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Examining the impacts of precipitation isotope input (δ18Oppt) on 
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Abstract. Tracer-aided hydrological models are becoming increasingly popular tools as they assist with process 

understanding and source separation; which facilitates model calibration and diagnosis of model uncertainty (Tetzlaff et al. 

2015; Klaus & McDonnell, 2013). Data availability in high-latitude regions, however, proves to be a major challenge 

associated with this type of application (Tetzlaff et al., 2015). Models require a time series of isotopes in precipitation 10 

(δ18Oppt) to drive simulations, and throughout much of the world - particularly in sparsely populated high-latitude regions - 

these data are not widely available. Here we investigate the impact that choice of precipitation isotope product (δ18Oppt) has 

on simulations of streamflow, 18O in streamflow (18OSF), resulting hydrograph separations and model parameters. In a 

high-latitude, data sparse, seasonal basin (Fort Simpson, NWT, Canada), we assess three precipitation isotope products of 

different spatial and temporal resolution (i.e., semi-annual static, seasonal KPN43, and daily bias corrected REMOiso), and 15 

apply them to force the isoWATFLOOD tracer-aided hydrologic model. Total simulated streamflow is not significantly 

impacted by choice of δ18Oppt product, however, simulated isotopes in streamflow (δ18OSF) and the internal apportionment of 

water (driven by model parameterization) are impacted. The highest resolution product (REMOiso) was distinct from the 

two lower resolution products (KPN43 and static), but could not be verified as correct due to a lack of daily 18Oppt 

observations. The resolution of δ18Oppt impacts model parameterization and seasonal hydrograph separations, producing 20 

notable differences among simulations following large snowmelt and rainfall events when event compositions differ 

significantly from 18OSF. Capturing and preserving the spatial variability in δ18Oppt using distributed tracer-aided models is 

important because this variability impacts model parameterization. We achieve an understanding of tracer-aided modelling 

and its application in high-latitude regions with limited δ18Oppt observations, and the value such models have in defining 

modelling uncertainty. In this study, application of a tracer-aided model is able to identify simulations with improved 25 

internal process representation, reinforcing that tracer-aided modelling approaches assist with resolving hydrograph 

component contributions and work towards diagnosing equifinality. 

1 Introduction 

Hydrological models are critical tools for the planning, development, design, operation and sustainable management of water 

resources (Singh and Frevert, 2006). These models provide insight into applications such as the prediction of floods, 30 
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droughts and water availability, and the effects of climate and land use change on water resources. Problems arise for 

calibration and validation of hydrological models when there is: (1) a lack of available data at sufficient resolutions to force 

and validate model simulations - especially in remote, high-latitude locations (in Canada: Coulibaly et al., 2013); (2) issues 

with equifinality affecting model parameterization; and (3) uncertainty in model results (e.g., Beven and Binley, 1992; 

Kirchner, 2006; Fenicia et al., 2008; Dunn et al., 2008). 5 

 

It is now widely accepted that calibration and validation of hydrological models based solely on streamflow is not a 

sufficient evaluation measure (Kuczera, 1983; Beven and Binley, 1992; Kuczera and Mroczkowski, 1998; Seibert and 

McDonnell, 2002; Kirchner, 2006; Fenicia et al., 2008; Dunn et al., 2008).  Modellers are focusing on a model’s ability to 

correctly partition, store and release water from hydrologic compartments, in addition to adequately simulating total 10 

streamflow response. Conservative tracer data provides insights into the dominant hydrological processes and integrated 

runoff response (in northern catchments: Birks and Gibson, 2009; Tezlaff et al., 2015), and such data assist with constraining 

model parameter space during calibration, reducing model uncertainty, and assisting with selection of appropriate model 

structures (e.g., Tetzlaff et al., 2008; Birkel et al., 2010a; McMillian et al., 2012; Birkel et al., 2014; Smith et al., 2016). An 

increasing number of studies have investigated the utility of tracer-aided modelling approaches, especially over the past 15 

decade (for a comprehensive overview, see Birkel and Soulsby, 2015).  

 

Although greatly informative, previous tracer-aided modelling studies have generally been conducted using lumped 

conceptual rainfall-runoff models in highly instrumented small-scale experimental catchments (<102 km2). This has resulted 

in distributed studies at the regional-scale (>103 km2) left largely unexplored, with the exception of a few, select applications 20 

(Stadnyk et al., 2013). Modelling at the regional-scale typically requires a distributed approach to capture the heterogeneity 

in meteorological inputs, basin characteristics, and runoff response, resulting in more complex, highly parameterized models 

(e.g., Michaud and Sorooshian, 1994; Carpenter and Georgakakos, 2006; Her and Chaubey, 2015). Because it is at these 

larger scales where models are applied operationally and management decisions are based, there is a critical need to 

understand the abilities, limitations, and uncertainties associated with distributed tracer-aided modelling at the regional scale.  25 

 

Although there is an identified need, the issue of data availability, particularly input data, proves to be a major challenge 

associated with this type of application (Birkel and Soulsby, 2015). Tracer-aided hydrological modelling typically requires a 

time series of isotopes in precipitation (δ18Oppt) to drive model simulations. Unfortunately, throughout much of the world, 

and particularly in sparsely populated high-latitude regions (such as the vast majority of Canada), these data are not widely 30 

available. Although automatic samplers are becoming increasingly common, watersheds in which snow accumulation is 

substantial will continue to be fraught with difficulties surrounding the collection and characterization of precipitation 

isotopes, particularly during the winter months (Dietermann and Weiler, 2013; Penna et al., 2014). The lack of spatial and 

temporal density of δ18Oppt observations highlights the need for alternative methods to provide estimates of stable isotopes in 
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precipitation for tracer-aided model input (termed ‘δ18Oppt products’). Options include empirically-based models generating 

gridded time series of precipitation isotopes (e.g., Lykoudis et al., 2010; Delavau et al., 2015), and isotope-enabled climate 

model output (for a comprehensive overview, see: Noone and Sturm, 2010; Xi 2014).  

 

Small-scale catchment studies rely on continuous records of δ18Oppt observations at high temporal frequencies (typically 5 

daily, and less commonly, weekly) for model input. At the larger scale, tracer-aided modelling completed by Stadnyk et al. 

(2013) in the remote Fort Simpson region of northern Canada used annual average compositions of rainfall and snowfall 

δ18O to drive model simulations. Their results suggested that utilizing annual, spatially static oxygen-18 in precipitation 

forcing has the potential to significantly impact simulations and consequently, model parameterization as well. The 

assumption that model input is spatially invariant is not preferable, as δ18Oppt can vary drastically over small space and time 10 

scales due to changes in moisture sources and transport processes, rainout history and seasonality (e.g., in Canada: Gat et al., 

1994; Moran et al., 2007; Birks and Edwards, 2009). 

 

This study aims to explore how varying spatial and temporal resolutions of precipitation isotope products, or δ18Oppt input, 

impact regional tracer-aided model simulations and parameterization. Forcing a tracer-aided, distributed hydrological model 15 

(isoWATFLOOD) with three precipitation isotope products, we examine how the different δ18Oppt products impact the: 

a) simulation of total streamflow and its isotopic variability (δ18OSF); 

b) internal apportionment of water, namely the seasonality of hydrograph separation; and, 

c) model parameterization and simulation uncertainty. 

We explore the impact that varying the resolution of δ18Oppt inputs has on the capability of the model to reproduce observed 20 

18OSF variability; and the usefulness of a tracer-aided modelling approach to help inform and quantify simulation 

equifinality. 

2 Study area and data 

2.1 The Fort Simpson Basin 

The Fort Simpson Basin (FSB) is located within the Lower Liard River valley close to the town of Fort Simpson, Northwest 25 

Territories, Canada (61°45 N; 121°14 W; Fig. 1). This region has been the focus of several tracer-aided hydrological studies 

(e.g., St Amour et al., 2005; Stadnyk et al., 2005; 2013; Stadnyk-Falcone, 2008). The FSB is selected for this study to build 

upon previous modelling work conducted within the region, and follow up on recommendations from Stadnyk et al. (2013) 

suggesting further analysis and improvement of isoWATFLOOD δ18Oppt input. The study period of 1997–1999 is selected 

based on data availability.    30 
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This study considers two sub-basins of the greater Fort Simpson basin: the Jean-Marie (1310 km2) and Blackstone River 

(1390 km2) sub-basins (Fig. 1). The basins vary in relief from 0.3 % in the Jean-Marie sub-basin to 0.63 % for the 

Blackstone sub-basin, on average. Differences in wetland distribution and function, basin physiography and land cover 

make-up between the two watersheds (Table 1) are the primary reasons in selecting these sub-basins for this study. These 

marked differences ensure that watersheds of varying dominant hydrological processes are represented in the modelling, and 5 

therefore the impacts of δ18Oppt input selection on these processes can be examined.  

 

The land cover classification breakdown (Table 1) shows the primary land cover type within the sub-basins as transitional, 

consisting of shrubs, deciduous varieties and early generation spruce. The region has a high proportion of wetlands, with the 

total wetland percentage in Table 1 representing both bogs (disconnected drainage) and fens (connected drainage); although 10 

the amount of each type within each respective sub-basin varies. Aylsworth and Kettles (2000) state that Jean-Marie is 

predominately fen peatlands, while Blackstone is bog-dominated peatlands, with very few or no fen peatlands present.  

 

The Ecoregions Working Group (1989) classifies the FSB as a sub-humid mid- to high-boreal ecoclimatic region (Hbs), 

classified by cool summers approximately five months in length, with moderate (300-500 mm) annual precipitation. Winters 15 

are very cold with persistent snow cover. The hydrological response is dominated by snowmelt during late April to early 

May, while summer and fall runoff events are due to major rainfall, with a return to baseflow occurring during dry summer 

periods or towards the beginning of the ice-on season in October.  

2.2 Meteorological and hydrometric data 

Daily total precipitation, mean daily temperature, and hourly relative humidity data are obtained from Environment Canada’s 20 

Fort Simpson Airport weather station. Observed precipitation is supplemented with ANUSPLIN-derived daily precipitation 

extracted at eight locations throughout the Fort Simpson region (Fig. 1). ANUSPLIN is a multidimensional non-parametric 

surface fitting method that has been found well suited to the interpolation of various climate variables, particularity in data-

sparse, high-elevation regions as the method accounts for spatially varying dependencies on elevation (McKenney et al., 

2011). We have validated ANUSPLIN against independent station observations (precipitation and temperature) across the 25 

Prairies and Boreal regions of Canada as a precipitation forcing for hydrologic modelling. It has been found adequate (r  

0.98) for the purpose of short-term modelling studies. An inverse-distance weighting approach is used to spatially distribute 

the daily ANUSPLIN and observed precipitation time series across the model domain (Kouwen, 2014). Rainfall that 

occurred over the study period, particularly in 1997, was significantly higher than normal. Additionally, 1998 was above 

average in temperature, which is especially prevalent in the first portion of the year. Other researchers have attributed the 30 

increased rainfall and warmer temperatures to a strong El Niño influence from mid-1997 to mid-1998 (Petrone et al., 2000; 

St Amour et al., 2005). 
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Hydrometric records are obtained from Water Survey of Canada. Jean Marie was gauged at Highway No.1 in 1972 with a 

period of record of 44 years, whereas Blackstone was gauged at Highway No.7 in 1991 having a record length of 25 years. 

Neither sub-basin is regulated, therefore all flows are considered to be natural. During the study period, mean annual 

discharge was above normal in both sub-basins in 1997, normal in Jean Marie and slightly below normal in Blackstone in 

1998, and below normal in both sub-basins in 1999. Winter (ice-on) flows tend to be very low given highly seasonal, high-5 

latitude hydrology, underlying discontinuous permafrost, and the absence of mid-winter melt (St. Amour et al., 2005). 

Averaged winter ice-on flows from 1997-1999 were 0.194 m3/s and 0.034 m3/s for the Jean Marie and Blackstone sub-

basins, respectively. A statistical summary of observations used in this study is provided in Table 2.  

2.3 Isotope data 

During 1997 to 1999, intensive sampling took place in the Fort Simpson Basin as part of the Mackenzie Study of the Global 10 

Energy and Water Experiment (GEWEX; Stewart et al., 1998). The campaign sampled δ18O and δ2H of streamflow, rainfall, 

snowpack, and surface waters (wetlands and lakes) during the open water season (May to October). During ice-on 

conditions, the isotope stratigraphy of river ice extracted during late March in 1998 and 1999 was used to reconstruct the 

isotopic composition of winter streamflow (Gibson and Prowse, 1999; Prowse et al., 2002; St Amour et al., 2005). This 

study uses measured δ18O compositions in streamflow in the Jean-Marie (n = 71) and Blackstone (n = 69) sub-basins for 15 

model calibration. Although δ18Oppt compositions (n = 27) were collected as part of the GEWEX sampling campaign, these 

data are not preferred for tracer-aided hydrologic model input due to their spatial uniformity and poor temporal resolution. 

Observations are incorporated into this study as the ‘static’ 18Oppt input, and as a means to validate the KPN43 and 

REMOiso products and to inform the static precipitation product. The number of measurements and their statistical 

properties are summarized in Table 2. Isotopic compositions of δ18O are expressed in delta (δ) notation as a deviation from 20 

VSMOW (Vienna Mean Standard Mean Ocean Water) in units of per mille (‰),such that δwater = (Rwater/RVSMOW – 1) x 1000 

‰, where R is 18O/16O in the sample and standard, respectively. Isotope samples were analyzed at the Environmental Isotope 

Laboratory at the University of Waterloo, and St Amour et al. (2005) indicated maximum analytical uncertainties of  0.1 ‰ 

for δ18O. 

2.4 Precipitation oxygen-18 input 25 

The precipitation isotope products evaluated in this study represent a variety of spatial and temporal scales, and were 

selected because they are commonly available for all tracer-aided hydrologic modelling applications. The first type of input 

used in this study is annual average δ18Oppt compositions of rainfall and snowfall for each year of simulation (i.e., yearly 

resolution). Values for the FSB were obtained by averaging observations of δ18O in rainfall and the snowpack obtained from 

the GEWEX study (Table 2; Table 3). δ18Oppt compositions were assumed constant throughout the study domain (i.e., 30 

spatially uniform). Due to a lack of snowfall data collected during this study, we assumed the average annual isotopic 

composition of the snowpack was representative of the snowfall composition, as has been done in other data sparse, high-
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latitude tracer-aided modelling studies (Smith et al., 2015; Smith et al., 2016; Holmes, 2016; Stadnyk et al., 2013). It is well 

established in the literature that the isotopic composition of snowfall is not necessarily equal to the average annual 

composition of the snowpack (due to sublimation and snow metamorphism; Zhou et al., 2008; Taylor et al., 2001; 2002). 

The high latitude of our study site, however, makes freeze/thaw cycling during the winter rare, making this assumption more 

reasonable. Due to the averaged values and lack of spatial variability, this product is referred to as ‘static’ throughout the 5 

remainder of the manuscript, and consists of two constant 18Oppt values (rain and snow) for each year. This product is 

specifically designed and evaluated for remote regions that lack spatially and temporally varying 18Oppt observations.  

 

Times series simulations obtained from the KPN43 model created by Delavau et al. (2015) are used as the second type of 

δ18Oppt product in this study. The KPN43 model uses North American Regional Reanalysis (NARR; Mesinger et al., 2006) 10 

climate variables, teleconnection indices, and geographic information to produce gridded time series of oxygen-18 in 

precipitation at a monthly time step. This product is generated at a 10 km resolution (to mirror model set-up), and varies 

spatially throughout the study domain due to the variation in the climatic predictors and geographic information required to 

produce simulations. 

 15 

The third δ18Oppt product included in this study is regional climate model output from the isotope-enabled climate model, 

REMOiso (Sturm et al., 2005; Sturm et al., 2007). Raw REMOiso δ18Oppt output is available at a 55 km spatial resolution and 

a 6h time step. REMOiso output is averaged in this study, however, to a daily time step, as the range and variability of sub-

daily δ18Oppt are erroneously large, and the resolution of streamflow oxygen-18 calibration data do not warrant a temporal 

frequency of input finer than daily. 20 

3 Methods 

3.1 Background and set-up 

The tracer-aided hydrological model used in this study is isoWATFLOOD (Stadnyk-Falcone, 2008; Stadnyk et al., 2013). 

isoWATFLOOD is an extension of the WATFLOOD hydrological model, whereby water and oxygen-18 are simultaneously 

budgeted throughout the modelled hydrologic cycle. WATFLOOD is a distributed model that uses grouped response units 25 

(GRUs) to simulate streamflow in hydrologically-distinct land cover units (Kouwen et al., 1993; Kouwen, 2014). Process 

representation within WATFLOOD is considered to be a combination of both conceptual and physical, as certain algorithms 

are conceptually-based (e.g., evaporation and snowmelt), while others are more based in physics (e.g., channel routing). Due 

to the coupling of isotopes to each hydrological processes simulated in WATFLOOD, simulation of isotopic composition 

does not introduce any additional parameters. A more comprehensive description of isoWATFLOOD’s model structure and 30 

governing equations can be found in Stadnyk et al. (2013) and select descriptions are provided in Table 4.  
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isoWATFLOOD requires the 18O of precipitation (either rain and snow separately, or total precipitation) and can utilize 

(though does not require) distributed relative humidity inputs to force the model. Additionally, δ18O compositions for 

hydrologic storages of river/fen water, soil water, baseflow, and snowpack are needed for model initialization, which can be 

obtained from field data or estimated.  Here, regional isotopic storage initializations are derived from measured data obtained 

during the GEWEX campaign and reported by St Amour et al. (2005). These include streamflow (-13.52 ‰), interflow (soil 5 

water; -14.60 ‰), baseflow (-20.00 ‰), and snowpack (-22.00 ‰) background compositions. Sensitivity analyses have 

shown that within one month of simulation isoWATFLOOD spin-up is complete and, past this point, initialization values 

have no bearing on model output. All other data required by isoWATFLOOD (e.g., distributed precipitation, temperature, 

evaporation, inflows, etc.) are passed from WATFLOOD forcings or computations. 

 10 

The isoWATFLOOD model used in this study is based on a previous version reported by Stadnyk et al. (2013). The current 

version used here is an updated version of isoWATFLOOD code, and the watershed set-up incorporates various model 

improvements made since 2013, independent of this study. Based on findings from Aylsworth and Kettles (2000), we 

implemented a 90 % bog and 10 % fen split in Blackstone and a 30 % bog and 70 % fen split in Jean-Marie. The entirety of 

the FSB is modelled at a 10 km spatial resolution, and the model is run continuously from January 1996 to December 1999; 15 

whereby 1996 is utilized as spin-up to set initial hydrologic and isotopic storage conditions.  

3.2 Calibration and parameter uncertainty 

Being a distributed model, WATFLOOD has a large number of parameters requiring calibration. For this reason, a 

sensitivity analysis is first conducted to identify which parameters have the largest influence on both streamflow and δ18OSF. 

A subset of parameters are identified for inclusion in the calibration based on this sensitivity analysis, including nine 20 

hydrological parameters from each of the five most prominent land classes (mixed/deciduous, coniferous, transit, bogs and 

fens), and four routing parameters from each of the two modelled sub-basins. This results in 53 parameters that are 

incorporated in the parameter uncertainty assessment (Table 4; Table S-1). Allowable ranges for each parameter are 

determined based on published values alongside personal communications with N. Kouwen (Kouwen, 2014) (Table S-1). 

 25 

This study uses a multi-criteria, multi-objective approach to model calibration, with the procedure summarized as follows: 

i. A Monte Carlo random sampling approach, assuming uniform parameter distributions, is used to 

individually select each parameter from its allowable range (Table S-1). Random parameter sampling is 

completed 30,000 times, generating 30,000 unique parameter sets for isoWATFLOOD model evaluation.  

ii. For each of the three δ18Oppt inputs (KPN43, REMOiso and static), streamflow and δ18OSF are simulated 30 

from 1996 to 1999 for all 30,000 parameter sets (as defined in (i)). 

iii. Simulated streamflow and δ18OSF are assessed statistically over the period of study (1997–1999, excluding 

the 1996 spin-up year), and regionally across the Jean Marie and Blackstone sub-basins. Simulations are 
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classified as behavioural (or non-behavioural) (Beven & Binley, 1992) based on meeting (or not) the 

following set of efficiency criteria thresholds, defined in detail below, for simulated streamflow and 

δ18OSF: 

a. Streamflow:  

NSE ≥ 0.5;  5 

|%Dv| ≤ 20 %, and; 

|log(%Dv)| ≤ 20 %. 

b. δ18OSF: 

RMSE ≤ 2.5 ‰, and; 

KGE >= 0.3. 10 

Behavioural thresholds used in this study are subjectively defined, but are arrived at through a review of methods employed 

in similar studies (e.g., Moriasi et al., 2007; Birkel et al., 2010a; 2010b; 2011; Smith et al., 2016), measurement error, and an 

iterative process exploring the sensitivity between the set thresholds and resulting behavioural simulations for each input 

type. Based on this analysis, the Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970), volumetric error criteria (%Dv), 

root mean square error (RMSE), and the Kling-Gupta efficiency criterion (KGE; Gupta et al., 2009; Kling et al., 2012) are 15 

selected. A multi-criteria model evaluation approach places emphasis on different statistical properties of a simulation. For 

example, NSE has a documented bias towards peak flow, and conversely, log (%Dv) is more appropriate evaluation measure 

for periods of low flow. The NSE, %Dv, and log(%Dv) efficiency are not considered suitable metrics for δ18OSF assessment 

due to the temporal discontinuity of the isotope observations, therefore RMSE and KGE are used as isotopic simulation 

statistics. The KGE statistic puts less emphasis on peak flow differences by providing a more balanced approach where error 20 

is first summed and then squared at the end, preserving the sign of the error and enabling a trade-off of error throughout the 

simulation period (Gupta et al., 2009). It should also be noted that δ18OSF observations are not equally distributed through 

time, whereby the highest concentration of observations occurs during snowmelt in the month of May (~25 %), and the 

fewest observations during the six month ice-on period from November to April (~23 %), with the remaining 52 % of 

observations sampled during summer. The sporadic distribution of observations may result in the calibrations more highly 25 

weighted to certain periods of the year and the dominate processes occurring at that time; therefore having the potential to 

impact model parameterization.  

3.3 REMOiso bias correction 

Due to a lack of published studies evaluating REMOiso performance within Canada, a comparison between REMOiso 

output and Canadian Network for Isotopes in Precipitation observations (CNIP; Birks and Gibson, 2009) is completed to 30 

determine if REMOiso simulations require a regional bias correction. CNIP data are now part of the Global Network for 

Isotopes in Precipitation (GNIP) database and can be accessed at: http://www.iaea.org/water (IAEA/WMO, 2014). This 

analysis is completed at Snare Rapids, NWT, the closest CNIP station to the FSB, for the years of 2000 and 2001. Snare 
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Rapids is located approximately 330 km northeast of Fort Simpson and has monthly δ18Oppt observations spanning the years 

of 1997–2010. A longer time frame of comparison between CNIP and REMOiso is not possible due to the short overlapping 

period of REMOiso simulations and CNIP observations. For bias-correction purposes, daily REMOiso simulations are 

averaged to monthly compositions for direct comparison to CNIP data using the precipitation amount-weighting approach in 

Eq. (1): 5 

 

઼૚ૡܜܘܘ۽	ܡܔܐܜܖܗܕ ൌ ܑ۾∑ ∗ ሺ઼૚ૡܜܘܘ۽ሻܑ	 ⁄ܑ۾∑	          (1) 
 

where Pi is the amount of daily precipitation (mm) obtained from the Snare Rapids Canadian Air and Precipitation 

Monitoring Network (CAPMoN) station operated by Environment Canada, where isotopic compositions are also sampled 10 

under the Canadian Network for Isotopes in Precipitation (CNIP).  

 

Uncorrected REMOiso simulations exhibit a positive bias in this region (Fig. 2), which is expected based on the ECHAM4 

mean annual δ18Oppt output (Noone and Sturm, 2010) and personal communications with S. J. Birks and K. Sturm (2016). 

Therefore, a seasonal bias correction is applied to daily REMOiso simulations. The bias correction is calculated as the 15 

average seasonal difference between the monthly amount-weighted REMOiso output and the CNIP observations. Corrected 

monthly and daily REMOiso output at Snare Rapids are displayed on Figure 2 as the dashed red and solid orange lines, 

respectively. For the current study, daily REMOiso output for the Fort Simpson region is bias corrected with the seasonal 

correction values, ranging from -4.5 ‰ (NDJF) to -8.9 ‰ (MAM), with an average of -7.0 ‰.  

 20 

The statistical properties of the corrected daily REMOiso simulations, alongside the KPN43 monthly simulations and the 

static seasonal averages are summarized in Table 2. 

3.4 Statistical treatment of data 

For discussion and analysis purposes (Section 4.2 to 4.4), results represent only the behavioural simulations derived from 

each δ18Oppt product. Uncertainty bounds are the 5th and 95th percentiles drawn from the ensembles of behavioural 25 

simulations; denoted as the shaded bounds around each model’s mean simulation. 

 

Kendall’s tau coefficient (τ) is a non-parametric test used to compare the level of correlation between two variables. We 

compute Kendall’s tau for the mean daily streamflow and δ18OSF simulations derived from the three inputs. By computing τ 

coefficients for pairs of simulated time series (i.e., REMOiso versus KPN43, REMOiso versus static, and KPN43 versus 30 

static), we can statistically evaluate the similarity of model output derived from different precipitation isotope products. 
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Parameter probability distributions (Table 4) are arrived at by first weighting behavioural parameters for each land cover 

type to their corresponding percent coverage within the modelled sub-basins. Land cover weighted parameter values are then 

ranked and non-exceedance probabilities determined. Routing parameter distributions for each sub-basin are arrived at using 

a similar approach, but are not weighted by coverage. The non-parametric Kolmogorov–Smirnov (K-S) test is used to assess 

if behavioural parameter distributions are considered to be from the same distribution. 5 

 

Spatially distributed precipitation isotope product maps (Fig. S-1) represent daily precipitation isotope averaged across 

seasons (DJF, MAM, JJA, SON), and are precipitation amount-weighted using WATFLOOD precipitation input 

(interpolated Environment Canada Canadian Daily Climate Data, housed in WATFLOODs radcl.r2c files; Kouwen 2014). 

Maps are generated overlapping the model grid (10k) for the entire FSB domain, which includes the Jean Marie and 10 

Blackstone sub-basins. 

4 Results and discussion 

Results of the three calibrations indicate that choice of δ18Oppt input influences the number of simulations that meet 

behavioural criteria thresholds. The KPN43 product results in more behavioural simulations (n = 321) relative to the 

REMOiso (n = 268) or static (n = 216) products (Table 5). This also implies that choice of δ18Oppt input influences the 15 

models internal apportionment of water (i.e., hydrograph separations) via model parameters. Among input types, potentially 

significant differences in several parameters were noted (Table S-1), and is discussed in Section 4.4. In almost all instances, 

the ranges of the parameters were not significantly constrained from the allowable parameter ranges, yielding confidence in 

our simulated parameter uncertainty envelopes.  

4.1 Precipitation oxygen-18 input 20 

Of the three δ18Oppt products, KPN43 input is on average the most enriched (-20.48 ‰), followed by REMOiso (-21.78 ‰), 

and static as the most depleted (-22.82 ‰) (panel (a), Fig. 3 and 4). The KPN43 and static products show similar variation 

about their means, with CVs equal to 0.19 and 0.20, respectively. Conversely, REMOiso has a higher CV (0.25) and much 

larger range, which is, in part, due to the finer daily time step of this input. Spatial variability between Jean Marie and 

Blackstone is zero for the static product as annual snow and rainfall compositions are spatially averaged across the domain. 25 

Spatial variation among sub-basins is noted in the KPN43 and REMOiso products. Both the KPN43 and REMOiso products 

show, on average, more depleted δ18Oppt values within Blackstone (-20.79 ‰ and -22.01 ‰, respectively) in comparison to 

Jean Marie (-20.17 ‰ and -21.54 ‰, respectively), likely caused by the higher elevation headwaters of Blackstone relative 

to Jean Marie (a maximum difference of ~215 m). Figure S-1 provides seasonally averaged, spatially distributed maps for 

each product. Averaged spatial variability is greatest for the KPN43 forcing, followed by REMOiso, and is constant for the 30 

static product. REMOiso shows less long-term average variability because its temporal variability is greater, resulting in 
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more chaotic (randomized) signals of 18Oppt that produce weaker long-term signals when averaged over time. KPN43, on 

the other hand, exhibits more consistent spatial patterning of 18Oppt variability, resulting in stronger signals of long-term 

variability on a per-grid basis (Fig. S-1). REMOiso input is derived on a 55 km grid, meaning that approximately 5 

isoWATFLOOD grids are equivalent to 1 REMOiso grid, which also results in a terrain (variability) smoothing effect. The 

static input exhibits seasonal variability caused by the different compositions of rain and snow, and mixed shoulder season 5 

compositions (MAM and SON) when both rain and snow occur.  

 

Although there are only 19 rainfall δ18O observations collected over the study period in Jean Marie, and eight within 

Blackstone (hollow black diamonds on Fig. 3 and Fig. 4, panel (a)), these limited data provide some information regarding 

the accuracy of the products. By visual inspection, each of the three products generates reasonable estimates of δ18Oppt. This 10 

is expected for the static input, which is derived directly from these observations; however, this provides qualitative 

validation for KPN43 and REMOiso. REMOiso is the only product that can somewhat replicate event-scale variability in 

δ18Oppt due to its daily time step. The KPN43 product appears to represent the average composition of summer rainfall 

events, and displays reasonable seasonal variability. There are insufficient observations to statistically validate these 

products within the Fort Simpson basin. The semi-annual static input perhaps does a reasonable job of refelecting δ18Oppt 15 

seasonality because of the high-latitude location of the basin, where much shorter shoulder seasons exist. 

4.2 Modelling streamflow 

All calibrations adequately capture variations in total streamflow in both sub-basins, as emphasised by the regional 

calibration statistics (Table 5).  On average, behavioural streamflow simulations have a NSE of 0.68, and %Dv of 13.8 %. 

Mean daily streamflow and uncertainty bounds for the KPN43, REMOiso and static model calibrations are displayed on 20 

panel (b) of Figure 3 and Figure 4. It is worth noting that both basins have similar drainage areas and received comparable 

precipitation inputs over the study period, which would naturally result in similar streamflow responses. Comparing 

normalized (by drainage area) observed discharge over the study period for the basins reveals the Blackstone sub-basin 

generates nearly twice as much runoff as the Jean Marie sub-basin, with normalized discharges of 0.56 mm/km2 and 0.31 

mm/km2, respectively. Therefore, differences in hydrograph characteristics (i.e., peak flows, attenuation, etc.) between Jean 25 

Marie and Blackstone result from variations in basin physiography, storage mechanisms, and land cover composition; 

specifically large differences in average basin slope and surface water and wetland dynamics (St Amour et al., 2005). 

Namely, the higher energy environment of Blackstone River promotes a quicker runoff response; and the flatter, more 

surface water dominated Jean-Marie basin yields a damped runoff response, on average. 

 30 

Within the Jean Marie, both the timing and volume of peak flows derived from snow melt are well captured in 1998, 

however, volume is under predicted in 1997 and 1999 for the average streamflow simulation. The parameter uncertainty 

bounds generally enclose the observed spring melt hydrograph, except in 1999 where the timing of the melt peak is 
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simulated later than was observed. Snowmelt is controlled by a degree-day snowmelt function in WATFLOOD, using 

temporally constant snowmelt parameters. Parameter stationarity likely results in an inadequate description of the inter-

annual variability in energy balance and snowpack ripening dynamics within the model. All simulations have difficulty 

capturing the volume of the snowmelt recession limb, which may be caused by the parameterization of baseflow and fen 

responses in this sub-basin. Based on previous studies (Connon et al., 2015), it has been suggested that bog and fen 5 

complexes are likely one of the primary drivers of hydrograph timing and shape due to their ability to dynamically alter 

drainage pathways, particularly in this region. In 1997, following a significant melt event, all simulations in Jean-Marie 

exhibit higher than observed recession limb flows; indicating runoff was slow to drain and storages were too high. This 

could be an indication of WATFLOOD’s inability to capture the dynamic flow paths occurring within Jean Marie’s 

extensive fen network. This same recession limb discrepancy does not occur in Blackstone, where there are much fewer fens, 10 

and bogs would remain hydraulically isolated even during wetter conditions (Connon et al., 2015). In the Blackstone, the 

recession limb hydrograph is well simulated across all inputs, however, peak flows (with the exception of the 1997 snow 

melt) are generally under estimated. Post freshet, simulations adequately capture the timing of rainfall events; however (with 

the exception of 1997 in the Jean Marie) consistently underestimate the magnitude of the peaks. This underestimation is 

most evident when all simulations generated a very limited streamflow response to an early October rainfall event in 1998, 15 

underestimating the observed peak flow by approximately 50 % (Jean Marie) and 75 % (Blackstone). These results may 

point to inadequate precipitation forcing due to the climate station proximity and high spatial variability of rainfall, 

inadequate soil moisture parameterization, or could be an unintended side effect of using NSE in our calibration (Gupta et 

al., 2009). 

 20 

Most interesting is the similarity of the streamflow simulations among the different δ18Oppt products, further assessed by 

Kendall’s tau coefficient (). In Jean Marie, τ ranges between 0.92 (REMOiso versus static) to 0.97 (KPN43 versus static). In 

Blackstone τ is more tightly constrained, ranging from 0.96 (REMOiso versus static) to 0.98 (KPN43 versus static). All τ 

values are statistically significant. It should be noted that small deviations between mean streamflow simulations occur 

during spring melt, where REMOiso-derived streamflow consistently results in higher peaks than KPN43 and static-driven 25 

simulations. These differences in mean streamflow, however, fall within overlapping uncertainty bounds and are not 

significant outside of parameter uncertainty. Despite significant changes to model parameters (Table S-1), the resultant 

efficiency statistics among the mean streamflow simulations remain nearly identical (Table 5). Based on this analysis, we 

find that the three precipitation isotope products generate statistically similar streamflow simulations. Given the insignificant 

differences in streamflow response, it is only through analysis of 18OSF that the impact of different model parameterizations 30 

is assessed.  
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4.3 Modelling δ18O in streamflow 

Mean daily δ18OSF simulations and uncertainty bounds for the KPN43, REMOiso, and static product model calibrations are 

displayed on panel (c) of Figure 3 and Figure 4. Each model calibration produces mean simulations that capture many of the 

trends, but not particularly the magnitudes, present in the observed δ18OSF record. Observed δ18OSF show a depletion due to 

large influxes of snowmelt during the spring freshets, and gradual enrichment over the summer months due to the 5 

evaporation of surface and soil waters, occasionally punctuated by rainfall events that may enrich or deplete δ18OSF. During 

late fall and throughout the winter, δ18OSF tends toward a more depleted, stable groundwater composition (St Amour et al., 

2005).  

 

Though each of the model calibrations result in similar trends relative to the observed δ18OSF record, there are notable 10 

departures. As simulated δ18OSF uncertainly envelopes associated with each δ18Oppt product are, at times, non-overlapping, 

differences in δ18OSF simulations can be attributed to δ18Oppt product and, therefore, are not just an artefact of parameter 

uncertainty (unlike streamflow). The dissimilarities between δ18OSF simulations are also reflected in the RMSE statistic 

(Table 5); the RMSE is larger for static-derived simulations due to increased emphasis on periods with a higher observation 

density (i.e., spring freshet), where larger offsets between simulated and observed δ18OSF exist. The KPN43 and REMOiso 15 

calibrations produce comparable RMSE. The KGE statistic shows only minor differences between δ18OSF simulations given 

the statistic puts more emphasis on long-term bias (Gupta et al., 2009), therefore reflecting the fit of the overall simulation 

throughout the study period for this highly seasonal basin (Kling and Gupta, 2009). Further research is required to better 

understand the impacts of sporadic sampling resolution (for δ18OSF observations) on efficiency criteria, and consequently the 

objective functions. It is noted that sampling during peak freshet was, at times, limited by accessibility during high water 20 

stage; therefore, some temporal gaps exist in the observed 18OSF record (particularly in 1999) during the period that 

streamflow compositions are generally most depleted.  

 

Differences in δ18OSF simulations within each sub-basin are due to a combination of: (1) markedly different δ18Oppt input 

compositions during large precipitation events amongst precipitation isotope products, and (2) how new water transits 25 

through the system via the model’s hydrological compartments. For this study area, large precipitation events can be 

separated into: (1) the accumulation of winter snowfall and corresponding spring freshet (approximately 35 to 40 % of 

annual precipitation), and (2) major rainfall events occurring post-freshet (summer and fall) (with rainfall representing 

approximately 60 to 65 % of annual precipitation). 

 30 

No single model calibration produces consistently strong simulations of δ18OSF during the snowmelt period. The KPN43 

calibration best captures the timing and magnitude of spring freshet, however overestimates δ18OSF (i.e., is too enriched) 

during the 1997 melt in Blackstone. Conversely, the static and REMOiso calibrations capture the large depletion during the 
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1997 melt in the Blackstone, but produce overly depleted simulations during the 1998 and 1999 freshets - most notably 

within the Jean Marie. There is a tendency for all models to simulate relatively depleted spring freshet δ18OSF compositions. 

This can be attributed to several factors: (1) overly enriched δ18Oppt during the winter months, (2) unaccounted for snow 

metamorphism processes, (3) an overestimation of direct snowmelt runoff (i.e. streamflow volume), and (4) inaccurate 

antecedent composition of δ18OSF simulated by the models just prior to the spring melt.  5 

 

Post-freshet, δ18OSF simulations are impacted by rainfall amount and composition, and the offset between simulated δ18OSF 

and δ18Oppt input at the time of rainfall. As rainfall amount and/or this offset increases, the resulting impact on simulated 

δ18OSF increases. This highlights the importance of capturing the spatial and temporal variability in rainfall δ18O, particularly 

for large and isotopically distinct (from streamflow) events. The threshold defining a large rainfall event varies depending on 10 

basin physiography, land cover, storage capacity, and antecedent conditions. St Amour et al. (2005) estimate this threshold to 

be ≥40 mm within the Fort Simpson region. Such a large, isotopically distinct rainfall event occurred June 11–12, 1998 when 

approximately 70 mm fell over two days with an observed bulk event δ18Oppt composition of -22.7 ‰. Both the REMOiso 

and static products reasonably capture this event (-20.9 ‰ and -20.1 ‰, respectively, across the study domain); however, the 

KPN43 product predicted an average δ18Oppt composition of -17.6 ‰. In the Jean Marie, where large fen networks help to 15 

moderate rainfall-runoff response, the observed δ18OSF did not deplete in response to this event, but rather maintain a similar 

pre-event composition around -19.17 ‰ (Fig 3, panel (c)). KPN43-driven simulations most closely match observed 18OSF 

due to the antecedent composition of δ18OSF prior to the event, even though the KPN43 input generated the least accurate 

estimate of the depleted rainfall δ18Oppt. Conversely, in the Blackstone the June 11–12 rainfall generated a much different 

response in observed δ18OSF: a sharp depletion from -19.11 ‰ to -20.98 ‰ (Fig 4, panel (c)). In this instance, the REMOiso 20 

and static calibrations most closely match the observed δ18OSF due to their closer representations of the rainfall event 

composition. In the Blackstone, this single event results in a significant offset between KPN43-driven δ18OSF simulations 

relative to those driven by REMOiso and static products, maintained throughout 1998 and up until the 1999 freshet resets the 

18OSF. 

 25 

Throughout much of Canada and in other high-latitude climates, the spring freshet generates a substantial portion of annual 

streamflow (and typically peak annual flow) when the accumulation of solid precipitation from the winter season melts in 

late spring over a few week period. It is therefore important to understand how differences among the products impact 

snowpack (and subsequently snowmelt) isotopic compositions in isoWATFLOOD. Figure 5 shows the evolution of 

precipitation-weighted snowpack oxygen-18 (δ18OSNW) throughout each winter of the study period relative to the observed 30 

snowpack compositions (hollow black diamonds). Not surprisingly, the static snowpack compositions closely match with 

observed δ18OSNW, and we note that KPN43 and REMOiso snowpacks are more enriched. Caution should be used when 

comparing modelled versus observed data here as there is little inter-annual consistency in the number of samples and the 

location where sampling took place, and no information was provided as to how the 18OSNW were collected (i.e., depth-
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integrated or depth-dependent samples). Comparison of like-forcing pairs between Jean Marie and Blackstone reveal subtle 

spatial differences in simulated δ18OSNW. Dissimilarities between the three products within each basin are, however, 

significant. Interestingly, REMOiso and KPN43 end of winter precipitation-weighted δ18OSNW compositions differ by less 

than 0.5 ‰ in 1997–1998 and 1998–1999. REMOiso and KPN43 inputs consistently generate significantly more enriched 

snowpacks relative to the static δ18OSNW product (and much of the observed data). On average, KPN43 is 3.3 ‰ more 5 

enriched, and REMOiso is 3.1‰ more enriched than end of season static δ18OSNW. Differences in simulated δ18OSNW among 

the products are partially attributed to the poor representation of snowpack physics (i.e., fractionation resulting from 

sublimation and snow metamorphism) in the current version of the isoWATFLOOD model. The static input inadvertently 

accounts for some of these processes, as the specified compositions are derived from snowpack observation near end of 

winter (in late March). Uncertainty in simulated δ18OSNW among the products is notable as well, with static δ18OSNW 10 

uncertainty remaining relatively constant over the winter relative to REMOiso, and particularly KPN43 where uncertainty 

decreases as snowpack depth increases (Fig. 5). This is an artefact of the parameterization of sublimation in the models. As 

the winter progresses, the snowpack grows and sublimated volumes become a smaller fraction of the total snowpack, thus 

decreasing the effect (and uncertainty) that sublimation has on the volume-weighted δ18Oppt of the snowpack. This is 

observed during periods when the simulated snowpack and snow water equivalent (SWE) are larger, for example, 1998 15 

relative to 1999 (Fig. 5). 

 

These significant differences in simulated snowpack composition are one of the primary reasons for offsets between KPN43, 

REMOiso and static δ18OSF simulations (Fig. 3 and Fig. 4, panel(c)). Once a δ18OSF simulation has been offset, it is not 

possible to ‘reset’ the composition in late fall as streamflow decreases to near-zero and mass retained in the system. This can 20 

result in compounding isotopic error (if the offset deviates from observed data) during continuous simulation, thus 

highlighting the sensitivity of the tracer as a calibration tool. Compounding error is also observed for rainfall events, but 

generally to a lesser extent due to the relatively smaller durations and magnitudes (volume contributions) of most rainfall 

events (relative to snowmelt) in high-latitude regions.   

 25 

Since both δ18OSF and δ18OSNW are significantly different among δ18Oppt products, internal water apportionment (determined 

by model parameterization) is also likely impacted. Differences in hydrograph separations among the calibrated models are 

explored to determine the impact δ18Oppt has on internal water apportionment and simulation uncertainty. 

4.4 Hydrograph component analysis and parameter distributions 

Component contributions to total streamflow from surface runoff, interflow and baseflow storage in each season (DJF: 30 

December-January-February; MAM: March-April-May; JJA: June-July-August; and, SON: September-October-November) 

derived from each δ18Oppt product are shown on Figure 6. Jean Marie and Blackstone display similar trends in internal water 

apportionment throughout the year, indicating generally similar model parameterizations and hydrograph separations among 
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the two basins. Some seasonal differences in component separations exist, however, which are linked to variations in basin 

physiography, land cover, and storage characteristics reflected by differences in the baseflow (lzf and pwr) and wetland 

parameters (kcond and theta) among basins (Table S-1). Freshet and post-freshet percent contributions to total streamflow in 

this study are in agreement with those reported in previous studies. St Amour et al. (2005) reported significant post-freshet 

groundwater contributions (71 % ± 9 % and 64 % ± 10 % for Jean Marie and Blackstone, respectively), compared to the 5 

mean post-freshet (JJASON) contributions we report on Figure 6 (40 – 70 % and 60 – 70 % for Jean Marie and Blackstone, 

respectively). In agreement with this, Jasechko et al. (2016) estimate that annually 80 – 90 % of the Mackenzie River 

streamflow is “old” water (i.e., water that has not entered the stream within the last 2.3 ± 0.8 months). Their findings also 

suggest that the annual percentage of old streamflow can be higher in mountainous watersheds with steeper slopes, such as in 

the FSB and specifically Blackstone, relative to lower-gradient watersheds. Groundwater as defined by St. Amour et al 10 

(2005) and Jasechko et al (2016) denotes ‘old water’, or water residing in the system prior to an event.  In our study, 

groundwater is defined as baseflow in isoWATFLOOD (Stadnyk et al. 20052013) and is separate from interflow (soil water 

in the unsaturated zone) and wetlands. Baseflow contributions in this study are therefore slightly lower than those estimated 

from the two-component hydrograph separation methods. Snowmelt contributions from St. Amour et al (2005) were 21 % (± 

2 %) and 40 % (± 4 %) of total streamflow for Jean Marie and Blackstone, respectively; which are in agreement with mean 15 

spring (MAM) surface runoff contributions in our study (20 – 40 %) for both basins. 

 

Comparison of seasonal volume contributions derived from each δ18Oppt product reveal that during spring (MAM), 

REMOiso-driven simulations show more surface flow contribution to total streamflow, with the mean volume lying above 

the 95th percentile volumes for both the KPN43 and static input simulations (Fig. 6). On average, REMOiso simulations 20 

contribute almost twice as much surface runoff to total streamflow as KPN43 and static simulations during MAM (39 % 

versus 25 % and 22 %, respectively, for the Jean Marie; and similar, yet slightly larger, percent contributions for the 

Blackstone).  

 

From the seasonal analysis, no other significant differences in component contributions outside of parameter uncertainty can 25 

be attributed to δ18Oppt product. It is important to note, however, that each δ18Oppt product results in different amounts of 

parameter uncertainty, both seasonally and overall, as represented by width of the uncertainty bounds (cross symbols on Fig. 

6). The variation in uncertainty bounds between δ18Oppt products is also visible on Figure 3 through Figure 5. The REMOiso 

input yields the largest amount of uncertainty in total streamflow, also reflected in the relatively larger amounts of 

uncertainty in surface water and baseflow component contributions (Fig. 6). Conversely, KPN43 and static inputs generate 30 

similar or slightly larger uncertainty in interflow (soil water) contributions relative to REMOiso and lower uncertainty 

surrounding surface and baseflow contributions, and overall total streamflow. These differences in uncertainty are attributed 

to the number and characteristics of behavioural parameters retained for each δ18Oppt input, which originate due to 

distinctions in magnitude and variability (both spatial and temporal) among δ18Oppt products. 
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Further demonstrated by parameter probability distributions (Fig. 7), the three calibrations result in noteworthy differences in 

behavioural parameters. We do not display these distributions to comment definitively on parameter identifiability because, 

as previously noted, the number of evaluations was insufficient for that purpose. Rather, we introduce this analysis to further 

explore how model parameterization is impacted by δ18Oppt input. The selected parameters (Table 4) influence evaporation 5 

(f-ratio), surface runoff during snowmelt (akfs, base), upper and lower zone storage (retn), interflow (retn), and baseflow 

(lzf, pwr). REMOiso parameter distributions more often than not differ from KPN43 and static parameter distributions. 

Although dissimilarities between KPN43 and static parameter distributions exist, these are typically not as prevalent as 

differences with REMOiso-derived distributions. This echoes the findings from Figure 7 that KPN43 and static-derived 

component contributions are more similar than those derived from REMOiso; which may very well be due to the increased 10 

spatial and temporal variability of the REMOiso δ18Oppt product. Though we cannot verify correctness of the REMOiso 

18Oppt given the absence of daily precipitation isotope observations, differences among inputs imply that temporal resolution 

of 18Oppt plays a role in the parameterization of a model, and resultant hydrograph separation. 

 

Differences in surface water contributions during snowmelt between REMOiso, KPN43 and static inputs are likely derived 15 

from differences in the akfs and base parameters. Parameter distributions from REMOiso are significantly different (as 

verified through Kolmogorov–Smirnov testing of distributions) than the KPN43 and static input distributions for these 

parameters (Figure 7, panels (b) and (f)). Lower akfs values represent decreased infiltration and increased surface runoff 

during snowmelt, which corresponds to REMOiso’s increased surface water contributions to total streamflow during spring 

(MAM). Dissimilarities in baseflow contributions among δ18Oppt inputs are influenced by differences in the lzf and pwr 20 

parameters (Fig. 7, panels (c-d) and (g-h)), which have a large impact on the quantity of baseflow and the slope of the 

recession limb of the hydrograph. Wider uncertainty bounds for REMOiso relative to KPN43 and static calibrations within 

Blackstone (Fig. 6, panel (f)), and for all models during fall and winter within Jean Marie (Fig. 6, panel (c)), are likely due to 

the wider range of behavioural values for the pwr parameter, specifically the inclusion of lower values which results in 

longer, more drawn out recession limbs. It appears that choice of precipitation isotope product influences parameter 25 

distributions in isoWATFLOOD, which in turn alters internal water apportionment. In the tracer-aided modelling 

community, this has significant implications for hydrograph separation and any associated transit time analyses; both of 

which will be influenced by choice (resolution) of 18Oppt product. 

5 Conclusions 

This study used three types of precipitation isotope products as δ18Oppt input to a tracer-aided hydrological model 30 

(isoWATFLOOD) to investigate the impact differing spatial and temporal resolutions have on simulation of streamflow, 
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isotopic composition of streamflow, internal hydrograph separations, and model parameterization and corresponding 

parameter uncertainty. Our study found that choice of precipitation isotope product (δ18Oppt):  

1. did not impact simulation of total streamflow, or the achieved efficiencies of streamflow simulation; 

2. impacted the internal apportionment of water, thereby impacting hydrograph separations; 

3. impacted model parameterization, and therefore simulation uncertainty; and 5 

4. impacted the variability of simulated 18OSF, most noticeably when event compositions differed significantly from 

streamflow composition (e.g., snowmelt and large rainfall events). 

 

Of the 30,000 simulations performed for each precipitation isotope product forcing, only 10 % or less were behavioural for 

each input type. Due to the wide range of behavioural parameter values (Table S1), however, we are confident that the 10 

approach used was sufficient to characterize parameter uncertainty. Not unexpectedly, this finding also indicates that 30,000 

model evaluations were not sufficient to quantify parameter identifiability in this study. 

 

Although total simulated streamflow was not significantly affected by choice of δ18Oppt input, δ18OSF simulations and the 

internal apportionment of water (surface flow, interflow, and baseflow) were significantly impacted here. Significant 15 

differences in internal water apportionment among the models were diagnosed via 18O uncertainty. Variation between 

models was greatest during the freshet period, where significantly different snowpack compositions were simulated among 

the different precipitation isotope products. The highest resolution (REMOiso, daily) input resulted in significantly different 

parameter distributions and seasonal hydrograph separations than the other two (monthly and semi-annual) inputs. These 

findings have direct implications for hydrograph separation, and simulated water transit times. In this study, we found that 20 

choice of δ18Oppt input directly impacted model parameterization, and for this reason, studies should account for both input 

and parameter uncertainty. Also highlighted was the significance of the snowpack and melt dynamics in tracer-aided models 

applied in high-latitude regions, resulting in high seasonal uncertainty and indicating more research is warranted to improve 

process representation. Use of a tracer-aided model afforded an examination of internal model dynamics resulting from 

specific parameterizations, allowing us to assess the realism of individual simulations as opposed to their efficacy alone. 25 

 

This study demonstrated that direct quantification of model equifinality was possible using tracer-aided models, and 

furthermore, we demonstrated that this equifinality was not diagnosable via simulation of streamflow. We have achieved an 

understanding of how tracer-aided models, like isoWATFLOOD, can be used in data sparse regions, with limited input data 

(including δ18Oppt observations), and that despite these limitations, these models can still be of value. Regarding the 30 

usefulness of precipitation isotope products in regions with limited observations, both the static and REMOiso inputs require 

existing δ18Oppt observations (i.e., from CNIP) to either define or bias correct the input, limiting their use for certain 

applications. If these data are not available, the KPN43 input provided reasonable results without the need for additional 

observations. The existence of CNIP (and other precipitation isotope networks) was crucial to the development, validation, 
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and bias correction of existing 18Oppt products. Attaining an understanding of how δ18Oppt input uncertainty impacts 

simulated model output is important when calibrated models are used to assess climate-driven or land-use-driven impacts on 

streamflow in remote, data sparse, high-latitude regions. 

 

For use in tracer-aided modelling, precipitation isotope products should capture both the event-based variability and 5 

seasonality of precipitation isotopes to reproduce realistic 18OSF variability. Higher resolution 18Oppt inputs (e.g., 

REMOiso, daily) were able to capture event-specific compositions that, when significantly different from 18OSF, tended to 

cause significant deviations from the 18OSF derived from monthly and semi-annual (i.e., static) inputs. Unfortunately, we 

could not verify the correctness of the higher resolution product (i.e., REMOiso) in this study due to the sporadic sampling 

of isotopes in precipitation observations. Static and seasonal precipitation isotope products missed event-specific isotopic 10 

variation occurring as a result of heavy rainfall events, which require increased temporal resolution (e.g., daily 18Oppt inputs 

from REMOiso; but perhaps weekly input would suffice) to resolve rainfall event compositions. In seasonal environments, 

precipitation isotope products must capture the transition from rainfall to snowfall, and from snow accumulation to snowmelt 

to sufficiently model 18OSF. In this study, both static and monthly inputs adequately captured 18OSF variability at the basin 

outlet, perhaps the result of the unique  seasonality in high-latitude regions. Spatial variability was detected across the study 15 

region in 18Oppt inputs, and can be represented by distributed tracer-aided models, like isoWATFLOOD. There is reason to 

suspect that the variability in (both spatial and temporal) precipitation isotope inputs influences model parameterization, 

therefore spatial variability should be preserved to derive the most representative model of a given region. 

 

This work highlighted the power of tracer-aided modelling to inform and quantify equifinality in hydrological simulation, 20 

helping modellers to work towards reducing modelling uncertainty. Although more work is required to assess and 

understand parameter identifiability, our analysis showed that selection of precipitation isotope (δ18Oppt) product had direct 

implications on model parameterization, and that input uncertainty should be considered in future studies. 

6 Future directions 

Distributed hydrological models, such as WATFLOOD, are complex with large numbers of parameters, therefore it is 25 

important as a community to work toward conducting comprehensive studies that focus on input data uncertainty and 

parameter identifiability. In the tracer-aided modelling community, this includes uncertainty from precipitation isotope 

products and their varying spatial and temporal resolutions. Ideally, further studies should be conducted in well-instrumented 

basins where δ18Oppt input can be better characterized using observed data at higher spatial, and most importantly, temporal 

resolutions. Several key questions warranting more detailed investigation include: (1) are precipitation isotope products 30 

adequate alternatives in place of δ18Oppt observations; (2) are there a specific subset of model parameters that are more 
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sensitive to choice of precipitation isotope product; and (3) how do (if at all) parameters compensate for compounding model 

error. Unfortunately, at least within Canada, a well instrumented watershed at the regional scale does not yet exist, pointing 

to the importance of implementing additional (or enhancing current) iso-hydro-meteorological monitoring networks.  

 

Not unexpectedly, the RCM-driven precipitation isotope product in this study, REMOiso, exhibited some bias and needed 5 

correction prior to application. More studies are needed to better understand the nature of this bias, and the most appropriate 

bias correction methods; which can be done using observations from the CNIP database at a monthly resolution. Due to the 

lack of high-resolution 18Oppt observations in Canada, however, daily or weekly validation is not yet possible. Additionally, 

the suitability and performance of other isotope-enabled RCM’s for use in Canada, and elsewhere, should be explored.  

 10 

Lastly, as a tracer-aided hydrologic community we need to push for the sustained monitoring of isotopes in precipitation and 

streamflow that are required to inform our models and improve uncertainty assessment. This study elucidated the impact that 

discontinuous observations can have on quantifying model uncertainty; which would only be further exasperated by the 

absence of observations all together. In Canada, a concerted effort is needed by the Government to protect and sustain our 

observation networks, which are required for improved prediction in remote regions for climate and hydrologic change 15 

detection. 
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Figure 1: Fort Simpson River Basin (all other tributaries of the Liard and Mackenzie Rivers have been removed for ease of 
viewing). 
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Figure 2: Comparison of raw and corrected REMOiso δ18Oppt output with CNIP monthly compositions at Snare Rapids, NWT. 

 

 

 5 
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Figure 3: Input and behavioural simulations for Jean Marie, including: (a) KPN43, REMOiso and static δ18Oppt input time series 
and daily precipitation; and simulated (b) mean daily streamflow and uncertainty bounds and (c) mean daily δ18OSF and 
uncertainty bounds, for KPN43, REMOiso and static driven model calibrations. δ18Oppt input-specific uncertainty bounds are 
represented as the shaded regions, with shading colour corresponding to δ18Oppt type.          5 
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Figure 4:  Input and behavioural simulations for Blackstone, including: (a) KPN43, REMOiso and static δ18Oppt input time series 
and daily precipitation; and simulated (b) mean daily streamflow and uncertainty bounds and (c) mean daily δ18OSF and 
uncertainty bounds, for KPN43, REMOiso and static driven model calibrations. δ18Oppt input-specific uncertainty bounds are 
represented as the shaded regions, with shading colour corresponding to δ18Oppt type. 5 
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Figure 5: Precipitation-weighted δ18O of snowpack (δ18OSNW) for KPN43, REMOiso and static inputs from January to the end of 
melt for each year of the study period. Snow water equivalent (SWE), snowfall (gray line), and rainfall (blue line) are also shown. 
δ18Oppt input-specific uncertainty bounds are represented as the shaded regions. Diamond symbols represent 18OSNW observations 
sampled within each respective sub-basin during the GEWEX campaign. 5 
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Figure 6: Percent seasonal volume contributing to total streamflow from surface runoff, interflow and baseflow storages for each 
season. Cross symbols represent the 5th and 95th percentiles for each forcing method, and circle symbols signify the mean values. 
The combined uncertainty bounds representing the 5th and 95th simulations from all three δ18Oppt input types are shaded in gray. 

 5 
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Figure 7: Probability distributions for select parameters (Table 5), as indicated in the bottom right corner of each panel. 
Parameters are from behavioural simulations, and (a), (b), (e) and (f) have been weighted to the land cover distribution within 
Jean Marie and Blackstone, as outlined in Table 1. Panels (c) and (d) and river class parameters within Jean Marie, and panels (g) 
and (h) contain river class parameters for Blackstone. 5 
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Table 1: Basin characteristics, including land cover classification, area, and average basin slope (recreated from data provided in 
St Amour et al., 2005) 

Sub-basin Land Cover Classification (%) Area 
(km2) 

Basin 
Slope (%) Deciduous Mixed Coniferous Transitional Wetland Water 

Jean- Marie River 5 22 23 31 14 1.3 1310 0.3 
Blackstone River 7 17 14 39 21 0.7 1390 0.63 
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Table 2: Data summary for the study period (SP) and period of record (PoR). The coefficient of variation (CV) is calculated as the 
ratio of the standard deviation to the mean. 

Variable (gauge ID) Unit 
Number of 

Measurements 
Mean   

(SP, PoR) 
CV 

(SP, PoR) 
SP Range 

(min, max) 
Hydrometric/Meteorological Data 

Daily Average Streamflow  
     Jean Marie (10FB005) 

m3/s 1095 4.66,  5.25 1.24,  2.06 0.19,  34.9 

Daily Average Streamflow  
     Blackstone (10ED007) 

m3/s 1095 8.96,  10.76 1.65,  2.17 0.04,  109 

Mean Daily Air Temperature   
     Fort Simpson (2202101) 

°C 1093 -1.5,  -3.02 N/A -40.8,  25.3 

Daily Precipitation  
     Fort Simpson (2202101) 

mm 1088 1.12,  1.01 3.04, 3.19 0.0,  43.0 

Hourly Relative Humidity*  
     Fort Simpson (2202101) 

% 26280 73.9 0.24 14, 100 

Isotopic Measurements* 

Streamflow δ18O - Jean Marie ‰ 71 -19.70 0.03 -21.34, -18.72 

Streamflow δ18O - Blackstone ‰ 69 -20.17 0.06 -24.01, -17.92 
Rainfall δ18O 
     Jean Marie and Blackstone 

‰ 27 -17.55 0.23 -26.70, -11.12 

Precipitation δ18O Forcing* 

KPN43  δ18Oppt input ‰ 
1800 (36 values at 

50 grid points) 
-20.48 0.19 -28.86, -13.91 

REMOiso δ18Oppt input ‰ 
54750 (1095 values 

at 50 grid points) 
-21.78 0.25 -42.82, -10.68 

Static δ18Oppt input ‰ 
300 (6 values at 50 

grid points) 
-22.82 0.20 -29.35, -16.52 

* Provided only for the study period, 1997 – 1999. 
  



33 
 

Table 3: Static δ18Oppt input compositions of annual rainfall and snowfall oxygen-18 for isoWATFLOOD. 

Year δ18O rainfall 
(‰) 

δ18O snowfall 
(‰) 

1996 -17.00 -29.35 
1997 -19.10 -29.35 
1998 -20.10 -25.03 
1999 -16.52 -26.79 
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Table 4: Parameters included in the Monte Carlo calibration, alongside a description of what the parameter represents and the 
algorithm it is used within. 

Name Description Algorithm 

Routing Parameters 

flz Lower zone drainage function 
An exponential ground water depletion function that gradually 

diminishes the base flow. Ground water is replenished by 
drainage of the UZS: 

QLZ = LZF *(LZS) PWR 
Where: LZS is lower zone storage 

QLZ is the baseflow flux 
pwr 

Lower zone drainage function 
exponent 

theta Wetland porosity Physically-based wetland routing algorithm  
(McKillop et al., 1999) kcond Conductivity parameter 

Hydrologic Parameters 

f-ratio Interception capacity multiplier 
Conceptual evaporation algorithm based on Hargreaves and 

Samani (1982). f-ratio is a multiplier for the interception 
capacity for each land class. 

ak Surface permeability (bare ground) 
Conceptual infiltration algorithm (similar to Green and Ampt, 
1911); but based on Richard's equation which is physically-

based (Philip, 1954) akfs Surface permeability 

rec Interflow coefficient 
Interflow is represented by a simple storage-discharge 

relation: 
DUZ = REC * (UZS-RETN)*Si 

Where: UZS = upper zone storage 
DUZ = depth of upper zone storage released as interflow 

Si = internal land surface slope 
retn Upper zone retention [mm] 

ak2 Recharge coefficient (bare ground) 

Upper zone to lower zone drainage is represented by a simple 
storage-discharge relation: 

DRNG = AK2 * (UZS - RETN) 
Where: DRNG is the drainage from UZS to LZS 

mf Melt factor [mm/°C/hr] M = MF (Ta - base) 
Anderson (1976) base Base Temperature [°C] 

sub Sublimation factor 

Sublimation is modelled by a static sublimation factor. 
Amount of sublimation is a fraction of the observed snowfall. 

For new model setups, the sublimation factor has been 
replaced by a static sublimation rate. 
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Table 5: Average simulation statistics from n behavioural simulations for streamflow and δ18OSF for the three model calibrations 
(using KPN43, REMOiso, and static inputs). 

Average statistics 
from n behavioural 

simulations 
KPN43 REMOiso Static 

n 321 / 30000 268 / 30000 216 / 30000 
Streamflow (1095 observations for performance evaluation) 

NSE 0.68 0.68 0.69 
|% Dv| 13.9 13.4 14.2 

|Log(% Dv)| 11.5 8.9 11.6 
δ18OSF (140 observations for performance evaluation) 

RMSE (‰) 1.39 1.32 2.09 
KGE 0.36 0.33 0.35 

 


