar station only. Examination of Figure 6 showed that the calibrated model reproduces the
monthly mean precipitation and mean standard deviation of daily Tmax, Tmin values quite well. However, the model is less
accurate in reproducing variance of observed precipitation. As Wilby et al. (2004) point out, downscaling models are often

regarded as less able to model the variance of the observed precipitation with great accuracy.

The statistical performance metrics of MAE and RMSE values for the monthly precipitation modelled from canESM2 are
ranged from 3.5-14.8 mm and 4.9-22.4 mm, which shows that canESM2 performs better than HadCM3, with the MAE and
RMSE values ranged from 6.2-48.6 mm and 7.6-73.4 mm respectively. The result of statistical analysis revealed that the
model is much better in simulating Tmax and Tmin than precipitation, because of the high dynamical properties of
precipitation makes it difficult to simulate. After accomplishing a satisfactory calibration, the multiple regression model is
validated using an independent set of data outside the period for which the model is calibrated. The validation result revealed
that the model is successfully validated but at lesser accuracy as compared to calibration for both GCMs as shown in Figure
7. In general, the result analysis of performance measure and graphical representation of observed and simulated both for

calibration and validation revealed that the model performs very well in simulating the climate variables.

5.3 Bown-sealingDownscaling with LARS-WG

Since the performance of LARS-WG during calibration and validation was very good, dewn-secalingdownscaling of climate
scenario can be done from six selected multi model CMIP3 GCMs under three scenarios (A1B, B1 and A2) for three time
periods. After downscaling the future climate scenarios at all stations from the selected six GCMs, the projected precipitation
analysis for the areal UBNRB was calculated from the point rainfall stations using Thiessen polygon method. The result
analysis revealed that, from Figure4(a) GCMs disagree on the direction of precipitation change, two GCMs (CSMK3 and
GFCM21) showed decreasing trend whereas a majority or four GCMs (NCCSM, Hadcm3, MPEH5 and MIHR) showed
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increasing trend from the reference period in all three time periods. By 2030s, the relative change of mean annual
precipitation projected in the range between (-2.3 % and + 6.5 %) for A1B, (-2.3 % and +7.8 %) for B1 and (-3.7 % and +6.4
%) for A2 emission scenarios. At 2050s, the relative change in precipitation range from (-8 % and +22.7 %) for A1B, (-2.7
% and +22 %) for B1 and (-7.4 % and +8.7 %) for A2 scenarios. In the time of 2080s, the relative change of precipitation
projected may vary from( -7.5 % and +29.9 %) for A1B, (-5.3 % and +13.7 %) for B1 and (-5.9 % and +43.8 %) for A2
emission scenarios. The multi model average result showed that in the future precipitation may generally increases over the
basin in the range of 1% to 14.4 % which is in line with the result from HadCM3 GCM (0.8 % to 16.6 %).

In a different way from precipitation, the projections of mean annual Tmax and Tmin have showed coherent increasing
trends from the six GCMs under all scenarios in all three future time periods Figure 4(b). The result calculated from the
ensemble mean showed that mean annual Tmax may increase up to +0.5 °%, +#1.8 °c and +3.6 °c by 2030s, 2050s and 2080s
respectively under A2 scenario which is in line with the results from both GFCM21 and HadCM3 GCMs. Likewise, UBNRB
may experience an increase mean annual Tmin up to +0.6 °c, +1.8 °c and +3.6 °c by 2030s, 2050s and 2080s respectively

from the multi model average.

5.4 Bewn-sealingDownscaling with SDSM

Here, as it is difficult to process all the selected six CMIP3 GCM3 using SDSM, we choose HadCM3 GCM as the best due
to the fact that the downscaling result of HadCM3 using LARS-WG fits with the downscaling result of the ensemble mean
model. Also, canESM2 from CMIP5 GCMs was selected to test the improvements of CMIP5 over CMIP3. Results of dewn
scatingdownscaling future climate scenario of areal UBNRB using SDSM calculated from all stations using Thiessen
polygon methods are summarized in Figure 8 Figure-8-. The overall analysis of the result indicates, a general increase in
mean annual precipitation for three time windows (2030s, 2050s and 2080s) for all 5 scenarios (A2a and B2a for HadCM3
and RCP2.6, RCP4.5 and RCP8.5 for canESMZ2) in the range of 2.1% to 43.8 %. The maximum/minimum relative change of
mean annual precipitation is projected to be 43.8 %/6.2%, 29.5 %/3.5 % and 19 %/2.1 % at 2080s, 2050s and 2030s under
RCP8.5 scenario of canESM2/B2a scenario of HadCM3 respectively. In general, RCP8.5 scenario of canESM2GCM
resulted pronounced increase in all three time periods whereas scenario B2a of HadCM3 GCM reported minimum change

over the study area.

Regarding to temperature, the dewn-sealingdownscaling result of Tmax and Tmin showed an increasing trend consistently in
all months and seasons in three time periods under all scenarios with mean annual value ranges from 0.5 °C to 2.6 °C and 0.3
°c to 1.6 °C under scenario RCP8.5 and B2a respectively. RCP 8.5 scenario reported maximum change while B2a scenario

reported minimum change both for Tmax and Tmin in all three time periods as compared to other scenarios. The analysis of
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down-sealingdownscaling result illustrates maximum temperature may become much hotter as compared to minimum

temperature in all scenarios and time periods in the future across UBNRB.
5.5 Comparative performance evaluation of LARS-WG and SDSM models

Chen et al. (2013) argued that though major source of uncertainty are linked to GCMs and emission scenarios, uncertainty
related to the choice of downscaling methods give less attention on climate change analysis. Therefore, in this study,
comparative performance evaluation of the downscaling methods has given due emphasis and carried out in a humber of
statistical and graphical tests both quantitatively and qualitatively. The model skill was evaluated and ranked at each site for
each metrics as shown in Table 4 for metrics of RMSE. The overall rank obtained by summing up the score of each model

for each metrics is presented in Table 5 and Table 6 respectively, for quantitative and qualitative measures.

The result revealed that SDSM/canESM2 narrowly performed best in simulating the long term average values in both
equally weighted and varying weights of the quantitative metrics. However, LARS-WG performed best in qualitative
measure in reproducing the distribution and extreme events of daily precipitation. For instance, absolute bias for the 95"
percentile of daily precipitation (95p) ranges from 4.35 mm to 12.4 mm for SDSM/canESMZ2, from 3.2 mm to 12.2 mm for
SDSM/HadCM3 and from 0.07 mm to 3.7 mm for LARS-WG; and for the mean of daily precipitation amount (SDII) ranges
from 1.3 to 6.3 mm for SDSM/canESM2, from 2.1 to 5.6 mm for SDSM/HadCM3 and from 0.01 to 3 mm for LARS-WG.

Furthermore, Kolmogorov-Smirnov test from Table7 shows, LARS-WG captures the distribution of the observed
precipitation 93.3 % from all stations while SDSM captures only 20 % of the 15 stations equally both from canESM2 and
HadCM3 GCMs at 5 % significance level. The t-test result revealed that 86.7 % of the simulated precipitation by LARS-WG
and SDSM/HadCM3 models are capturing their perspective mean values from all stations while SDSM/hadCM3 model
capture only 66.7 %. The F test showed 93.3 % of the simulated and the observed precipitation are normally distributed
around their respective variance value in all three models. In general, the comparative performance test revealed that LARS-
WG model performed best in qualitative measures while SDSM/canESM2 is best in quantitative measures in UBNRB. In
addition, FigureFigure 9 and Figure 10 confirmed graphically the ability of LARS/WG model in capturing the distribution
and extreme events of the precipitation in representative stations (randomly chosen) respectively by Whisker box plot and

Kolmogorov-Smirnov test.

For future simulation, HadCM3 GCM A2 scenario was used in common for two (LARS-WG and SDSM) down
seahingdownscaling methods to test whether the downscaling methods may affect the GCMs result under the same forcing
scenario. The results obtained from the two dewn-sealingdownscaling models were found reasonably comparable and both

approaches showed increasing trend for precipitation, Tmax and Tmin. However, the magnitude of the downscaled climate
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data from the two methods as presented in Figure 11 indicate that LARS-WG over predicts precipitation and temperature
than SDSM. The relative change of mean annual precipitation using LARS-WG is about 16.1 % and an average increase in
mean annual Tmax and Tmin about 3.7 °C and 3.6 °C respectively at 2080s. SDSM predicts the relative change of mean
annual precipitation only about 9.7 % and an average increase in Tmax and Tmin about 2 °c and 1.3 °C respectively in the
same period.The differences of the future predictions are the result of the difference in the basic concepts behind the two
downscaling techniques. -The SDSM uses large scale predictor variables from GCM outputs which can be considered as
more reliable for climate change predictionusing multiple linear regression. On the other hand, the LARS WG uses the
relative change factors (RCFs) derived from the direct GCM output of only those variables which directly correspond to the
predictands. Hence, because of the well known fact that GCMs are not very reliable in simulating precipitation, the error
induced from the GCM output for precipitation will propagate the error of downscaling that makes the performance of

LARS-WG to downscale precipitation needs more caution (Dibike et al., 2005).

6. Discussions and conclusions

The uncertainty related to climate change analysis can be due to climate models and downscaling methods among many
others. In this study, we employed multi model approach to see the uncertainties came from different GCMs. In total, 21
systematically selected future climate scenarios were produced for each time period, which we might think representative to
understand fully and to project plausibly the future climate change in the study area and to retain information about the full
variability of GCMs. Moreover, we applied two widely used statistical dewn—sealingdownscaling methods, namely the
regression downscaling technique (SDSM) and the stochastic weather generation method (LARS WG) for this particular

study.

The performance of the three models (HadCM3/SDSM, canESM2/SDSM and LARS-WG) were tested for the base line
period of 1984-2011 in representing the current situation particularly for precipitation, as it is the most difficult climate
variables to model. The result suggested that SDSM using canESM2 GCM captures the long term monthly average very well
at most of the stations and it ranked first from others. This could be attributed to the increasing performance of GCMs from
time to time (i.e, CMIP5 GCMs performs better than CMIP3 GCMs) due to the fact that modeling was based on the new set
of radiative forcing scenario (RCPs) that replaced SRES emission scenarios, constructed for IPCC AR5 where the impacts of
land use and land cover change on the environment and climate is explicitly included. However, LARS-WG performed best
in qualitative measures in capturing the distribution and extreme events of the daily precipitation than SDSM. The better
performance of LARS-WG in capturing the distribution and extreme events of the daily precipitation may be associated
with the use of 23 interval histograms for the construction of semi- empirical distribution, which offers more accurate
representation of the observed distribution compared with the 10 interval used in the previous version (Semenov et al.,

2010). The poor performance of SDSM would indicate the difficulty in finding climate variables from the NCEP data that
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could explain well the variability of daily precipitation. Therefore, LARS-WG would be more preferred in areas of UBNRB
where there is high climatic variability to correctly simulate the distribution and extreme events of the precipitation which is

crucial for a realistic assessment of flood events and agricultural production.

The down-seatingdownscaling result reported from the six GCMs used in LARS-WG showed large inter model differences,
2 GCMs reported precipitation may decrease while 4 GCMs reported precipitation may increase in the future. The large inter
model differences of the GCMs showed the uncertainties of GCMs associated with their differences of resolution and
assumptions of physical atmospheric processes to represent local scale climate variables which are typical characteristics for
Africa and because of low convergence in climate model projections in the area of UBNRB (Gebre et al., 2014). These
results further reinforce multimodel strategies for conducting climate change studies. The multi model average result showed
that in the future precipitation may generally increases over the basin in the range of +1 % to +14.4 % which is in line with
the result from HadCM3 GCM (0.8 % to 16.6 %), this indicates HadCM3 from CMIP3 GCMs has a better representation of
local scale climate variables in the study area consistent with the previous study result by Kim and Kaluarachchi (2009) and

(Dile et al., 2013) in the same study area.

LARS-WG produces synthetic climate data of any length with the same characteristics as the input record, it simulates
weather separately for single site. Therefore, the resulting weather series for different sites are independent of each other,
which can lose a very strong spatial correlation that exists in real weather data during simulation. Although, a few stochastic
models have been developed to produce weather series simultaneously at multiple sites preserving the spatial correlation,
mainly for daily precipitation, such as space-time models, non-homogeneous hidden Markov model and nonparametric
models typically use a K-Nearest Neighbour (K-NN) procedure (King et al., 2015), they are complicated in both calibration
and implementation and are unable to adequately reproduce the observed correlations (Khalili et al., 2007). In this study, the
simple Pearson's correlation coefficient (R?) value was checked in two stations before and after simulation of the observed
data to test the capability of LARS-WG in preserving the spatial correlation of stations . The result revealed that the spatial

correlation of the stations distorted /decreased/ from the original is insignificant.

In conclusion, a multi model average from LARS-WG and individual model result from SDSM showed a general increasing
trend for all three climatic variables (precipitation, Tmax and Tmin) in all three time periods. The positive change of
precipitation in future can be a good opportunity for the farmers who are engaged in rain fed agriculture to maximize their
agricultural production and to change their livelihoods. However, this information cannot be a guarantee for irrigation
farming because precipitation is not the only factor contributing to affect the flow of the river, which is the main source for
irrigation. Evapotranspiration, dynamics of land use land cover, proper water resource management and other climatic
factors, which are not yet assessed by this study can influence the flow of the river directly and indirectly. Furthermore, the

result from this study revealed that, maximum positive precipitation change may occur in Autumn (Sep.-Nov.) when most
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agricultural crops get matured and start harvesting while minimum precipitation change may occur during summer (June-
August), when about 80% of the annual rainfall occurred, this climate variability can be potential threat for the farmers, who
have limited ability to cope with the negative impacts of climate variability and overall ongoing economic development

efforts in the basin.

In general, this study has shown that climate change will occur plausibly that may affect the water resources and hydrology
of the UBNRB. On the basis of the results obtained in this study, both SDSM and LARS-WG models can be adopted with
reasonable confidence as downscaling tools to undertake climate change impact assessment studies for the future. However,
LARS-WG is more suitable for extreme precipitation impact assessment study such as floods and droughts. Moreover, the
paper provides substantial information that the choice of downscaling methods has a contribution in the uncertainty of future

climate prediction. The Authors would like also to suggest for further assessment ef-for the study area with large ensemble

of CMIP5 GCMs. Further relative performance of downscaling technigues for other climatic variables such as Tmax, Tmin,

dry spell length, wet spell length, inter-annual and seasonal cycle of precipitation using additional probability distribution

function (pdf) based metrics such as Brier score (BS) and the skill score (Sscore) -which might enhance the limitation of

this paper.
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Table 1: Selected Global climate models from IPCC AR4 incorporated into the LARS-WG

Research centre Country GCM Model Grid Emission Time
acronym  Resolution  Scenarios Periods

Common Wealth Scientific and Australia CSIRO- CSMK3  1.9x1.9° AlB, B1 B, T1,T2,T

Industrial Research Organization MK3 3

Max-Plank Institute for Germany ECHAM5- MPEH5  1,9x1.9° AlB,A2B B,T1T2T

Meteorology oM 1 3

National Institute for Japan MRI- MIHR 2.8x2.8° AlB,B1 B, T1T2T

Environmental Studies CGCM2.3. 3

UK Meteorological Office UK HadCM3 HADCM 25x3.75° Al1B,A2B B,T1,T2T
3 1 3

Geophysical Fluid Dynamics Lab  USA GFDL- GFCM21 2x2.5° AlB,A2B B, T1,T2,T

CM2.1 1 3
National Centre for Atmospheric USA CCsM3 NCCCS  1.4x1.4° AlB,B1 B,T1,T2,T
Research 3

B: baseline; T1: 2011-2030; T2: 2046-2065; T3: 2081-2100

Table 2: Name and description of all NCEP predictors on HadCM3 & canESM2 grid

Descriptions variables  Descriptions
Variables
temp Mean temperature at 2 m s500 + Specific humidity at 500 hpa height
mslp Mean sea level pressure s850+ Specific humidity at 850 hpa height
p500 500 hpa geopotential height ** f Geostrophic air flow velocity
p850 850 hpa geopotentail height ** 7 Vorticity
rhum * Near surface relative humidity ** Zonal velocity component
r500* Relative humidity at 500 hpa ** v Meridional velocity component
rg850* Relative humidity at 850 hpa **zh Divergence
shum Near surface specific humidity **thas Wind direction
Prec+ Total precipitation

5 (**) refers to different atmospheric levels: the surface (p_), 850 hpa height (p8), and 500 hpa height (p5)
(*) refers predictors only found from HadCM3, (+) refers predictors only for canESM2

Table 3: Calibration results of the average statistical tests comparing the observed data from 26 stations with synthetic data generated
10 through LARS-WG. The numbers in the table show the average numbers of tests gave P value less than 5 % significance level.

Tests KS-test t-test F-test KS-test t-test KS-test t-test
Parameters WDseries RainD RMM RMV TminD TminM TmaxD TmaxM
Average 0.04 0.00 0.27 2.08 0 0.12 0 0.12
Total 8 12 12 12 12 12 12 12

% failed 0.48 0.00 2.24 17.31 0 1 0 1
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Table 4: Performance measure and ranking of models during base line period (1984-2011) for evaluation metric RMSE

RMSE value Equally weighted score Varying weights score
LAR LAR
SDSM/can SDSM/Ha  S- SDSM/can SDSM/H  S- SDSM/can SDSM/Ha  LARS
Stations ESM2 dCM3 WG ESM2 adCM3 WG  ESM2 dCM3 -WG
Abaysheleko 7.4 15.7 189 1 2 3 0.14 0.29 0.35
Alemketema 194 7.6 105 3 1 2 0.35 0.14 0.19
Anger 11.1 131 100 2 3 1 0.29 0.35 0.27
Angerguten 8.2 16.1 9.8 1 3 2 0.18 0.35 0.21
Bahirdar 8.5 21.7 115 1 3 2 0.14 0.35 0.19
Bedele 6.4 46.1 147 1 3 2 0.05 0.35 0.11
Dangila 13.2 53.8 9.0 2 3 1 0.09 0.35 0.06
Dedesa 8.2 18.0 138 1 3 2 0.16 0.35 0.27
Dmarkos 5.0 19.1 125 1 3 2 0.09 0.35 0.23
Dtabor 224 394 107 2 3 1 0.20 0.35 0.10
Fitche 17.8 11.2 108 3 2 1 0.35 0.22 0.21
Gimijabet 14.5 324 114 2 3 1 0.16 0.35 0.12
Gondar 5.0 18.2 3.6 2 3 1 0.10 0.35 0.07
Nedjo 8.4 154 117 1 3 2 0.19 0.35 0.27
Shambu 8.6 15.7 107 1 3 2 0.19 0.35 0.24
Overall score 24 41 25 2.67 4.85 2.88

Table 5: Statistical dewn-seatingdownscaling models ranking during base line period (1984-2011) for quantitative measure . The numbers
5[ in the table show the total ranking scores summed up from 15 stations.

Equally weighted overall score Varying weights overall score

Evaluation SDSM/canESM ~ SDSM/HadCM  LARS SDSM/canESM ~ SDSM/HadCM  LARS
metrics 2 3 -WG Weight 2 3 -WG
RMSE 24 41 25 0.35 2.67 4.85 2.88
MAE 24 41 25 0.50 3.99 7.47 4.64
BIAS 23 39 28 0.15 1.29 1.83 0.70
Total 71 121 78 1.0 7.94 14.15 8.22
Rank 1 3 2 1 3 2
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Table 6: Ranking of statistical dewn-sealirgdownscaling models during base line period (1984-2011) for qualitative measure (distribution
and extreme events of daily precipitation). The numbers in the table show the total ranking scores obtained from 15 stations.

Evaluation metrics  SDSM/canESM2 SDSM/HadCM3 LARS-WG

95p 42 33 15
99%p 41 34 15
1-day max 39 36 15
SDIl 36 38 16
R20 42 33 16
R10 37 34 19
R1 40 35 15
1-IRF 32 29 29
ACB 33 33 24
Total score 342 305 164
Rank 3 2 1

Table 7: Kolmogorov-Smirnov, t and F tests during base line period (1984-2011) for qualitative measure

Kolmogorov-Smirnov test t-test F-test

HadCM LARS- HadCM canESM LARS- HadC LARS-
Station 3 canESM?2 WG 3 2 WG M3 canESM2 WG
Total stations 15 15 15 15 15 15 15 15 15
Passed (p>5%)" 3 3 14 14 14 14 10 1013 13
% passed 20 20 93.3 93.3 93.3 93.3 66.7 86.7 86.7

*: Number of stations with p value > 5% (pass to simulate the distribution of precipitation)
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Figure 1: Location Map of the study area
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Figure 2: Schematic diagram of a) LARS WG analysis b) SDSM analysis source (Wilby et al., 2002)
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using SDSM from canESM2 and HadCM3 from top to bottom respectively
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periods as compared to the baseline period of UBNRB using SDSM for HadCM3 and canESM2 GCMs under different
scenarios

10
1 +—— || 1 +——-—==
> > ! 7 > !
= = = =
$038 £0.8 - $08
g g g
2 0.6 2 0.6 - 0.6
= = =
S 0.4 S04 S04
(5] () (] [<5)
= = =
£0.2 £0.2 1 0.2
> =5 >
Eo ‘ ; ; E o ‘ ‘ ; E o ‘ ‘ ;
© 0 200 400 600 800 © 0 200 400 600 800 © 0 200 400 600 800
----- Observed —— LARS-WG -----Observed —— canESM2 -----Observed —— HadCM3

31



[N
-
\

il
-
\

)l

o
©
o
©

|

|
%
o
©

+

o
o
o
o

|

|
o
o

+

o
~
N
i

I

}
N
~

I

}

I

N

o

N
|

o

N
,

0 200 400 600 800

0 200 400 600 800

o
o

Cumulative relative frequency
Cumulative relative frequency
Cumulative relative frequency

0 200 400 600 800

l ----- Observed —— LARS-WG ] l ----- Observed —canESMZ] l ----- Observed —— HadCM3 ]

Figure 9 :Kolmogorov-Smirnov test to compare the skill of the models for the observed precipitation distribution (Upper
three Alemketema station, lower three Debre markos station)
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Figure 10 :Box plot showing the model performance for three stations at monthly basis. Box boundaries indicate the 25" and
75" percentiles, the line within the box marks the median, whiskers below and above the box indicate the 10™ and 90"
percentiles, dots indicate the extremes.
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Figure 11: Comparison of climate change scenario a) downscaled using LARS-WG and SDSM from HadCM3 GCM for a2
scenario b) downscaled from different scenarios (LARS-WG using hadCM3 a2 scenario)
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