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The objective of this study is to analyze and better comprehend the possible future
climate trend for UBNRB. If you select a set of representative climate scenarios that
properly capture future climate variability, the results are reasonable and accepted for
other colleagues. However, | do not believe that you can do a comprehend analysis with
only a set of climate scenarios without a systematic techniques to select representative
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scenarios?

As climate models are differ from each other , particularly in the parameters and func-
tions used to describe the physical processes of the ocean and atmosphere circula-
tions. Forcing scenarios also differ from each other as they provide alternative hypothe-
ses about the development of human society, through different demographic, social,
political, technological, and environmental assumptions. High uncertainty is, therefore,
expected in climate change impact studies if the simulation results of a single GCM
and single scenario are relied upon.

To address uncertainty in projected climate changes, the (IPCC, 2014) thus recom-
mends using a large ensemble of climate change scenarios produced from various
combinations of Atmospheric Ocean General Circulation Model (AOGCMs) and forc-
ing scenarios. Importantly, all climate change scenarios provided by IPCC should be
considered plausible and illustrative, and do not have probabilities attached to them.
It is thus standard practice to use, in any single study, several GCMs outputs in an
ensemble framework . However, it can become prohibitively time consuming to assess
the climate change, using simultaneously many climate change scenarios and many
Statistical Down scaling models. As a result, researchers typically assess the climate
change and its impacts under only one or a few climate change scenarios. Moreover,
researchers often select climate change scenarios arbitrarily and provide little or no
justification about their choice. Yet different modeling frameworks can lead to different
projections of climate change, and possibly to conflicting interpretations. In this con-
text, a critical question is which and how many climate change scenarios are required
to carry out impact analyses that cover the range of possible climate futures. Surpris-
ingly, there is no publication aimed at presenting and testing an objective method to
select an appropriate subset of climate change scenarios among the wide range of
possibilities(Casajus et al., 2016).

Therefore, given the importance of both taking into account the wide range of equally
probable climatic futures and avoiding computationally prohibitive study designs, in this
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study, we applied multi model approach to see the uncertainties came from different
GCMs. We produced future climate scenarios using output from six AOGCMs available
through CMIP3 and one available through CMIP5. These six AOGCMs from CMIP3
were not chosen arbitrarily but systematically based on their performances represent-
ing the current climate of the study area. The MAGICC/SCEGEN computer program
tool was used for the performance evaluation of the embedded 15 GCMs in LARS
WG5.5 database, and those six best performed GCMs were selected (for details see
Authors comment #1). In summary, we used six ensembles of best performed GCMs
under all three SRES scenarios (A2, A1B, and B1) considered in the IPCC-AR4 report
from the four scenario families (A1, A2, B1 and B2). Additionally, one CMIP5 GCM
under four newly radiative scenarios of RCP2.6, RCP4.5, RCP6 and RCP8.5. In total,
21 future climate scenarios were produced for this study as summarized in the Table1 ,
which we might think representative to understand fully and to project the future climate
change in the study area and to retain information about the full variability of GCMs.
We will add a paragraph to the paper reflecting the discussion above.

The second issue is downscaling scheme you chose, LARS-WG and SDSM. LARSWG
is a weather generator for a single site without consideration of spatial correlation. If
you apply a single random number when you generate weather conditions for all sta-
tions, spatial correlation might be intrinsically preserved. If you applied LARS-WG for
individual station, however, you significantly distorted the spatial correlation between
stations. In this case, you need to check in validation.

We do fully agree with the Anonymous Referee #2 that LARS WG as it is a stochastic
simulation tools that are commonly used to produce synthetic climate data of any length
with the same characteristics as the input record, it simulate weather separately for
single sites; therefore, the resulting weather series for different sites are independent
of each other, whereas very strong spatial correlation exists in real weather data which
can be lost during simulation.

To analyze the spatial auto correlation of station to station, the simple Pearson’s cor-
C3

HESSD

Interactive
comment

| Pinerfendly verslon
I



http://www.hydrol-earth-syst-sci-discuss.net/
http://www.hydrol-earth-syst-sci-discuss.net/hess-2016-543/hess-2016-543-AC2-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/hess-2016-543
http://creativecommons.org/licenses/by/3.0/

relation coefficient (R2) value was calculated and presented in the Fig.2 below. A 28
years for the period of 1984-2011, monthly data were analyzed for randomly chosen
stations (Abaysheleko and Bahirdar) and the R2 values were plotted against the sta-
tions. The result from Fig.2 showed that R2 values of the simulated precipitation for the
selected stations systematically decreased from the R2 value of the observed precipi-
tation. The highest R2 value recorded was 0.83 for Bahirdar with Gondar and Dangila
and the lower R2 value was 0.53 with Bedele for the observed precipitation values.
While the highest R2 value was 0.73 both with Gondar and Dangila and the lowest
value was 0.49 with Bedele for the simulated monthly precipitation of Bahirdar Station.
The same trend was observed for Abaysheleko, in which the R2 value of the simulated
precipitation decreased as compared to the observed precipitation. The highest R2
value was observed 0.71 with both Debre Tabor and Gondar and the lowest value was
0.43 with Bedele station for the observed precipitation, whereas, the highest R2 value
was 0.64 with both Gondar and Debre Tabaor and lowest value was 0.46 with Bedele
station after simulation. In general, the result of LARS WG revealed that the spatial
correlation of the stations was distorted /decreased/ from the original to a lesser extent
as expected.

Although, a few stochastic models have been developed to produce weather series
simultaneously at multiple sites to regionalize the weather generators, mainly for daily
precipitation, such as space—time models, non-homogeneous hidden Markov model
and nonparametric models typically use a K-Nearest Neighbor (K-NN) procedure (King
et al., 2015), they are complicated in both calibration and implementation and are un-
able to adequately reproduce the observed correlations (Khalili et al., 2007).

Even if, LARS WG has limitation to preserve the spatial correlation of climate variables,
it can be applied for downscaling climate change scenario for the Upper Blue Nile River
Basin satisfactorily. As spatial distribution of precipitation may have essential effects on
the discharge of a river and the formation of floods, preserve the spatial correlation in
simulations of the weather series corresponding to certain climate scenarios is neces-
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sary while preparing as input to impact models, especially for hydrological models and
it would be the Author’s future work. We will add a paragraph to the paper reflecting
the discussion above as a limitation of the model.

In addition, | am not sure if it is reasonable to inter-compare the skill between weather
generator (LARS-WG) and regression-based (SDSM) downscaling methods because
SDSM considers sequencing of GCM but LARS-WG generates a new sequence.
Lastly, the authors need to include more climate index for a comprehensive inter-
comparison.

Many downscaling models (dynamic and statistical)have been developed in the past
few decades, which all have strengths and weaknesses (Wilby et al., 2007). Statistical
downscaling, which derives a statistical or empirical relationship between the large-
scale climate features simulated by the GCM (predictors) and the fine scale climate
variables (predictands) for the region is the priority of this study. Although many down-
scaling models have been developed in the past decade, it is not clear which one pro-
vides the most reliable estimates of climate variables, no single model has been found
to perform well over all the regions and time scales. Thus, evaluations of different
models are critical to understand the applicability of the existing models. Comparison
of different statistical downscaling models have been conducted in many countries at
various spatial and temporal scales (Dibike and Coulibaly, 2005; Ebrahim et al., 2013;
Fiseha et al., 2012; Goodarzi et al., 2015; Hashmi et al., 2011; Khan et al., 2006; Qian
et al., 2004; Wilby et al., 2004; Wilby and Wigley, 1997; Xu, 1999). However, it remains
difficult to directly compare the skill of different downscaling models because of the
range of different hydrological variables that have been assessed in the literature in
both space and time domains, the large number of predictors used, and the different
proposed evaluation metrics used for assessing model performances(Goly et al., 2014)

Khan et al. (2006) have compared three downscaling modelsaATnamely, artificial
neural networks (ANNSs), statistical downscaling model (SDSM), and the Long Ash-
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ton Research Station Weather Generator (LARS-WG@G) in terms of various uncertainty
attributes exhibited in their own scaling results of daily precipitation and daily maximum
and minimum temperature. The methods indicated that no single model performed bet-
ter for all the attributes and that downscaling daily precipitation ANN model errors are
significant at 95% confidence level for all months of the year. However, SDSM and
LARS-WG model errors of only a few months were significant. Further, they showed
that the estimates of means and variances of downscaled precipitation and tempera-
ture performed better for SDSM and LARS-WG, while ANN performed poorly.

Dibike et al. (2005) were also evaluated the performance of SDSM and LARS WG
in reproducing the current three meteorological variables (Precipitation, maximum and
minimum temperature). The result showed that, the mean daily precipitation is simu-
lated by both SDSM and LARS-WG reasonably well and there is no much difference
in their performance. In downscaling maximum and minimum temperature, the per-
formance of both models is very good. However, SDSM slightly overestimates the
temperatures for most months of the year while LARS-WG slightly overestimates for
some months and underestimates for the remaining months of the year.

Fiseha et al. (2012) were evaluated the performances of two statistical downscaling
models (i.e., SDSM and LARS WG) in terms of their ability to reproduce the mean
values of current climate and future precipitation, and temperature data. In the case
of temperatures (Tmin and Tmax), both models show identical results and capture the
general trends of the mean values. While, for precipitation, the analysis of the results
from the two models does not lead to an identical conclusion presumably due to the
fact that the SDSM uses large scale predictor variables, but the LARS WG is analyzed
by applying the change factors from the GCM to the observed climate.

Therefore, inclusion of multi-model approach and assessing the comparative perfor-
mance of the downscaling model is essential to understand the applicability of the
models and to minimize the uncertainties caused due to the downscaling models.
Moreover, to best identify which model provides the most plausible and robust sim-
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ulations for downscaling climate models for a specific study area and time periods. We
will add a paragraph to the paper reflecting the discussion above. However, we delib-
erately avoided to include more climate index (such as extreme climate indices) for a
comprehensive inter-comparison as it is not the main focus of the study.

All other comments that highlight the weakness of the format and structure of the pa-
per presentation raised by the reviewer will be addressed in the revised version. For
instance Figure 2a can be replaced with the below simple flow chart to enhance the
quality and to understand easily. List of predictors in Table 3 are not the selected ones,
they are all lists of predictors available in NCEP-NCAR on HadCM3 & canESM2 grid.
Selection procedure of predictors is described in page 9 | 4-12 and the details can be
found (Wilby et al., 2007).
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Figure2: Spatial correlation coefficient (R?) of a) Abaysheleko (left) and b) Bahirdar (right)

weather stations with others for monthly precipitation from 1984-2011.
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Figure 3: Long term mean annual precipitation(mm) simulated using LARS WG model
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Fig. 5.

Table 1: Global climate models from IPCC AR4 and IPCC ARS used for this study

HESSD

Research center Country | GCM Model Grid SRES scenario
acronym | Resoluti
on
1. LARS WG statistical downscaling model
Common Wealth Scientific | Australi | CSIRO- CSMK3 [1.9x1.9° [A1B,B1
and Industrial Research | a MK3
Organizati
Max-Plank Institute  for | German | ECHAMS- | MPEH5 | 1,9x1.9° | A1B,A2,B1
Meteorology y oM
National ~Institute  for | Japan MRI- MIHR 2.8x2.8° | A1B,B1
Environmental Studies CGCM2.3.2
UK Meteorological Office | UK HadCM3 HADCM | 2.5x3.75° | A1B,A2,B1
3
Geophysical Fluid | USA GFDL- GFCM21 | 2x2.5° AlB,A2,B1
Dynamics Lab Ccm2.1
CCsM3 NCCCS [1.4x1.4° | A1B,B1
2. SDSM statistical down scaling model
UK Meteorological Office | UK HadCM3 HADCM | 2.5x3.75° [ B2a,A2a
3
Canadian Centre  for | Canada | canESM2 canESM | 2.81250 | RCp2.6,RCP4.5,
Climate  Modeling and 2 X RCP6, RCP8.5
Analysis 2.81250
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