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We highly appreciated and thank the two anonymous reviewers for their second time extensive general and specific
comments that addresses important issues which help us to improve the manuscript significantly to scientific standard.

List of all relevant changes made the manuscript
Anonymous reviewer #1 comments

1. Still the objective of the paper should be made more scientific. Preparing downscaled data of precipitation and
temperature of 6 GCMs, using two downscaling methods is a lot of work — but may not be sufficient for publication in a
scientific journal. It become more like a technical report. However, analysis and discussion of the difference between the two
downscaling methods may be more appealing. Otherwise, it seems more relevant to use one downscaling method, and focus
on analyzing (downscaled) results between the different GCMs, and whether downscaling may affect comparison between
the CGMs models.

Response:Accepted and corrected: The objective of the paper is modified accordingly. This is shown in the manuscript with
track changes on page 5, 11-16. The paper gives due emphasis on the differences between the two down scaling methods by
comparing their skills in reproducing the current climate variables both quantitatively and qualitatively using a humber of
statistical and graphical performance indexes and tests, which we might think this is the first paper addressing this issue in

the study area. This is shown in the manuscript with track changes on page 12- pagel3and on page 18, 19-23.

Furthermore, the skill of future projection of the two downscaling methods was compared using the same hadCM3 from
CMIP3 GCM forcing with the same A2 scenarios, due to the fact that the hadCM3 future downscaling climate variables has
a good agreement with the ensemble mean result. This is shown in the manuscript with track changes on page 19, 11-115.
Anonymous reviewer #2 comments

1. multi-model approach was adopted to evaluate uncertainty in climate projections. However, you applied two statistical
downscaling methods to different GCMs, i.e. LARS-WG for CMIP3 while SDSM for CMIP5. In this way, in my opinion,
fairly intercomparison of downscaling methods cannot be achieved. You need to apply the methods to same GCMs forced by
same emission scenarios (e.g. RCP4.5 or RCP8.5) and then intercompare the skill of methods and evaluate the uncertainty of
climate projections by downscaling.

Response: It was also the concern of Anonymous reviewer #1. Multi-model approach was applied for only LARS-WG
method from 6 selected (better performed) CMIP3 GCMs. The downscaled result of each GCM was compared with the
ensemble mean result and we found that HadCM3 model a good agreement with the ensemble mean result using LARS-WG
method. This is shown in the manuscript with track changes on page 16, 128-32 and on pagel7, 11 and 16. Hence, we
assumed that HadCM3 GCM from CMIP3 would give better result when it is applied individually.

Therefore, we used hadCM3 GCM from CMIP3 and canESM2 ESM from CMIP5 using SDSM method to test the
improvements of CMIP5 model over CMIP3 model though they are different GCMs, and direct comparison is not possible
as they used different scenarios describing the amount of greenhouse gas in the future. The inter comparison of downscaled
result applying the two different downscaling methods (LARS-WG and SDSM) was made using the same hadCM3 GCM
from CMIP3 forced by the same A2 scenario. The skill of the downscaling methods was evaluated and we obtained
different results. The LARS-WG over predicts the precipitation than SDSM in the study area. This is shown in the
manuscript with track changes on page 19, 11-115.
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2. The authors mentioned that two popular GCMs were selected due to providing daily climate variables with a better
resolution, showing high performance and representing CMIP3 and CMIP5 projections. However, the performances of
GCMs vary with regions due to different physiographic and climatic characteristics, model parameters, and so on. In my
understanding on CMIP5 climate projections, there are 30 GCMs that provide daily climate variables. The authors need to
address the limitation of this study in the number of GCMs selected in terms of uncertainty of climate projections.

Response: At the time of this study we couldn't find CMIP5 GCMs which can provide daily climate variables ready to use
directly for SDSM except canESM2. We understand that there are more than 30 CMIP5 GCMs which can provide daily
climate variables but it needs further preprocessing to use them as input for SDSM. We noticed that downscaling
precipitation, Tmax and Tmin from 6 GCMs using LARS-WG and 2 GCMs from SDSM , in total, 21 systematically selected
future climate scenarios produced for each time period, representative to understand fully and to project plausibly the future
climate change in the study area and to retain information about the full variability of GCMs. However, we recommended
further evaluation of multi-model CMIP5 GCMs from both LARS-WG and SDSM models will enhance the limitation of this
paper in the future. This is shown in the manuscript with track changes on page 22, 11-2.

3. In Table 4, the skill of SDSM is evaluated by various performance measures. However, R?, MAE, RMSE, NSE, and Bias
are measured by daily or monthly sequencings of observed and simulated values during the historical period. However, it
cannot guarantee that GCMs reproduce historical daily sequencing, actually cannot reproduce it but distributions for a
historical period. The authors need to change performance measures if daily (or monthly) sequencings were directly
compared with observations to calculate the measures although the results in Table 4 perform well.

Response: Accepted and corrected: the performance measures are modified and the evaluated was made in two ways
(quantitatively and qualitatively). Quantitative performance measure can be done to evaluate the long term monthly values of
both observed and simulated precipitation using statistical indexes (R2, MAE, RMSE, NSE, and Bias) at each station level.
Then after, the overall performance of the models was evaluated in two ways (equally weighted and varying weights of the
indexes). We introduce a new performance measure for qualitative evaluation (IRF and ACB). Furthermore, we applied
Kolmogrov simrov and Box plot graphical test to evaluate the skill of the methods for capturing the distribution and the
extreme values. This is shown in the manuscript with track changes on page 12- pagel3and on page 18, 19-23.

4. In the figures that present climate projections downscaled by two methods Fig. 4 and 5), | would like to see the spread of
projections for future periods. | am not interested in the performance of individual GCM.

Response: In figure 4 and 5, the Authors would like to show the inter model variability and uncertainties and how the multi-
model approach using ensemble mean improves the future projection. Therefore, we would like to maintain Figure5 but we
removed Figure 4.

5. LARS-WG showed less skill in reproducing variance, which seems very critical in generating future climate variability in
projections, specially more critical for wet season (summer). The authors need to address this fact based on results related to
this feature in LARS-WG.

Response: Both LARS-WG and SDSM showed less skill in reproducing variance as compared to the mean as it is difficult to
simulate the variance of the precipitation. However, it doesn't mean that LARS-WG is not able to reproduce the variance of
precipitation. Qualitative measures using both statistical metrics and graphical representation of Kolmogorov-Smirnov and
Box blot showed LARS-WG is performing best in capturing the distribution and extreme values. This is shown in the
manuscript with track changes on page 18, 14-22.

Specific commentsl) In Figure 4, box plots need to be modified. Accepted and removed from the manuscript
2) The order of figures should be rearranged, e.g. Fig 6 and Fig 7 should be Fig 9 and Fig 6, respectively. Accepted and
rearranged as per the comment
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Abstract. Climate change is becoming one of the most arguable and threatening issues in terms of global context and their

responses to environment and socio/economic drivers.

studies use the simulation results from General Circulation Models (GCMs) for assessing the past and future trends of

climate variables. However, a large uncertainty between different Glebal-Cireulation-Medels{GCMs, }-and coarse spatial
resolution dewnsealing-methods-exist-that-makes difficult to use the outputs of GCMs directly specially rehiable-conclusions

for a sustainable water management difficuttat regional scale, which introduces the need for downscaling techniques and

multi-model approach. This study aims i) to evaluate the comparative performance of two widely used statistical down

scaling techniques namely Long Ashton Research Station Weather Generator (LARS-WG) and _Statistical Down Scaling

Model (SDSM) ii) to down scale future climate scenarios of precipitation, maximum temperature (Tmax) and minimum

temperature (Tmin) of the UBNRB at finer spatial and temporal scale to suit for further hydrological impact studies.Hence;

less-demanding-and-efficient—The study result illustrates that both down scaling technigues (LARS-WG and SDSM) have

shown comparable and good ability to simulate the current local climate variables for the UBNRB. However, further

guantitative and gualitative comparative performance evaluation done by equally weighted and varying weights of statistical

matrices showed SDSM using canESM2 CMIP5 GCMs performs best guantitatively but LARS-WG best performing in

capturing extreme precipitation and precipitation distribution in the whole data range.

Six selected multi-model CMIP3 GCMs namely: HadCM3, GFDL-CM2.1, ECHAM5-OM, CCSM3, MRI-CGCM2.3.2, and
CSIRO-MK3 GCMs were used for downscaling climate scenarios by LARS-WG model. Fhe-dewnscaled—precipitation

esy om-the-six- GCMs by LARS WG showed-inconsistency-and-large-inter-modelvariability The result from ensemble

mean of the six GCM showed an increasing trend for precipitation, Tmax and Tmin. The relative change of precipitation
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all GCMM howed a-simila ontindous—inereasing end - form mum-tempe ure m nd

minimum-temperature (Tmin)-in-all-three future timeperiods Tthe change for mean annual Tmax may increase from 0.4 °c to

4.3 °c whereas-and the change for mean annual Tmin may increase from 0.3 °c to 4.1°%. The individual result of HadCM3

GCM has a good agreement with the result of ensemble mean result.

Even-though—beth-HadCM3 from CMIP3 using A2a and B2a scenarios and canESM2 from CMIP5 GCMs using-under
RCP2.6, RCP4.5 and RCP8.5 scenarios were downscaled by SDSM-agree-with-respect-to—thedirection-of 21" century

ecipitation—minimum-and-maximum-temperature-changes-there-areconsiderable-variab v in-maanitude. The result from

the two GCMs under 5 different scenarios agree with the increasing direction of three climate variables (precipitation, Tmax
and Tmin). The relative change of the downscaled mean annual precipitation-dewnscaled from-5-different-seenarios-of-two
GCMs-range from 2.1 % to 43.8 % while the change for mean annual Tmax and Tmin may increase in the range from 0.4 °c

to 2.9 °c and from 0.3 °c to 1.6 °c respectively.

Key words: Climate Change, GCM, statistical down scaling, LARS WG, SDSM; UBNRB

1. Introduction

The impacts of climate change on the hydrological cycle in general and on water resources in particular are of high
significance due to the fact that all natural and socio/economic system critically depend on water. The direct impact of
climate change can be variation and changing pattern of water resources availability and hydrological extreme events such as
floods and droughts, with many indirect effects on agriculture, food and energy production and overall water infrastructure
(Ebrahim et al., 2013). The impact may be worse on trans-boundary Rivers like Upper Blue Nile River where competition
for water is becoming high from different economic, political and social interests of the riparian countries and when runoff

variability of upstream countries can greatly affect the downstream countries (Kim, 2008; Semenov and Barrow, 1997).

According to IPCC (2007), between 75 and 250 million people are projected to be exposed to increased water stress due to

climate change in Africa by 2020. The increasing water demand of upstream countries in the Nile Basin coupled with
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climate change impacts can affect the availability of water resources for downstream countries and in the basin, that could
result in resource conflicts and regional insecurities. Moreover, climate variability, the way climate fluctuates yearly and
seasonally above or below a long-term average value, caused by changes in forcing factors such as variation in seasonal
extent of the Inter Tropical Convergence Zone (ITCZ) like El Nifio and La Nifia events, is already imposing a significant
challenge to Ethiopia by affecting food security, water and energy supply, poverty reduction and sustainable socio-economic
development efforts. To mitigate these challenges, the Ethiopian government is therefore carried out a series of studies on
Upper Blue Nile river Basin (UBNRB), which have been identified as an economic “growth corridor”, focused on
identifying irrigation-_and hydropower potential and-the-use-of-the-extensive-waterresources-of the basin (BCEOM, 1998;
USBR, 1964; WAPCOS, 1990). As the result, large scale irrigation and hydro-power projects including the Grand Ethiopian
Renaissance Dam (GERD), the largest hydroelectric power plant in Africa, have been identified and being constructed as
mitigation measure for the impacts of climate change. However, most studies were given less emphasis for climate change
and its impact on the hydrology of the basin, hence, identifying local impacts of climate change at basin level is quite
important especially in UBNRB for the sustainability of large scale water resource development projects, for proper water
resource management leading to regional security and looking for the possible mitigation measures otherwise the
consequences becoming catastrophic.

To this end, several individual researches have been done to study the impacts of climate change on the water resources of
Upper Blue Nile River Basin. Taye et al. (2011) reviewed some of the research outputs and concluded that clear
discrepancies were observed particularly on the projection of precipitation. For instance, the result obtained from (Bewket
and Conway, 2007; Conway, 2000; Gebremicael et al., 2013) showed that there is no significant change on the amount of
rainfall and there is no consistent patterns or trends observed. Kim (2008) used the outputs of six GCMs for the projection of
future precipitations and temperature, the result suggested that the changes in mean annual precipitation from the six GCMs
range from -11 % to 44 % with a change of 11% from the weighted average scenario at 2050s. On the other hand, the
changes in mean annual temperature range from 1.4°C to 2.6°C with a change of 2.3°C from the weighted average scenario.
Likewise, Yates and Strzepek (1998a) used 3 GCMs and the result revealed that the changes in precipitation range from -5%
to 30% and the change in temperature range from 2.2° to 3.5%. Yates and Strzepek (1998b) also used 6 GCMs and the
result showed in the range from -9% to 55% for precipitation while temperature increased from 2.2°c to 3.7 °c. Another study
done by Elshamy et al. (2009), used 17 GCMs and the result showed that Changes in total annual precipitation range
between —15 % to +14 % but the ensemble mean of all models showed almost no change in the annual total rainfall. While,
all models predict the temperature to increase between 2°C and 5°C. Gebre and Ludwig (2014), used five biased corrected
50km x 50km spatial resolution GCMs for RCP4.5 and RCP8.5 scenarios to down scale the future climate change of 4
watershed (Gilgel Abay, Gumara, Ribb and Megech) located in Tana sub basin ef- UBNRB-for the time period of 2030s and
2050s. The result suggested that the selected five GCMs disagree on the direction of future prediction of precipitation but

multimodal average monthly and seasonal precipitation may generally increases over the watersheds.
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For the historical context, the discrepancies could be due to the period and length of data analyzed and the failure to consider
stations which can represent the spatial variability of the basin and also errors induced from observed data. For the future
context, beside the above mentioned reasons, discrepancies could be due to the difference of GCMs and scenarios used for
downscaling, the downscaling techniques applied (can be dynamical and statistical), selection of representative predictors,

the period of analysis and spatial and temporal resolution of observed and predictor dataset.

To address uncertainty in projected climate changes, the (IPCC, 2014) thus recommends using a large ensemble of climate
change scenarios produced from various combinations of Atmospheric Ocean General Circulation Model (AOGCMs) and
forcing scenarios. However, it can become prohibitively time consuming to assess the climate change, using simultaneously
many climate change scenarios and many Statistical Down scaling models. As a result, researchers typically assess the
climate change and its impacts under only one or a few climate change scenarios selected arbitrarily with no justification for
instance used only A1B and A2 scenarios—respectively. Yet, there is no any hard rule to select an appropriate subset of
climate change scenarios among the wide range of possibilities (Casajus et al., 2016).

Although-GCMs perform reasonably well at larger spatial scales but poorly at finer spatial and temporal scales, especially
precipitation, which is of interest to hydrological impact analysis (Goly et al., 2014). Hence, eclmate-models—are-tsually

responsible—for-high-uncertaintyin-climate-change—mpact-analysis,—the processes of downscaling that ensures to narrow

down the scale discrepancy between the coarse scale -GCMs and the required local scale climate variables for hydrological

models should be investigated for their contribution_which is missed in previous studies of climate change analysis in the

has-been-found-to-perform-well-ove he-regions-and-time-scale hu

understand-the-apphicability-of-the-existing—modelsMany researchers have been tried to compare the comparative skill of
down scaling methods in different study areas such as (Dibike and Coulibaly, 2005; Ebrahim et al., 2013; Fiseha et al.,

2012; Goodarzi et al., 2015; Hashmi et al., 2011; Khan et al., 2006; Qian et al., 2004; Wilby et al., 2004; Wilby and Wigley,
1997; Xu, 1999). However, no single model has been found to perform well over all the regions and time scales. Thus,
evaluations of different models is critical to understand the applicability of the existing models.However—itremains-difficult

Apart from the GCMs and downscaling techniques, most of the previous studies e.g (Beyene et al., 2010; Elshamy et al.,
2009; Kim, 2008), used CRU, NFS and other gridded data sets constructed based on the interpolation of a few stations in
Ethiopia, which has relatively less accurateey as compared with the station based data (Worglul et al., 2014). Therefore, the

objective of this study is i) to evaluate the comparative performance of two widely used statistical down scaling techniques
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namely Long Ashton Research Station Weather Generator (LARS-WG) and _Statistical Down Scaling Model (SDSM) over

UBNRB ii) down scale future climate scenarios of precipitation, maximum temperature (Tmax) and minimum temperature

(Tmin) at acceptable spatial and temporal resolution, which can be used directly for further hydrological impact studies. This

can be achieved through applying a multi-model approach, to minimize the uncertainty of GCMs to-censtruct-and-analyze

yand incorporating acceptable number of weather

stations which has long time series and reliable observed climate data to app#eera&e—the—uﬂeena#me&eemmg—trenﬁkeem

the errors coming from the less accurate gridded data sets.

Generally, downscaling methods are classified in to dynamic and statistical downscaling (Fowler et al., 2007; Wilby et al.,
2002). Dynamic downscaling nests higher resolution Regional Climate Models(RCMs) into coarse resolution GCMs to
produce complete set of meteorological variables which are consistent each other. The outputs from this method is still not at
required scale to what the hydrological model require. Statistical downscaling overcomes this challenge moreover it is
computationally undemanding, simple to apply and provides the possibility of uncertainty analysis (Dibike et al., 2005;
Semenov et al., 1997; Wilby et al., 2002). Extensive details on the strength and weakness of the two methods can be found
(Wilby et al., 2007; Wilby et al., 1997). Among the different possibilities, two well recognized statistical downscaling tools,
a regression based Statistical Down-Scaling Model (SDSM) (Wilby et al., 2002) and a stochastic weather generator called
Long Ashton Research Station Weather Generator (LARS-WG) (Semenov et al., 1997; Semenov et al., 2002) were chosen
for this study. They have been tested in various regions e.g., (Chen et al., 2013; Dibike et al., 2005; Dile et al., 2013;
Elshamy et al., 2009; Fiseha et al., 2012; Hashmi et al., 2011; Hassan et al., 2014; Maurer and Hidalgo, 2008; Yimer et al.,

2009) under different climatic conditions of the world.

2. Description of Study Area

The Upper Blue Nile River Basin (UBNRB) extends from 7°45' to 13° N and 34°30' and 37°45' E_see Figure 1. It is one of
the most important major basin of Ethiopia because it contributes to 45% of the countries surface water resources, 20% of
the population, 17% of the landmass, 40% of the nation’s agricultural product and large portion of the hydropower and
irrigation potential of the country (Elshamy et al., 2009). The whole UBNRB has an area coverage of 199,812 km?
(BCEOM, 1998). For this study Rahad, Gelegu and Dinder sub catchments that do not flow through the main river stem to
Sudan is excluded. The basin area coverage is 176,000km? which is about 15% of total area of 1.12 million km?*(Awulachew
et al., 2007) of Ethiopia . The elevation ranges between 489 m.a.s.I downstream on the western side to 4261m.a.s.l upstream

at Mount Ras Dashen in the north-eastern part.
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The Upper Blue Nile River itself has an average annual run-off of about 49 BCM. In addition, the Dinder, Galegu and
Rahad rivers have a combined annual run-off of about 5 BCM. The rivers of the Upper Blue Nile River Basin contribute on
average about 62 per cent of Nile total at Aswan. Together with contributions of the Baro-Akobo and Tekeze rivers, Ethiopia
accounts for 86 per cent of run-off at Aswan (BCEOM, 1998). The climate of Ethiopia is mainly controlled by the seasonal
migration of the Inter-tropical Convergence Zone (ITCZ) following the position of the sun relative to the earth and the
associated atmospheric circulation. It is also highly influenced by the complex topography. The whole UBNRB has long
term mean annual rainfall, minimum and maximum temperature of 1452 mmyr ', 11.4°C and 24.7°C respectively as
calculated by this study from 15 rainfall and 25 temperature gauging stations from the period 1984-2011. The mean seasonal
rainfall based on the above data showed about 238 mm, 1065mm, and 148 mm occurred in Belg (October-January), Kiremit
(July-September), and Bega (February-May) respectively, in which about 74 % of rainfall concentrates between June and
September (Kiremit season).

3. Datasets
3.1 Local data sets

The historical precipitation, maximum and minimum temperature data for the study area were obtained from Ethiopian
Meteorological Agency (EMA), which were analyzed and checked for further quality control. A considerable length of time
series data were missed in almost all available stations and hence 15 rainfall and 25 temperature stations which have long
time series and relatively short time missing records were selected. Filling missed or gap records was the first task for further
meteorological data analysis. This task was done using the well-known methodology of inverse distance weighing method
(IDW). To check the quality of the data, the Double Mass Curve analysis (DMC) were used. DMC is a cross correlation
between the accumulated totals of the gauge in question against the corresponding totals for a representative group of nearby

gauges.

3.2 Large scale datasets

A
> > \/ o o

{Kim-and-Kaluarachehi—2009)—Hence—aA new version of the LARS-WG5.5 was applied for this study that incorporates

predictions from 15 GCMs which were used in the IPCC's Fourth Assessment Report (AR4) based on Special Emissions
Scenarios SRES B1, A1B and A2 for three time windows as listed in—Fable-t. However, the fifth phase of Coupled Model

Inter Comparison Project (CMIP5) climate models based on the new radiative forcing scenarios (—Representative
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Concentration Pathway, RCP) which were used for IPCC Fifth Assessment Report (AR5) were not incorporated in to it at

the time of the study.

As it is difficult to process all the incorporated 15 CMIP3 GCMs and as it is expected large differences in predictions of
climate variables among the GCMs, the performance of GCMs in simulating the current climate variables of the study area
(UBNRB) should be evaluated and best represented GCMs were selected. -The MAGICC/SCEGEN computer program tool
was used for the performance evaluation of the embedded-15 GCMs found in LARS WG5.5 database, as it is a standard
method for selecting models on the basis of their ability to accurately represent current climate, either for a particular region

and/or for the globe.

In this study, we used a semi-quantitative skill score that rewards relatively good models and penalizes relatively bad models
as suggested by user manual Wigley (2008). The statistics used for model selection are pattern correlation (R?), Root mean
square error (RMSE), bias (B), and a bias-corrected RMSE (RMSE-corr). The analysis was done separately for precipitation
and temperature and finally an average score value was taken for model selection. Six best performed GCMs have been
selected for this study namely: HadCM3, GFDL-CM2.1, ECHAM5-OM, CCSM3, MRI-CGCM2.3.2, and CSIRO-MK3 in
the order of their performance to construct future precipitation, maximum and minimum temperature in the UBNRB for the
time period of 2030s, 2050s and 2080s under A1B, A2 and B1 scenarios_see Table 1.

Moreover, atmospheric large scale predictor variables used for representing the present condition were obtained from the
National Centre for Environmental Prediction (NCEP) reanalysis data set. CanESM2, second generation Canadian Earth
System Model (ESM) developed by Canadian Centre for Climate Modelling and Analysis (CCCma) of Environment Canada
that represents CMIP5 and HadCM3 outputs from the Hadley Centre, United Kingdom(UK) representing CMIP3 were

used in SDSM for the construction of daily local meteorological variables corresponding to their future climate scenario.

The reasons for selecting these two GCMs were due to the fact that they are models that made daily predictor variables
freely available to be directly fed into SDSM covering the study area with a better resolution. Additionally, they-areHadCM3
is the most used GCMs in previous studies such as (Dibike et al., 2005; Dile et al., 2013; Hassan et al., 2014; Yimer et al.,
2009), and HadCM3 ranked first in performance evolution done by MAGICC/SCEGEN computer program tools and its
downscaled results match with the ensemble mean of the six GCMs used in LARS--WG model. Furthermore, they can
represent two different scenario generations describing the amount of green house gases(GHGs) in the atmosphere in the
future. _‘HadCM3 GCM used emission scenarios of A2 (separated world scenario) in which the co2 concentration projected
to be 414ppm, 545ppm and 754ppm and B2 (the world of technological inequalities) where the co2 concentration to be
expected 406ppm, 486ppm and 581ppm at the time period of 2020s, 2050s and 2080s respectively_(Semenov and
Stratonovitch, 2010) that were used in the CMIP3 for the IPCC’s AR4 (IPCC, 2007). While canESM2 represents the latest

9
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and wide range of plausible radiative forcing scenarios, which include a very low forcing level (RCP2.6), where radiative
forcing peaks at approximately 3 Wm™, approximately 490 ppm co2 equivalent before 2100 and then decline to 2.6Wm™;
two medium stabilization scenarios (RCP6 and RCP 4.5) in which radiative forcing is stabilised at 6Wm™ (approximately
850 ppm co2 equivalent) and 4.5 Wm ( approximately 650 ppm co2 equivalent) after 2100 respectively, and one very high
baseline emission scenario (RCP8.5) for which radiative forcing reaches >8.5 Wm™ (1370 ppm co2 equivalent) by 2100 and
continues to rise for some time that were used for the IPCC's AR5, (IPCC, 2014).

The NCEP dataset were normalized over the complete 1961-1990 period data, and interpolated to the same grid as HadCM3
(2.5° latitude x 3.75° longitude) and canESM2 (2.8125° latitude x 2.8125° longitude) from its horizontal resolution of (2.5°
latitude x 2.5° longitude), to represent the current climate conditions. NCEP reanalysis data were normalized and interpolated
as (Hassan et al., 2014):

U = e (1)

ou

In which un is the normalized atmospheric variable at time t, ut is the original data at time t, ua is the multiyear average
during the period, and ou is the standard deviation.

The canESM2 outputs for three different climate scenarios namely: RCP 2.6, RCP 4.5 and RCP 8.5 for the period 2006-
2100 while the outputs of HadCM3 for A2a (medium-high) and B2a (medium-low) emission scenarios for the period 1961-
2099 were obtained on a grid by grid box basis for the study area from the Environment Canada website http://ccds-
dscc.ec.gc.ca/index.php?page=dst-sdi (the “a” in A2a and B2a refers the ensemble member in the HadCM3 A2 and B2
experiments). The archive of canESM2 and HadCM3 GCM output contains 26 daily predictor variables each as listed in
Table 3.

4. Methodology

4.1 Description of LARS-WG Model

LARS-WG is a stochastic weather generator which can be used for the simulation of weather data at a single station under
both current and future climate conditions. These data are in the form of daily time-series for a group of climate variables,
namely, precipitation, maximum and minimum temperature and solar radiation (Chen et al., 2013; Semenov et al., 1997).
LARS-WG uses a semi-empirical distribution (SED) that is defined as the cumulative probability distribution function(CDF)

to approximate probability distributions of dry and wet series, daily precipitation, minimum and maximum temperatures.

10
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EPM = {ay, a;, h;,i = 0,...,23%0}.ccoovvvcr.. )

EPM is a histogram of the distribution of 23 different intervals (a;.;, a;) where a;; < a; (Semenov et al., 2002), which offers
more accurate representation of the observed distribution compared with the 10 used in the previous version. By perturbing
parameters of distributions for a site with the predicted changes of climate derived from global or regional climate models, a
daily climate scenario for this site could be generated and used in conjunction with a process-based impact model for

assessment of impacts.

In general, the process of generating synthetic weather data can be categorized in three distinct steps: model calibration,
model validation and scenario generation as represented in Figure 2 (a), which are briefly described by (Semenov et al.,
2002) as follows.

The inputs to the-weather-generatorLARS-WG are the series of daily observed data (precipitation, minimum and maximum
temperature) of the base period (1984-2011) and site information (latitude, longitude and altitude)-are-the—inputs—to-the
LARSWG. After the input data preparation and quality control, the observed daily weather data at a given site were used to
determine a set of parameters for probability distributions of weather variables. These parameters are used to generate a
synthetic weather time series of arbitrary length by randomly selecting values from the appropriate distributions, having the
same statistical characteristics as the original observed data but differing on a day-to-day basis. The LARS--WG
distinguishes wet days from dry days based on whether the precipitation is greater than zero. The occurrence of precipitation
is modelled by alternating wet and dry series approximated by semi empirical probability distributions. The statistical
characteristics of the observed and synthetic weather data are analyzed to determine if there are any statistically-significant
differences using Chi-square goodness of fit test (KS) and the means and standard deviation using t and F test respectively
by changing the parameters of LARS-WG (number of years and seed number).

To generate climate scenarios at a site for a certain future period and an emission scenario, the LARS-WG baseline
parameters, which are calculated from observed weather for a baseline period (1984-2011), are adjusted by the A-changes for
the future period and the emissions predicted by a GCM for each climatic variable for the grid covering the site. In this
study, the local-scale climate scenarios based on the SRES A2, A1B and B1 scenario simulated by the selected six GCMs are
generated for the time periods of 2011-2030, 2046—2065, and 20802099 to predict the future change of precipitation and
temperature in UBNRB.

A -changes were calculated as relative changes for precipitation and absolute changes for minimum and maximum

temperatures (Eg. 3 and 4),respectively. No adjustments for distributions of dry and wet series and temperature variability
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were made, because this would require daily output from the GCMs which is not readily available from LARS--WG data set
(Semenov et al., 2010).

ATi = (TGCM,FUT,i - Tsynt,Base,i) ............................ (3)

APi — pGCM,FUT,i _ (4)

P synt,Base,i

In above equations, 4T; and 4P; are climate change scenarios of the temperature and precipitation, respectively, for long-
term average for each month (1 < i < 12); Tgempyr the long term average temperature simulated by the AOGCM in the
future periods per month for three time periods; Tsynth‘Base_i is the long term average temperature simulated by the model in
the period similar to observation period (in this study 1984-2011) for each month. The above calculations are true for

precipitation as well.

For obtaining time series of future climate scenarios, climate change scenarios are added to the observations values by
employing the change factor (CF) method (Eg. 5 and 6) (in this study 1984-2011):
T = Tops + AT oo 5)

I R (6)

T and P; time series of the future climate scenarios of temperature and precipitation (2011-2100) and T,s and Py ; 0bserved
temperature and precipitation. So, in LARS-WG downscaling unlike SDSM, large-scale atmospheric variables are not
directly used in the model, rather, based on the relative mean monthly changes between current and future periods predicted
by a GCM, local station climate variables are adjusted proportionately to represent climate change (Dibike et al., 2005).

4.2 Description of SDSM

The SDSM is best described as a hybrid of the stochastic weather generator and regression based in the family of transfer
function methods_due to the fact that a multiple linear regression model is developed between a few selected large-scale
predictor variables_(Table 3) and local-scale predictands such as temperature and precipitation to condition local scale
weather parameters from large scale circulation patterns. The stochastic component of SDSM enables the generation of
multiple simulations with slightly different time series attributes, but the same overall statistical properties. (Wilby et al.,
2002) . It requires two types of daily data, the first type corresponds to local predictands of interest (e.g. temperature,
precipitation) and the second type corresponds to the data of large-scale predictors (NCEP and GCM) of a grid box closest to

the station.
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The SDSM model categorizes the task of downscaling into a series of discrete processes such as quality control and data
transformation, screening of predictor variables, model calibration and weather and scenario generation as shown in Figure
2(b). Detail procedures and steps can be found (Wilby et al., 2002) for further reading. Screening potentially useful
predictor-predictand relationships for model calibration is one of the most challenging but very crucial stage in the
development of any statistical down scaling model. It is because of the fact that the selection of appropriate predictor
variables largely determines the success of SDSM and also the character of the downscaled climate scenario (Wilby et al.,
2007). After routine screening procedures, the predictor variables that provide physically sensible meaning in terms
of their high explained variance, correlation coefficient (r) and the magnitude of their probability (p value) were

selected.

The model calibration process in SDSM was used to construct downscaled data based on multiple regression equations given
daily weather data (predictand) and the selected predictor variables_at each station. The model was structured as monthly

model for both daily precipitation and temperature_-using the same set of the selected NCEP predictors for the calibration

period.dewnscaling: ConseguentlyHence, twelve regression equations were developed for twelve months. Bias correction
and variance inflation factor was adjusted until the model replicate the observed data. Model validation was carried out by

testing the model using independent data set.

toh—To compare the observed and

simulated data, SDSM has provided summary statistics function that summarizes the result of both the observed and
simulated data. Time series of station data and large scale predictor variable infermation—(NCEP reanalysis data) were
divided into two groups; for the period from 1984-1995/ 1984-2000 and 1996-2001/ 2001-2005 for model calibration and
validation of HadCM3/canESM2 GCMs respectively.

The Scenario Generator operation produces ensembles of synthetic daily weather series given observed daily atmospheric
predictor variables supplied by a GCM either for current or future climate_(Wilby et al., 2002). The scenario generation
produced 20 ensemble members of synthetic weather data for 139 years (1961-2099) from HadCM3 A2a and B2a scenarios
and for 95 years (2006-2100) from canESM2 for RCP2.6, 4.5 and 8.5 scenarios, and the mean of the ensemble members was
calculated and used for further climate change analysis. The generated scenario was divided into three time windows of 30
years of data (2011-2040), (2041-2070) and (2071-2100) hence_forth called 2030s, 2050s and 2080s, respectively.

4.3 Model performance evaluation criteria

A number of statistical tests were carried out to compare the skills of the two down scaling models categorized in to two

main classes. First, quantitative statistical tests using metrics,A-simulation-ef-mean-dathy-and-menthhyrainfalh—Tmax—and
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h ion—and id on-—o he DSM-_and A RS\A ma carin mara chockad b ing—araph

isti i ; indi such as mean absolute error (MAE), root mean
square error RMSE), Bias (B), coefficient of determination (R?)_and. NasheSutcliffe Model Efficiency (NSE) are used to

evaluate the comparative performance of the models to simulate the current climate variable of precipitation on long term

monthly average basis defined by were-used-using Eq.7-Eq.11. Evaluation was done in two steps as suggested by (Goly et

al., 2014) i) equally weighted the metrics such as R?, NSE, MAE, RMSE and Bias and ii) varying the weights of metrics. For

the case of equally weighted the following steps were applied. a) Compare the values of the performance metrics among the

models and give the rank (obtaining individual model rankings for each performance metrics). Here, the values of R? and

NSE are subtracted from 1, so that they are consistent with other performance measures (MAE, RMSE and Bias) suggesting

that the lower the values of the index, the better the model at station level. b) summing up the rankings pertained to each

model across all the performance measures and give the overall ranks of the model at each station. ¢) Once the final ranks are

obtained at station level, the models are ranked again based on the totals by summing up the model ranks in all stations. te

RZ = SR (Ki=i) (Vi) [ @

Z?=1(Xi_ux)2 Z?=1(Yi_ux)2

MAE = z:i=1|Xi_Yi|

1al=
YR X-Y)?
T 1gi= 2
HZ}=I11(X1_MX)

NSE=1

Tior Xi _ Zic1Yi

Bias = s (11)

In the above equations Xi and Yi are i-th observation and simulated data by the model, respectively. px and py are the

average of all data of Xi and Yi in the study population and n is the number of all samples to be tested.

Additionally, varying weights technigue was applied to the performance metrics as given in Eq. 12 to rank the models

according to their skills. To avoid the discrepancy in weighing the performance measures because of differences in the order

of their magnitudes, each performance measure is normalized (divided by the maximum value) and then the cumulative

weighted performance measure for each downscaling model is calculated (Goly et al., 2014). The weights of metrics are

arranged in such a way that more emphasizes is given to (MAE, RMSE), followed by Bias and less emphasis was given for
R” and NSE ( 0.3, 0.3, 0.2, 0.1 and 0.1) respectively.
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R;? MAE;

RMSE;
= + MAE AR

NSEi Biasi

+ RMSE + NSE + Bias

max R max NSEmax Biasmax

12)

Wi = R?
R

ma

where the index i refers to a downscaling model, Wi refers to overall performance measure, and 0 < Wi <1.

Secondly, qualitative tests , in order to compare the skill of models in regard to capturing the distribution of the observed

data to the whole range and in capturing the extreme events were compared. For this purpose, statistical metrics and a

graphical representation of Box-Whisker plots and Kolmogorov-Smirnov cumulative distribution test were applied to serve

as a goodness of fit test for the distribution of the observed and simulated precipitation at monthly basis. Box-Whisker plots

was selected because, in addition to the median, the Box-Whisker plot depicts the extreme values, respectively, the minimum

and maximum (the caps at the end of each box), and the outliers falling the interquartile range above the third or below the

first quartile (the points in the graph). For Kolmogorov-Smirnov cumulative distribution test, the observed and the simulated

precipitation data from each model were compared using p value at significance level of 5% for each station. As the

computed p-value is lower than the significance level alpha=0.05, one should reject the null hypothesis HO (observed and

simulated follow the same distribution), and accept the alternative hypothesis Ha.

As statistical metrics the following were used as suggested by Campozano et al. (2016): The interquartile relative fraction

(IRF): to evaluate the modelled variability representation relative to the observed Eqg.13:

where IRF is the interquartile relative fraction. A value of IRF > 1 represents overestimation of the variability, IRF =1 is a

perfect representation of the variability, and IRF < 1 is an underestimation of the variability; Q™; and Q°% and the

75"modeled and observed percentile;Q™ ; andQ° , and the 25"modeled and observed percentile.
The absolute cumulative bias (ACB): to evaluate the bias of the 25", 50", and 75" percentiles Eq.14;

ACB =abs(QT' = Q}) + (QF = Q%) + (QF + Qv (14)

Where ACB is the absolute cumulative bias. A value of ACB = 0 is a perfect representation of the three percentiles

(respectively, the 25" 50" and 75" percentile) of modelled and observed distributions, while under or overestimation

indicates a divergence of ACB from zero to positive values. Evaluation was done using equally weighted method only due to

the assumption that the two metrics have equal weights as discussed above. Furthermore, the F-test and t-test are applied on

testing the equality of monthly variances of precipitation and equality of monthly mean respectively.
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5. Results and Analysis

5.1 Calibration and validation of LARS-WG

To verify the performance of LARS-WG, in addition to the graphic comparison, some statistical tests were performed. The
Kolmogorov-Smirnov (KS) test is performed to test equality of the seasonal distributions of wet and dry series (WDSeries),
distributions of daily rainfall (RainD), and distributions of daily maximum (TmaxD) and minimum (TminD) temperature.
The F-test is performed on testing equality of monthly variances of precipitation (RMV) while the t test is performed on
verifying equality of monthly mean rainfall (RMM), monthly mean of daily maximum temperature (TmaxM), and monthly
mean of daily minimum temperature (TminM).- All of the tests calculate a p-value, which is used to accept or reject the
hypotheses that the two sets of data (observed and generated) could have come from the same distribution at the 5%
significance level . Therefore,
seasons-or—12menths-wererecorded-for-each-stations—Fthe average number of P values less than 5% recorded from 26
stations and percentage failed from the total of 8 seasons or 12 months has been presented in_Table 2-. H-can-be-seenfrom
Fable-2-that-The result revealed that -L ARS--WG- performs very well for all parameters except RMM and RMV. On the
other hand, EARS\WG—performspoor{i-e—an average of 2.2 % and 17.3-% -of the months of a year were recorded—obtained

a P value < 5 %j for the monthly mean and variance of precipitation respectively. -From these numbers, it can be noted that

the model is less capable in simulating the monthly variances than the other parameters.

For illustrative purpose, graphical representation of monthly mean and standard deviation of the simulated and observed
precipitation, Tmax and Tmin were constructed (iasee Figure 3)- for randomly chosen Gondar station as it has been difficult
to present the result of all stations. It can be seen from Figure-3the result that observed and simulated monthly mean
precipitation, Tmax and Tmin matches very well. However, -as it is known for being difficult to simulate the standard

deviations in most statistical downscaling studies, the performance of the standard deviation is less accurate as compared to
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5. 3-2 Screening variable, model calibration and validation of SDSM

Initially, offline correlation analysis was performed using SPSS software between predictands and NCEP re-analysis
predictors to identify an optimal lag and physically sensible predictors for climate variables of precipitation, Tmax and
Tmin. Analysis of the offline correlation revealed that an optimal lag or time shift does not improve the correlation of
predictands and predictors for this particular study. Average partial correlation of observed precipitation efaH-stations-with
predictors _as shown in Figure 5 is-shewn-in-the-Figure7-which-indicates all stations followed the same correlation pattern

(both in magnitude and direction) that illustrates all stations can have identical physically sensible predictors with a few of

exceptions. Furthermore, there exist a number of predictors that have correlation coefficient values in the range of 20-%-45
% for precipitation across all stations-as-shewn-in-Figure—7. This range is considered to be acceptable when dealing with
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precipitation downscaling (Wilby et al., 2002) because of its complexity and high spatial and temporal variability to

downscale.

The predictor variables identified for each downscaling GCMs and for the corresponding local climate variables conducted

ved-showed that different large scale
atmospheric variables control different local variables. For instance, set of temp, mslp, s500, s850, p8_v, p500, shum are the
most potential or meaningful predictors for temperature and s500, s850, p8_u, p_z, pzh, p500 for precipitation of the study

area respectively, which is consistent with the result of offline correlation analysis.

After carefully screening predictor variables, model calibration and validation was carried out. The graphical comparison

between the observed and generated rainfall, Tmax and Tmin were run to enhance the confidence of the model performance,
as shown in Figure 6_and _Figure 7_ for Gondar station only. Examination of Figure 6_ showed that the calibrated model
reproduces the monthly mean precipitation and mean and-standard deviation of daily Tmax, Tmin; and-mean-dry-spet-length
values quite well. However, the wet-spellength—were—consistenthy—underestimated—and—alsomodel is less accurate in

reproducing variance of observed precipitation. As Wilby et al. (2004) point out, downscaling models are often regarded as

less able to model the variance of the observed precipitation with great accuracy.

Furthermore, the performance of the model was evaluated by statistical performance indicators-metrics of (MAE, RMSE, R?,
NSE and BIAS)-as-summarized—in—Table—4. The result of statistical analysis revealed that the model is much better in
simulating Tmax and Tmin than precipitation, because of the high dynamical properties of precipitation makes it difficult to
simulate. After accomplishing a satisfactory calibration—{Figure-9}, the multiple regression model is validated using an
independent set of data outside the period for which the model is calibrated. -as-discussed-under-section-4.—and-theresults

ained-are-shown-in-Figure 9-and-Table 4. amination-of Figure 9 Figure 10-and-Table-4-The validation result revealed

that the model is successfully validated but at lesser accuracy as compared to calibration for both GCMs. In general, the
result analysis of performance measure and graphical representation of observed and simulated both for calibration and
validation revealed that the model performs very well in simulating the climate variables-with-high-degree-ofacecuracy.

5.3 Down scaling with LARS-WG

Since the performance of LARS-WG during calibration and validation was very good, down scaling of climate scenario can

be done from six selected multi model CMIP3 GCMs under three scenarios (A1B, B1 and A2) for three time periods. The

result of precipitation prediction were plotted in Figure 4 for illustrative purpose. After downscaling the future climate

scenarios at all stations from the selected six GCMs, the projected precipitation analysis for the areal UBNRB was calculated

from the point rainfall stations using Thiessen polygon method. The result analysis revealed that, GCMs disagree on the
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direction of precipitation change, two GCMs (CSMK3 and GFCM21) showed decreasing trend whereas a majority or four
GCMs (NCCSM, Hadcm3, MPEH5 and MIHR) showed increasing trend from the reference period in all three time periods.

By 2030s, the relative change of mean annual precipitation projected in the range between (-2.3 % and + 6.5 %) for Al1B, (-

2.3 % and +7.8 %) for B1 and (-3.7 % and +6.4 %) for A2 emission scenarios. At 2050s, the relative change in precipitation
range from (-8 % and +22.7 %) for Al1B, (-2.7 % and +22 %) for B1 and (-7.4 % and +8.7 %) for A2 scenarios. In the time
of 2080s, the relative change of precipitation projected may vary from( -7.5 % and +29.9 %) for A1B, (-5.3 % and +13.7 %)

for B1 and (-5.9 % and +43.8 %) for A2 emission scenarios. The multi model average result showed that in the future

precipitation may generally increases over the basin in the range of 1%-14.4 % which is in line with the result from HadCM3
GCM (0.8 %-16.6 %).

In a different way from precipitation, the projection of mean annual Tmax and Tmin have coherent increasing trends were

observed from the six GCMs under all scenarios in all three future time periods. The result calculated from the ensemble

mean _showed that mean annual Tmax may increase up to +0.5 °%, +1.8 °c and +3.6 °c by 2030s, 2050s and 2080s
respectively under A2 scenario which is in line with the results from both GFCM21 and HadCM3 GCMs. Likewise,

UBNRB may experience an increase mean annual Tmin up to +0.6 °c, +1.8 °c and +3.6 °c by 2030s, 2050s and 2080s

respectively from the multi model average.

5.4 Down scaling with SDSM

Here, as it is difficult to process all the selected six CMIP3 GCM3 using SDSM, we choose HadCM3 GCM as the best due
to the fact that the downscaling result of HadCM3 using LARS-WG fits with the downscaling result of the ensemble mean
model. Also, canESM2 from CMIP5 GCMs was selected to test the improvements of CMIP5 over CMIP3. Results of down

scaling future climate scenario of -areal UBNRB using SDSM calculated from all stations using Thiessen polygon methods

are summarized fromin -Figure-6Figure 8_. Fhe-magnitude-of-future-climate-change-at-each-station-has-different-pattern-an
i i i i tation-in-Fi ~The overall analysis of the result ef-the-whele
UBNRB-frem-Figure-6—indicates, a general increase in mean annual precipitation for three time windows (2030s, 2050s and
2080s) under-in all 5 scenarios_(A2a and B2a for HadCM3 and RCP2.6, RCP4.5 and RCP8.5 for canESMZ2) in the range of

2.1-% to 43.8 %. The maximum/minimum relative change of mean annual precipitation is projected to be 43.8 %/2.1 %, 29.5
%/3.5 % and 19 %/2.1% at 2080s, 2050s and 2030s under RCP8.5 scenario of canESM2 -and H3B2a scenario of HadCM3
respectively. In general, RCP8.5 scenario of canESM2GCM resulted pronounced increase in all three time periods whereas

scenario B2a of HadCM3 GCM reported minimum change over the study area.

Regarding to temperature, the down scaling result of Tmax and Tmin showed an increasing trend consistently in all months

and ;-seasons in three time periods under all scenarios with mean annual value ranges from 0.5 °C to 2.6 °C and 0.3 °cto 1.6

19



10

15

20

25

30

°C under scenario RCP8.5 and H3B2a respectively. RCP 8.5 scenario reported maximum change while H3B2a scenario
reported minimum change both for Tmax and Tmin in all three time periods as compared to other scenarios. The analysis of
down scaling result illustrates maximum temperature may become much hotter as compared to minimum temperature in all

scenarios and time periods in the future across UBNRB.
5.5 Comparative performance evaluation of LARS-WG and SDSM _models

Chen et al. (2013) argued that though major source of uncertainty are linked to GCMs and emission scenarios, uncertainty
related to the choice of downscaling methods give less attention on climate change analysis. Therefore, in this study,

comparative performance evaluation of the downscaling methods was-has{(Gehy-etak-2014) given due emphasis and carried

out denein a number of statistical and graphical tests both quantitatively and qualitatively. The model skill was evaluated and

ranked at each site as shown in_for Abaysheleko station. The overall rank obtained by summing up the rank of each model at

each station is presented in _and Table6 respectively, for quantitative and qualitative measures. The result revealed that

SDSM/canESM2 narrowly performed best in simulating the long term average values in both equally weighted and varying

weights of the guantitative metrics. However, LARS-WG performed best in qualitative measure in reproducing the

distribution and extreme events of precipitation. It captures the distribution of the observed precipitation 93.3% (Table 5)
from all stations while SDSM captures only 20% of the 15 stations equally both in canESM2 and HadCM3 GCMs at 5%

significance level of Kolmogorov-Smirnov test. The t-test result revealed that 86.7% of the simulated precipitation by
LARS-WG and SDSM/HadCM3 models are capturing their perspective mean values from all stations while SDSM/hadCM3

model capture only 66.7%. The F test showed 93.3 % of the simulated and the observed precipitation are normally

distributed around their respective variance value in all three models. In general, the comparative performance test revealed

that LARS-WG model performed best in qualitative measures while SDSM/canESM?2 is best in guantitative measures in

UBNRB. Furthermore, Figure 9 and Figure 10 confirmed graphically the ability of LARS/WG model in capturing the

distribution and extreme events of the precipitation in representative stations (randomly chosen) respectively by Whisker box

plot and Kolmogorov-Smirnov test.
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For future simulation, HadCM3 GCM under-A2 scenario was used in common for two (LARS--WG and SDSM) down
scaling methods fer-comparison—purposeto test whether the downscaling methods may affect the GCMs result under the

same forcing scenario. The results obtained from the two down scaling models were found reasonably comparable and both

approaches showed increasing trend for precipitation, Tmax and Tmin. However, the magnitude of the downscaled climate
data from the two technigues-methods as presented in Figure 11: -showed-different: LARS-WG over predicts precipitation
and -thantemperature than SDSM. —LARS-\W.Gprediet-The relative change of mean annual precipitation using LARS-WG is
about 16.1 % and an average increase in mean annual Tmax and Tmin about 3.7-°C and 3.6 °C respectively at 2080s while

SDSM predicts relative change in mean annual precipitation only about 9.7 % and an average increase in Tmax and Tmin
about 2 °c and 1.3 °C respectively in the same period. The difference could be due to the fact that SDSM uses large scale
predictor variables from GCM outputs to predict local scale climate variables using multiple linear regression, while the
LARS WG is analysed by applying the change factors from the GCM output of only those variables which directly
correspond to the predictands. Moreover, because of the well known fact that GCMs are not very reliable in simulating
precipitation, the error induced from the GCM output for precipitation will propagate the error of downscaling that makes
the performance of LARS-WG to downscale precipitation more—guestionableneeds more caution (Dibike et al., 2005).

6. Discussions and conclusions

The uncertainty related to climate change analysis can be due to climate models and downscaling methods among many
others. In this study, we employed multi model approach to see the uncertainties came from different GCMs. In total, 21
systematically selected future climate scenarios were produced for each time period, which we might think representative to
understand fully and to project plausibly the future climate change in the study area and to retain information about the full
variability of GCMs. —-Moreover, we applied two widely used statistical down scaling methods, namely the regression
downscaling technique (SDSM) and the stochastic weather generation method (LARS WG) for this particular study.

The performance of the three models (HadCM3/SDSM, canESM2/SDSM and LARS-WG) were tested for the base line

period of 1984-2011 in representing the current situation particularly for precipitation, as it is the most difficult climate

variables to model. The result suggested that SDSM using canESM2 GCM captures the long term monthly average very well

at most of the stations and it ranked first from others. This could be attributed to the increasing performance of GCMs from

time to time (i.e, CMIP5 GCMs performs better than CMIP3 GCMs) due to the fact that modeling was based on the new set

of radiative forcing scenario (RCPs) that replaced SRES emission scenarios, constructed for IPCC AR5 where the impacts of

land use and land cover change on the environment and climate is explicitly included. Also, it is one of the earth system

models which has additional features that incorporates various important biogeochemical processes which is the limitation of
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CMIP3 GCMs like HadCM3. However, LARS-WG performed best in qualitative measures in capturing the distribution of

precipitation and extreme events than SDSM. The better performance of LARS-WG in capturing the distribution and

extreme events of the precipitation than SDSM in the study area may be associated with the use of 23 interval histograms for

the construction of semi- empirical distribution, which offers more accurate representation of the observed distribution

compared with the 10 used in the previous version (Semenov et al., 2010). Therefore, LARS-WG would be more preferred

in areas of UBNRB where there is high climatic variability to correctly simulate the distribution and extreme events of the

precipitation which is crucial for a realistic assessment of flood events and agricultural production.

The down scaling result reported from the six GCMs used in LARS-WG showed large inter model differences, 2 GCMs
reported precipitation may decrease while 4 GCMs reported precipitation may increase in the future. The large inter model
differences of the GCMs showed the uncertainties of GCMs associated with their differences of resolution and assumptions
of physical atmospheric processes to represent local scale climate variables which are typical characteristics for Africa and

because of low convergence in climate model projections in the area of UBNRB (Gebre et al., 2014). The multi model

average result showed that in the future precipitation may generally increases over the basin in the range of 1-%_-14.4-%
which agreed-is in line with the result from HadCM3 GCM (0.8 %-16.6 %), this indicates HadCM3_from CMIP3 GCMs
has a better representation of local scale climate variables in the study area consistent with the previous study result by Kim
and Kaluarachchi (2009) and (Dile et al., 2013) in the same study area.
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LARS WG as it is a stochastic simulation tool that is commonly used to produce synthetic climate data of any length with
the same characteristics as the input record, it simulate weather separately for single sites; therefore, the resulting weather
series for different sites are independent of each other, -which can lost a very strong spatial correlation that exists in real
weather data during simulation. Although, a few stochastic models have been developed to produce weather series
simultaneously at multiple sites preserving the spatial correlation, mainly for daily precipitation, such as space—time models,
non-homogeneous hidden Markov model and nonparametric models typically use a K-Nearest Neighbour (K-NN) procedure
(King et al., 2015), they are complicated in both calibration and implementation and are unable to adequately reproduce the

observed correlations (Khalili et al., 2007).

To test the capability of LARS--WG in preserving the spatial correlation of stations_while simulated, the simple Pearson's

correlation coefficient (R?) value was caleulated-fortwo-stations-Abaysheleko-and-Bahirdar-and-checked in two stations.

tThe result from- revealed that the spatial correlation of the stations was-distorted /decreased/ from the original to a lesser

In conclusion, a multi model average from LARS-WG and individual model result from SDSM eof-this-study-showed a

general increasing trend for all three climatic variables (precipitation, Tmax and Tmin) in all three time periods-apphying

LARS-WG-and-SBSM-dewnscaling-technigues. The positive change of precipitation in future can be a good opportunity for

the farmers who are engaged in rain fed agriculture to maximize their agricultural production and to change their lively

hoods. However, this information cannot be a guarantee for irrigation farming because precipitation is not the only factor
contributing to affect the flow of the river, which is the main source for irrigation. Evapotranspiration, dynamics of land use
land cover, proper water resource management and other climatic factors, which are not yet assessed by this study can
influence the flow of the river directly and indirectly. Furthermore, the result from this study -( revealed that, maximum
positive precipitation change may occur in Autumn (Sep.-Nov.) when most agricultural crops get matured and start
harvesting while minimum precipitation change may occur during summer (June-August), when about 80% of the annual
rainfall occurred, this climate variability can be potential threat for the farmers, who have limited ability to cope with the

negative impacts of climate variability and overall ongoing economic development efforts in the basin.

In general, this study has shown that climate change will occur plausibly that may affect the water resources and hydrology

of the UBNRB, and the study proposed the outputs of canESM2 ESM with new sets of emission scenarios downscaled by

SDSM technique can be applied for further impact analysis-with-high-degree-of-certainty. -Moreover, the paper provides
information that the choice of downscaling methods has a contribution in the uncertainty of future climate estimation
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prediction ef chmate-change-and therefore, the comparative performance test has to be done. The Authors would like also to

suggest for further assessment of large ensemble of CMIP5 GCMs which might enhance the limitation of this paper. iathe
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Iabte&IahteJr Table 1: Selected Global cllmate models from IPCC AR4 incorporated into the LARS-WG  Selected-Global

Research centre Country GCM Model Grid Emission Time
acronym  Resolution  Scenarios Periods

Common Wealth Scientific and Australia CSIRO- CSMK3  1.9x1.9° AlB, B1 B, T1,T2,T

Industrial Research Organization MK3 3

Max-Plank Institute for Germany ECHAM5- MPEH5  1,9x1.9° AlB,A2B B,T1T2T

Meteorology oM 1 3

National Institute for Japan MRI- MIHR 2.8x2.8° AlB,B1 B, T1T2T

Environmental Studies CGCM2.3. 3

UK Meteorological Office UK HadCM3 HADCM 25x3.75° Al1B,A2B B,T1,T2T
3 1 3

Geophysical Fluid Dynamics Lab  USA GFDL- GFCM21 2x2.5° AlB,A2B B, T1,T2,T

CM2.1 1 3
National Centre for Atmospheric USA CCsM3 NCCCS  1.4x1.4° AlB,B1 B, T1,T2,T
Research 3

B: baseline; T1: 2011-2030; T2: 2046-2065; T3: 2081-2100

Table2Table2:-Table 2: Calibration results of the average statistical tests comparing the observed data from 26 stations with

synthetic data generated through LARS WG The numbers in the table show the averaqe numbers of tests qave P value Iess than
5% S|qn|f|cance levelRe average-sta a aring ved-data

Tests KS-test t-test F-test KS-test t-test KS-test t-test
Parameters WDseries RainD RMM RMV TminD TminM TmaxD TmaxM
Average 0.04 0.00 0.27 2.08 0 0.12 0 0.12
Total 8 12 12 12 12 12 12 12

% failed 0.48 0.00 2.24 17.31 0 1 0 1

Table-3Table-3:— Table 3: Name and description of all NCEP predictors on HadCM3 & canESM2 grid

Variables  Descriptions variables  Descriptions

temp Mean temperature at 2 m s500 + Specific humidity at 500 hpa height
mslp Mean sea level pressure s850+ Specific humidity at 850 hpa height
p500 500 hpa geopotential height ** f Geostrophic air flow velocity

p850 850 hpa geopotentail height ** 7 Vorticity

rhum * Near surface relative humidity ** U Zonal velocity component

r500* Relative humidity at 500 hpa ** v Meridional velocity component
rg50* Relative humidity at 850 hpa **zh Divergence

shum Near surface specific humidity **thas Wind direction

Prec+ Total precipitation

(**) refers to different atmospheric levels: the surface (p_), 850 hpa height (p8), and 500 hpa height (p5)
(*) refers predictors only found from HadCM3, (+) refers predictors only for canESM2
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Table4— Table 4: Performance measure and ranking of models in terms of precipitation distribution at Abaysheleko

) Values Rank
SDSM/canE SDSM/had LARS- SDSM/canE SDSM/had
Metrics LARS-WG SM2 CM3 WG SM2 CM3
R2 0.983 0.99 0.99 3 1 1
MAE(mm) 12.54 5.35 12.41 3 1 2
RME(mm) 18.86 7.42 15.68 3 1 2
Quantitative =~ NSE 0.96 0.99 0.97 3 1 2
measure Bias 5.06 2.59 12.17 2 1 3
_ Total ~ B B 14 5 10
B} Rank B} B} B} 3 1 2
Qualitative 1-IRF 0.07 -0.28 -0.24 1 3 2
measure ACB (mm) 45.60 35.39 42.33 2 1 2
B} Total B B} B} 3 4 4
~ Overall rank B B 1 2 2
R2 0983 099 099 3 1 1
MAE(m
m) 1254 535 1241 3 1 2
RME(m
m) 1886 742 1568 3
NSE 096 099 097 3
Bias 5.06 259 1247 2

R: Partial pearsons correlation coefficient at daily time series, STD: standard deviation, Q75: 3rd quartile, Q25: 1st quartile, AM: Anual

Maximum, IRF: interguartile relative fraction, ACB: Absolute cumulative Bias

Table 5: Model ranking of statistical down scaling models during base line period (1984-2011) for quantitative measure

Equally weighted
Quantitative measure

Qualitative measure

Varying weights
Quantitative measure
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SDS

LAR SDSM SDSM SDSM/ SDSM  M/Ha
Station S- [CanE  /HadC LARS- SDSM/c HadCM LARS /CanE dCM

Station no. WG SM2 M3 WG anESM2 3 WG SmM2 3

Abaysheleko 1 3 1 2 1 2 2 0.6 0.2 0.4
Alemketema 2 1 3 1 1 2 3 0.4 0.5 0.2
Anger 3 1 2 3 1 3 2 0.2 0.4 0.5
Angerguten 4 2 1 3 1 2 3 0.4 0.2 0.5
Bahirdar 5 2 1 3 2 1 3 0.4 0.2 0.6
Bedele 6 2 1 3 1 2 2 0.4 0.2 0.6
Dangila 7 1 2 3 2 1 2 0.2 0.4 0.6
Dedesa 8 2 1 3 1 1 3 0.4 0.2 0.6
Dmarkos 9 2 1 3 1 3 1 0.4 0.2 0.6
Dtabor 10 1 2 3 1 2 3 0.2 0.4 0.6
Fitche 1 1 3 2 1 2 3 0.2 0.5 0.4
Gimijabet 12 1 2 3 3 2 1 0.2 0.4 0.6
Gondar 13 1 2 3 2 1 3 0.2 0.4 0.6
Nedjo 14 2 1 3 1 3 2 0.4 0.2 0.5
Shambu 15 2 1 3 2 3 1 0.4 0.2 0.5
Total _ 24 24 41 21 30 34 4.7 4.6 7.8
Rank 1 1 3 1 2 3 2 1 3

r? 0.93 0.94 0.98  0.99
MAE Ratio—relative

to-mean(%)
RMSE Ratio—relative

to-mean(%)

bt oRE EBEE
RIS -
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Table—6-—Table 6: Ranking of statistical down scaling models during base line period (1984-2011) for qualitative measure
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Kolmogorov-Smirnov test t-test F-test

HadC LARS- HadC canES  LARS- HadC canESM  LARS-
Station M3 canESM2 WG M3 M2 WG M3 2 WG

<

<

<

<

<
Total_stations 15 15 15 15 15 15 15 15 15
NefPassed
(p>5%) 3 3 14 14 14 14 10 1013 13
% passed 20 20 93.3 93.3 93.3 93.3 66.7 86.7 86.7

*: Number of stations with p value > 5% (pass to simulate the distribution of precipitation)
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Figure 5: Figure 4: _(a) Relative change mean annual precipitation and (b) change in Tmax and Tmin modeled from six

GCM s for three time periods of UBNRB as compared from the reference period of 1984-2011 by using LARS-WG
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Figure 8 _Figure-11: (a) Relative change of mean annual precipitation, and (b) change of mean annual Tmax and Tmin for
three time periods as compared to the baseline period of UBNRB using SDSM for HadCM3 and canESM2 GCMs under
different scenarios
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—Figtre-9-— Figure 9_:Kolmogorov-Smirnov test to compare the skill of the models for the observed precipitation distribution
(Upper three Alemketema station, lower three Debre markos station)
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Figure-10:Figure 10 :Box plot showing the model performance at three stations. Box boundaries indicate the 25" and 75"
percentiles, the line within the box marks the median, whiskers below and above the box indicate the 10" and 90"
percentiles, dots indicate the extremes.
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LARS--WG and SDSM from HadCM3 GCM for a2 scenario_b) Box plot of monthly

downscaled future precipitation from different scenarios (LARS-WG using hadCM3 a2 scenario)
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