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Department of Civil Engineering  
University of Manitoba 
Winnipeg, MB, Canada 

   Email: tricia.stadnyk@umanitoba.ca 
   Tel: (204) 474-8704 
   Fax: (204) 474-7516 

20 February 2017 
Dr. Christine Stumpp 
Editor 
Hydrology and Earth System Sciences 

Re: HESS-2016-539 

Dear Dr. Stumpp: 

Enclosed please find a fully revised, original manuscript now titled “Examining the impacts of 
precipitation isotope products (δ18O) on distributed tracer-aided hydrological modelling”, 
which is renamed from the previous title “Examining the impacts of estimated precipitation 
isotope (δ18O) inputs on distributed tracer-aided hydrological modelling” (reference #HESS-
2016-539) by Carly J. Delavau, Tricia A. Stadnyk, and Tegan Holmes. We are respectfully 
submitting our revised manuscript for your consideration in Hydrology and Earth System 
Sciences. 

This manuscript evaluates the impact that different spatial and temporal resolutions of 
precipitation isotope products (18Oppt) have on simulated tracer-aided model output, parameters, 
and uncertainty. We present three different model calibrations, each derived from a different 
precipitation isotope product, and statistically assess the behavioural simulations, including: the 
number of parameter sets retained, differences in parameter distributions, and resulting 
hydrograph separations and associated parameter uncertainty envelopes. Choice of precipitation 
isotope product influenced parameter distributions, uncertainty envelopes and resulting 
hydrograph simulations; but had limited impact on resultant total streamflow simulations. This 
highlights that tracer-aided models are essential in the diagnosis of equifinality, and in 
quantifying changes to model output and uncertainty resulting from model input. The higher 
resolution 18Oppt products were able to reproduce the observed streamflow isotopic variability 
most reliably, and the highest resolution product (REMOiso) had distinct hydrograph 
separations relative to the KPN43 and static products. Though this study could not confirm the 
accuracy of the any one product over another (due to a lack of daily 18Oppt observations), it 
demonstrated that resolution of tracer-aided model inputs directly impacts model 
parameterization and resulting hydrograph separations. 

We have fully revised the paper to take into consideration the constructive comments from the 
two referees. Given the manuscript required major revision, we have not provided a line-by-line 
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list of the changes since line numbers have been altered significantly. Instead, we summarize 
here the major revisions we have made: 

- Rewriting of the abstract 
- Broader focus on applications to tracer-aided modelling, rather than study-site specific 

findings 
- Additional methodology section on “statistical treatment of data” 
- Rewriting of the discussion to focus more specifically on pertinent results and highlight 

discrepancies within the modelling (based on reviewer feedback) 
- Rewritting of the conclusions that highlight take-home messages from the manuscript and 

that better connect to our broader objectives. 
 
Of note, in response to reviewer feedback and suggestions we have added a supplement (Table 
S-1 and Figure S-1), a new methodology section (3.4 Statistical treatment of data), renumbered 
the figures and tables so they appear consecutively, and enhanced the discussion and 
conclusions sections of the paper.  In response to comments from Anonymous Referee #1, we 
have inserted some detailed text around our assumption that snowpack and snowfall 
compositions are equivalent, added the snowpack compositions to Fig 5, and expanded our 
discussion of the results – particularly as they pertain to streamflow and isotopic simulation 
errors. In response to Dr. Birkel (Referee #2), we have expended the scope and focus away from 
the study and onto tracer-aided modelling in general and have included spatial maps of the 
isotope in precipitation input (Figure S-1). We have not run a configuration of the model over 
100K iterations, however, because of time constraints and because we did not feel that 
parameter identifiability was the overall goal of this study. We will however take this advice and 
apply it to future studies – which are in fact currently underway. We agree that parameter 
identifiability is important, however, in this paper, we were more interested in input uncertainty 
and the impact on the range of parameter uncertainty, which we feel we have addressed. A 
response document provides the full details of the revisions incorporated in the manuscript. 

This manuscript has not been previously published in any language nor is it under consideration 
for publication by another journal. All authors have carefully read the revised manuscript and 
have agreed to its submission to Hydrology and Earth System Sciences. River discharge and 
precipitation time series used in this research were from publically available open sources, and 
all model results and innovations were developed by the authors using the Fortran programming 
language and Matlab. Figures were generated using a Grapher package. We are willing to share 
our 18Oppt models and code with interested researchers upon request 
(Carly.Delavau@gov.mb.ca). 

Please note also that the results presented in this paper originate from the lead author’s PhD 
research under the supervision of the second author. The PhD thesis has been published in the 
University of Manitoba online repository, and is publically available 
(http://hdl.handle.net/1993/31946). The results from this paper have not been presented at, nor 
submitted to, any academic conference; and are not currently nor have not been previously 
submitted for publication in another journal. 
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Thank you for your consideration of this contribution to HESS, and to the reviewers for their 
feedback and edits. We look forward to hearing from you. 

 

Sincerely yours, 

 

 

Dr. Tricia Stadnyk, P.Eng. 

Corresponding Author 

 

RESPONSE TO THE REFEREES’ COMMENTS 
 
We sincerely thank both referees for their thorough reviews and most constructive comments on 
our manuscript (Reference # HESS-2016-539). We fully recognize and appreciate the reviewers’ 
efforts in providing these informative reports on our research and their insights have led to an 
improved interpretation of our results. We have therefore taken into full consideration all of 
these comments and have prepared responses to these as well as information on how the paper 
was revised following the referees’ suggestions. Our responses to reviewers are provided below 
in bold following the individual comments requiring action from both reviewers, followed by a 
marked up version of the manuscript (changes highlighted in yellow).  
 

Referee #1: 

Specific comments:  
The authors should rethink the use of the word “estimated” in the title as well as throughout the 
whole manuscript. It suggests that the input data was generated specifically for the presented 
study. It should be clear that (2 of 3) available precipitation isotope product were used to the 
study. Which is actually an asset for the study and with respect to future studies in other basins. 

We agree completely, and this was also suggested by the second reviewer too. We have 
changed the title to “Examining the impacts of precipitation isotope products (δ18O) on 
distributed tracer-aided hydrological modelling” and revised the use of the word ‘estimated’ 
(with respect to 18Oppt inputs) throughout the manuscript to “precipitation isotope 
products”, as appropriate. 
 
The first sentence of the abstract is “…increasingly popular tools as they have documented utility 
in constraining model parameter space during calibration, reducing model uncertainty, and 



 

 

4 

 

assisting with selection of appropriate model structures.”. However, there is no evidence for that 
statement. Please include additional information to the introduction section or revise the first 
sentence of the abstract.  
We have subsequently revised the abstract significantly, and agree that it has yet to be 
proven that the parameter space is constrained by such tools.  We have rephrased this 
sentence as: “Tracer-aided hydrological models are becoming increasingly popular tools as 
they assist with process understanding and source separation; which facilitates model 
calibration and diagnosis of model uncertainty (Tetzlaff et al. 2015; Klaus & McDonnell, 
2013)”. 
 
The authors highlight the importance of snowmelt in the study region. The stable isotope 
signature of the snow pack and its melt water is a very challenging topic. Please handle this point 
very carefully in your publication. On page 5, Line 17 for example you mention that the default 
method for oxygen-18 input is annual average rainfall and snowfall. In your static approach, 
however, you used average measurements of rainfall and snowpack from the GEWEX campaign. 
Please provide the values of snow pack stable isotope signature in figure 5 by the way. 
Especially during the ablation season the isotopic evolution of the snowpack progresses due to 
percolating rain water and fractionation caused by processes like melting and sublimation (Zhou 
et al., 2008; Unnikrishna et al., 2002; Dietermann and Weiler, 2013; Lee et al., 2010). This leads 
to an increase of heavy isotopes in melt water throughout the freshet period (Taylor et al., 2001, 
2002; Unnikrishna et al., 2002). Which is correctly represented by the shown model results. 
Taylor et al. (2001 and 2002) point out that for hydrological applications (in their case isotope 
based hydrograph separation) a correct representation of the snow pack melt water is absolutely 
crucial. 
Thank you for your insight, and we couldn’t agree more that the isotopic signature of a 
snowpack and its evolution in snow melt are very challenging processes.  We have since 
revised Figure 5 and added the snowpack data and also included a cautionary note to 
readers highlighting there is uncertainty surrounding these measurements. For the 
modelling, as a static input our model would preferably use average annual inputs of 
rainfall and snowfall.  Rainfall and snowpack values were obtained from the GEWEX 
campaign. There was no data on snowfall composition available – only snowpack 
compositions - therefore we assume (as model input) that the average annual composition 
of snowfall is approximately equal to that of the snowpack. We have clarified our 
assumption in the manuscript.   
 
REMOiso is a distributed dataset and the precipitation amounts are also available spatially 
distributed over the study area. Why was the precipitation amount weighting only conducted at 
one location and not spatially distributed? 
The only precipitation amount-weighting for REMOiso was done to determine the bias 
correction at Snare Rapids. There was no need to do this spatially for this purpose as we 
are comparing CNIP observations (at a point) directly to REMOiso output at a single 
location corresponding to the location of the CNIP observation station. We averaged the 
four 6-hourly REMOiso values (at each grid) to arrive at daily compositions that were read 
into the model as input on a per-grid basis (i.e., no amount-weighting involved – same as 
for the static and KPN inputs). Based on some (unpublished) analyses we did for a study of 
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the Mackenzie River Basin (i.e., using the same REMOiso model output), we don't trust the 
quality of sub-daily REMO precipitation to the point where we would use (sub-daily) 
precipitation to amount weight REMOiso δ18Oppt. If we decided to amount weight, we 
couldn’t use actual observations to amount weight 6-hourly to daily as we only have daily 
precipitation from Fort Simpson Airport and at various grid locations from the 
ANUSPLIN product.  
 
The authors mention that “several changes and improvements” (Page 7, Line 16) were carried 
out in the model version used for the study. In the following only one modification (proportion 
of bog an fen split) is mentioned. Are there any other modifications? If so, please mention them 
here. 
This was poorly worded on our part. What we meant to say was that the model 
(isoWATFLOOD) has undergone “several changes and improvements” since it was last 
published in a study back in 2013 (Stadnyk et al., 2013).  These changes and improvements 
were independent of the current study, and all toward continual improvement of internal 
dynamics and the model output. We have revised the wording in our manuscript to clarify: 
“The isoWATFLOOD model used in this study is based on a previous version used by Stadnyk 
et al. (2013). The current model, however, uses an updated version of isoWATFLOOD code 
and the watershed set-up incorporates various model improvements made since 2013, 
independent of this study.” 
 
The first two paragraphs of section 4 (Results and discussion) should definitively be revised. 
There is a lot of content that can be mentioned later in the conclusions section (the last sentence 
on Line 12-14 for example). 
We have significantly revised the results & discussion using the guidance of your questions 
below to help highlight specific findings related to our key objectives and take-home 
messages.  We have also moved the sentence you reference above to the conclusions.  
 
In section 4.2 (Modelling streamflow) please explain the model results as well as the observed 
streamflow in much more detail. The three different inputs (and three different calibrations) 
provide very similar results for the simulated streamflow (Page 15, Lines 5-8). Those results 
should be discussed in more detail.  
Thank you for your suggestions, we have revised the discussion to include more specific, in-
depth discussion of the simulated streamflow resulting from the three types of precipitation 
isotope product. And yes, all three precipitation isotope products (three different 
calibrations) result in almost exactly the same streamflow simulation (i.e., statistically the 
same according to the Kendall’s tau test applied in the paper).   
 
Is there really no discharge in winter (Figure 2 and 3)?  
We assume you are referring to Figures 3 & 4 (not 2).  And no, observed streamflow does 
not go zero, but rather becomes very small relative to peak flows: minimum in Jean-Marie 
from 1997-1999 of 0.194 m3/s, or 0.5% of the maximum streamflow, 35 m3/s during this 
same period; and a minimum of 0.043 m3/s in Blackstone relative to a maximum flow of 
109 m3/s, so less than 0.04% of the peak flow. We have added the average ice-on flows over 
the study period to the study site/background section for clarity. Ice-on winter low flows in 
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high latitude basins such as this commonly reduce significantly and become near zero due 
to the long, sustained period frozen ground/soils, lack of mid-winter thaw/melt periods, and 
accumulation of solid precipitation.  
 
We considered providing panel b on Fig 3 & 4 in log-scale to emphasize that there are in 
fact low-flow values; but this greatly diminished peak flow analysis and peak flow 
uncertainty, which was a key point in our study.  We have included those log-scale figures 
here for your assessment (not included in revised manuscript): 

 
 
What are the influences of groundwater on the hydrology of the region? The same holds for 
section 4.3. Explain the results in more details.  
Given the region resides within the discontinuous to semi-permafrost region of Canada, the 
influence of sub-surface contributions to runoff would be sporadic and is difficult to define 
(as several studies in the region have shown, Connon et al., 2015).  The model we use in this 
study (isoWATFLOOD) has the capability to raise/lower wetland water table levels, 
connecting and/or disconnecting with channel runoff, which is a reasonable analogy to this 
complex interaction. 

There is especially the time of the spring freshet that needs much more carefully discussed. 
We have incorporated an analysis of the results during spring freshet into our discussion. 
 
The model results show a sharp drop of streamflow stable isotope signature, while the observed 
values are getting more and more enriched at that time. This completely opposed development 
may be related that the contribution of snowmelt water to total streamflow during that time is too 
high (or the signature of the snow melt signal is wrong, please remind here my suggestions 
above) and the contribution of baseflow too low.  
We assume you are referring to the freshet period in 1998.  Note that we did not have 
continuously observed isotopes in streamflow during the peak freshet (i.e., high flow 
sampling is not always feasible), and as a result there are some missing observations during 
this time of year (mostly in 1999), despite this being our most frequent period of sampling 
overall (relative to other seasons). Moreover, as we’ve explained the model assumes 
snowfall composition to be equal to snowpack composition, and then can apply a constant 
offset or fractionation from snowpack composition/accumulation to snowmelt.  In this 
study, that offset was set =0 given the lack of snowpack to snowmelt observations from 
which to calibrate to.  Therefore, it is most likely that, in this year, the assumed 
fractionation from pack to melt water was wrong and not well defined.  Again – without 
observed data to compare to, it is impossible for us to adjust this factor to improve results; 
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however, adding a snowmelt dynamics module to the model would be a great asset, one 
which has been recognized by our group and that we are working toward.  We have added 
some text in the revised manuscript to discuss this discrepancy. 
 
The contributions of baseflow (groundwater) to total streamflow during the post-freshet are 
especially for Jean Marie River much lower in the present model study compared to the results of 
St Amour et al. (2005). Furthermore, please provide the stable isotope signature of groundwater. 
And compare those observed values with the values generated by the models in the groundwater 
routine after the spin-up period. 
As Stadnyk et al. (2005) and Stadnyk-Falcone (2008) pointed out, contributions of 
“groundwater” from the model (isoWATFLOOD) cannot be directly compared to those 
derived by St. Amour et al. (2005) owing to the definition of what groundwater is 
considered in the two modelling methodologies.  In St. Amour et al (2005), a mixing model 
is used that separates old and new water contributions over time – which means that 
groundwater is defined as old water, or that is water that is existing pre-event. Whereas 
using WATFLOOD or isoWATFLOOD to perform hydrograph separation in the same 
region, lower contributions of groundwater are derived by the (iso)WATFLOOD model 
since the model separates soil water (upper zone storage) from baseflow or groundwater 
(lower zone storage) and wetland storage -- all of which would constitute ‘old’ (pre-event) 
water using traditional two-component mixing models. We have added text in the revised 
manuscript to describe this. 

Please check the manuscript for repetitive information. The sentence on Page 13, 34+35 for 
example appears almost identical on the next page again (Page 14, Lines 20-22). This would be 
an excellent take-home sentence for the conclusions section by the way. 
Thank you for pointing this out. We have re-read the manuscript and removed any 
apparent redundancies, particularly the ones you have pointed out to us.  We have moved 
the sentence you highlighted to the conclusions section. 
 
In general, I am missing some distinct conclusions in the conclusions section of the submitted 
manuscript. There are a lot of recommendations and speculations but no clear take-home 
messages. 
Agreed. In re-reading the manuscript, we too realized that we can write better conclusions 
that highlight the take-home messages this manuscript presents.  Also elaborated on in the 
conclusions now is the take-home message that precipitation isotope products of higher 
resolution (e.g., REMOiso, daily resolution) better capture event-specific compositions that, 
when significantly different from 18OSF, tend to cause significant deviations from seasonal 
and semi-annual (i.e., static) inputs.  Though we cannot verify the correctness of the higher 
resolution product (REMOiso) in this study due to monthly observed precipitation, it is 
clear that temporal resolution plays a significant role in model parameterization and 
resulting hydrograph separations. We have also added a separate “Future Directions” 
section (based on Reviewer #2 feedback) that is comprised of the future work discussion 
from our original conclusions. 
 
Technical notes: 
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Page 1, Line 18: “…to capture both the variability and seasonality”. There it would be better to 
write “spatial variability and seasonality” or “spatial and temporal variability”, since the 
seasonality is also a variability (temporal). 
We have made this correction. 
 
Page 1, Line 31: (e.g. Beven and Binley, 1992; Kirchner….) 
Correction made. 
Page 3, Line 22 and Line 29: Please provide size and elevation characteristics of the basins here. 
We have added this information. 
 
Page 3, Line 27: “…is selected based ON data availability.” 
Correction made. 
 
Page 4, Line 20: The study region is not a high elevation region. Please mention correctly why 
the approach is suitable for the study region. 
From another project our research group is working on, a detailed analysis of 
ANUSPLIN’s suitability for high-latitude, Boreal regions (i.e., specifically the Nelson 
River) was done by a PhD student (Rajtantra Lilhare) and presented recently in a poster at 
ArcticNet (Lilhare, 2016). In this study, both the seasonality and amount of precipitation 
from ANUSPLIN were found to match well (r>=0.98) with nearby observations (3 for 
precipitation, 6 for temperature; all within the Nelson River watershed) from Provincial 
and Environment Canada meteorological station observations (shown here, but not 
included in our paper).  

ANUSPLIN Temperature 
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ANUSPLIN Precipitation 

 
 
Simultaneously, we have been involved in an assessment of precipitation datasets and 
reanalysis products across the Canadian Prairies and Boreal region for the purposes of 
hydrological modelling applications. ANUSPLIN was included in this comparison, where 
data products were evaluated against independent station data (not used in the derivation 
of each product). A manuscript summarizing this comparison is currently in preparation 
by Dr. Bruce Davison, who found that ANUSPLIN scored well in terms of accuracy 
(relative to station observations), but showed some bias over the long-term. Based on our 
knowledge of ANUSPLIN for our study area, we believe that it is adequate to describe daily 
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precipitation over the short term, but this decision would need to be reconsidered should 
the study length be extended. 
 
Page 4, Line 21: “…is used TO spatially…” 
Correction made. 
 
Page 5, Line 9: Why are they not adequate for model forcing? This is the input data used and 
referred STATIC in the study, right? Please revise this sentence 
Our apologies. We have revised this sentence to instead state: “…their spatial and temporal 
resolutions are not preferred for tracer-aided hydrologic model forcing due the observations 
being uniform in space, and their poor temporal resolution.” 
 
Page 5, Line 12: “such that” appears twice. 
Corrected. 
 
Page 5, Line 24: KP43 instead of KPN43. 
Corrected – thank you for noticing this! 
 
Page 6, Line 4: From my point of view the section 2.4.1 is a description of methods and should 
therefore be moved in the appropriate section. 
We agree and have moved this section to a new section in study methods. 
 
Page 6, Line 16: Please mention that Snare Rapids is a CNIP station for clarity. 
We have added this information and clarified. 
 
Page 6, Line 7: IAEA (2014) this citation is listed in the references section as 
IAEA/WMO (2014). Please adapt. 
This has been corrected. 
 
Page 7, Line 16: based on instead of based off. 
Corrected. 
 
Page 8, Line 5: The authors should reconsider the terms “behavioural” and “non-behavioural” for 
the model outputs of streamflow and stable isotope signature of streamflow. From my point of 
view those terms are not appropriate in this context. Reliable and non-reliable are terms coming 
to my mind here. 
These terms are not our own and are taken from the modelling literature referring to 
whether or not a simulation meets the threshold criteria value (based on efficiency criteria 
for each study – and defined here as a combination of %Dv, log(%Dv), NSE, KGE, and 
RMSE) to remain “included” in the final analysis.  The term behavioural refers to the fact 
that the simulation (and therefore parameters driving the simulation) are adequately 
describing the behaviour of the environmental system (i.e., hydrological response).  Since 
this terminology is historically well defined in the model calibration and equifinality 
literature (e.g., Tolson & Shoemaker, 2008; Beven & Freer, 2001; Zak & Beven, 1999; 
Beven & Binley, 1992, …), we would prefer not to deviate from the accepted terminology. 
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Page 8, Line 13: KGE. This abbreviation is introduced later (Line 23). Would be nice to have the 
explanation earlier. 
Though we see your point, it would clutter the step-by-step methodology and we feel it 
would be out of place to put the statistic description further up. We have instead noted that 
the statistic is described below for readers who are unfamiliar with it. 
 
Page 8, Line 30: Please mention for completeness that the other circa 52 % were sampled during 
the summer months. 
We have added this for clarification. 
 
Page 10, Line 11-18: Please explain clearer that you are talking about the average streamflow 
simulations of the three calibrations used in this paragraph. The reader will otherwise think you 
are talking about an average streamflow simulation (Line 12) of all model runs. Further more 
please precise which model you are talking about at the end of line 12 and beginning of line 13 
(“The model also has…”). 
Thank you for pointing this out. We agree and have revised this portion of the discussion to 
be much more specific to which runs we are referring (i.e., all models, the range and/or 
mean of the models, or a specific model derived from a particular 18Oppt input). 
 
Page 10, Line 13: difficulty instead of difficultly 
Corrected – again, impressive that you noticed this!  Many thanks. 
 
Page 10, Line 20-27: Please explain shortly why you have compared REMOiso vs. 
static and KNP43 vs. static for calculating the Kendall’s tau coefficient. 
We in fact calculated Tau for all possible comparisons (ie. KPN vs. REMOiso, KPN vs. 
static, REMOiso vs. static) for both basins, but did not report all values in the manuscript-- 
instead reporting only the range of the values by selecting these specific pairings. 
Moreover, since static represents 18Oppt observations (annual average), by comparing 
REMOiso and KPN43 directly to static, we are in essence comparing them to simulations 
derived from mean annual 18Oppt observations. 
 
Page 10, Line 29: Please revise the title of section 4.3 to Modelling delta oxygen-18 in 
streamflow). 
Done. 
 
Page 11, Line 14-16: Please check the literature and provide a reference here. 
We have provided the following reference where the authors looked a comparison of a 
decomposition of the NSE and KGE stats: Kling and Gupta (2009). 
 
Page 11, Line 16: functions or function(s)? 
Functions. We have corrected this. 
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Page 11, Line 21+22: Please provide some values (and percentages related to total annual 
precipitation) from mean annual precipitation for the mentioned periods (summer and fall, winter 
and spring). 
We are including here a percentage breakdown for seasonal (summer/fall, or JJASON and 
winter/spring, or DJFMAM) snowfall and rainfall during our study period (1997-1999). 
We have provided some values in our revised manuscript. 
 

Study Period (1997-1999) 

Dec‐
May 

June‐
Nov 

TOTAL 

Precipitation (TOTAL) (mm)  350.7  956.3  1307 

Precipitation (% of total)  27%  73%    

           

Snowfall (mm)  257.4  196.6  454 

Snowfall (% of total precip)  20%  15%  35% 

Snowfall (% of total snowfall)  57%  43%    

Rainfall (mm)  93.3  759.7  853 

Rainfall (% of total precip)  7%  58%  65% 

Rainfall(% of total rainfall)  11%  89%    

 
In comparison to the long-term climate normal (1981-2010) at Fort Simpson Airport, we 
can see that our study period is reasonably representative of long-term conditions for this 
region – certainly within any observation error. 

Climate Normal (1981-2010) 
Fort Simpson A 

Dec‐
May 

June‐
Nov 

TOTAL 

Precipitation (TOTAL) (mm)  117.4  270.2  387.6 

Precipitation (% of total)  30%  70%    

Snowfall (cm)  119.9  67.2  187.1 

Snowfall (mm)  93.6  55.5  149.1 

Snowfall (% of total precip)  24%  14%  38% 

Snowfall (% of total snowfall)  63%  37%    

Rainfall (mm)  23.8  214.7  238.5 

Rainfall (% of total precip)  6%  55%  62% 

Rainfall(% of total rainfall)  10%  90%    

 
Page 14, Lines 29-31: This sentence is a bit confusing. Please revise. 
We have edited this sentence in the process of revising the discussion. 
 
Page 14, Line 31: isoWATFLOOD or WATFLOOD? 
isoWATFLOOD. This has been clarified. 
 
Page 15, Line 4: isoWATFLOOD or WATFLOOD? 
Actually, upon re-reading, we feel this pertains to hydrological models in general and have 
therefore revised our text to be more general. 
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Page 15, Line 10: isoWATFLOOD or WATFLOOD? 
WATFLOOD. This has been corrected. 
 
Page 16, Line 13: kpn or KPN43? 
Modified to KPN43. Thank you. 
Please check the citations carefully. Pietroniro et al. (1996) and Töyra et al. (1997) are listed in 
the references section (Page 18, Line 46 and Page 19, Line 34) but appear not in the manuscript 
itself.  
Thank you for noticing this – we have gone through each reference and ensured there is a 
corresponding citation in-text. We have removed the references you noted were missing 
citations. 
 
In general, I liked the style and the coloring of the figures. However, figure 2 and 3 are a bit 
unclear. It is a real asset to show the uncertainty bounds of the different calibrations. The authors 
should rethink the presentation of this data, especially the streamflow results (panel b). 
You have raised a really interesting perspective here!  When we wrote the manuscript and 
prepared the figures, our interest was in how and where the uncertainty bounds 
overlapped and were NOT different – but we recognize that to some readers, where they 
differ is of more interest.  Therefore, we have darkened and shaded the lines defining each 
uncertainty envelope so that readers can pick out the uncertainty bands related to each 
model, and their overlap/differences.  (shown here are panel (b) for Figure 3 Jean Marie 
and Figure 4 Blackstone, respectively): 

 

 
 
Further more I would suggest indicating periods with snowfall and rainfall, if possible. At this 
point it would also make sense to combine the two times series (static-rainfall and static-
snowfall) to one static-precipitation input time-series.  
Regarding rainfall and snowfall being combined into one time-series, we respectfully 
disagree since these are two distinct inputs in isoWATFLOOD that can be both used at the 
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same time when there are rain-on-snow events – meaning that both compositions are 
needed to define the mixed composition of precipitation. 
 
Figure 6: Are here shown the mean or median values (circle symbols)? 
We are showing mean values here, and have clarified in figure caption and in methods 
section. 
Figure 7: Please refer to Table 6 (were the parameters are explained) in the figure caption.  
We have added this citation for Table 6. 
 
The order of the table numbering in the text is sometimes were confused (Page 4, Line 4: Table 
1; Page 4, Line 32: Table 4, for example). Please order them correctly. 
This has been corrected and tables are now numbered in the order in which they are cited 
in text. 
 
In general, I suggest reducing the amount of tables. Table 3 for example is not needed. The 
applied average correction values (and the range) can be mentioned in the text. Table 5 is also 
unnecessary. You can mention the values in the text. However, it would be very relevant to 
explain in more detail how these values were selected. 
We have removed Tables 3 and 5 and included this information in the text instead. 
 
Table 8 is also unnecessary from my point of view. 
Given one of the primary goals of this study is to assess the impact of input choice 
(precipitation isotope product) on the model parameterization, we feel Table 8 contains 
highly valuable information for tracer-aided modellers tackling the same issues.  
Therefore, we are inclined to keep it included in our study, but have decided to include it as 
supplemental information instead of in the manuscript.    
 
Referee #2 

Specific comments: My main point would be that the paper is in parts very much focussed on the 
particularities of the study site and also the presented model characteristics. However, the results 
and potential impact of this paper go in my opinion beyond this case study and this could be 
better emphasized to maximize impact particularly in the hydrological modeller community. I 
therefore, suggest the following: 
We also agree that the findings presented in this manuscript go beyond our specific 
application to the Fort Simpson region and are therefore more general and impactful than 
we have conveyed them. We have edited the manuscript in a way that conveys our findings 
in a more general sense, specifically with respect to a range of study sites (particularly 
those that have seasonality as this one), isotope-enabled models, and modelling 
applications.  Thank you for this feedback. 
 
- Title and Abstract: You could consider substituting the term “estimated” with e.g. 
“precipitation isotope product” throughout the manuscript to emphasize the different origins of 
the input functions.  
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We like this terminology and have adopted it for the revised title “Examining the impacts of 
precipitation isotope products (δ18O) on distributed tracer-aided hydrological modelling”, as 
well as throughout the paper.  Thank you for the suggestion. 
 
From Line 17 in the abstract, I suggest to revise these sentences, as they do not really reflect the 
key findings. For example, the statement that the model is only as good as its input function is 
rather trivial and could be changed to some more specific statement such as which temporal 
resolution is needed (hourly, daily, weekly…) to adequately simulate stream isotope signatures 
and which product is the best?  
Thank you for this suggestion, and we also agree. We have reworded the abstract to instead 
state “Here we investigate the impact that choice of model precipitation isotope product 
(δ18Oppt) has on simulations of streamflow, 18O in streamflow (18OSF), resulting hydrograph 
separations and model parameters”.  And perhaps more importantly, we have revised our 
discussion and conclusions to comment specifically on the impact that precipitation isotope 
product resolution has on model output.  This has become one of our key take-home 
messages. 
 
I also suggest to more specifically mention that the coupled simulation of flow and isotopes 
actually allowed you to constrain the simulations towards a better internal representation of the 
dominating processes.  
We agree and have revised the last sentence in our abstract to state: “In this study, 
application of a tracer-aided model is able to identify simulations with improved internal 
process representation, reinforcing that tracer-aided modelling approaches assist with 
resolving hydrograph component contributions and work towards diagnosing equifinality.” 
 
- 2.2, Line 21:…is used “to” spatially distribute… 
Corrected, thank you. 
 
- Page 7, Line 16:…based “on”?  
Corrected. 
 
- Page 9, Line 14: Would it be feasible to test this for one model configuration and run it over 
let’s say 100K iterations to be able to check for differences compared to 30K runs?  
Feasible, absolutely. In the time we have for edits to be submitted for this manuscript – no 
(we estimate it would take minimum 1 month, perhaps longer).  That said, we are in the 
process of doing 100k runs with (iso)WATFLOOD in another northern basin to look at 
parameter identifiability with and without the use of isotopes in model calibration and 
nearing the end of those runs.  We are planning to submit this manuscript for peer review 
within the next couple of months, where we will more definitively tackle the issue of 
parameter identifiability. Though we think this is a critical issue, it is not the intended 
focus of this manuscript, but rather follow up work that we now (more clearly) describe in 
the new “Future Directions” section of this manuscript. 
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- Results and discussion: The results could be better linked to the wider literature. E.g. why not 
include the mean monthly precipitation isoscapes from Bowen and Revenaugh (2003) as a means 
of evaluation?  
This is an interesting suggestion, however, this would only further evaluate KPN43 and 
REMOiso "products" and not 18Osf or other types of simulation output that are our 
intended focus. Bowen and Revenaugh's 2003 isoscapes are derived from long term average 
global models that did not include any CNIP data within their formulation, so we aren’t 
convinced this would be a good dataset from which to further validate our REMOiso or 
KPN43 estimates of 18Oppt over the Fort Simpson region. 

I am missing a more concise attempt to generalize the results concerning model uncertainty and 
the value of tracer data in hydrological modelling.  
We agree and have revised the discussion section of the manuscript – and conclusions – 
extensively to help draw these generalized results into take-home conclusions for the 
broader tracer-aided modelling community. 
 
- Page 10, Line 1: How is the static approach with a single annual isotope value able to capture 
seasonal variability?  
The static approach is actually two annual isotope values: one for rainfall and one for 
snowfall.  Therefore, technically speaking, the static approach is capable of capturing some 
seasonality.  This is a point we have more clearly (and in more detail) described in the 
manuscript.  The fact that the static input captures “sufficient seasonality” is likely more a 
function of our high-latitude study site than the value of a static input alone.  Namely, in 
high-latitude environments, particularly Fort Simpson, there is no mid-winter 
freeze/thaw/melt – resulting in snowpack accumulation throughout the entire winter season 
and one significant freshet in late spring. Similarly, soils freeze up as does any soil moisture 
that may in other regions contribute to baseflow and/or streamflow throughout the winter. 
In high-latitude regions, seasonality is more binary than quarterly, therefore the two 
annual static inputs do a reasonable job of capturing the seasonality. 
 
- Conclusions and recommendations: I suggest to summarize the key points and present them in 
a numbered order. I also think it would be better to present the outlook as a separate section.  
We have taken your suggestion to mean a numbered summary of the key take-home 
messages, which we have better aligned with the objectives and numbered accordingly in 
the conclusions section.  With regards to “outlook”, we assumed you mean future work to 
be done with the modelling, and have added a “Future Directions” section to this 
manuscript. 
 
- Would it be possible to include gridded maps of the different mean annual (and seasonal 
min/max) isotope products over the study area in relation to the observed data for comparison 
purposes? 
Thank you for this suggestion. Though we don’t feel another figure is warranted in the 
manuscript, we see the value in these figures and the presentation of our precipitation 
isotope products for the modelling community and have decided to add it as a supplement 
to our manuscript (Figure S-1).  To generate the spatially distributed precipitation isotope 
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products maps, daily isotope in precipitation input used to drive the distributed tracer-
aided model was averaged daily across each season (DJF, MAM, JJA, SON) for each 
source (static, REMOiso, KPN43). Maps were generated using the model grid (10k) and 
entire modelling domain (includes both Jean-Marie and Blackstone), and isotope 
compositions were flux-weighted using daily distributed (10 k) precipitation input to 
WATFLOOD (interpolated Environment Canada station observation, housed in 
WATFLOODs radcl .r2c files; Kouwen 2014). 
 
The resultant maps indicate clear differences in spatial variability among the inputs.  Static 
– not surprisingly – is spatially constant (as it should be!), but seasonally variant resulting 
from the mixture of rain and snowfall events on the shoulder seasons (MAM and SON). 
REMOiso has less variability than the KPN43 input, resulting from REMOiso’s 55 km grid 
resolution (i.e., ~5 of the isoWATFLOOD grids shown on our Figure) which would act to 
smooth topographical and land cover differences that are, in part, driving changes in 
precipitation isotopic composition.  We’ve added a brief discussion to the paper and 
reference to Figure S-1. 

For your interest and review – we also generated a figure (not included in the manuscript) 
averaged across the entire study period (1997-1999) for each model input: 

 

This confirms the enhanced spatial variability from the KPN43 model, followed by 
REMOiso (derived from a 55km RCM), and the spatially constant Static input.  Because of 
the high-latitude of the study region, the static input shows that snowfall prevails over 
rainfall for this site (in terms of isotopic composition), and that the 3-year annual average is 
more depleted than the temporally (and spatially) variable inputs.  KPN43 variability is 
enhanced in the 3 year average because it is more consistent from grid-to-grid in each year 
(driven by the KPN43 regionalization) than REMOiso, which would vary temporally and 
spatially daily and from year to year. 

We could not generate an observed isotope in precipitation map because we did not have 
enough observed data to so. 
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Abstract. Tracer-aided hydrological models are becoming increasingly popular tools as they assist with process understanding 

and source separation; which facilitates model calibration and diagnosis of model uncertainty (Tetzlaff et al. 2015; Klaus & 

McDonnell, 2013). Data availability in high-latitude regions, however, proves to be a major challenge associated with this type 

of application (Tetzlaff et al., 2015). Models require a time series of isotopes in precipitation (δ18Oppt) to drive simulations, 10 

and throughout much of the world - particularly in sparsely populated high-latitude regions - these data are not widely available. 

Here we investigate the impact that choice of precipitation isotope product (δ18Oppt) has on simulations of streamflow, 18O in 

streamflow (18OSF), resulting hydrograph separations and model parameters. In a high-latitude, data sparse, seasonal basin 

(Fort Simpson, NWT, Canada), we assess three precipitation isotope products of different spatial and temporal resolution (i.e., 

semi-annual static, seasonal KPN43, and daily bias corrected REMOiso), and apply them to force the isoWATFLOOD tracer-15 

aided hydrologic model. Total simulated streamflow is not significantly impacted by choice of δ18Oppt product, however, 

simulated isotopes in streamflow (δ18OSF) and the internal apportionment of water (driven by model parameterization) are 

impacted. The highest resolution product (REMOiso) was distinct from the two lower resolution products (KPN43 and static), 

but could not be verified as correct due to a lack of daily 18Oppt observations. The resolution of δ18Oppt impacts model 

parameterization and seasonal hydrograph separations, producing notable differences among simulations following large 20 

snowmelt and rainfall events when event compositions differ significantly from 18OSF. Capturing and preserving the spatial 

variability in δ18Oppt using distributed tracer-aided models is important because this variability impacts model parameterization. 

We achieve an understanding of tracer-aided modelling and its application in high-latitude regions with limited δ18Oppt 

observations, and the value such models have in defining modelling uncertainty. In this study, application of a tracer-aided 

model is able to identify simulations with improved internal process representation, reinforcing that tracer-aided modelling 25 

approaches assist with resolving hydrograph component contributions and work towards diagnosing equifinality. 

1 Introduction 

Hydrological models are critical tools for the planning, development, design, operation and sustainable management of water 

resources (Singh and Frevert, 2006). These models provide insight into applications such as the prediction of floods, droughts 

and water availability, and the effects of climate and land use change on water resources. Problems arise for calibration and 30 
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validation of hydrological models when there is: (1) a lack of available data at sufficient resolutions to force and validate model 

simulations - especially in remote, high-latitude locations (in Canada: Coulibaly et al., 2013); (2) issues with equifinality 

affecting model parameterization; and (3) uncertainty in model results (e.g., Beven and Binley, 1992; Kirchner, 2006; Fenicia 

et al., 2008; Dunn et al., 2008). 

 5 

It is now widely accepted that calibration and validation of hydrological models based solely on streamflow is not a sufficient 

evaluation measure (Kuczera, 1983; Beven and Binley, 1992; Kuczera and Mroczkowski, 1998; Seibert and McDonnell, 2002; 

Kirchner, 2006; Fenicia et al., 2008; Dunn et al., 2008).  Modellers are focusing on a model’s ability to correctly partition, 

store and release water from hydrologic compartments, in addition to adequately simulating total streamflow response. 

Conservative tracer data provides insights into the dominant hydrological processes and integrated runoff response (in northern 10 

catchments: Birks and Gibson, 2009; Tezlaff et al., 2015), and such data assist with constraining model parameter space during 

calibration, reducing model uncertainty, and assisting with selection of appropriate model structures (e.g., Tetzlaff et al., 2008; 

Birkel et al., 2010a; McMillian et al., 2012; Birkel et al., 2014; Smith et al., 2016). An increasing number of studies have 

investigated the utility of tracer-aided modelling approaches, especially over the past decade (for a comprehensive overview, 

see Birkel and Soulsby, 2015).  15 

 

Although greatly informative, previous tracer-aided modelling studies have generally been conducted using lumped conceptual 

rainfall-runoff models in highly instrumented small-scale experimental catchments (<102 km2). This has resulted in distributed 

studies at the regional-scale (>103 km2) left largely unexplored, with the exception of a few, select applications (Stadnyk et al., 

2013). Modelling at the regional-scale typically requires a distributed approach to capture the heterogeneity in meteorological 20 

inputs, basin characteristics, and runoff response, resulting in more complex, highly parameterized models (e.g., Michaud and 

Sorooshian, 1994; Carpenter and Georgakakos, 2006; Her and Chaubey, 2015). Because it is at these larger scales where 

models are applied operationally and management decisions are based, there is a critical need to understand the abilities, 

limitations, and uncertainties associated with distributed tracer-aided modelling at the regional scale.  

 25 

Although there is an identified need, the issue of data availability, particularly input data, proves to be a major challenge 

associated with this type of application (Birkel and Soulsby, 2015). Tracer-aided hydrological modelling typically requires a 

time series of isotopes in precipitation (δ18Oppt) to drive model simulations. Unfortunately, throughout much of the world, and 

particularly in sparsely populated high-latitude regions (such as the vast majority of Canada), these data are not widely 

available. Although automatic samplers are becoming increasingly common, watersheds in which snow accumulation is 30 

substantial will continue to be fraught with difficulties surrounding the collection and characterization of precipitation isotopes, 

particularly during the winter months (Dietermann and Weiler, 2013; Penna et al., 2014). The lack of spatial and temporal 

density of δ18Oppt observations highlights the need for alternative methods to provide estimates of stable isotopes in 

precipitation for tracer-aided model input (termed ‘δ18Oppt products’). Options include empirically-based models generating 
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gridded time series of precipitation isotopes (e.g., Lykoudis et al., 2010; Delavau et al., 2015), and isotope-enabled climate 

model output (for a comprehensive overview, see: Noone and Sturm, 2010; Xi 2014).  

 

Small-scale catchment studies rely on continuous records of δ18Oppt observations at high temporal frequencies (typically daily, 

and less commonly, weekly) for model input. At the larger scale, tracer-aided modelling completed by Stadnyk et al. (2013) 5 

in the remote Fort Simpson region of northern Canada used annual average compositions of rainfall and snowfall δ18O to drive 

model simulations. Their results suggested that utilizing annual, spatially static oxygen-18 in precipitation forcing has the 

potential to significantly impact simulations and consequently, model parameterization as well. The assumption that model 

input is spatially invariant is not preferable, as δ18Oppt can vary drastically over small space and time scales due to changes in 

moisture sources and transport processes, rainout history and seasonality (e.g., in Canada: Gat et al., 1994; Moran et al., 2007; 10 

Birks and Edwards, 2009). 

 

This study aims to explore how varying spatial and temporal resolutions of precipitation isotope products, or δ18Oppt input, 

impact regional tracer-aided model simulations and parameterization. Forcing a tracer-aided, distributed hydrological model 

(isoWATFLOOD) with three precipitation isotope products, we examine how the different δ18Oppt products impact the: 15 

a) simulation of total streamflow and its isotopic variability (δ18OSF); 

b) internal apportionment of water, namely the seasonality of hydrograph separation; and, 

c) model parameterization and simulation uncertainty. 

We explore the impact that varying the resolution of δ18Oppt inputs has on the capability of the model to reproduce observed 

18OSF variability; and the usefulness of a tracer-aided modelling approach to help inform and quantify simulation equifinality. 20 

2 Study area and data 

2.1 The Fort Simpson Basin 

The Fort Simpson Basin (FSB) is located within the Lower Liard River valley close to the town of Fort Simpson, Northwest 

Territories, Canada (61°45 N; 121°14 W; Fig. 1). This region has been the focus of several tracer-aided hydrological studies 

(e.g., St Amour et al., 2005; Stadnyk et al., 2005; 2013; Stadnyk-Falcone, 2008). The FSB is selected for this study to build 25 

upon previous modelling work conducted within the region, and follow up on recommendations from Stadnyk et al. (2013) 

suggesting further analysis and improvement of isoWATFLOOD δ18Oppt input. The study period of 1997–1999 is selected 

based on data availability.    

 

This study considers two sub-basins of the greater Fort Simpson basin: the Jean-Marie (1310 km2) and Blackstone River (1390 30 

km2) sub-basins (Fig. 1). The basins vary in relief from 0.3 % in the Jean-Marie sub-basin to 0.63 % for the Blackstone sub-

basin, on average. Differences in wetland distribution and function, basin physiography and land cover make-up between the 
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two watersheds (Table 1) are the primary reasons in selecting these sub-basins for this study. These marked differences ensure 

that watersheds of varying dominant hydrological processes are represented in the modelling, and therefore the impacts of 

δ18Oppt input selection on these processes can be examined.  

 

The land cover classification breakdown (Table 1) shows the primary land cover type within the sub-basins as transitional, 5 

consisting of shrubs, deciduous varieties and early generation spruce. The region has a high proportion of wetlands, with the 

total wetland percentage in Table 1 representing both bogs (disconnected drainage) and fens (connected drainage); although 

the amount of each type within each respective sub-basin varies. Aylsworth and Kettles (2000) state that Jean-Marie is 

predominately fen peatlands, while Blackstone is bog-dominated peatlands, with very few or no fen peatlands present.  

 10 

The Ecoregions Working Group (1989) classifies the FSB as a sub-humid mid- to high-boreal ecoclimatic region (Hbs), 

classified by cool summers approximately five months in length, with moderate (300-500 mm) annual precipitation. Winters 

are very cold with persistent snow cover. The hydrological response is dominated by snowmelt during late April to early May, 

while summer and fall runoff events are due to major rainfall, with a return to baseflow occurring during dry summer periods 

or towards the beginning of the ice-on season in October.  15 

2.2 Meteorological and hydrometric data 

Daily total precipitation, mean daily temperature, and hourly relative humidity data are obtained from Environment Canada’s 

Fort Simpson Airport weather station. Observed precipitation is supplemented with ANUSPLIN-derived daily precipitation 

extracted at eight locations throughout the Fort Simpson region (Fig. 1). ANUSPLIN is a multidimensional non-parametric 

surface fitting method that has been found well suited to the interpolation of various climate variables, particularity in data-20 

sparse, high-elevation regions as the method accounts for spatially varying dependencies on elevation (McKenney et al., 2011). 

We have validated ANUSPLIN against independent station observations (precipitation and temperature) across the Prairies 

and Boreal regions of Canada as a precipitation forcing for hydrologic modelling. It has been found adequate (r  0.98) for 

the purpose of short-term modelling studies. An inverse-distance weighting approach is used to spatially distribute the daily 

ANUSPLIN and observed precipitation time series across the model domain (Kouwen, 2014). Rainfall that occurred over the 25 

study period, particularly in 1997, was significantly higher than normal. Additionally, 1998 was above average in temperature, 

which is especially prevalent in the first portion of the year. Other researchers have attributed the increased rainfall and warmer 

temperatures to a strong El Niño influence from mid-1997 to mid-1998 (Petrone et al., 2000; St Amour et al., 2005). 

 

Hydrometric records are obtained from Water Survey of Canada. Jean Marie was gauged at Highway No.1 in 1972 with a 30 

period of record of 44 years, whereas Blackstone was gauged at Highway No.7 in 1991 having a record length of 25 years. 

Neither sub-basin is regulated, therefore all flows are considered to be natural. During the study period, mean annual discharge 

was above normal in both sub-basins in 1997, normal in Jean Marie and slightly below normal in Blackstone in 1998, and 
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below normal in both sub-basins in 1999. Winter (ice-on) flows tend to be very low given highly seasonal, high-latitude 

hydrology, underlying discontinuous permafrost, and the absence of mid-winter melt (St. Amour et al., 2005). Averaged winter 

ice-on flows from 1997-1999 were 0.194 m3/s and 0.034 m3/s for the Jean Marie and Blackstone sub-basins, respectively. A 

statistical summary of observations used in this study is provided in Table 2.  

2.3 Isotope data 5 

During 1997 to 1999, intensive sampling took place in the Fort Simpson Basin as part of the Mackenzie Study of the Global 

Energy and Water Experiment (GEWEX; Stewart et al., 1998). The campaign sampled δ18O and δ2H of streamflow, rainfall, 

snowpack, and surface waters (wetlands and lakes) during the open water season (May to October). During ice-on conditions, 

the isotope stratigraphy of river ice extracted during late March in 1998 and 1999 was used to reconstruct the isotopic 

composition of winter streamflow (Gibson and Prowse, 1999; Prowse et al., 2002; St Amour et al., 2005). This study uses 10 

measured δ18O compositions in streamflow in the Jean-Marie (n = 71) and Blackstone (n = 69) sub-basins for model calibration. 

Although δ18Oppt compositions (n = 27) were collected as part of the GEWEX sampling campaign, these data are not preferred 

for tracer-aided hydrologic model input due to their spatial uniformity and poor temporal resolution. Observations are 

incorporated into this study as the ‘static’ 18Oppt input, and as a means to validate the KPN43 and REMOiso products and to 

inform the static precipitation product. The number of measurements and their statistical properties are summarized in Table 15 

2. Isotopic compositions of δ18O are expressed in delta (δ) notation as a deviation from VSMOW (Vienna Mean Standard 

Mean Ocean Water) in units of per mille (‰),such that δwater = (Rwater/RVSMOW – 1) x 1000 ‰, where R is 18O/16O in the sample 

and standard, respectively. Isotope samples were analyzed at the Environmental Isotope Laboratory at the University of 

Waterloo, and St Amour et al. (2005) indicated maximum analytical uncertainties of  0.1 ‰ for δ18O. 

2.4 Precipitation oxygen-18 input 20 

The precipitation isotope products evaluated in this study represent a variety of spatial and temporal scales, and were selected 

because they are commonly available for all tracer-aided hydrologic modelling applications. The first type of input used in this 

study is annual average δ18Oppt compositions of rainfall and snowfall for each year of simulation (i.e., yearly resolution). Values 

for the FSB were obtained by averaging observations of δ18O in rainfall and the snowpack obtained from the GEWEX study 

(Table 2; Table 3). δ18Oppt compositions were assumed constant throughout the study domain (i.e., spatially uniform). Due to 25 

a lack of snowfall data collected during this study, we assumed the average annual isotopic composition of the snowpack was 

representative of the snowfall composition, as has been done in other data sparse, high-latitude tracer-aided modelling studies 

(Smith et al., 2015; Smith et al., 2016; Holmes, 2016; Stadnyk et al., 2013). It is well established in the literature that the 

isotopic composition of snowfall is not necessarily equal to the average annual composition of the snowpack (due to 

sublimation and snow metamorphism; Zhou et al., 2008; Taylor et al., 2001; 2002). The high latitude of our study site, however, 30 

makes freeze/thaw cycling during the winter rare, making this assumption more reasonable. Due to the averaged values and 

lack of spatial variability, this product is referred to as ‘static’ throughout the remainder of the manuscript, and consists of two 
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constant 18Oppt values (rain and snow) for each year. This product is specifically designed and evaluated for remote regions 

that lack spatially and temporally varying 18Oppt observations.  

 

Times series simulations obtained from the KPN43 model created by Delavau et al. (2015) are used as the second type of 

δ18Oppt product in this study. The KPN43 model uses North American Regional Reanalysis (NARR; Mesinger et al., 2006) 5 

climate variables, teleconnection indices, and geographic information to produce gridded time series of oxygen-18 in 

precipitation at a monthly time step. This product is generated at a 10 km resolution (to mirror model set-up), and varies 

spatially throughout the study domain due to the variation in the climatic predictors and geographic information required to 

produce simulations. 

 10 

The third δ18Oppt product included in this study is regional climate model output from the isotope-enabled climate model, 

REMOiso (Sturm et al., 2005; Sturm et al., 2007). Raw REMOiso δ18Oppt output is available at a 55 km spatial resolution and 

a 6h time step. REMOiso output is averaged in this study, however, to a daily time step, as the range and variability of sub-

daily δ18Oppt are erroneously large, and the resolution of streamflow oxygen-18 calibration data do not warrant a temporal 

frequency of input finer than daily. 15 

3 Methods 

3.1 Background and set-up 

The tracer-aided hydrological model used in this study is isoWATFLOOD (Stadnyk-Falcone, 2008; Stadnyk et al., 2013). 

isoWATFLOOD is an extension of the WATFLOOD hydrological model, whereby water and oxygen-18 are simultaneously 

budgeted throughout the modelled hydrologic cycle. WATFLOOD is a distributed model that uses grouped response units 20 

(GRUs) to simulate streamflow in hydrologically-distinct land cover units (Kouwen et al., 1993; Kouwen, 2014). Process 

representation within WATFLOOD is considered to be a combination of both conceptual and physical, as certain algorithms 

are conceptually-based (e.g., evaporation and snowmelt), while others are more based in physics (e.g., channel routing). Due 

to the coupling of isotopes to each hydrological processes simulated in WATFLOOD, simulation of isotopic composition does 

not introduce any additional parameters. A more comprehensive description of isoWATFLOOD’s model structure and 25 

governing equations can be found in Stadnyk et al. (2013) and select descriptions are provided in Table 4.  

 

isoWATFLOOD requires the 18O of precipitation (either rain and snow separately, or total precipitation) and can utilize 

(though does not require) distributed relative humidity inputs to force the model. Additionally, δ18O compositions for 

hydrologic storages of river/fen water, soil water, baseflow, and snowpack are needed for model initialization, which can be 30 

obtained from field data or estimated.  Here, regional isotopic storage initializations are derived from measured data obtained 

during the GEWEX campaign and reported by St Amour et al. (2005). These include streamflow (-13.52 ‰), interflow (soil 
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water; -14.60 ‰), baseflow (-20.00 ‰), and snowpack (-22.00 ‰) background compositions. Sensitivity analyses have shown 

that within one month of simulation isoWATFLOOD spin-up is complete and, past this point, initialization values have no 

bearing on model output. All other data required by isoWATFLOOD (e.g., distributed precipitation, temperature, evaporation, 

inflows, etc.) are passed from WATFLOOD forcings or computations. 

 5 

The isoWATFLOOD model used in this study is based on a previous version reported by Stadnyk et al. (2013). The current 

version used here is an updated version of isoWATFLOOD code, and the watershed set-up incorporates various model 

improvements made since 2013, independent of this study. Based on findings from Aylsworth and Kettles (2000), we 

implemented a 90 % bog and 10 % fen split in Blackstone and a 30 % bog and 70 % fen split in Jean-Marie. The entirety of 

the FSB is modelled at a 10 km spatial resolution, and the model is run continuously from January 1996 to December 1999; 10 

whereby 1996 is utilized as spin-up to set initial hydrologic and isotopic storage conditions.  

3.2 Calibration and parameter uncertainty 

Being a distributed model, WATFLOOD has a large number of parameters requiring calibration. For this reason, a sensitivity 

analysis is first conducted to identify which parameters have the largest influence on both streamflow and δ18OSF. A subset of 

parameters are identified for inclusion in the calibration based on this sensitivity analysis, including nine hydrological 15 

parameters from each of the five most prominent land classes (mixed/deciduous, coniferous, transit, bogs and fens), and four 

routing parameters from each of the two modelled sub-basins. This results in 53 parameters that are incorporated in the 

parameter uncertainty assessment (Table 4; Table S-1). Allowable ranges for each parameter are determined based on 

published values alongside personal communications with N. Kouwen (Kouwen, 2014) (Table S-1). 

 20 

This study uses a multi-criteria, multi-objective approach to model calibration, with the procedure summarized as follows: 

i. A Monte Carlo random sampling approach, assuming uniform parameter distributions, is used to 

individually select each parameter from its allowable range (Table S-1). Random parameter sampling is 

completed 30,000 times, generating 30,000 unique parameter sets for isoWATFLOOD model evaluation.  

ii. For each of the three δ18Oppt inputs (KPN43, REMOiso and static), streamflow and δ18OSF are simulated from 25 

1996 to 1999 for all 30,000 parameter sets (as defined in (i)). 

iii. Simulated streamflow and δ18OSF are assessed statistically over the period of study (1997–1999, excluding 

the 1996 spin-up year), and regionally across the Jean Marie and Blackstone sub-basins. Simulations are 

classified as behavioural (or non-behavioural) (Beven & Binley, 1992) based on meeting (or not) the 

following set of efficiency criteria thresholds, defined in detail below, for simulated streamflow and δ18OSF: 30 

a. Streamflow:  

NSE ≥ 0.5;  

|%Dv| ≤ 20 %, and; 



8 
 

|log(%Dv)| ≤ 20 %. 

b. δ18OSF: 

RMSE ≤ 2.5 ‰, and; 

KGE >= 0.3. 

Behavioural thresholds used in this study are subjectively defined, but are arrived at through a review of methods employed 5 

in similar studies (e.g., Moriasi et al., 2007; Birkel et al., 2010a; 2010b; 2011; Smith et al., 2016), measurement error, and an 

iterative process exploring the sensitivity between the set thresholds and resulting behavioural simulations for each input type. 

Based on this analysis, the Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970), volumetric error criteria (%Dv), root 

mean square error (RMSE), and the Kling-Gupta efficiency criterion (KGE; Gupta et al., 2009; Kling et al., 2012) are selected. 

A multi-criteria model evaluation approach places emphasis on different statistical properties of a simulation. For example, 10 

NSE has a documented bias towards peak flow, and conversely, log (%Dv) is more appropriate evaluation measure for periods 

of low flow. The NSE, %Dv, and log(%Dv) efficiency are not considered suitable metrics for δ18OSF assessment due to the 

temporal discontinuity of the isotope observations, therefore RMSE and KGE are used as isotopic simulation statistics. The 

KGE statistic puts less emphasis on peak flow differences by providing a more balanced approach where error is first summed 

and then squared at the end, preserving the sign of the error and enabling a trade-off of error throughout the simulation period 15 

(Gupta et al., 2009). It should also be noted that δ18OSF observations are not equally distributed through time, whereby the 

highest concentration of observations occurs during snowmelt in the month of May (~25 %), and the fewest observations 

during the six month ice-on period from November to April (~23 %), with the remaining 52 % of observations sampled during 

summer. The sporadic distribution of observations may result in the calibrations more highly weighted to certain periods of 

the year and the dominate processes occurring at that time; therefore having the potential to impact model parameterization.  20 

3.3 REMOiso bias correction 

Due to a lack of published studies evaluating REMOiso performance within Canada, a comparison between REMOiso output 

and Canadian Network for Isotopes in Precipitation observations (CNIP; Birks and Gibson, 2009) is completed to determine 

if REMOiso simulations require a regional bias correction. CNIP data are now part of the Global Network for Isotopes in 

Precipitation (GNIP) database and can be accessed at: http://www.iaea.org/water (IAEA/WMO, 2014). This analysis is 25 

completed at Snare Rapids, NWT, the closest CNIP station to the FSB, for the years of 2000 and 2001. Snare Rapids is located 

approximately 330 km northeast of Fort Simpson and has monthly δ18Oppt observations spanning the years of 1997–2010. A 

longer time frame of comparison between CNIP and REMOiso is not possible due to the short overlapping period of REMOiso 

simulations and CNIP observations. For bias-correction purposes, daily REMOiso simulations are averaged to monthly 

compositions for direct comparison to CNIP data using the precipitation amount-weighting approach in Eq. (1): 30 

 

઼ૡܜܘܘ۽	ܡܔܐܜܖܗܕ ൌ ܑ۾∑ ∗ ሺ઼ૡܜܘܘ۽ሻܑ	 ⁄ܑ۾∑	          (1) 
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where Pi is the amount of daily precipitation (mm) obtained from the Snare Rapids Canadian Air and Precipitation Monitoring 

Network (CAPMoN) station operated by Environment Canada, where isotopic compositions are also sampled under the 

Canadian Network for Isotopes in Precipitation (CNIP).  

 

Uncorrected REMOiso simulations exhibit a positive bias in this region (Fig. 2), which is expected based on the ECHAM4 5 

mean annual δ18Oppt output (Noone and Sturm, 2010) and personal communications with S. J. Birks and K. Sturm (2016). 

Therefore, a seasonal bias correction is applied to daily REMOiso simulations. The bias correction is calculated as the average 

seasonal difference between the monthly amount-weighted REMOiso output and the CNIP observations. Corrected monthly 

and daily REMOiso output at Snare Rapids are displayed on Figure 2 as the dashed red and solid orange lines, respectively. 

For the current study, daily REMOiso output for the Fort Simpson region is bias corrected with the seasonal correction values, 10 

ranging from -4.5 ‰ (NDJF) to -8.9 ‰ (MAM), with an average of -7.0 ‰.  

 

The statistical properties of the corrected daily REMOiso simulations, alongside the KPN43 monthly simulations and the static 

seasonal averages are summarized in Table 2. 

3.4 Statistical treatment of data 15 

For discussion and analysis purposes (Section 4.2 to 4.4), results represent only the behavioural simulations derived from each 

δ18Oppt product. Uncertainty bounds are the 5th and 95th percentiles drawn from the ensembles of behavioural simulations; 

denoted as the shaded bounds around each model’s mean simulation. 

 

Kendall’s tau coefficient (τ) is a non-parametric test used to compare the level of correlation between two variables. We 20 

compute Kendall’s tau for the mean daily streamflow and δ18OSF simulations derived from the three inputs. By computing τ 

coefficients for pairs of simulated time series (i.e., REMOiso versus KPN43, REMOiso versus static, and KPN43 versus static), 

we can statistically evaluate the similarity of model output derived from different precipitation isotope products. 

 

Parameter probability distributions (Table 4) are arrived at by first weighting behavioural parameters for each land cover type 25 

to their corresponding percent coverage within the modelled sub-basins. Land cover weighted parameter values are then ranked 

and non-exceedance probabilities determined. Routing parameter distributions for each sub-basin are arrived at using a similar 

approach, but are not weighted by coverage. The non-parametric Kolmogorov–Smirnov (K-S) test is used to assess if 

behavioural parameter distributions are considered to be from the same distribution. 

 30 

Spatially distributed precipitation isotope product maps (Fig. S-1) represent daily precipitation isotope averaged across seasons 

(DJF, MAM, JJA, SON), and are precipitation amount-weighted using WATFLOOD precipitation input (interpolated 

Environment Canada Canadian Daily Climate Data, housed in WATFLOODs radcl.r2c files; Kouwen 2014). Maps are 
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generated overlapping the model grid (10k) for the entire FSB domain, which includes the Jean Marie and Blackstone sub-

basins. 

4 Results and discussion 

Results of the three calibrations indicate that choice of δ18Oppt input influences the number of simulations that meet behavioural 

criteria thresholds. The KPN43 product results in more behavioural simulations (n = 321) relative to the REMOiso (n = 268) 5 

or static (n = 216) products (Table 5). This also implies that choice of δ18Oppt input influences the models internal apportionment 

of water (i.e., hydrograph separations) via model parameters. Among input types, potentially significant differences in several 

parameters were noted (Table S-1), and is discussed in Section 4.4. In almost all instances, the ranges of the parameters were 

not significantly constrained from the allowable parameter ranges, yielding confidence in our simulated parameter uncertainty 

envelopes.  10 

4.1 Precipitation oxygen-18 input 

Of the three δ18Oppt products, KPN43 input is on average the most enriched (-20.48 ‰), followed by REMOiso (-21.78 ‰), 

and static as the most depleted (-22.82 ‰) (panel (a), Fig. 3 and 4). The KPN43 and static products show similar variation 

about their means, with CVs equal to 0.19 and 0.20, respectively. Conversely, REMOiso has a higher CV (0.25) and much 

larger range, which is, in part, due to the finer daily time step of this input. Spatial variability between Jean Marie and 15 

Blackstone is zero for the static product as annual snow and rainfall compositions are spatially averaged across the domain. 

Spatial variation among sub-basins is noted in the KPN43 and REMOiso products. Both the KPN43 and REMOiso products 

show, on average, more depleted δ18Oppt values within Blackstone (-20.79 ‰ and -22.01 ‰, respectively) in comparison to 

Jean Marie (-20.17 ‰ and -21.54 ‰, respectively), likely caused by the higher elevation headwaters of Blackstone relative to 

Jean Marie (a maximum difference of ~215 m). Figure S-1 provides seasonally averaged, spatially distributed maps for each 20 

product. Averaged spatial variability is greatest for the KPN43 forcing, followed by REMOiso, and is constant for the static 

product. REMOiso shows less long-term average variability because its temporal variability is greater, resulting in more 

chaotic (randomized) signals of 18Oppt that produce weaker long-term signals when averaged over time. KPN43, on the other 

hand, exhibits more consistent spatial patterning of 18Oppt variability, resulting in stronger signals of long-term variability on 

a per-grid basis (Fig. S-1). REMOiso input is derived on a 55 km grid, meaning that approximately 5 isoWATFLOOD grids 25 

are equivalent to 1 REMOiso grid, which also results in a terrain (variability) smoothing effect. The static input exhibits 

seasonal variability caused by the different compositions of rain and snow, and mixed shoulder season compositions (MAM 

and SON) when both rain and snow occur.  

 

Although there are only 19 rainfall δ18O observations collected over the study period in Jean Marie, and eight within Blackstone 30 

(hollow black diamonds on Fig. 3 and Fig. 4, panel (a)), these limited data provide some information regarding the accuracy 



11 
 

of the products. By visual inspection, each of the three products generates reasonable estimates of δ18Oppt. This is expected for 

the static input, which is derived directly from these observations; however, this provides qualitative validation for KPN43 

and REMOiso. REMOiso is the only product that can somewhat replicate event-scale variability in δ18Oppt due to its daily time 

step. The KPN43 product appears to represent the average composition of summer rainfall events, and displays reasonable 

seasonal variability. There are insufficient observations to statistically validate these products within the Fort Simpson basin. 5 

The semi-annual static input perhaps does a reasonable job of refelecting δ18Oppt seasonality because of the high-latitude 

location of the basin, where much shorter shoulder seasons exist. 

4.2 Modelling streamflow 

All calibrations adequately capture variations in total streamflow in both sub-basins, as emphasised by the regional calibration 

statistics (Table 5).  On average, behavioural streamflow simulations have a NSE of 0.68, and %Dv of 13.8 %. Mean daily 10 

streamflow and uncertainty bounds for the KPN43, REMOiso and static model calibrations are displayed on panel (b) of Figure 

3 and Figure 4. Differences in hydrograph characteristics between Jean Marie and Blackstone result from variations in basin 

physiography, storage mechanisms, and land cover composition; specifically large differences in average basin slope and 

wetland dynamics (St Amour et al., 2005). 

 15 

Within the Jean Marie, both the timing and volume of peak flows derived from snow melt are well captured in 1998, however, 

volume is under predicted in 1997 and 1999 for the average streamflow simulation. The parameter uncertainty bounds 

generally enclose the observed spring melt hydrograph, except in 1999 where the timing of the melt peak is simulated later 

than was observed. Snowmelt is controlled by a degree-day snowmelt function in WATFLOOD, using temporally constant 

snowmelt parameters. Parameter stationarity likely results in an inadequate description of the inter-annual variability in energy 20 

balance and snowpack ripening dynamics within the model. All simulations have difficulty capturing the volume of the 

snowmelt recession limb, which may be caused by the parameterization of baseflow and fen responses in this sub-basin. Based 

on previous studies (Connon et al., 2015), it has been suggested that bog and fen complexes are likely one of the primary 

drivers of hydrograph timing and shape due to their ability to dynamically alter drainage pathways, particularly in this region. 

In 1997, following a significant melt event, all simulations in Jean-Marie exhibit higher than observed recession limb flows; 25 

indicating runoff was slow to drain and storages were too high. This could be an indication of WATFLOOD’s inability to 

capture the dynamic flow paths occurring within Jean Marie’s extensive fen network. This same recession limb discrepancy 

does not occur in Blackstone, where there are much fewer fens, and bogs would remain hydraulically isolated even during 

wetter conditions (Connon et al., 2015). In the Blackstone, the recession limb hydrograph is well simulated across all inputs, 

however, peak flows (with the exception of the 1997 snow melt) are generally under estimated. Post freshet, simulations 30 

adequately capture the timing of rainfall events; however (with the exception of 1997 in the Jean Marie) consistently 

underestimate the magnitude of the peaks. This underestimation is most evident when all simulations generated a very limited 

streamflow response to an early October rainfall event in 1998, underestimating the observed peak flow by approximately 50 
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% (Jean Marie) and 75 % (Blackstone). These results may point to inadequate precipitation forcing due to the climate station 

proximity and high spatial variability of rainfall, inadequate soil moisture parameterization, or could be an unintended side 

effect of using NSE in our calibration (Gupta et al., 2009). 

 

Most interesting is the similarity of the streamflow simulations among the different δ18Oppt products, further assessed by 5 

Kendall’s tau coefficient (). In Jean Marie, τ ranges between 0.92 (REMOiso versus static) to 0.97 (KPN43 versus static). In 

Blackstone τ is more tightly constrained, ranging from 0.96 (REMOiso versus static) to 0.98 (KPN43 versus static). All τ 

values are statistically significant. It should be noted that small deviations between mean streamflow simulations occur during 

spring melt, where REMOiso-derived streamflow consistently results in higher peaks than KPN43 and static-driven 

simulations. These differences in mean streamflow, however, fall within overlapping uncertainty bounds and are not significant 10 

outside of parameter uncertainty. Despite significant changes to model parameters (Table S-1), the resultant efficiency statistics 

among the mean streamflow simulations remain nearly identical (Table 5). Based on this analysis, we find that the three 

precipitation isotope products generate statistically similar streamflow simulations. Given the insignificant differences in 

streamflow response, it is only through analysis of 18OSF that the impact of different model parameterizations is assessed.  

4.3 Modelling δ18O in streamflow 15 

Mean daily δ18OSF simulations and uncertainty bounds for the KPN43, REMOiso, and static product model calibrations are 

displayed on panel (c) of Figure 3 and Figure 4. Each model calibration produces mean simulations that capture many of the 

trends, but not particularly the magnitudes, present in the observed δ18OSF record. Observed δ18OSF show a depletion due to 

large influxes of snowmelt during the spring freshets, and gradual enrichment over the summer months due to the evaporation 

of surface and soil waters, occasionally punctuated by rainfall events that may enrich or deplete δ18OSF. During late fall and 20 

throughout the winter, δ18OSF tends toward a more depleted, stable groundwater composition (St Amour et al., 2005).  

 

Though each of the model calibrations result in similar trends relative to the observed δ18OSF record, there are notable 

departures. As simulated δ18OSF uncertainly envelopes associated with each δ18Oppt product are, at times, non-overlapping, 

differences in δ18OSF simulations can be attributed to δ18Oppt product and, therefore, are not just an artefact of parameter 25 

uncertainty (unlike streamflow). The dissimilarities between δ18OSF simulations are also reflected in the RMSE statistic (Table 

5); the RMSE is larger for static-derived simulations due to increased emphasis on periods with a higher observation density 

(i.e., spring freshet), where larger offsets between simulated and observed δ18OSF exist. The KPN43 and REMOiso calibrations 

produce comparable RMSE. The KGE statistic shows only minor differences between δ18OSF simulations given the statistic 

puts more emphasis on long-term bias (Gupta et al., 2009), therefore reflecting the fit of the overall simulation throughout the 30 

study period for this highly seasonal basin (Kling and Gupta, 2009). Further research is required to better understand the 

impacts of sporadic sampling resolution (for δ18OSF observations) on efficiency criteria, and consequently the objective 

functions. It is noted that sampling during peak freshet was, at times, limited by accessibility during high water stage; therefore, 
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some temporal gaps exist in the observed 18OSF record (particularly in 1999) during the period that streamflow compositions 

are generally most depleted.  

 

Differences in δ18OSF simulations within each sub-basin are due to a combination of: (1) markedly different δ18Oppt input 

compositions during large precipitation events amongst precipitation isotope products, and (2) how new water transits through 5 

the system via the model’s hydrological compartments. For this study area, large precipitation events can be separated into: 

(1) the accumulation of winter snowfall and corresponding spring freshet (approximately 35 to 40 % of annual precipitation), 

and (2) major rainfall events occurring post-freshet (summer and fall) (with rainfall representing approximately 60 to 65 % of 

annual precipitation). 

 10 

No single model calibration produces consistently strong simulations of δ18OSF during the snowmelt period. The KPN43 

calibration best captures the timing and magnitude of spring freshet, however overestimates δ18OSF (i.e., is too enriched) during 

the 1997 melt in Blackstone. Conversely, the static and REMOiso calibrations capture the large depletion during the 1997 melt 

in the Blackstone, but produce overly depleted simulations during the 1998 and 1999 freshets - most notably within the Jean 

Marie. There is a tendency for all models to simulate relatively depleted spring freshet δ18OSF compositions. This can be 15 

attributed to several factors: (1) overly enriched δ18Oppt during the winter months, (2) unaccounted for snow metamorphism 

processes, (3) an overestimation of direct snowmelt runoff (i.e. streamflow volume), and (4) inaccurate antecedent composition 

of δ18OSF simulated by the models just prior to the spring melt.  

 

Post-freshet, δ18OSF simulations are impacted by rainfall amount and composition, and the offset between simulated δ18OSF 20 

and δ18Oppt input at the time of rainfall. As rainfall amount and/or this offset increases, the resulting impact on simulated δ18OSF 

increases. This highlights the importance of capturing the spatial and temporal variability in rainfall δ18O, particularly for large 

and isotopically distinct (from streamflow) events. The threshold defining a large rainfall event varies depending on basin 

physiography, land cover, storage capacity, and antecedent conditions. St Amour et al. (2005) estimate this threshold to be ≥40 

mm within the Fort Simpson region. Such a large, isotopically distinct rainfall event occurred June 11–12, 1998 when 25 

approximately 70 mm fell over two days with an observed δ18Oppt composition of -22.7 ‰. Both the REMOiso and static 

products reasonably capture this event (-20.9 ‰ and -20.1 ‰, respectively, across the study domain); however, the KPN43 

product predicted an average δ18Oppt composition of -17.6 ‰. In the Jean Marie, where large fen networks help to moderate 

rainfall-runoff response, the observed δ18OSF did not deplete in response to this event, but rather maintain a similar pre-event 

composition around -19.17 ‰ (Fig 3, panel (c)). KPN43-driven simulations most closely match observed 18OSF due to the 30 

antecedent composition of δ18OSF prior to the event, even though the KPN43 input generated the least accurate estimate of the 

depleted rainfall δ18Oppt. Conversely, in the Blackstone the June 11–12 rainfall generated a much different response in observed 

δ18OSF: a sharp depletion from -19.11 ‰ to -20.98 ‰ (Fig 4, panel (c)). In this instance, the REMOiso and static calibrations 

most closely match the observed δ18OSF due to their closer representations of the rainfall event composition. In the Blackstone, 
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this single event results in a significant offset between KPN43-driven δ18OSF simulations relative to those driven by REMOiso 

and static products, maintained throughout 1998 and up until the 1999 freshet resets the 18OSF. 

 

Throughout much of Canada and in other high-latitude climates, the spring freshet generates a substantial portion of annual 

streamflow (and typically peak annual flow) when the accumulation of solid precipitation from the winter season melts in late 5 

spring over a few week period. It is therefore important to understand how differences among the products impact snowpack 

(and subsequently snowmelt) isotopic compositions in isoWATFLOOD. Figure 5 shows the evolution of precipitation-

weighted snowpack oxygen-18 (δ18OSNW) throughout each winter of the study period relative to the observed snowpack 

compositions (hollow black diamonds). Not surprisingly, the static snowpack compositions closely match with observed 

δ18OSNW, and we note that KPN43 and REMOiso snowpacks are more enriched. Caution should be used when comparing 10 

modelled versus observed data here as there is little inter-annual consistency in the number of samples and the location where 

sampling took place, and no information was provided as to how the 18OSNW were collected (i.e., depth-integrated or depth-

dependent samples). Comparison of like-forcing pairs between Jean Marie and Blackstone reveal subtle spatial differences in 

simulated δ18OSNW. Dissimilarities between the three products within each basin are, however, significant. Interestingly, 

REMOiso and KPN43 end of winter precipitation-weighted δ18OSNW compositions differ by less than 0.5 ‰ in 1997–1998 and 15 

1998–1999. REMOiso and KPN43 inputs consistently generate significantly more enriched snowpacks relative to the static 

δ18OSNW product (and much of the observed data). On average, KPN43 is 3.3 ‰ more enriched, and REMOiso is 3.1‰ more 

enriched than end of season static δ18OSNW. Differences in simulated δ18OSNW among the products are partially attributed to the 

poor representation of snowpack physics (i.e., fractionation resulting from sublimation and snow metamorphism) in the current 

version of the isoWATFLOOD model. The static input inadvertently accounts for some of these processes, as the specified 20 

compositions are derived from snowpack observation near end of winter (in late March). Uncertainty in simulated δ18OSNW 

among the products is notable as well, with static δ18OSNW uncertainty remaining relatively constant over the winter relative to 

REMOiso, and particularly KPN43 where uncertainty decreases as snowpack depth increases (Fig. 5). This is an artefact of 

the parameterization of sublimation in the models. As the winter progresses, the snowpack grows and sublimated volumes 

become a smaller fraction of the total snowpack, thus decreasing the effect (and uncertainty) that sublimation has on the 25 

volume-weighted δ18Oppt of the snowpack. This is observed during periods when the simulated snowpack and snow water 

equivalent (SWE) are larger, for example, 1998 relative to 1999 (Fig. 5). 

 

These significant differences in simulated snowpack composition are one of the primary reasons for offsets between KPN43, 

REMOiso and static δ18OSF simulations (Fig. 3 and Fig. 4, panel(c)). Once a δ18OSF simulation has been offset, it is not possible 30 

to ‘reset’ the composition in late fall as streamflow decreases to near-zero and mass retained in the system. This can result in 

compounding isotopic error (if the offset deviates from observed data) during continuous simulation, thus highlighting the 

sensitivity of the tracer as a calibration tool. Compounding error is also observed for rainfall events, but generally to a lesser 
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extent due to the relatively smaller durations and magnitudes (volume contributions) of most rainfall events (relative to 

snowmelt) in high-latitude regions.   

 

Since both δ18OSF and δ18OSNW are significantly different among δ18Oppt products, internal water apportionment (determined 

by model parameterization) is also likely impacted. Differences in hydrograph separations among the calibrated models are 5 

explored to determine the impact δ18Oppt has on internal water apportionment and simulation uncertainty. 

4.4 Hydrograph component analysis and parameter distributions 

Component contributions to total streamflow from surface runoff, interflow and baseflow storage in each season (DJF: 

December-January-February; MAM: March-April-May; JJA: June-July-August; and, SON: September-October-November) 

derived from each δ18Oppt product are shown on Figure 6. Jean Marie and Blackstone display similar trends in internal water 10 

apportionment throughout the year, indicating generally similar model parameterizations and hydrograph separations among 

the two basins. Some seasonal differences in component separations exist, however, which are linked to variations in basin 

physiography, land cover, and storage characteristics reflected by differences in the baseflow (lzf and pwr) and wetland 

parameters (kcond and theta) among basins (Table S-1). Freshet and post-freshet percent contributions to total streamflow in 

this study are in agreement with those reported in previous studies. St Amour et al. (2005) reported significant post-freshet 15 

groundwater contributions (71 % ± 9 % and 64 % ± 10 % for Jean Marie and Blackstone, respectively), compared to the mean 

post-freshet (JJASON) contributions we report on Figure 6 (40 – 70 % and 60 – 70 % for Jean Marie and Blackstone, 

respectively). In agreement with this, Jasechko et al. (2016) estimate that annually 80 – 90 % of the Mackenzie River 

streamflow is “old” water (i.e., water that has not entered the stream within the last 2.3 ± 0.8 months). Their findings also 

suggest that the annual percentage of old streamflow can be higher in mountainous watersheds with steeper slopes, such as in 20 

the FSB and specifically Blackstone, relative to lower-gradient watersheds. Groundwater as defined by St. Amour et al (2005) 

and Jasechko et al (2016) denotes ‘old water’, or water residing in the system prior to an event.  In our study, groundwater is 

defined as baseflow in isoWATFLOOD (Stadnyk et al. 2005) and is separate from interflow (soil water in the unsaturated 

zone) and wetlands. Baseflow contributions in this study are therefore slightly lower than those estimated from the two-

component hydrograph separation methods. Snowmelt contributions from St. Amour et al (2005) were 21 % (± 2 %) and 40 25 

% (± 4 %) of total streamflow for Jean Marie and Blackstone, respectively; which are in agreement with mean spring (MAM) 

surface runoff contributions in our study (20 – 40 %) for both basins. 

 

Comparison of seasonal volume contributions derived from each δ18Oppt product reveal that during spring (MAM), REMOiso-

driven simulations show more surface flow contribution to total streamflow, with the mean volume lying above the 95th 30 

percentile volumes for both the KPN43 and static input simulations (Fig. 6). On average, REMOiso simulations contribute 

almost twice as much surface runoff to total streamflow as KPN43 and static simulations during MAM (39 % versus 25 % and 

22 %, respectively, for the Jean Marie; and similar, yet slightly larger, percent contributions for the Blackstone).  
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From the seasonal analysis, no other significant differences in component contributions outside of parameter uncertainty can 

be attributed to δ18Oppt product. It is important to note, however, that each δ18Oppt product results in different amounts of 

parameter uncertainty, both seasonally and overall, as represented by width of the uncertainty bounds (cross symbols on Fig. 

6). The variation in uncertainty bounds between δ18Oppt products is also visible on Figure 3 through Figure 5. The REMOiso 5 

input yields the largest amount of uncertainty in total streamflow, also reflected in the relatively larger amounts of uncertainty 

in surface water and baseflow component contributions (Fig. 6). Conversely, KPN43 and static inputs generate similar or 

slightly larger uncertainty in interflow (soil water) contributions relative to REMOiso and lower uncertainty surrounding 

surface and baseflow contributions, and overall total streamflow. These differences in uncertainty are attributed to the number 

and characteristics of behavioural parameters retained for each δ18Oppt input, which originate due to distinctions in magnitude 10 

and variability (both spatial and temporal) among δ18Oppt products. 

 

Further demonstrated by parameter probability distributions (Fig. 7), the three calibrations result in noteworthy differences in 

behavioural parameters. We do not display these distributions to comment definitively on parameter identifiability because, as 

previously noted, the number of evaluations was insufficient for that purpose. Rather, we introduce this analysis to further 15 

explore how model parameterization is impacted by δ18Oppt input. The selected parameters (Table 4) influence evaporation (f-

ratio), surface runoff during snowmelt (akfs, base), upper and lower zone storage (retn), interflow (retn), and baseflow (lzf, 

pwr). REMOiso parameter distributions more often than not differ from KPN43 and static parameter distributions. Although 

dissimilarities between KPN43 and static parameter distributions exist, these are typically not as prevalent as differences with 

REMOiso-derived distributions. This echoes the findings from Figure 7 that KPN and static-derived component contributions 20 

are more similar than those derived from REMOiso; which may very well be due to the increased spatial and temporal 

variability of the REMOiso δ18Oppt product. Though we cannot verify correctness of the REMOiso 18Oppt given the absence 

of daily precipitation isotope observations, differences among inputs imply that temporal resolution of 18Oppt plays a role in 

the parameterization of a model, and resultant hydrograph separation. 

 25 

Differences in surface water contributions during snowmelt between REMOiso, KPN43 and static inputs are likely derived 

from differences in the akfs and base parameters. Parameter distributions from REMOiso are significantly different (as verified 

through Kolmogorov–Smirnov testing of distributions) than the KPN43 and static input distributions for these parameters 

(Figure 7, panels (b) and (f)). Lower akfs values represent decreased infiltration and increased surface runoff during snowmelt, 

which corresponds to REMOiso’s increased surface water contributions to total streamflow during spring (MAM). 30 

Dissimilarities in baseflow contributions among δ18Oppt inputs are influenced by differences in the lzf and pwr parameters (Fig. 

7, panels (c-d) and (g-h)), which have a large impact on the quantity of baseflow and the slope of the recession limb of the 

hydrograph. Wider uncertainty bounds for REMOiso relative to KPN43 and static calibrations within Blackstone (Fig. 6, panel 

(f)), and for all models during fall and winter within Jean Marie (Fig. 6, panel (c)), are likely due to the wider range of 
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behavioural values for the pwr parameter, specifically the inclusion of lower values which results in longer, more drawn out 

recession limbs. It appears that choice of precipitation isotope product influences parameter distributions in isoWATFLOOD, 

which in turn alters internal water apportionment. In the tracer-aided modelling community, this has significant implications 

for hydrograph separation and any associated transit time analyses; both of which will be influenced by choice (resolution) of 

18Oppt product. 5 

5 Conclusions 

This study used three types of precipitation isotope products as δ18Oppt input to a tracer-aided hydrological model 

(isoWATFLOOD) to investigate the impact differing spatial and temporal resolutions have on simulation of streamflow, 

isotopic composition of streamflow, internal hydrograph separations, and model parameterization and corresponding 

parameter uncertainty. Our study found that choice of precipitation isotope product (δ18Oppt):  10 

1. did not impact simulation of total streamflow, or the achieved efficiencies of streamflow simulation; 

2. impacted the internal apportionment of water, thereby impacting hydrograph separations; 

3. impacted model parameterization, and therefore simulation uncertainty; and 

4. impacted the variability of simulated 18OSF, most noticeably when event compositions differed significantly from 

streamflow composition (e.g., snowmelt and large rainfall events). 15 

 

Of the 30,000 simulations performed for each precipitation isotope product forcing, only 10 % or less were behavioural for 

each input type. Due to the wide range of behavioural parameter values (Table S1), however, we are confident that the approach 

used was sufficient to characterize parameter uncertainty. Not unexpectedly, this finding also indicates that 30,000 model 

evaluations were not sufficient to quantify parameter identifiability in this study. 20 

 

Although total simulated streamflow was not significantly affected by choice of δ18Oppt input, δ18OSF simulations and the 

internal apportionment of water (surface flow, interflow, and baseflow) were significantly impacted here. Significant 

differences in internal water apportionment among the models were diagnosed via 18O uncertainty. Variation between models 

was greatest during the freshet period, where significantly different snowpack compositions were simulated among the 25 

different precipitation isotope products. The highest resolution (REMOiso, daily) input resulted in significantly different 

parameter distributions and seasonal hydrograph separations than the other two (monthly and semi-annual) inputs. These 

findings have direct implications for hydrograph separation, and simulated water transit times. In this study, we found that 

choice of δ18Oppt input directly impacted model parameterization, and for this reason, studies should account for both input 

and parameter uncertainty. Also highlighted was the significance of the snowpack and melt dynamics in tracer-aided models 30 

applied in high-latitude regions, resulting in high seasonal uncertainty and indicating more research is warranted to improve 
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process representation. Use of a tracer-aided model afforded an examination of internal model dynamics resulting from specific 

parameterizations, allowing us to assess the realism of individual simulations as opposed to their efficacy alone. 

 

This study demonstrated that direct quantification of model equifinality was possible using tracer-aided models, and 

furthermore, we demonstrated that this equifinality was not diagnosable via simulation of streamflow. We have achieved an 5 

understanding of how tracer-aided models, like isoWATFLOOD, can be used in data sparse regions, with limited input data 

(including δ18Oppt observations), and that despite these limitations, these models can still be of value. Regarding the usefulness 

of precipitation isotope products in regions with limited observations, both the static and REMOiso inputs require existing 

δ18Oppt observations (i.e., from CNIP) to either define or bias correct the input, limiting their use for certain applications. If 

these data are not available, the KPN43 input provided reasonable results without the need for additional observations. The 10 

existence of CNIP (and other precipitation isotope networks) was crucial to the development, validation, and bias correction 

of existing 18Oppt products. Attaining an understanding of how δ18Oppt input uncertainty impacts simulated model output is 

important when calibrated models are used to assess climate-driven or land-use-driven impacts on streamflow in remote, data 

sparse, high-latitude regions. 

 15 

For use in tracer-aided modelling, precipitation isotope products should capture both the event-based variability and seasonality 

of precipitation isotopes to reproduce realistic 18OSF variability. Higher resolution 18Oppt inputs (e.g., REMOiso, daily) were 

able to capture event-specific compositions that, when significantly different from 18OSF, tended to cause significant 

deviations from the 18OSF derived from monthly and semi-annual (i.e., static) inputs. Unfortunately, we could not verify the 

correctness of the higher resolution product (i.e., REMOiso) in this study due to the sporadic sampling of isotopes in 20 

precipitation observations. Static and seasonal precipitation isotope products missed event-specific isotopic variation occurring 

as a result of heavy rainfall events, which require increased temporal resolution (e.g., daily 18Oppt inputs from REMOiso; but 

perhaps weekly input would suffice) to resolve rainfall event compositions. In seasonal environments, precipitation isotope 

products must capture the transition from rainfall to snowfall, and from snow accumulation to snowmelt to sufficiently model 

18OSF. In this study, both static and monthly inputs adequately captured 18OSF variability at the basin outlet, perhaps the result 25 

of the unique  seasonality in high-latitude regions. Spatial variability was detected across the study region in 18Oppt inputs, 

and can be represented by distributed tracer-aided models, like isoWATFLOOD. There is reason to suspect that the variability 

in (both spatial and temporal) precipitation isotope inputs influences model parameterization, therefore spatial variability 

should be preserved to derive the most representative model of a given region. 

 30 

This work highlighted the power of tracer-aided modelling to inform and quantify equifinality in hydrological simulation, 

helping modellers to work towards reducing modelling uncertainty. Although more work is required to assess and understand 
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parameter identifiability, our analysis showed that selection of precipitation isotope (δ18Oppt) product had direct implications 

on model parameterization, and that input uncertainty should be considered in future studies. 

6 Future directions 

Distributed hydrological models, such as WATFLOOD, are complex with large numbers of parameters, therefore it is 

important as a community to work toward conducting comprehensive studies that focus on input data uncertainty and parameter 5 

identifiability. In the tracer-aided modelling community, this includes uncertainty from precipitation isotope products and their 

varying spatial and temporal resolutions. Ideally, further studies should be conducted in well-instrumented basins where δ18Oppt 

input can be better characterized using observed data at higher spatial, and most importantly, temporal resolutions. Several key 

questions warranting more detailed investigation include: (1) are precipitation isotope products adequate alternatives in place 

of δ18Oppt observations; (2) are there a specific subset of model parameters that are more sensitive to choice of precipitation 10 

isotope product; and (3) how do (if at all) parameters compensate for compounding model error. Unfortunately, at least within 

Canada, a well instrumented watershed at the regional scale does not yet exist, pointing to the importance of implementing 

additional (or enhancing current) iso-hydro-meteorological monitoring networks.  

 

Not unexpectedly, the RCM-driven precipitation isotope product in this study, REMOiso, exhibited some bias and needed 15 

correction prior to application. More studies are needed to better understand the nature of this bias, and the most appropriate 

bias correction methods; which can be done using observations from the CNIP database at a monthly resolution. Due to the 

lack of high-resolution 18Oppt observations in Canada, however, daily or weekly validation is not yet possible. Additionally, 

the suitability and performance of other isotope-enabled RCM’s for use in Canada, and elsewhere, should be explored.  

 20 

Lastly, as a tracer-aided hydrologic community we need to push for the sustained monitoring of isotopes in precipitation and 

streamflow that are required to inform our models and improve uncertainty assessment. This study elucidated the impact that 

discontinuous observations can have on quantifying model uncertainty; which would only be further exasperated by the 

absence of observations all together. In Canada, a concerted effort is needed by the Government to protect and sustain our 

observation networks, which are required for improved prediction in remote regions for climate and hydrologic change 25 

detection. 
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Figure 1: Fort Simpson River Basin (all other tributaries of the Liard and Mackenzie Rivers have been removed for ease of viewing). 
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Figure 2: Comparison of raw and corrected REMOiso δ18Oppt output with CNIP monthly compositions at Snare Rapids, NWT. 
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Figure 3: Input and behavioural simulations for Jean Marie, including: (a) KPN43, REMOiso and static δ18Oppt input time series 
and daily precipitation; and simulated (b) mean daily streamflow and uncertainty bounds and (c) mean daily δ18OSF and uncertainty 
bounds, for KPN43, REMOiso and static driven model calibrations. δ18Oppt input-specific uncertainty bounds are represented as the 
shaded regions, with shading colour corresponding to δ18Oppt type.          5 
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Figure 4:  Input and behavioural simulations for Blackstone, including: (a) KPN43, REMOiso and static δ18Oppt input time series 
and daily precipitation; and simulated (b) mean daily streamflow and uncertainty bounds and (c) mean daily δ18OSF and uncertainty 
bounds, for KPN43, REMOiso and static driven model calibrations. δ18Oppt input-specific uncertainty bounds are represented as the 
shaded regions, with shading colour corresponding to δ18Oppt type. 5 
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Figure 5: Precipitation-weighted δ18O of snowpack (δ18OSNW) for KPN43, REMOiso and static inputs from January to the end of 
melt for each year of the study period. Snow water equivalent (SWE), snowfall (gray line), and rainfall (blue line) are also shown. 
δ18Oppt input-specific uncertainty bounds are represented as the shaded regions. Diamond symbols represent 18OSNW observations 
sampled within each respective sub-basin during the GEWEX campaign. 5 
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Figure 6: Percent seasonal volume contributing to total streamflow from surface runoff, interflow and baseflow storages for each 
season. Cross symbols represent the 5th and 95th percentiles for each forcing method, and circle symbols signify the mean values. 
The combined uncertainty bounds representing the 5th and 95th simulations from all three δ18Oppt input types are shaded in gray. 

 5 
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Figure 7: Probability distributions for select parameters (Table 5), as indicated in the bottom right corner of each panel. Parameters 
are from behavioural simulations, and (a), (b), (e) and (f) have been weighted to the land cover distribution within Jean Marie and 
Blackstone, as outlined in Table 1. Panels (c) and (d) and river class parameters within Jean Marie, and panels (g) and (h) contain 
river class parameters for Blackstone. 5 
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Table 1: Basin characteristics, including land cover classification, area, and average basin slope (recreated from data provided in St 
Amour et al., 2005) 

Sub-basin Land Cover Classification (%) Area 
(km2) 

Basin 
Slope (%) Deciduous Mixed Coniferous Transitional Wetland Water 

Jean- Marie River 5 22 23 31 14 1.3 1310 0.3 
Blackstone River 7 17 14 39 21 0.7 1390 0.63 
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Table 2: Data summary for the study period (SP) and period of record (PoR). The coefficient of variation (CV) is calculated as the 
ratio of the standard deviation to the mean. 

Variable (gauge ID) Unit 
Number of 

Measurements 
Mean   

(SP, PoR) 
CV 

(SP, PoR) 
SP Range 

(min, max) 
Hydrometric/Meteorological Data 

Daily Average Streamflow  
     Jean Marie (10FB005) 

m3/s 1095 4.66,  5.25 1.24,  2.06 0.19,  34.9 

Daily Average Streamflow  
     Blackstone (10ED007) 

m3/s 1095 8.96,  10.76 1.65,  2.17 0.04,  109 

Mean Daily Air Temperature   
     Fort Simpson (2202101) 

°C 1093 -1.5,  -3.02 N/A -40.8,  25.3 

Daily Precipitation  
     Fort Simpson (2202101) 

mm 1088 1.12,  1.01 3.04, 3.19 0.0,  43.0 

Hourly Relative Humidity*  
     Fort Simpson (2202101) 

% 26280 73.9 0.24 14, 100 

Isotopic Measurements* 

Streamflow δ18O - Jean Marie ‰ 71 -19.70 0.03 -21.34, -18.72 

Streamflow δ18O - Blackstone ‰ 69 -20.17 0.06 -24.01, -17.92 
Rainfall δ18O 
     Jean Marie and Blackstone 

‰ 27 -17.55 0.23 -26.70, -11.12 

Precipitation δ18O Forcing* 

KPN43  δ18Oppt input ‰ 
1800 (36 values at 

50 grid points) 
-20.48 0.19 -28.86, -13.91 

REMOiso δ18Oppt input ‰ 
54750 (1095 values 

at 50 grid points) 
-21.78 0.25 -42.82, -10.68 

Static δ18Oppt input ‰ 
300 (6 values at 50 

grid points) 
-22.82 0.20 -29.35, -16.52 

* Provided only for the study period, 1997 – 1999. 
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Table 3: Static δ18Oppt input compositions of annual rainfall and snowfall oxygen-18 for isoWATFLOOD. 

Year δ18O rainfall 
(‰) 

δ18O snowfall 
(‰) 

1996 -17.00 -29.35 
1997 -19.10 -29.35 
1998 -20.10 -25.03 
1999 -16.52 -26.79 
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Table 4: Parameters included in the Monte Carlo calibration, alongside a description of what the parameter represents and the 
algorithm it is used within. 

Name Description Algorithm 

Routing Parameters 

flz Lower zone drainage function 
An exponential ground water depletion function that gradually 

diminishes the base flow. Ground water is replenished by 
drainage of the UZS: 

QLZ = LZF *(LZS) PWR 
Where: LZS is lower zone storage 

QLZ is the baseflow flux 
pwr 

Lower zone drainage function 
exponent 

theta Wetland porosity Physically-based wetland routing algorithm  
(McKillop et al., 1999) kcond Conductivity parameter 

Hydrologic Parameters 

f-ratio Interception capacity multiplier 
Conceptual evaporation algorithm based on Hargreaves and 

Samani (1982). f-ratio is a multiplier for the interception 
capacity for each land class. 

ak Surface permeability (bare ground) 
Conceptual infiltration algorithm (similar to Green and Ampt, 
1911); but based on Richard's equation which is physically-

based (Philip, 1954) akfs Surface permeability 

rec Interflow coefficient 
Interflow is represented by a simple storage-discharge 

relation: 
DUZ = REC * (UZS-RETN)*Si 

Where: UZS = upper zone storage 
DUZ = depth of upper zone storage released as interflow 

Si = internal land surface slope 
retn Upper zone retention [mm] 

ak2 Recharge coefficient (bare ground) 

Upper zone to lower zone drainage is represented by a simple 
storage-discharge relation: 

DRNG = AK2 * (UZS - RETN) 
Where: DRNG is the drainage from UZS to LZS 

mf Melt factor [mm/°C/hr] M = MF (Ta - base) 
Anderson (1976) base Base Temperature [°C] 

sub Sublimation factor 

Sublimation is modelled by a static sublimation factor. 
Amount of sublimation is a fraction of the observed snowfall. 

For new model setups, the sublimation factor has been 
replaced by a static sublimation rate. 
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Table 5: Average simulation statistics from n behavioural simulations for streamflow and δ18OSF for the three model calibrations 
(using KPN43, REMOiso, and static inputs). 

Average statistics 
from n behavioural 

simulations 
KPN43 REMOiso Static 

n 321 / 30000 268 / 30000 216 / 30000 
Streamflow (1095 observations for performance evaluation) 

NSE 0.68 0.68 0.69 
|% Dv| 13.9 13.4 14.2 

|Log(% Dv)| 11.5 8.9 11.6 
δ18OSF (140 observations for performance evaluation) 

RMSE (‰) 1.39 1.32 2.09 
KGE 0.36 0.33 0.35 

 


