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We highly appreciated and thank the two anonymous reviewers for their second time extensive general and specific 

comments that addresses important issues which  help us to improve the manuscript significantly to scientific standard.  

 

List of all relevant changes made the manuscript 

Anonymous reviewer #1 comments 5 

1. Still the objective of the paper should be made more scientific. Preparing downscaled data of precipitation and 

temperature of 6 GCMs, using two downscaling methods is a lot of work – but may not be sufficient for publication in a 

scientific journal. It become more like a technical report. However, analysis and discussion of the difference between the two 

downscaling methods may be more appealing. Otherwise, it seems more relevant to use one downscaling method, and focus 

on analyzing (downscaled) results between the different GCMs, and whether downscaling may affect comparison between 10 

the CGMs models. 

 

Response:Accepted and corrected: The objective of the paper is modified accordingly. This is shown in the manuscript with 

track changes on page 5, l1-l6. The paper gives due emphasis on the differences between the two down scaling methods by 

comparing their skills in reproducing the current climate variables both quantitatively and qualitatively using a number of 15 

statistical and graphical performance indexes and tests, which we might think this is the first paper addressing this issue in 

the study area. This is shown in the manuscript with track changes on page 12- page13and on page 18, l9-23. 

 

Furthermore, the skill of future projection of the two downscaling methods was compared using the same hadCM3 from 

CMIP3 GCM forcing with the same A2 scenarios, due to the fact that the hadCM3 future downscaling climate variables has 20 

a good agreement with the ensemble mean result. This is shown in the manuscript with track changes on page 19, l1-l15.  

Anonymous reviewer #2 comments 

1. multi-model approach was adopted to evaluate uncertainty in climate projections. However, you applied two statistical 

downscaling methods to different GCMs, i.e. LARS-WG for CMIP3 while SDSM for CMIP5. In this way, in my opinion, 

fairly intercomparison of downscaling methods cannot be achieved. You need to apply the methods to same GCMs forced by 25 

same emission scenarios (e.g. RCP4.5 or RCP8.5) and then intercompare the skill of methods and evaluate the uncertainty of 

climate projections by downscaling. 

 

 

Response: It was also the concern of Anonymous reviewer #1.  Multi-model approach was applied for only LARS-WG 30 

method from 6 selected (better performed) CMIP3 GCMs. The downscaled result of each GCM was compared with the 

ensemble mean result and we found that HadCM3 model a good agreement with the ensemble mean result using LARS-WG 

method. This is shown in the manuscript with track changes on page 16, l28-32 and on page17, l1 and 16. Hence, we 

assumed that HadCM3 GCM from CMIP3 would give better result when it is applied individually. 

  35 

Therefore, we used hadCM3 GCM from CMIP3 and canESM2 ESM from CMIP5 using SDSM method to test the 

improvements of CMIP5 model over CMIP3 model though they are different GCMs, and direct comparison is not possible 

as they used different scenarios describing the amount of greenhouse gas in the future. The inter comparison of downscaled 

result applying the two different downscaling methods (LARS-WG and SDSM) was made using the same hadCM3 GCM 

from CMIP3 forced  by the same A2 scenario. The skill of the downscaling methods was evaluated and we obtained 40 

different results. The LARS-WG over predicts the precipitation than SDSM in the study area. This is shown in the 

manuscript with track changes on page 19, l1-l15. 
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2. The authors mentioned that two popular GCMs were selected due to providing daily climate variables with a better 

resolution, showing high performance and representing CMIP3 and CMIP5 projections. However, the performances of 

GCMs vary with regions due to different physiographic and climatic characteristics, model parameters, and so on. In my 

understanding on CMIP5 climate projections, there are 30 GCMs that provide daily climate variables. The authors need to 5 

address the limitation of this study in the number of GCMs selected in terms of uncertainty of climate projections. 

 

Response: At the time of this study we couldn't find CMIP5 GCMs which can provide daily climate variables ready to use 

directly for SDSM except canESM2. We understand that there are more than 30 CMIP5 GCMs which can provide daily 

climate variables but it needs further preprocessing to use them as input for SDSM. We noticed that downscaling 10 

precipitation, Tmax and Tmin from 6 GCMs using LARS-WG and 2 GCMs from SDSM , in total, 21 systematically selected 

future climate scenarios produced for each time period, representative to understand fully and to project plausibly the future 

climate change in the study area and to retain information about the full variability of GCMs. However, we recommended 

further evaluation of multi-model CMIP5 GCMs from both LARS-WG and SDSM models will enhance the limitation of this 

paper in the future. This is shown in the manuscript with track changes on page 22, l1-2. 15 

 

3. In Table 4, the skill of SDSM is evaluated by various performance measures. However, R
2
, MAE, RMSE, NSE, and Bias 

are measured by daily or monthly sequencings of observed and simulated values during the historical period. However, it 

cannot guarantee that GCMs reproduce historical daily sequencing, actually cannot reproduce it but distributions for a 

historical period. The authors need to change performance measures if daily (or monthly) sequencings were directly 20 

compared with observations to calculate the measures although the results in Table 4 perform well. 

 

 

Response: Accepted and corrected:  the performance measures are modified and the evaluated was made in two ways 

(quantitatively and qualitatively). Quantitative performance measure can be done to evaluate the long term monthly values of 25 

both observed and simulated precipitation using statistical indexes (R2, MAE, RMSE, NSE, and Bias) at each station level. 

Then after, the overall performance of  the models was evaluated in two ways (equally weighted and varying weights of the 

indexes). We introduce a new performance measure for qualitative evaluation (IRF and ACB). Furthermore, we applied 

Kolmogrov simrov and Box plot graphical test to evaluate the skill of the methods  for capturing the distribution and the 

extreme values. This is shown in the manuscript with track changes on page 12- page13and on page 18, l9-23. 30 

 

4. In the figures that present climate projections downscaled by two methods Fig. 4 and 5), I would like to see the spread of 

projections for future periods. I am not interested in the performance of individual GCM. 

Response: In figure 4 and 5, the Authors would like to show the inter model variability and uncertainties and how the multi-

model approach using ensemble mean improves the future projection. Therefore, we would like to maintain Figure5 but we 35 

removed Figure 4.   

 

5. LARS-WG showed less skill in reproducing variance, which seems very critical in generating future climate variability in 

projections, specially more critical for wet season (summer). The authors need to address this fact based on results related to 

this feature in LARS-WG. 40 

 

Response: Both LARS-WG and SDSM showed less skill in reproducing variance as compared to the mean as it is difficult to 

simulate the variance of the precipitation. However, it doesn't mean that LARS-WG is not able to reproduce the variance of 

precipitation. Qualitative measures using both statistical metrics and graphical representation of Kolmogorov-Smirnov and 

Box blot showed LARS-WG is performing best in capturing the distribution and extreme values. This is shown in the 45 

manuscript with track changes on page 18, l4-22.   

 

Specific comments1) In Figure 4, box plots need to be modified. Accepted and removed from the manuscript 

2) The order of figures should be rearranged, e.g. Fig 6 and Fig 7 should be Fig 9 and Fig 6, respectively. Accepted and 

rearranged as per the comment 50 
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Abstract. Climate change is becoming one of the most arguable and threatening issues in terms of global context and their 

responses to environment and socio/economic drivers. Its direct impact becomes critical for water resource development and 10 

indirectly for agricultural production, environmental quality, economic development, social well-being. Climate impact 

studies use the simulation results from General Circulation Models (GCMs) for assessing the past and future trends of 

climate variables. However, a large uncertainty between different Global Circulation Models (GCMs, ) and coarse spatial 

resolution  downscaling methods exist that makes difficult to use the outputs of GCMs directly specially reliable conclusions 

for a sustainable water management difficultat regional scale, which introduces the need for downscaling techniques and 15 

multi-model approach. This study aims i) to evaluate the comparative performance of two widely used statistical down 

scaling techniques namely Long Ashton Research Station Weather Generator (LARS-WG) and  Statistical Down Scaling 

Model (SDSM) ii) to down scale future climate scenarios of precipitation, maximum temperature (Tmax) and minimum 

temperature (Tmin) of the UBNRB at finer spatial and temporal scale to suit for further hydrological impact studies.Hence, 

to minimize the uncertainty of GCMs  and downscaling processes,   a multi-model approach from a systematically selected 20 

six  CMIP3 GCMs and one CMIP5 GCMs  were used to construct climate change scenarios of precipitation, maximum and 

minimum temperature for the UBNRB by applying two widely used statistical down scaling techniques namely Long Ashton 

Research Station Weather Generator (LARS-WG) and  Statistical Down Scaling Model (SDSM) as they are computationally 

less demanding and efficient. The study  result illustrates that both down scaling techniques (LARS-WG and SDSM) have 

shown comparable and good ability to simulate the current local climate variables for the UBNRB. However, further 25 

quantitative and qualitative comparative performance evaluation done by equally weighted and varying weights of statistical 

matrices showed SDSM using canESM2 CMIP5 GCMs performs best quantitatively but LARS-WG best performing in 

capturing extreme precipitation and precipitation distribution in the whole data range.  

 

Six selected multi-model CMIP3 GCMs namely: HadCM3, GFDL-CM2.1, ECHAM5-OM, CCSM3, MRI-CGCM2.3.2, and 30 

CSIRO-MK3 GCMs were used for downscaling climate scenarios by LARS-WG model. The downscaled precipitation 

results from the six GCMs by LARS WG showed inconsistency and large inter model variability,The result from ensemble 

mean of the six GCM showed an increasing trend for precipitation, Tmax and Tmin. The relative change of precipitation 
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ranged from 1.0 % to 14.4% while  two GCMs showed decreasing trend while 4 GCMs showed increasing in the range from 

-7.9 % to +43.7 % while  the ensemble mean of the six GCM result showed increasing trend ranged from 1.0 % to 14.4 %. 

Conversely, the result from all GCMs showed a similar continuous increasing trend for maximum temperature (Tmax) and 

minimum temperature (Tmin) in all three future time periods Tthe change for mean annual Tmax may increase from 0.4 
o
c to 

4.3 
o
c whereas and the change for mean annual Tmin may increase from 0.3 

o
c to 4.1

o
c. The individual result of HadCM3 5 

GCM has a good agreement with the result of ensemble mean result.    

 

Even though, both HadCM3 from CMIP3 using A2a and B2a scenarios and canESM2 from CMIP5 GCMs using under  

RCP2.6, RCP4.5 and RCP8.5 scenarios were downscaled by SDSM agree with respect to  the direction of  21
st
 century  

precipitation, minimum and maximum temperature changes, there are considerable variability in magnitude. The result from 10 

the two GCMs under 5 different scenarios agree with the increasing direction of three climate variables (precipitation, Tmax 

and Tmin). The relative change of the downscaled mean annual precipitation downscaled from 5 different scenarios of two 

GCMs range from 2.1 % to 43.8 % while the change for mean annual Tmax and Tmin may increase in the range from 0.4 
o
c 

to 2.9 
o
c and from 0.3 

o
c to 1.6 

o
c respectively.  

The change in magnitude for precipitation is higher in RCP8.5 scenarios than the others as expected. The study  results 15 

illustrate that both down scaling techniques have shown comparable and good ability to simulate the current local climate 

variables which can be  adopted for future climate change study for the UBNRB. However, based on the comparative 

performance evaluation results of this study, SDSM would be more robust and can be applied at higher confidence for 

downscaling large scale GCMs outputs to finer scales to suit for hydrological models for impact assessment in the study area 

of UBNRB.  20 

Key words: Climate Change, GCM, statistical down scaling, LARS WG, SDSM; UBNRB 

1. Introduction 

The impacts of climate change on the hydrological cycle in general and on water resources in particular are of high 

significance due to the fact that all natural and socio/economic system critically depend on water. The direct impact of 

climate change can be variation and changing pattern of water resources availability and hydrological extreme events such as 25 

floods and droughts, with many indirect effects on agriculture, food and energy production and overall water infrastructure 

(Ebrahim et al., 2013). The impact may be worse on trans-boundary Rivers like Upper Blue Nile River where competition 

for water is becoming high from different economic, political and social interests of the riparian countries and when runoff 

variability of upstream countries can greatly affect the downstream countries (Kim, 2008; Semenov and Barrow, 1997).  

 30 

According to IPCC (2007), between 75 and 250 million people are projected to be exposed to increased water stress due to 

climate change in Africa by 2020. The increasing water demand of upstream countries in the Nile Basin coupled with 
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climate change impacts can affect the availability of water resources for downstream countries and in the basin, that could 

result in resource conflicts and regional insecurities. Moreover, climate variability, the way climate fluctuates yearly and 

seasonally above or below a long-term average value, caused by changes in forcing factors such as variation in seasonal 

extent of the Inter Tropical Convergence Zone (ITCZ) like El Niño and La Niña events,  is already imposing a significant 

challenge to Ethiopia by affecting food security, water and energy supply, poverty reduction and sustainable socio-economic 5 

development efforts. To mitigate these challenges, the Ethiopian government is therefore carried out a series of studies on 

 pp        N                (  N  )  w          b                              “   w           ”             

identifying irrigation,  and hydropower potential and the use of the extensive water resources of the basin (BCEOM, 1998; 

USBR, 1964; WAPCOS, 1990). As the result, large scale irrigation and hydro-power projects including the Grand Ethiopian 

Renaissance Dam (GERD), the largest hydroelectric power plant in Africa, have been identified and being constructed as 10 

mitigation measure for the impacts of climate change. However, most studies were given less emphasis for climate change 

and its impact on the hydrology of the basin, hence, identifying local impacts of climate change at basin level is quite 

important especially in UBNRB for the sustainability of large scale water resource development projects, for proper water 

resource management leading to regional security and looking for the possible mitigation measures otherwise the 

consequences becoming catastrophic.  15 

 

To this end, several individual researches have been done to study the impacts of climate change on the water resources of 

Upper Blue Nile River Basin. Taye et al. (2011) reviewed some of the research outputs and concluded that clear 

discrepancies were observed particularly on the projection of precipitation. For instance, the result obtained from (Bewket 

and Conway, 2007; Conway, 2000; Gebremicael et al., 2013) showed that there is no significant change on the amount of 20 

rainfall and there is no consistent patterns or trends observed. Kim (2008) used the outputs of six GCMs for the projection of 

future precipitations and temperature, the result suggested that the changes in mean annual precipitation from the six GCMs 

range from -11 % to 44 % with a change of 11% from the weighted average scenario at 2050s. On the other hand, the 

changes in mean annual temperature range from 1.4°C to 2.6
o
C with a change of 2.3

o
C from the weighted average scenario. 

Likewise, Yates and Strzepek (1998a) used 3 GCMs and the result revealed that the changes in precipitation range from -5% 25 

to 30% and the change in temperature range from 2.2
o
c to 3.5

o
c. Yates and Strzepek (1998b) also used 6 GCMs and the 

result showed in the range from -9% to 55% for precipitation while temperature increased from 2.2
o
c to 3.7 

o
c. Another study 

done by Elshamy et al. (2009), used 17 GCMs and the result showed that Changes in total annual precipitation range 

b  w    −15 %    +14 % but the ensemble mean of all models showed almost no change in the annual total rainfall. While, 

all models predict the temperature to increase between 2
o
C and 5

o
C. Gebre and Ludwig (2014), used  five biased corrected 30 

50km x 50km spatial resolution GCMs for RCP4.5 and RCP8.5 scenarios to down scale the future climate change of  4 

watershed (Gilgel Abay, Gumara, Ribb and Megech) located in Tana sub basin of UBNRB for the time period of 2030s and 

2050s. The result suggested that the selected five GCMs disagree on the direction of future prediction of precipitation but 

multimodal average monthly and seasonal precipitation may generally increases over the watersheds. 
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For the historical context, the discrepancies could be due to the period and length of data analyzed and the failure to consider 

stations which can represent the spatial variability of the basin and also errors induced from observed data. For the future 

context, beside the above mentioned reasons, discrepancies could be due to the difference of GCMs and scenarios used for 

downscaling, the downscaling techniques applied (can be dynamical and statistical), selection of representative predictors, 5 

the period of analysis and spatial and temporal resolution of observed and predictor dataset.  

 

To address uncertainty in projected climate changes, the (IPCC, 2014)  thus recommends using a large ensemble of climate 

change scenarios produced from various combinations of Atmospheric Ocean General Circulation Model (AOGCMs) and 

forcing scenarios. However, it can become prohibitively time consuming to assess the climate change, using simultaneously 10 

many climate change scenarios and many Statistical Down scaling models. As a result, researchers typically assess the 

climate change and its impacts under only one or a few climate change scenarios selected arbitrarily with no justification for 

instance  used only A1B and A2 scenarios respectively. Yet, there is no any hard rule to select an appropriate subset of 

climate change scenarios among the wide range of possibilities (Casajus et al., 2016).  

 15 

Although GCMs perform reasonably well at larger spatial scales but poorly at finer spatial and temporal scales, especially 

precipitation, which is of interest to hydrological impact analysis (Goly et al., 2014). Hence,  climate models are usually 

responsible for high uncertainty in climate change impact analysis, the processes of downscaling that ensures to narrow 

down the scale discrepancy between the coarse scale  GCMs and the required local scale climate variables for hydrological 

models should be investigated for their contribution which is missed in previous studies of climate change analysis in the 20 

UBNRB. Many downscaling models have been developed in the past decade, to bridge the resolution gap between the coarse 

resolution GCMs and the required local scale for hydrological models to carry out impact studies, , however, no single model 

has been found to perform well over all the regions and time scales. Thus, evaluations of different models are critical to 

understand the applicability of the existing modelsMany researchers have been tried to compare the comparative skill of 

down scaling methods in different study areas such as  (Dibike and Coulibaly, 2005; Ebrahim et al., 2013; Fiseha et al., 25 

2012; Goodarzi et al., 2015; Hashmi et al., 2011; Khan et al., 2006; Qian et al., 2004; Wilby et al., 2004; Wilby and Wigley, 

1997; Xu, 1999). However, no single model has been found to perform well over all the regions and time scales. Thus, 

evaluations of different models is critical to understand the applicability of the existing models.However, it remains difficult 

to directly compare the skill of different downscaling models (Goly et al., 2014). 

 30 

Apart from the GCMs and downscaling techniques, most of the previous studies e.g (Beyene et al., 2010; Elshamy et al., 

2009; Kim, 2008), used CRU, NFS and other gridded data sets constructed based on the interpolation of a few stations in 

Ethiopia, which has relatively less accuratecy as compared with the station based data (Worqlul et al., 2014). Therefore, the 

objective of this study is i) to evaluate the comparative performance of two widely used statistical down scaling techniques 
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namely Long Ashton Research Station Weather Generator (LARS-WG) and  Statistical Down Scaling Model (SDSM) over 

UBNRB ii) down scale future climate scenarios of precipitation, maximum temperature (Tmax) and minimum temperature 

(Tmin) at acceptable spatial and temporal resolution, which can be used directly for further hydrological impact studies. This 

can be achieved through applying a multi-model approach, to minimize the uncertainty of GCMs to construct and analyze 

detailed climate change scenarios for precipitation, maximum and minimum temperature over Upper Blue Nile River Basin 5 

at required resolution which can be used for further hydrological impact study. This can be achieved through the inclusion of 

systematically selected multiple GCMs and two downscaling methods byand  incorporating acceptable number of weather 

stations which has long time series and  reliable observed climate data to appreciate the uncertainties coming from GCMs 

and the process of downscaling methods to overcome the short comings of the previous studies on the study area .  minimize 

the errors coming from the less accurate gridded data sets. 10 

 

Generally, downscaling methods are classified in to dynamic and statistical downscaling (Fowler et al., 2007; Wilby et al., 

2002). Dynamic downscaling nests higher resolution Regional Climate Models(RCMs) into coarse resolution GCMs to 

produce complete set of meteorological variables which are consistent each other. The outputs from this method is still not at 

required scale to what the hydrological model require. Statistical downscaling overcomes this challenge moreover it is 15 

computationally undemanding, simple to apply and provides the possibility of uncertainty analysis (Dibike et al., 2005; 

Semenov et al., 1997; Wilby et al., 2002). Extensive details on the strength and weakness of the two methods can be found 

(Wilby et al., 2007; Wilby et al., 1997).  Among the different possibilities, two well recognized statistical downscaling tools, 

a regression based Statistical Down-Scaling Model (SDSM) (Wilby et al., 2002) and a stochastic weather generator called 

Long Ashton Research Station Weather Generator (LARS-WG) (Semenov et al., 1997; Semenov et al., 2002) were chosen 20 

for this study. They have been tested in various regions e.g., (Chen et al., 2013; Dibike et al., 2005; Dile et al., 2013; 

Elshamy et al., 2009; Fiseha et al., 2012; Hashmi et al., 2011; Hassan et al., 2014; Maurer and Hidalgo, 2008; Yimer et al., 

2009) under different climatic conditions of the world.   

2. Description of Study Area 

The Upper Blue Nile River Basin (UBNRB) extends from 7
o
45' to 13

o
 N and 34

o
30' and 37

o
45' E see Figure 1. It is one of 25 

the most important major basin of Ethiopia because it contributes to 45% of the countries surface water resources, 20% of 

    p p         17%                  40%              ’               p                 p              hydropower and 

irrigation potential of the country (Elshamy et al., 2009). The whole UBNRB  has an area coverage of 199,812 km
2
 

(BCEOM, 1998). For this study Rahad, Gelegu and Dinder sub catchments that do not flow through the main river stem to 

Sudan is excluded. The basin area coverage is 176,000km
2
 which is about 15% of total area of 1.12 million km

2
(Awulachew 30 

et al., 2007) of Ethiopia . The elevation ranges between 489 m.a.s.l downstream on the western side to 4261m.a.s.l upstream 

at Mount Ras Dashen in the north-eastern part.  
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The Upper Blue Nile River itself has an average annual run-off of about 49 BCM.  In addition, the Dinder, Galegu and 

Rahad rivers have a combined annual run-off of about 5 BCM. The rivers of the Upper Blue Nile River Basin contribute on 

average about 62 per cent of Nile total at Aswan. Together with contributions of the Baro-Akobo and Tekeze rivers, Ethiopia 

accounts for 86 per cent of run-off at Aswan (BCEOM, 1998). The climate of Ethiopia is mainly controlled by the seasonal 5 

migration of the Inter-tropical Convergence Zone (ITCZ) following the position of the sun relative to the earth and the 

associated atmospheric circulation. It is also highly influenced by the complex topography. The whole UBNRB has long 

term mean annual rainfall, minimum and maximum temperature of 1452 mmyr
−1

, 11.4
o
C and 24.7

o
C respectively as 

calculated by this study from 15 rainfall and 25 temperature gauging stations from the period 1984-2011. The mean seasonal 

rainfall based on the above data showed about 238 mm, 1065mm, and 148 mm occurred in Belg (October-January), Kiremit 10 

(July-September), and Bega (February-May) respectively, in which about 74 % of rainfall concentrates between June and 

September (Kiremit season). 

3. Datasets  

3.1 Local data sets 

The historical precipitation, maximum and minimum temperature data for the study area were obtained from Ethiopian 15 

Meteorological Agency (EMA), which were analyzed and checked for further quality control. A considerable length of time 

series data were missed in almost all available stations and hence 15 rainfall and 25 temperature stations which have long 

time series and relatively short time missing records were selected. Filling missed or gap records was the first task for further 

meteorological data analysis. This task was done using the well-known methodology of inverse distance weighing method 

(IDW). To check the quality of the data, the Double Mass Curve analysis (DMC) were used. DMC is a cross correlation 20 

between the accumulated totals of the gauge in question against the corresponding totals for a representative group of nearby 

gauges.  

3.2 Large scale datasets  

High uncertainty  is expected in climate change impact studies if the simulation result is relied up on a single GCM due to 

the fact that each GCM has different spatial and temporal resolution with different assumptions of atmospheric processes 25 

(Kim and Kaluarachchi, 2009).  Hence, aA new version of the LARS-WG5.5 was applied for this study that incorporates 

predictions from 15 GCMs which were used in the IPCC's Fourth Assessment Report (AR4) based on  Special Emissions 

Scenarios SRES B1, A1B and A2  for three time windows as listed in Table 1.  However, the fifth phase of Coupled Model 

Inter Comparison Project (CMIP5) climate models based on the new radiative forcing scenarios ( Representative 
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Concentration Pathway, RCP) which were used for IPCC Fifth Assessment Report (AR5) were not incorporated in to it at 

the time of the study.  

 

As it is difficult to process all the incorporated 15 CMIP3 GCMs  and as it is expected large differences in predictions of 

climate variables among the GCMs, the performance of GCMs in simulating the current climate variables of the study area 5 

(UBNRB) should be evaluated and best represented GCMs were selected.  The MAGICC/SCEGEN computer program tool 

was used  for the performance evaluation of the embedded 15 GCMs found in LARS WG5.5 database, as it is a standard 

method for selecting models on the basis of their ability to accurately represent current climate, either for a particular region 

and/or for the globe.  

 10 

In this study, we used a semi-quantitative skill score that rewards relatively good models and penalizes relatively bad models 

as suggested by user manual Wigley (2008). The statistics used for model selection are pattern correlation (R
2
), Root mean 

square error (RMSE), bias (B), and a bias-corrected RMSE (RMSE-corr). The analysis was done separately for precipitation 

and temperature and finally an average score value was taken for model selection. Six best performed GCMs have been 

selected for this study namely: HadCM3, GFDL-CM2.1, ECHAM5-OM, CCSM3, MRI-CGCM2.3.2, and CSIRO-MK3 in 15 

the order of their performance to construct future precipitation, maximum and minimum temperature in the UBNRB for the 

time period of 2030s, 2050s and 2080s under A1B, A2 and B1 scenarios see Table 1.  

 

Moreover, atmospheric large scale predictor variables used for representing the present condition were obtained from the 

National Centre for Environmental Prediction (NCEP) reanalysis data set. CanESM2, second generation Canadian Earth 20 

System Model (ESM) developed by Canadian Centre for Climate Modelling and Analysis (CCCma) of Environment Canada 

that represents CMIP5 and HadCM3  outputs  from  the  Hadley Centre, United Kingdom(UK) representing CMIP3 were 

used in SDSM for the construction of daily local meteorological variables corresponding to their future climate scenario. 

  

The reasons for selecting these two GCMs were due to the fact that they are models that made daily predictor variables 25 

freely available to be directly fed into SDSM covering the study area with a better resolution. Additionally, they areHadCM3 

is the most used GCMs in previous studies such as (Dibike et al., 2005; Dile et al., 2013; Hassan et al., 2014; Yimer et al., 

2009), and HadCM3 ranked first in performance evolution done by MAGICC/SCEGEN computer program tools and its 

downscaled results match with the ensemble mean of the six GCMs used in LARS- WG model. Furthermore, they can 

represent two different scenario generations describing the amount of green house gases(GHGs) in the atmosphere in the 30 

future.  HadCM3 GCM used emission scenarios of A2 (separated world scenario) in which the co2 concentration projected 

to be 414ppm, 545ppm and 754ppm and B2 (the world of technological inequalities) where the co2 concentration to be 

expected 406ppm, 486ppm and 581ppm at the time period of 2020s, 2050s and 2080s respectively (Semenov and 

Stratonovitch, 2010)      w                  IP3         IP  ’  A 4 (IPCC, 2007). While canESM2 represents the latest 
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and wide range of plausible radiative forcing scenarios, which include a very low forcing level (RCP2.6), where radiative 

forcing peaks at approximately 3 Wm
-2

, approximately 490 ppm co2 equivalent before 2100 and then decline to 2.6Wm
-2

; 

two medium stabilization scenarios (RCP6 and RCP 4.5) in which radiative forcing is stabilised at 6Wm
-2

 (approximately 

850 ppm co2 equivalent) and 4.5 Wm
-2 

( approximately 650 ppm co2 equivalent) after 2100 respectively, and one very high 

baseline emission scenario (RCP8.5) for which radiative forcing reaches >8.5 Wm
-2

 (1370 ppm co2 equivalent) by 2100 and 5 

continues to rise for some time that were used for the IPCC's AR5, (IPCC, 2014). 

 

The NCEP dataset were  normalized over the complete 1961-1990 period data, and interpolated to the same grid as HadCM3 

(2.5
o
 latitude x 3.75

o
 longitude) and canESM2 (2.8125

o
 latitude x 2.8125

o
 longitude) from its horizontal resolution of (2.5

o
 

latitude x 2.5
o
 longitude), to represent the current climate conditions. NCEP reanalysis data were normalized and interpolated 10 

as (Hassan et al., 2014): 

 

   
       

  
  .......................................................        (1) 

In which un is the normalized atmospheric variable at time t, ut is the original data at time t, ua is the multiyear average 

during the period, and σu is the standard deviation. 15 

 

The canESM2 outputs for three different climate scenarios namely: RCP 2.6, RCP 4.5 and RCP 8.5  for the period 2006-

2100 while the outputs of HadCM3 for A2a (medium-high) and B2a (medium-low) emission scenarios for the period 1961-

2099 were obtained on a grid by grid box basis for the study area from the Environment Canada website http://ccds-

dscc.ec.gc.ca/index.php?page=dst-    (    “ ”    A2       2                  b      b               3 A2      2 20 

experiments). The archive of canESM2 and HadCM3 GCM output contains 26 daily predictor variables each as listed in  

Table 3. 

4. Methodology 

4.1 Description of LARS-WG Model  

LARS-WG is a stochastic weather generator which can be used for the simulation of weather data at a single station under 25 

both current and future climate conditions. These data are in the form of daily time-series for a group of climate variables, 

namely, precipitation, maximum and minimum temperature and solar radiation (Chen et al., 2013; Semenov et al., 1997). 

LARS-WG uses a semi-empirical distribution (SED) that is defined as the cumulative probability distribution function(CDF) 

to approximate probability distributions of dry and wet series, daily precipitation, minimum and maximum temperatures.  

 30 
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                         ..................  (2) 

EPM is a histogram of the distribution of 23 different intervals (ai-1, ai) where ai-1 < ai (Semenov et al., 2002), which offers 

more accurate representation of the observed distribution compared with the 10 used in the previous version. By perturbing 

parameters of distributions for a site with the predicted changes of climate derived from global or regional climate models, a 

daily climate scenario for this site could be generated and used in conjunction with a process-based impact model for 5 

assessment of impacts.  

 

In general, the process of generating synthetic weather data can be categorized in three distinct steps: model calibration, 

model validation and scenario generation as represented in Figure 2 (a), which are briefly described by (Semenov et al., 

2002) as follows. 10 

 

The inputs to the weather generatorLARS-WG are the series of daily observed data (precipitation, minimum and maximum 

temperature) of the base period (1984-2011) and site information (latitude, longitude and altitude) are the inputs to the 

LARSWG. After the input data preparation and quality control, the observed daily weather data at a given site were used to 

determine a set of parameters for probability distributions of weather variables. These parameters are used to generate a 15 

synthetic weather time series of arbitrary length by randomly selecting values from the appropriate distributions, having the 

same statistical characteristics as the original observed data but differing on a day-to-day basis. The LARS- WG 

distinguishes wet days from dry days based on whether the precipitation is greater than zero. The occurrence of precipitation 

is modelled by alternating wet and dry series approximated by semi empirical probability distributions. The statistical 

characteristics of the observed and synthetic weather data are analyzed to determine if there are any statistically-significant 20 

differences using Chi-square goodness of fit test (KS) and the means and standard deviation using t and F test respectively 

by changing the parameters of LARS-WG (number of years and seed number).  

 

To generate climate scenarios at a site for a certain future period and an emission scenario, the LARS-WG baseline 

parameters, which are calculated from observed weather for a baseline period (1984-2011)        j      b      Δ-changes for 25 

the future period and the emissions predicted by a GCM for each climatic variable for the grid covering the site. In this 

study, the local-scale climate scenarios based on the SRES A2, A1B and B1 scenario simulated by the selected six GCMs are 

generated for the time periods of 2011–2030, 2046–2065, and 2080–2099 to predict the future change of precipitation and 

temperature in UBNRB. 

 30 

 -changes were calculated as relative changes for precipitation and absolute changes for minimum and maximum 

temperatures (Eq. 3 and 4),respectively. No adjustments for distributions of dry and wet series and temperature variability 
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were made, because this would require daily output from the GCMs which is not readily available from LARS- WG data set 

(Semenov et al., 2010). 

 

                               ............................  (3)  

     
           

             
    ............................ (4)   5 

In above equations, ΔTi and ΔPi are climate change scenarios of the temperature and precipitation, respectively, for long-

                            (1 ≤   ≤ 12);             the long term average temperature simulated by the AOGCM in the 

future periods per month for three time periods;                is the long term average temperature simulated by the model in 

the period similar to observation period (in this study 1984-2011) for each month. The above calculations are true for 

precipitation as well.  10 

 

For obtaining time series of future climate scenarios, climate change scenarios are added to the observations values by 

employing the change factor (CF) method (Eq. 5 and 6) (in this study 1984-2011):  

          ............................................................... (5) 

           ...............................................................(6) 15 

T and P; time series of the future climate scenarios of temperature and precipitation (2011-2100) and Tobs and Pobs ; observed 

temperature and precipitation. So, in LARS-WG downscaling unlike SDSM, large-scale atmospheric variables are not 

directly used in the model, rather, based on the relative mean monthly changes between current and future periods predicted 

by a GCM, local station climate variables are adjusted proportionately to represent climate change (Dibike et al., 2005).  

 4.2 Description of SDSM 20 

The SDSM is best described as a hybrid of the stochastic weather generator and regression based in the family of transfer 

function methods due to the fact that a multiple linear regression model is developed between a few selected large-scale 

predictor variables (Table 3) and local-scale predictands such as temperature and precipitation to condition local scale 

weather parameters from large scale circulation patterns. The stochastic component of SDSM enables the generation of 

multiple simulations with slightly different time series attributes, but the same overall statistical properties. (Wilby et al., 25 

2002) . It requires two types of daily data, the first type corresponds to local predictands of interest (e.g. temperature, 

precipitation) and the second type corresponds to the data of large-scale predictors (NCEP and GCM) of a grid box closest to 

the station.  
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The SDSM model categorizes the task of downscaling into a series of discrete processes such as quality control and data 

transformation, screening of predictor variables, model calibration and weather and scenario generation as shown in Figure 

2(b). Detail procedures and steps can be found (Wilby et al., 2002) for further reading. Screening potentially useful 

predictor-predictand relationships for model calibration is one of the most challenging but very crucial stage in the 

development of any statistical down scaling model. It is because of the fact that the selection of appropriate predictor 5 

variables largely determines the success of SDSM and also the character of the downscaled climate scenario (Wilby et al., 

2007).  After  routine  screening  procedures, the  predictor  variables  that  provide  physically  sensible meaning  in  terms  

of  their high explained variance,  correlation  coefficient (r)  and  the magnitude  of  their  probability  (p value) were  

selected.   

 10 

The model calibration process in SDSM was used to construct downscaled data based on multiple regression equations given 

daily weather data (predictand) and the selected predictor variables at each station. The model was structured as monthly 

model for both daily precipitation and temperature  using the same set of the selected NCEP predictors for the calibration 

period.downscaling. ConsequentlyHence, twelve regression equations were developed for twelve months. Bias correction 

and variance inflation factor was adjusted until the model replicate the observed data. Model validation was carried out by 15 

testing the model using independent data set. The weather generator helps to validate the calibrated model ideally using 

independent data. This operation generates the ensembles of synthetic daily weather data for the specified period with the 

help of regression model weights along with parameter file prepared during model calibration. To compare the observed and 

simulated data, SDSM has provided summary statistics function that summarizes the result of both the observed and 

simulated data. Time series of station data and large scale predictor variable information (NCEP reanalysis data) were 20 

divided into two groups; for the period from 1984-1995/ 1984-2000 and 1996-2001/ 2001-2005 for model calibration and 

validation of HadCM3/canESM2 GCMs respectively.  

 

The Scenario Generator operation produces ensembles of synthetic daily weather series given observed daily atmospheric 

predictor variables supplied by a GCM either for current or future climate (Wilby et al., 2002). The scenario generation 25 

produced 20 ensemble members of synthetic weather data for 139 years (1961-2099) from HadCM3 A2a and B2a scenarios 

and for 95 years (2006-2100) from canESM2 for RCP2.6, 4.5 and 8.5 scenarios, and the mean of the ensemble members was 

calculated and used for further climate change analysis. The generated scenario was divided into three time windows of 30 

years of data (2011-2040), (2041-2070) and (2071-2100) hence forth called 2030s, 2050s and 2080s, respectively.  

 30 

4.3  Model performance evaluation criteria 

A number of statistical tests were carried out to compare the skills of the two down scaling models categorized in to two 

main classes. First, quantitative statistical tests using metrics,A simulation of mean daily and monthly rainfall, Tmax and 
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Tmin, during the calibration and validation of the SDSM and LARSWG time series were checked by using graphical 

representation and statistical performance index. Performance indicators such as mean absolute error (MAE), root mean 

square error RMSE), Bias (B), coefficient of determination (R
2
) and, NasheSutcliffe Model Efficiency (NSE) are used to 

evaluate the comparative performance of the models to simulate the current climate variable of precipitation on long term 

monthly average basis defined by were used using Eq.7-Eq.11. Evaluation was done in two steps as suggested by (Goly et 5 

al., 2014) i) equally weighted the metrics such as R
2
, NSE, MAE, RMSE and Bias and ii) varying the weights of metrics. For 

the case of equally weighted the following steps were applied. a) Compare the values of the performance metrics among the 

models and give the rank (obtaining individual model rankings for each performance metrics). Here, the values of R
2
 and 

NSE are subtracted from 1, so that they are consistent with other performance measures (MAE, RMSE and Bias) suggesting 

that the lower the values of the index, the better the model at station level. b) summing up the rankings pertained to each 10 

model across all the performance measures and give the overall ranks of the model at each station. c) Once the final ranks are 

obtained at station level, the models are ranked again based on the totals by summing up the model ranks in all stations. to 

evaluate the performance  of the GCMs and downscaling techniques reproducing  the present climate variables of the study 

area and are defined as; 

 15 
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In the above equations Xi and Yi are i-th observation and simulated data by the model, respectively. µx and µy are the 

average of all data of Xi and Yi in the study population and n is the number of all samples to be tested. 

 

Additionally, varying weights technique was applied to the performance metrics as given in Eq. 12 to rank the models 25 

according to their skills. To avoid the discrepancy in weighing the performance measures because of differences in the order 

of their magnitudes, each performance measure is normalized (divided by the maximum value) and then the cumulative 

weighted performance measure for each downscaling model is calculated (Goly et al., 2014). The weights of metrics are 

arranged in such a way that more emphasizes is given to (MAE, RMSE), followed by Bias and less emphasis was given for 

R
2
 and NSE ( 0.3, 0.3, 0.2, 0.1 and 0.1) respectively.  30 
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where the index i refers to a downscaling model, Wi refers to overall performance measure, and 0 < Wi <1. 

 

Secondly, qualitative tests , in order to compare the skill of models  in regard to capturing the distribution of the observed 

data to the whole range and in capturing the extreme events were compared. For this purpose, statistical metrics and a 5 

graphical representation of Box-Whisker plots and Kolmogorov-Smirnov cumulative distribution test were applied to serve 

as a goodness of fit test for the  distribution of the observed and simulated precipitation at monthly basis. Box-Whisker plots 

was selected because, in addition to the median, the Box-Whisker plot depicts the extreme values, respectively, the minimum 

and maximum (the caps at the end of each box), and the outliers falling the interquartile range above the third or below the 

first quartile (the points in the graph). For Kolmogorov-Smirnov cumulative distribution test, the observed and the simulated 10 

precipitation data from each model were compared using p value at significance level of 5% for each station. As the 

computed p-value is lower than the significance level alpha=0.05, one should reject the null hypothesis H0 (observed and 

simulated follow the same distribution), and accept the alternative hypothesis Ha. 

 

As statistical metrics the following were used as suggested by Campozano et al. (2016): The interquartile relative fraction 15 

(IRF): to evaluate the modelled variability representation relative to the observed Eq.13: 

 

     
  
    

 

  
    

 ............................................................................................(13) 

where IRF is the interquartile relative fraction. A value of IRF > 1 represents overestimation of the variability, IRF = 1 is a 

perfect representation of the variability, and IRF < 1 is an underestimation of the variability; Q
m

3 and Q
o

3 and the 20 

75
th

modeled and observed percentile;Q
m
 1 andQ

o
 1 and the 25

th
modeled and observed percentile.  

The absolute cumulative bias (ACB): to evaluate the bias of the 25
th

, 50
th

, and 75
th

 percentiles Eq.14;  

 

          
    

      
    

      
    

  .............................(14) 

Where ACB is the absolute cumulative bias. A value of ACB = 0 is a perfect representation of the three percentiles 25 

(respectively, the 25
th

, 50
th

, and 75
th

 percentile) of modelled and observed distributions, while under or overestimation 

indicates a divergence of ACB from zero to positive values. Evaluation was done using equally weighted method only due to 

the assumption that the two metrics have equal weights as discussed above. Furthermore, the F-test  and t-test are applied on 

testing the equality of monthly variances of precipitation and equality of monthly mean respectively. 

 30 
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5. Results and Analysis 

5. 1 Calibration and validation of LARS-WG  

To verify the performance of LARS-WG, in addition to the graphic comparison, some statistical tests were performed. The 

Kolmogorov–Smirnov (KS) test is performed to test equality of the seasonal distributions of wet and dry series (WDSeries), 

distributions of daily rainfall (RainD), and distributions of daily maximum (TmaxD) and minimum (TminD) temperature. 5 

The F-test is performed on testing equality of monthly variances of precipitation (RMV) while the t test is performed on 

verifying equality of monthly mean rainfall (RMM), monthly mean of daily maximum temperature (TmaxM), and monthly 

mean of daily minimum temperature (TminM).. All of the tests calculate a p-value, which is used to accept or reject the 

hypotheses that the two sets of data (observed and generated) could have come from the same distribution at the 5% 

significance level . Therefore,  number of tests that results a p value less than 5%  out of the total number of 8 dry/wet 10 

seasons or 12months were recorded for each stations. Tthe average number  of P values less than 5% recorded from 26 

stations and percentage failed from the total of 8 seasons or 12 months has been presented in Table 2 . It can be seen from 

Table 2 that The result revealed that  LARS- WG  performs very well for all parameters except RMM and RMV. On the 

other hand, LARS WG  performs poor (i.e. an average of 2.2 % and 17.3 %  of the months of a year were recorded  obtained  

a P value < 5 %) for the monthly mean and variance of precipitation respectively.  From these numbers, it can be noted that 15 

the model is less capable in simulating the monthly variances than the other parameters.  

 

For illustrative purpose, graphical representation of monthly mean and standard deviation of the simulated and observed 

precipitation, Tmax and Tmin were constructed (insee Figure 3)  for randomly chosen Gondar station as it has been difficult 

to present the result of all stations. It can be seen from Figure 3the result that observed and simulated monthly mean 20 

precipitation, Tmax and Tmin matches very well. However,  as it is known for being difficult to simulate the standard 

deviations in most statistical downscaling studies, the performance of the standard deviation is less accurate as compared to 

the mean (Figure 3 (b) . Generally, according to the obtained statistical performance measure values and from graphical 

representation, the performance of the model for simulation of the three climatic variables in all stations across UBNRB is 

acceptable and reasonably well. 25 

5.2 Down scaling with LARS-WG 

The result of precipitation prediction by using LARS-WG model from six multi model GCMs under three scenarios (A1B, 

B1 and A2) for three time periods were presented  and plotted in Figure 4 for illustrative purpose. In Figure 4, each box–

whisker plot represents the prediction of precipitation across all stations of UBNRB under a single scenario for each GCM 

and the result revealed that there are no coherent trends observed among various GCMs' for predicting precipitation. 30 
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NCCCSM GCM was found the most unstable GCM in predicting precipitation across UBNRB while MPEH5 was relatively 

stable across all stations as compared to others.  

 

After downscaling the future climate predictions at all stations from the selected six GCMs, the projected precipitation 

analysis for the areal UBNRB was calculated from the point rainfall stations using Thiessen polygon method. The result 5 

analysis revealed that, GCMs disagree on the direction of precipitation change, two GCMs (MIHR and GFCM21) result 

decreasing trend whereas a majority or four GCMs (NCCSM, Hadcm3, MPEH5 and MIHR) result increasing trend from the 

reference period in all three time periods. The results from Figure 5 showed that NCCCS reported maximum increase while 

GFCM21 reported highest reduction. For 2030s, the relative change of mean annual precipitation projected between (-2.3 % 

and + 6.5 %) for A1B, (-2.3 % and +7.8 %) for B1 and (-3.7 % and +6.4 %) for A2 emission scenarios. At 2050s, the relative 10 

change in precipitation range from (-8 % and +22.7 %) for A1B, (-2.7 % and +22 %) for B1 and (-7.4 % and +8.7 %) for A2 

scenarios. In the time of 2080s, the relative change of precipitation projected may vary from( -7.5 % and +29.9 %) for A1B, 

(-5.3 % and +13.7 %) for B1 and (-5.9 % and +43.8 %) for A2 emission scenarios. The multi model average result showed 

that in the future precipitation may generally increases over the basin in the range of 1 %-14.4 % which matches with the 

result from HadCM3 GCM (0.8 %-16.6 %) as it is shown in Figure 5 .  15 

 

In a different way from precipitation, the projection of mean annual Tmax and Tmin have coherent increasing trends were 

observed from the six GCMs under all scenarios in all three future time periods. At 2080s,  the change in mean annual Tmax 

and Tmin is more pronounced than 2030s in all GCMs from three scenarios The result calculated from the ensemble mean 

showed that mean annual Tmax my increase up to +0.5 
o
c, +1.8

  o
c and +3.6 

o
c by 2030s, 2050s and 2080s respectively under 20 

A2 scenario which is in line with  the results from both GFCM21 and HadCM3 GCMs (Figure 5). Likewise, UBNRB may 

experience an increase mean annual Tmin up to +0.6 
o
c, +1.8 

o
c and +3.6 

o
c by 2030s, 2050s and 2080s respectively from the 

multi model average. 

5. 3 2 Screening variable, model calibration and validation of SDSM 

Initially, offline correlation  analysis was performed using SPSS software between predictands and NCEP re-analysis 25 

predictors to identify an optimal lag and physically sensible predictors for climate variables of precipitation, Tmax and 

Tmin. Analysis of the offline correlation revealed that an optimal lag or time shift does not improve the correlation of 

predictands and predictors for this particular study. Average partial correlation of observed precipitation of all stations with 

predictors  as shown in Figure 5 is shown in the Figure 7 which indicates all stations followed the same correlation pattern 

(both in magnitude and direction) that illustrates all stations can have identical physically sensible predictors with a few of 30 

exceptions. Furthermore, there exist a number of predictors that have correlation coefficient values in the range of 20 %-45 

% for precipitation across all stations as shown in Figure 7. This range is considered to be acceptable when dealing with 
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precipitation downscaling (Wilby et al., 2002) because of its complexity and high spatial and temporal variability to 

downscale.  

 

The predictor variables identified for each downscaling GCMs and for the corresponding local climate variables conducted 

in this study are summarized in Figure 8. From the selected predictors, it is observed showed that different large scale 5 

atmospheric variables control different local variables. For instance, set of temp, mslp, s500, s850, p8_v, p500, shum are the 

most potential or meaningful predictors for temperature and s500, s850, p8_u, p_z, pzh, p500 for precipitation of the study 

area respectively, which is consistent with the result of offline correlation analysis.  

 

After carefully screening predictor variables, model calibration and validation was carried out. The graphical comparison 10 

between the observed and generated rainfall, Tmax and Tmin were run to enhance the confidence of the model performance, 

as shown in Figure 6  and  Figure 7  for Gondar station only. Examination of Figure 6  showed that the calibrated model 

reproduces the monthly mean precipitation and mean and standard deviation of daily Tmax, Tmin, and mean dry-spell length 

values quite well. However, the wet-spell length were consistently underestimated and alsomodel is less accurate in 

reproducing variance of observed precipitation. As Wilby et al. (2004) point out, downscaling models are often regarded as 15 

less able to model the variance of the observed precipitation with great accuracy.  

 

Furthermore, the performance of the model was evaluated by statistical performance indicators metrics of (MAE, RMSE, R
2
, 

NSE and BIAS) as summarized in Table 4. The result of statistical analysis revealed that the model is much better in 

simulating Tmax and Tmin than precipitation, because of the high dynamical properties of precipitation makes it difficult to 20 

simulate. After accomplishing a satisfactory calibration (Figure 9), the multiple regression model is validated using an 

independent set of data outside the period for which the model is calibrated.  as discussed under section 4, and the results 

obtained are shown in Figure 9 and Table 4.  Examination of Figure 9, Figure 10 and Table 4 The validation result revealed 

that the model is successfully validated but at lesser accuracy as compared to calibration for both GCMs. In general, the 

result analysis of performance measure and graphical representation of observed and simulated both for calibration and 25 

validation revealed that the model performs very well in simulating the climate variables with high degree of accuracy.  

5.3 Down scaling with LARS-WG 

Since the performance of LARS-WG during calibration and validation was very good, down scaling of climate scenario can 

be done from six selected multi model CMIP3 GCMs under three scenarios (A1B, B1 and A2) for three time periods. The 

result of precipitation prediction were plotted in Figure 4 for illustrative purpose. After downscaling the future climate 30 

scenarios at all stations from the selected six GCMs, the projected precipitation analysis for the areal UBNRB was calculated 

from the point rainfall stations using Thiessen polygon method. The result analysis revealed that, GCMs disagree on the 
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direction of precipitation change, two GCMs (CSMK3 and GFCM21) showed decreasing trend whereas a majority or four 

GCMs (NCCSM, Hadcm3, MPEH5 and MIHR) showed increasing trend from the reference period in all three time periods. 

By 2030s, the relative change of mean annual precipitation projected in the range between (-2.3 % and + 6.5 %) for A1B, (-

2.3 % and +7.8 %) for B1 and (-3.7 % and +6.4 %) for A2 emission scenarios. At 2050s, the relative change in precipitation 

range from (-8 % and +22.7 %) for A1B, (-2.7 % and +22 %) for B1 and (-7.4 % and +8.7 %) for A2 scenarios. In the time 5 

of 2080s, the relative change of precipitation projected may vary from( -7.5 % and +29.9 %) for A1B, (-5.3 % and +13.7 %) 

for B1 and (-5.9 % and +43.8 %) for A2 emission scenarios. The multi model average result showed that in the future 

precipitation may generally increases over the basin in the range of 1%-14.4 % which is in line with the result from HadCM3 

GCM (0.8 %-16.6 %).  

 10 

In a different way from precipitation, the projection of mean annual Tmax and Tmin have coherent increasing trends were 

observed from the six GCMs under all scenarios in all three future time periods. The result calculated from the ensemble 

mean showed that mean annual Tmax may increase up to +0.5 
o
c, +1.8

  o
c and +3.6 

o
c by 2030s, 2050s and 2080s 

respectively under A2 scenario which is in line with  the results from both GFCM21 and HadCM3 GCMs. Likewise, 

UBNRB may experience an increase mean annual Tmin up to +0.6 
o
c, +1.8 

o
c and +3.6 

o
c by 2030s, 2050s and 2080s 15 

respectively from the multi model average. 

5.4  Down scaling with SDSM 

Here, as it is difficult to process all the selected six CMIP3 GCM3 using SDSM, we choose HadCM3 GCM as the best due 

to the fact that the downscaling result of HadCM3 using LARS-WG fits with the downscaling result of the ensemble mean 

model. Also, canESM2 from CMIP5 GCMs was selected to test the improvements of CMIP5 over CMIP3. Results of down 20 

scaling future climate scenario of  areal UBNRB using SDSM calculated from all stations using Thiessen polygon methods 

are summarized fromin  Figure 6Figure 8 . The magnitude of future climate change at each station has different pattern and 

magnitude using different scenarios as can be seen the variation in Figure 11. The overall analysis of the result of the whole 

UBNRB from Figure 6   indicates, a general increase in mean annual precipitation for three time windows (2030s, 2050s and 

2080s) under in all 5 scenarios (A2a and B2a for HadCM3 and RCP2.6, RCP4.5 and RCP8.5 for canESM2) in the range of 25 

2.1 % to 43.8 %. The maximum/minimum relative change of mean annual precipitation is projected to be 43.8 %/2.1 %, 29.5 

%/3.5 % and 19 %/2.1% at 2080s, 2050s and 2030s under RCP8.5 scenario of canESM2  and H3B2a scenario of HadCM3  

respectively. In general, RCP8.5 scenario of canESM2GCM resulted pronounced increase in all three time periods whereas 

scenario B2a of HadCM3 GCM reported minimum change over the study area. 

 30 

Regarding to temperature, the down scaling result of Tmax and Tmin showed an increasing trend consistently in all months 

and , seasons in three time periods under all scenarios with mean annual value ranges from 0.5 
o
C to 2.6 

o
C and 0.3 

o
c to 1.6 
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o
C under scenario RCP8.5 and H3B2a respectively. RCP 8.5 scenario reported maximum change while H3B2a scenario 

reported minimum change both for Tmax and Tmin in all three time periods as compared to other scenarios. The analysis of 

down scaling result illustrates maximum temperature may become much hotter as compared to minimum temperature in all 

scenarios and time periods in the future across UBNRB.  

5.5 Comparative performance evaluation  of LARS-WG and SDSM models 5 

Chen et al. (2013) argued that though major source of uncertainty are linked to GCMs and emission scenarios, uncertainty 

related to the choice of downscaling methods give less attention on climate change analysis. Therefore, in this study, 

comparative performance evaluation of the downscaling methods was has(Goly et al., 2014) given due emphasis  and carried 

out donein a number of statistical and graphical tests both quantitatively and qualitatively. The model skill was evaluated and 

ranked at each site as shown in  for Abaysheleko station. The overall rank obtained by summing up the rank of each model at 10 

each station is presented in  and Table6 respectively, for quantitative and qualitative measures. The result revealed that 

SDSM/canESM2 narrowly performed best in simulating the long term average values in both equally weighted and varying 

weights of the quantitative metrics. However, LARS-WG performed best in qualitative measure in reproducing the 

distribution and extreme events of precipitation. It captures the distribution of the observed precipitation 93.3% (Table 5) 

from all stations while SDSM captures only 20% of the 15 stations equally both in canESM2 and HadCM3 GCMs at 5% 15 

significance level of Kolmogorov-Smirnov test. The t-test result revealed that 86.7% of the simulated precipitation by 

LARS-WG and SDSM/HadCM3 models are capturing their perspective mean values from all stations while SDSM/hadCM3 

model capture only 66.7%. The F test showed 93.3 % of the simulated and the observed precipitation are normally 

distributed around their respective variance value in all three models. In general, the comparative performance test revealed 

that LARS-WG model performed best in qualitative measures while SDSM/canESM2 is best in quantitative measures in 20 

UBNRB. Furthermore, Figure 9  and Figure 10 confirmed graphically the ability of LARS/WG model in capturing the 

distribution and extreme events of the precipitation in representative stations (randomly chosen) respectively by Whisker box 

plot and Kolmogorov-Smirnov test.   

                 p       P      ’      elation coefficient (R) values of the observed and simulated for all stations presented 

in Figure 12 For  precipitation, at daily time series R value was 0.21 in LARS WG while 0.43/042 for HadCM3/canESM2 25 

using SDSM. Whereas, R value for daily Tmax were 0.61 using LARS WG and 0.75/ 0.76  for HadCM3/ canESM2 using 

SDSM respectively. The R value for precipitation at monthly basis has improved significantly to 0.79 using LARS WG 

while 0.84 for both HadCM3 and canESM2 using SDSM.  For Tmax R value was 0.89 using LARS WG and 0.91/0.92 for 

HadCM3/ canESM2 using SDSM respectively. The result from the two downscaling models suggested that both SDSM and 

LARS-WG approximate the observed climate data corresponding to the current state reasonably well.  30 
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For future simulation, HadCM3 GCM under A2 scenario was used in common for two (LARS- WG and SDSM) down 

scaling methods for comparison purposeto test whether the downscaling methods may affect the GCMs result under the 

same forcing scenario. The results obtained from the two down scaling models were found reasonably comparable and both 

approaches showed  increasing trend for precipitation, Tmax and Tmin.  However, the magnitude  of the downscaled climate 

data from the two techniques methods as presented in Figure 11:   showed different. LARS-WG over predicts precipitation 5 

and  thantemperature than SDSM.   LARS-WG predict The relative change of mean annual precipitation using LARS-WG is 

about 16.1 % and an average increase in mean annual Tmax and Tmin about 3.7 
o
C and 3.6 

o
C respectively at 2080s while 

SDSM predicts relative change in mean annual precipitation only about 9.7 % and an average increase in Tmax and Tmin 

about 2 
o
c and 1.3 

o
C respectively in the same period. The difference could be due to the fact that SDSM uses large scale 

predictor  variables from GCM outputs to predict local scale climate variables using multiple linear regression, while the 10 

LARS WG is analysed by applying the change factors from the GCM output of only those variables which directly 

correspond to the predictands. Moreover, because of the well known fact that GCMs are not very reliable in simulating 

precipitation, the error induced from the GCM output for precipitation will propagate the error of downscaling that makes 

the performance of LARS-WG to downscale precipitation more questionableneeds more caution  (Dibike et al., 2005). 

Therefore, based on the above facts SDSM would be more robust and can be applied at higher confidence for downscaling 15 

large scale GCMs outputs to finer scales to suit for hydrological models for impact assessment in the UBNRB. 

6. Discussions and conclusions 

The uncertainty related to climate change analysis can be due to climate models and downscaling methods among many 

others. In this study, we employed multi model approach to see the uncertainties came from different GCMs. In total, 21 

systematically selected future climate scenarios were produced for each time period, which we might think representative to 20 

understand fully and to project plausibly the future climate change in the study area and to retain information about the full 

variability of GCMs.  Moreover, we applied two widely used statistical down scaling methods, namely the regression 

downscaling technique (SDSM) and the stochastic weather generation method (LARS WG) for this particular study.  

 

The performance of the three models (HadCM3/SDSM, canESM2/SDSM and LARS-WG) were tested for the base line 25 

period of 1984-2011 in representing the current situation particularly for precipitation, as it is the most difficult climate 

variables to model. The result suggested that SDSM using canESM2 GCM captures the long term monthly average very well 

at most of the stations and it ranked first from others. This could be attributed to the increasing performance of GCMs from 

time to time (i.e, CMIP5 GCMs performs better than CMIP3 GCMs) due to the fact that modeling was based on the new  set 

of radiative forcing scenario (RCPs) that replaced SRES emission scenarios, constructed for IPCC AR5 where the impacts of 30 

land use and land cover change on the environment and climate is explicitly included. Also, it is  one of the earth system 

models which has additional features that incorporates various important biogeochemical processes which is the limitation of 
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CMIP3 GCMs like HadCM3. However, LARS-WG performed best in qualitative measures in capturing the distribution of 

precipitation and extreme events than SDSM. The better performance of LARS-WG in capturing the distribution and 

extreme events of the precipitation than SDSM in the study area may be associated with the use of 23 interval histograms for 

the construction of semi- empirical distribution, which offers more accurate representation of the observed distribution 

compared with the 10 used in the previous version (Semenov et al., 2010). Therefore, LARS-WG would be more preferred 5 

in areas of UBNRB where there is high climatic variability to correctly simulate the distribution and extreme events of the 

precipitation which is crucial for a realistic assessment of  flood events and agricultural production.  

 

The down scaling result reported from the six GCMs used in LARS-WG showed large inter model differences, 2 GCMs 

reported precipitation may decrease while 4 GCMs reported precipitation may increase in the future. The large inter model 10 

differences of the GCMs showed the uncertainties of GCMs associated with their differences of resolution and assumptions 

of physical atmospheric processes to represent local scale climate variables which are typical characteristics for Africa  and 

because of low convergence in climate model projections in the area of UBNRB (Gebre et al., 2014). The multi model 

average result showed that in the future precipitation may generally increases over the basin in the range of 1 % -14.4 % 

which agreed is in line  with the result from HadCM3 GCM (0.8 %-16.6 %), this  indicates HadCM3 from CMIP3 GCMs 15 

has a better representation of local scale climate variables in the study area consistent with the previous study result by Kim 

and Kaluarachchi (2009) and (Dile et al., 2013) in the same study area.  

 

 Further uncertainty analysis of HadCM3 GCM from CMIP3 and canESM2 GCM from CMIP5 used by SDSM was carried 

out for precipitation. The downscaled results from the two GCMs modelled by SDSM suggested that mean annual 20 

precipitation may generally increase in the range of 2.1 % to 43.8 %.  However, canESM2 better performs than HadCM3 in 

reproducing the current climate variables of UBNRB both in calibration and validation consistently (Table 4). The better 

performance of canESM2 could be due to the fact that modelling was based on the new  set of radiative forcing scenario 

(RCP) that replaced SRES emission scenarios, constructed for IPCC AR5 where the impacts of land use and land cover 

change on the environment and climate is explicitly included. Also, it is  one of the earth system models which has 25 

additional features that incorporates various important biogeochemical processes which is the limitation of CMIP3 GCMs 

like HadCM3. Even though, the simulation of large scale precipitation has improved since IPCC AR4, GCMs still continues 

to perform less well for precipitation as compared to temperature and therefore downscaling of precipitation becomes more 

complex and difficult to reproduce the base scenario as compared to downscaling of temperature (Fowler et al., 2007) also 

confirmed in this study (Table 4). However, a direct comparison between the projection from the two datasets (HadCM3 and 30 

canESM2) is not possible as seen from Figure 6, as they used different scenarios describing the amount of Green House 

Gases (GHGs) in the atmosphere differently.    
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LARS WG as it is a stochastic simulation tool that is commonly used to produce synthetic climate data of any length with 

the same characteristics as the input record, it simulate weather separately for single sites; therefore, the resulting weather 

series for different sites are independent of each other,  which can lost a very strong spatial correlation that exists in real 

weather data during simulation. Although, a few stochastic models have been developed to produce weather series 

simultaneously at multiple sites preserving the spatial correlation, mainly for daily precipitation, such as space–time models, 5 

non-homogeneous hidden Markov model and nonparametric models typically use a K-Nearest Neighbour (K-NN) procedure 

(King et al., 2015), they are complicated in both calibration and implementation and are unable to adequately reproduce the 

observed correlations (Khalili et al., 2007).  

 

To test the capability of LARS- WG in preserving the spatial correlation of stations while simulated, the simple Pearson's 10 

correlation coefficient (R
2
) value was calculated for two stations Abaysheleko and Bahirdar and checked in two stations. 

tThe result from  revealed that the spatial correlation of the stations was distorted /decreased/ from the original to a lesser 

extent is insignificant. as expected. Even though, LARS WG has limitation to preserve the spatial correlation of climate 

variables, it can be applied for downscaling climate change scenario for the area of UBNRB satisfactorily with caution to 

hydrological impact models, as spatial distribution of precipitation may have essential effects on the discharge of a river and 15 

the formation of floods.  

 

 In conclusion, a multi model average from LARS-WG and individual model result from SDSM of this study showed a 

general increasing trend for all three climatic variables (precipitation, Tmax and Tmin) in all three time periods applying 

LARS-WG and SDSM downscaling techniques. The positive change of precipitation in future can be a good opportunity for 20 

the farmers who are engaged in rain fed agriculture to maximize their agricultural production and to change their lively 

hoods. However, this information cannot be a guarantee for irrigation farming because precipitation is not the only factor 

contributing to affect the flow of the river, which is the main source for irrigation. Evapotranspiration, dynamics of land use 

land cover, proper water resource management and other climatic factors, which are not yet assessed by this study can 

influence the flow of the river directly and indirectly. Furthermore, the result from this study  (  revealed that, maximum 25 

positive precipitation change may occur in Autumn (Sep.-Nov.) when most agricultural crops get matured and start 

harvesting while minimum precipitation change may occur during summer (June-August), when about 80% of the annual 

rainfall occurred, this climate variability can be potential threat for the farmers, who have limited ability to cope with the 

negative impacts of climate variability and overall ongoing economic development efforts in the basin.  

 30 

In general, this study has shown that climate change will occur plausibly that may affect the water resources and hydrology 

of the UBNRB, and  the study proposed  the outputs of canESM2 ESM with new sets of emission scenarios downscaled by 

SDSM technique can be applied for further impact analysis with high degree of certainty.  Moreover, the paper provides 

information that the choice of downscaling methods has a contribution in the uncertainty of future climate estimation 
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prediction of climate change and therefore, the comparative performance test has to be done. The Authors would like also to 

suggest for further assessment of large ensemble of  CMIP5 GCMs which might enhance the limitation of this paper.  in the 

same way as we consider multiple GCMs to acknowledge the uncertainty range. 
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Table 1Table 1: Table 1: Selected Global climate models from IPCC AR4 incorporated into the LARS-WG   Selected Global 

climate models from IPCC AR4 incorporated into the LARS-WG  

Research centre Country GCM Model 

acronym 

Grid 

Resolution 

Emission 

Scenarios 

Time 

Periods 

Common Wealth Scientific and 

Industrial Research Organization  

Australia CSIRO-

MK3 

CSMK3 1.9x1.9
o
 A1B, B1 B,T1,T2,T

3 

Max-Plank Institute for 

Meteorology 

Germany ECHAM5-

OM 

MPEH5 1,9x1.9
o
 A1B,A2,B

1 

B,T1,T2,T

3 

National Institute for 

Environmental Studies 

Japan MRI-

CGCM2.3. 

MIHR 2.8x2.8
o
 A1B,B1 B,T1,T2,T

3 

UK Meteorological Office UK HadCM3  HADCM

3 

2.5x3.75
o
 A1B,A2,B

1 

B,T1,T2,T

3 

Geophysical Fluid Dynamics Lab USA GFDL-

CM2.1  

GFCM21 2x2.5
o
 A1B,A2,B

1 

B,T1,T2,T

3 

National Centre for Atmospheric 

Research 

USA CCSM3  NCCCS 1.4x1.4
o
 A1B,B1 B,T1,T2,T

3 

B: baseline; T1:  2011–2030; T2: 2046–2065; T3: 2081–2100  

 
Table 2Table 2: Table 2: Calibration results of the average statistical tests comparing the observed data from 26 stations with 5 
synthetic data generated through LARS-WG.  The numbers in the table show the average numbers of  tests gave P value less than 

5 % significance levelResults of the average statistical tests comparing the observed data from 26 stations with synthetic data 

generated through LARS-WG.  The numbers in the table show the average numbers of  tests gave P value less than 5 % 

significance level.   

 10 

Tests KS-test t-test F-test KS-test t-test KS-test t-test 

Parameters WDseries RainD RMM RMV TminD TminM TmaxD TmaxM 

Average 0.04 0.00 0.27 2.08 0 0.12 0 0.12 

Total 8 12 12 12 12 12 12 12 

% failed 0.48 0.00 2.24 17.31 0 1 0 1 

 

Table 3Table 3:   Table 3: Name and description of all NCEP predictors on HadCM3 & canESM2 grid  

  Name and description of all NCEP predictors on HadCM3 & canESM2 grid  

Variables  Descriptions  variables  Descriptions 

temp  Mean temperature at 2 m  s500 + Specific humidity at 500 hpa height 

mslp  Mean sea level pressure  s850+  Specific humidity at 850 hpa height 

p500  500 hpa geopotential height  **_f  Geostrophic air flow velocity 

p850  850 hpa geopotentail height  **_z  Vorticity 

rhum * Near surface relative humidity  **_u  Zonal velocity component 

r500*  Relative humidity at 500 hpa   **_v  Meridional velocity component 

r850*  Relative humidity at 850 hpa   **zh  Divergence 

shum  Near surface specific humidity  **thas  Wind direction 

Prec+ Total precipitation   

(**) refers to different atmospheric levels: the surface (p_), 850 hpa height (p8), and 500 hpa height (p5) 

(*) refers predictors only found from HadCM3,  (+) refers predictors only for canESM2 15 
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Table 4:  Table 4: Performance measure and ranking of models in terms of precipitation distribution at Abaysheleko  

 

  Values Rank 

 

Metrics LARS-WG 

SDSM/canE

SM2 

SDSM/had

CM3 

LARS-

WG 

SDSM/canE

SM2 

SDSM/had

CM3 

Quantitative 

measure 

R2 0.983 0.99 0.99 3 1 1 

MAE(mm) 12.54 5.35 12.41 3 1 2 

RME(mm) 18.86 7.42 15.68 3 1 2 

NSE 0.96 0.99 0.97 3 1 2 

Bias 5.06 2.59 12.17 2 1 3 

  Total       14 5 10 

  Rank       3 1 2 

Qualitative 

measure 

1-IRF 0.07 -0.28 -0.24 1 3 2 

ACB (mm) 45.60 35.39 42.33 2 1 2 

  Total       3 4 4 

  Over all rank       1 2 2 

 

R2 0.983 0.99 0.99 3 1 1 

MAE(m

m) 12.54 5.35 12.41 3 1 2 

RME(m

m) 18.86 7.42 15.68 3 1 2 

NSE 0.96 0.99 0.97 3 1 2 

Bias 5.06 2.59 12.17 2 1 3 

 1-IRF 0.07 -0.28 -0.24 1.00 3.00 2.00 

ACB 

(mm) 45.60 35.39 42.33 2.00 1.00 2.00 

Performance measure and ranking of models in terms of precipitation distribution at Abaysheleko 5 

 

R2 0.983 0.99 0.99 3 1 1 

MAE(mm) 12.54 5.35 12.41 3 1 2 

RME(mm) 18.86 7.42 15.68 3 1 2 

NSE 0.96 0.99 0.97 3 1 2 

Bias 5.06 2.59 12.17 2 1 3 

 
1-IRF 0.07 -0.28 -0.24 1.00 3.00 2.00 

ACB (mm) 45.60 35.39 42.33 2.00 1.00 2.00 
 

 

R: Partial pearsons correlation coefficient at daily time series, STD: standard deviation, Q75: 3rd quartile, Q25: 1st quartile, AM: Anual 

Maximum, IRF: interquartile relative fraction, ACB: Absolute cumulative Bias  

 10 
 

 

Table 5: Model ranking of statistical down scaling models during base line period (1984-2011) for quantitative measure   

    Equally weighted Varying weights 

    Quantitative measure Qualitative measure Quantitative measure 
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Station 

Station 

no. 

LAR

S-

WG 

SDSM

/CanE

SM2 

SDSM

/HadC

M3 

LARS-

WG 

SDSM/c

anESM2 

SDSM/

HadCM

3 

LARS

-WG 

SDSM

/CanE

SM2 

SDS

M/Ha

dCM

3 

Abaysheleko 1 3 1 2 1 2 2 0.6 0.2 0.4 

Alemketema 2 1 3 1 1 2 3 0.4 0.5 0.2 

Anger 3 1 2 3 1 3 2 0.2 0.4 0.5 

Angerguten 4 2 1 3 1 2 3 0.4 0.2 0.5 

Bahirdar 5 2 1 3 2 1 3 0.4 0.2 0.6 

Bedele 6 2 1 3 1 2 2 0.4 0.2 0.6 

Dangila 7 1 2 3 2 1 2 0.2 0.4 0.6 

Dedesa 8 2 1 3 1 1 3 0.4 0.2 0.6 

Dmarkos 9 2 1 3 1 3 1 0.4 0.2 0.6 

Dtabor 10 1 2 3 1 2 3 0.2 0.4 0.6 

Fitche 11 1 3 2 1 2 3 0.2 0.5 0.4 

Gimijabet 12 1 2 3 3 2 1 0.2 0.4 0.6 

Gondar 13 1 2 3 2 1 3 0.2 0.4 0.6 

Nedjo 14 2 1 3 1 3 2 0.4 0.2 0.5 

Shambu 15 2 1 3 2 3 1 0.4 0.2 0.5 

Total   24 24 41 21 30 34 4.7 4.6 7.8 

Rank   1 1 3 1 2 3 2 1 3 
 

 

 

 

 5 
 

 

 

Table 5  Table 4:  Average values of statistical performance indicators for all stations using SDSM 

 10 

 Performa

nce 

indicators 

Climate 

variables 

Mean Daily 

Precipitation 

(mm) 

Mean monthly 

Precipitation 

(mm) 

Mean daily 

Tmax (
o
C) 

Mean dailyTmin 

(
o
C) 

 

 
GCMs 

HadC

M3 

canES

M2 

HadC

M3 

canES

M2 

HadC

M3 

can

ES

M2 

HadC

M3 

canES

M2 

 
Mean 

Observed 7.94 7.94 121.7 121.7 24.9 24.8 11.5 11.6 

 Simulated 7.97 7.87 127.8 123.7 24.9 24.8 11.5 11.6 

C
al

ib
ra

ti
o

n
+

 

R
2
 

 
0.93 0.94 0.98 0.99 0.99 0.99 0.99 1.00 

MAE 

value 0.8 0.4 11.1 5.9 0.1 0.1 0.1 0.0 

Ratio relative 

to mean(%) 
9.7 5.3 9.1 4.8 0.5 0.2 1.1 0.2 

RMSE 

value 1.0 0.7 15.8 8.9 0.2 0.1 0.2 0.0 

Ratio relative 

to mean(%) 
12.6 8.6 13.0 7.3 0.6 0.3 1.3 0.3 

NSE 
 

0.82 0.92 0.97 0.99 0.96 0.99 1.00 1.00 
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Bias 
 

0.51 0.20 4.28 3.65 0.09 0.02 0.09 0.01 

V
al

id
at

io
n

*
 

R
2
 

 
0.70 0.71 0.90 0.95 0.97 0.95 0.96 0.95 

MAE 

value 2.0 1.8 32.4 23.2 0.4 0.5 0.3 0.4 

Ratio relative 

to mean(%) 
25.2 22.9 26.6 19.1 1.5 1.8 2.4 3.6 

RMSE 

value 2.4 2.4 46.4 33.4 0.5 0.6 0.3 0.5 

Ratio relative 

to mean(%) 
30.7 30.0 38.1 27.4 1.9 2.2 3.0 4.3 

NSE 
 

0.37 0.55 0.83 0.92 0.90 0.87 1.00 0.99 

Bias 
 

1.13 0.92 14.77 13.20 0.26 0.33 0.18 0.31 

+ calibration period for canESM2 (1984-2000), for HadCM3 (1984-1995) * Validation period for canESM2 (2001-2005), for HadCM3 (1996-

2001) 

 

 

 

 

 

 

   

  LARSWG 

CanESM2 

HadCM3 

 5 

 

 

 

 

 10 

Table 6: Table 6: Ranking of statistical down scaling models during base line period (1984-2011) for qualitative measure  

Ranking of statistical down scaling models during base line period (1984-2011) for qualitative measure 
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  Kolmogorov-Smirnov test t-test F-test 

Station 

HadC

M3 canESM2 

LARS-

WG 

HadC

M3 

canES

M2 

LARS-

WG 

HadC

M3 

canESM

2 

LARS-

WG 

Abaysheleko 

< 

0.0001 < 0.0001 0.288 0.49 0.59 0.57 0.01 0.31 0.16 

Alemketema 

< 

0.0001 0.000 0.997 0.91 0.33 0.99 0.18 < 0.001 0.45 

Anger 0.087 0.007 0.829 0.65 0.93 0.50 0.16 0.15 0.20 

Angergutten 0.173 0.087 0.893 0.56 0.98 0.51 0.05 0.06 0.25 

Bahirdar 

< 

0.0001 < 0.0001 0.549 0.59 0.36 0.87 0.19 0.00 0.36 

Bedele 0.031 0.374 0.675 0.04 0.95 0.97 0.77 0.35 0.37 

Dangila 

< 

0.0001 < 0.0001 0.027 0.88 0.00 0.00 0.00 < 0.001 < 0.001 

Dedesa 0.009 0.017 0.942 0.77 0.98 0.97 0.38 0.38 0.98 

Debre markos 0.000 < 0.0001 0.602 0.53 0.95 0.96 0.13 0.04 0.73 

Debre tabor 

< 

0.0001 < 0.0001 0.055 0.68 0.93 0.83 0.79 0.41 0.02 

Fitche 0.017 0.000 0.942 0.99 0.77 0.95 0.09 0.96 0.87 

Gimijabet 0.213 0.087 0.259 0.75 0.62 0.82 0.29 0.84 0.08 

Gondar 0.000 0.007 0.675 0.98 0.53 0.76 0.91 0.03 0.83 

Nedjo 0.004 0.009 0.975 0.57 0.68 0.98 0.80 0.30 0.97 

Shambu 0.009 0.000 0.139 0.77 0.83 0.82 0.38 0.15 0.28 

Total stations 15 15 15 15 15 15 15 15 15 

No. Passed 

(p>5%)
*
 3 3 14 14 14 14 10 1013 13 

% passed 20 20 93.3 93.3 93.3 93.3 66.7 86.7 86.7 

*: Number of stations with p value > 5% (pass to simulate the distribution of precipitation) 
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Figure 11: Location Map of the study area 

 5 

a)                                                                                                b) 

  

Figure 22:  Schematic diagram of a) LARS WG analysis b) SDSM analysis source (Wilby et al., 2002) 
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Figure 3:  Figure 3:  Observed and simulated a) mean monthly precipitation,Tmax and Tmin ; b) standard deviation of 

precipitation, Tmax and Tmin using LARS-WG 

 5 

    
 

   

Figure 4: Box plots showing the relative change of precipitation (%) for each six selected GCMs downscaled from 15 

stations by using LARS-WG for scenarios (B1, A2 and A1B) during three time periods as compared to the base line.  Box 10 

boundaries indicate the 25
th

 and 75
th

 percentiles, the line within the box marks the median, whiskers below and above the 

box indicate the 10
th

 and 90
th

 percentiles, 

 B1/80: B1 scenario time period 0f 2080s, B1/50: B1 scenario time period 2050s, B1/30: B1 scenario time period 2030s 
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Figure 13: Spatial correlation coefficient (R
2
) of Abaysheleko (left) and Bahirdar (right) weather stations with others 

for monthly precipitation from 1984-2011 simulated by LARS-WG model. 

 

 

 5 

 

Figure 5: Figure 4:  (a) Relative change mean annual precipitation and (b) change in Tmax and Tmin modeled from six 

GCMs for three time periods of UBNRB as compared from the reference period of 1984-2011 by using LARS-WG 
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 Figure 5 Figure 7: Average partial correlation coefficient values of all stations for precipitation and Tmax  with NCEP- 

reanalysis pre predictors  5 

  

Figure 8:  Screened NCEP- predictor variables for observed Tmax and precipitation from two GCMs, the maximum frequency is 

15 for precipitation and 25 for Tmax 
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 Figure 6 Figure 9: calibration of observed and simulated of precipitation, maximum and minimum temperature for the 

Gondar station using SDSM from canESM2 and HadCM3 from top to bottom  

  5 
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 Figure 7 Figure 10: Validation of observed and simulated of precipitation, maximum and minimum temperature for Gondar 

station using SDSM from canESM2 and HadCM3 from left top to right bottom respectively 5 

    

Figure 8 Figure 11: (a) Relative change of mean annual precipitation, and (b) change of mean annual Tmax and Tmin for 

three time periods as compared to the baseline period of UBNRB  using SDSM for HadCM3 and canESM2 GCMs under 

different scenarios 
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  Figure 9 : Figure 9  :Kolmogorov-Smirnov test to compare the skill of the models for the observed precipitation distribution 

(Upper three Alemketema station, lower three Debre markos station) 

 

   5 

Figure 10:Figure 10 :Box plot showing the model performance at three stations. Box boundaries indicate the 25
th

 and 75
th
 

percentiles, the line within the box marks the median, whiskers below and above the box indicate the 10
th

 and 90
th 

percentiles, dots indicate the extremes.  

 

  Figure 6: (a) Relative change of mean annual precipitation, and (b) change of mean annual Tmax and Tmin for three 10 

time periods as compared to the baseline period of UBNRB  using SDSM for HadCM3 and canESM2 GCMs under 

different scenarios 
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Figure 11: Box plot showing summarized representation of variation of  a) upper  three: relative change of mean monthly 

precipitation, change maximum and minimum temperature from left to right for UBNRB across all stations under RCP4.5 at 

2050s Using SDSM b) lower three: Relative change of mean annual precipitation, change in mean annual maximum and minimum 

temperature from left to right at 2050s for scenarios (RCP2.6, 4. 5 and 8.5 and SRES A2 and B2) for UBNRB using SDSM. 5 

 

 

Figure 12: Performance comparison of LARSWG and SDSM at different time scale 

  

Figure 13: Spatial correlation coefficient (R
2
) of Abaysheleko (left) and Bahirdar (right) weather stations with others 10 

for monthly precipitation from 1984-2011. 
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Figure 11:  Figure 14: General trend in precipitation, Tmax and Tmin at UBNRB corresponding to aComparison of climate 

change scenario  a) downscaled using LARS- WG and SDSM from HadCM3 GCM for a2 scenario b) Box plot of monthly 

downscaled  future precipitation from different scenarios (LARS-WG using hadCM3 a2 scenario) 
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