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Abstract. This research investigates the impact of wildfires on watershed flow regimes, specifically focusing on evaluation

of fire events within specified hydroclimatic regions in the western United States, and evaluating the impact of climate and

geophysical variables on response. Eighty two watersheds were identified with at least ten years of continuous pre-fire daily

streamflow records and five years of continuous post-fire daily flow records. Percent change in annual runoff ratio, low-flows,5

high-flows, peak flows, number of zero flow days, baseflow index, and Richards-Baker flashiness index were calculated for each

watershed using pre- and post-fire periods. Independent variables were identified for each watershed and fire event, including

topographic, vegetation, climate, burn severity, percent area burned and soils data.

Results show that low flows, high flows, and peak flows increase in the first two years following a wildfire and decrease

over time. Relative response was used to scale response variables with respective percent area of watershed burned in order10

to compare regional differences in watershed response. To account for variability in precipitation events, runoff ratio was

used to compare runoff directly to PRISM precipitation estimates. To account for regional differences in climate patterns,

watersheds were divided into nine regions, or clusters, through k-means clustering using climate data and regression models

were produced for watersheds grouped by total area burned. Watersheds in Cluster 9 (eastern California, western Nevada,

Oregon) demonstrate a slight negative response is observed in flow regimes after fire. Cluster 8 watersheds (coastal California)15

display the greatest flow responses, typically within the first year following wildfire. Most other watersheds show a positive

mean relative response. In addition, simple regression models show low correlation between percent watershed burned and

streamflow response, implying that other watershed factors strongly influence response.

Spearman correlation identified NDVI, aridity index, percent of a watersheds precipitation that falls as rain, and slope as be-

ing positively correlated with post-fire streamflow response. This metric also suggested a negative correlation between response20

and the soil erodibility factor, watershed area, and percent low burn severity. Regression models identified only moderate burn

severity and watershed area as being consistently positively/negatively correlated, respectively, with response. The random

forest model identified only slope and percent area burned as significant watershed parameters controlling response.

Results will help inform post-fire runoff management decisions by helping to identify expected changes to flow regimes, as

well as facilitate parameterization for model application in burned watersheds.25
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1 Introduction

The number of wildfires in the western United States (US) is increasing annually, on average costing federal agencies billions

of dollars a year in suppression efforts (Whitlock, 2004) and causing an increase in flood events destructive to both life and

infrastructure (Neary et al., 2005; Pausas, 2008). Westerling et. al. (2006, 2016) showed that the western fire regime exhibited

a significant transition from infrequent and short-duration events to higher frequency, longer duration regimes during the mid-5

1980’s. The greatest increases in fire frequency were found to occur in mid-elevation forests, most commonly in the Northern

Rockies, Sierra Nevada, southern Cascades, and western Coast Ranges in northern California and southern Oregon (Littell et

al., 2009). This marked change is strongly correlated with climate change impacts, such as warmer springs and longer dry

seasons, commonly in occurrence with reduced winter precipitation rates and earlier spring snowmelt. Overall, Westerling et.

al. (2016) determine that, though land-use history may be a significant factor in the spatial distribution of wildfires within10

specific forest types, changes in fire regimes in the western US are most likely be attributable to recent changes in climate.

Other notable research has also provided significant correlatory evidence between climate change and wildfire occurrences

(Littell et al., 2009; Moritz et al., 2010).

Though wildfires are a part of the natural process of vegetation dynamics, they cause wide-ranging changes to ecosystems

(Daniel G Neary, 2003; Santos et al., 2015) depending on numerous factors, most importantly burn severity. Studies examining15

the effects of wildfires on a small-scale, such as in plot-sized and laboratory experiments, show high fire temperatures can

result in the combustion of organic matter within soils and cause permanent alteration to the chemical structure of local clays,

decreasing soil stability (Shakesby and Doerr, 2006). Water-repellent soil layers can be created in a discrete layer on or below

the soil surface through chemical bonding of the combusted organic matter to mineral particles, potentially increasing overall

topsoil erosion rates in burned regions (Wilkinson et al., 2009), though this hydrophobicity is highly variable depending on fire20

behavior, burn severity and soil properties (DeBano, 2000).

At larger scales, such as entire watersheds or multiple watershed systems, studies of post-fire erosion rates have shown

incompatible conclusions (Moody and Martin, 2001; Owens et al., 2013; Smith et al., 2011), though this is most likely due to

the variability of precipitation events and general climate patterns (Moody et al., 2013). In terms of water quality, contaminant

levels can be dramatically increased for many years after a wildfire in both soil (Burke et al., 2010) and stream systems25

(Emelko et al., 2011; Stein et al., 2012; Burke et al. 2013), increasing the workload on source water protection organizations

in communities reliant upon burned watersheds for drinking and farm water. Furthermore, wildfires are readily attributed as

the cause of substantial increases in debris flows (Benavides-Solorio and MacDonald, 2001; Cannon et al., 2001; Meyer et al.,

2001).

Studies evaluating post-fire water yield change are highly disparate owing to the transient nature of climate patterns, varia-30

tions in basin geomorphology, and vegetation recovery patterns, and the resulting complex interactions (Moody et al., 2013).

For example, studies in rangeland regions of the US found moderate increases in flow, infiltration, and erosion rates after major

wildfires, with trends continuing for as long as 15 years (Emmerich and Cox, 1994; Pierson et al., 2009; Hester et al., 1997;

Kinoshita and Hogue, 2015). Fires in chaparral environments, such as in southern California, exhibited increased flows up to
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as much as two orders of magnitude, with much of this occurring in the dry season (Coombs and Melack, 2013; Kinoshita and

Hogue, 2011 and 2015; Loáiciga et al., 2001). Fires in other chaparral environments were found to also yield flow increases,

such as in South Africa (Lindley et al., 1988; Scott, 1993), Cyprus (Hessling, 1999), and France (Lavabre et al., 1993). Addi-

tional increases to post-fire flow regimes were found in temperate, forested catchments as well (Neary et al., 2005; Watson et

al., 2001). A concise summary of historic changes in US post-fire stream systems is found in Neary et al. (2005), documenting5

changes in 1st year runoff and peak flows, encompassing a range of ecological regions. Conversely, several studies found lim-

ited or no significant changes to hydrologic systems post fire, or attributed fluctuations to natural annual variability (Aronica et

al., 2002; Bart and Hope, 2010; Britton, 1991; Townsend and Douglas, 2000).

These discrepancies in post-fire flow response lead to the question of which watershed characteristics have the greatest in-

fluence over the observed response? Moody et al. (2013) provide a succinct summary of soil-related theories, such as reduced10

infiltration due to increases in soil-water repellency, increased overland flow velocities due to increased bare ground, and re-

duced infiltration caused by soil-sealing. Theories commonly found in literature attribute flow changes to a wider range of

factors, including reduction in interception and evapotranspiration (Lavabre et al., 1993; Scott, 1993) and increased hydropho-

bicity of soils (Neary et al., 2005). In regards to altered peak flows, conflicting evidence is found regarding the importance of

burned watershed areas with some studies finding an inverse correlation between peak flows and watershed size (Biggio and15

Cannon, 2001; Neary et al., 2005) and others finding no relation at all (Bart and Hope, 2010).

The current research builds upon prior studies but develops a more comprehensive and systematic assessment of post-

fire streamflow dynamics by examining burned watersheds that encompass a wide spectrum of climatological and geophysical

parameters across the western US. A variety of statistical parameters are also examined which describe changes to flow regimes

at several levels. Furthermore, the variability in response by distinct regions is investigated, anticipating distinct differences20

influenced by regional climate. With downstream communities at risk for flooding, and also relying on catchment runoff for

water supply, investigating alterations in post-fire discharge over large scales will provide critical information for regional

managers on post-fire runoff mitigation. In addition, understanding factors controlling discharge response will help inform

development and calibration of surface water models used for post-fire streamflow predictions.
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Watersheds

Figure 1. Continental United States-scale map of the locations of the 82 watersheds utilized in this study.

2 Study Area

A total of 82 burned watersheds were utilized in the current study (Fig. 1), encompassing a range of spatial, temporal, clima-

tological, and topographic factors (Fig. 2). Selected watersheds were limited to those with burn areas of > 5% and adequate

discharge records (continuous 15 years daily flow, including 10 years pre-fire and 5 years post-fire) (U.S. Geological Survey,

2014) identified through the GAGES-II database (Falcone, 2011). The majority of available watersheds are overwhelmingly5

found in the western US, predominantly in California, Oregon, and Idaho, with several located in the North East, Florida, and

Kentucky. Due to discharge and burn severity data limitations, the fires cover a temporal range from water years 1984 through

2010. Percent area burned ranges from 5-97%, with a mean of 25%, over a range of watershed areas from 4.6-9209 km2.

The wide spatial distribution of the studied watersheds results in mean elevations and burn-area slopes varying from 13-2760

m and 0.11-16% respectively (Fig. 2). The most important difference between many of these watersheds is the variability in10

climate, the values of which were collected from the GAGES-II dataset (Falcone, 2011). GAGES-II watersheds have at least

one twenty year period with continuous daily flow records. Average basin precipitation ranges from 29-220 mm/yr, with a

mean of 72 mm/yr, and average temperature ranges from 1.4 -23 °C, with a mean of 10 °C. Important for identifying snow

dominated regions is the percent of precipitation (PPT) that falls as snow (%Snow/PPT), which ranges from 0-72% for the

study watersheds. Relative humidity ranges from 39-73%, with a mean of 55, and potential evapotranspiration ranges from15

400-1200 mm/yr, with a mean of 633 mm/yr.

Vegetation types vary across the watersheds as well. Evergreen forest and shrub vegetation are the dominant land cover type

over most watersheds used in this study (Fig. 3). The high proportion of evergreen is due to the dominance of this study’s high

elevation fires in mountainous regions and shrub prevalence is due to the abundance of study watersheds found in the chaparral

regions of Southern California. Grassland, mixed forest, and developed land account for a smaller proportion of land cover20

types. Barren land and wetland account for only a small percentage of land cover types throughout the watersheds in this study.
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Figure 2. Boxplot of National Land Cover Database (Homer et al., 2004) distribution across study watersheds.
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Figure 3. Boxplots summarizing the distribution of watershed area, elevation, percent area burned, precipitation that falls as snow, and

airidity index across study watersheds.
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3 Methods

3.1 Data Collection

Watershed parameters were chosen to encompass the variability in geophysical, burn area, and climatic conditions found

throughout the watersheds used in this study (Table 2.1). To identify spatial trends in post-fire response, watersheds were first

grouped through k-means clustering based on geographic and climatological data (described in section 3.1 below).5

3.1.1 Watershed Selection

Selected watersheds were required to have continuous daily flow records (>95% of daily flow records accounted for in each

year) for a minimum of 10 years pre-fire and 5 years post-fire. Using the approximately 9,000 watersheds in the GAGES-II

dataset (Falcone, 2011), delineated watersheds were spatially cross-referenced with the Monitoring Trends in Burn Severity

(MTBS) database of historic wildfires from 1984 – 2010 (Eidenshink et al. 2007). The results were again cross-referenced10

with USGS daily flow records (U.S. Geological Survey, 2014) to identify watersheds with the required flow records, resulting

in 263 unique watersheds in the US with greater than 5% total burn area in a single water year. Of these, 23 contained 2-3

wildfires within the same year burning over 5% of the total area. The remainder contained only a single significant fire in the

year of interest. Further exclusion of watersheds was based on the presence of major dams within the watershed flow regimes

extracted from the GAGES-II database (Falcone, 2011), resulting in a final collection of 82 watersheds.15

3.1.2 Streamflow and Precipitation Data

Daily flow and peak flow data were obtained from the USGS National Water Information System (U.S. Geological Survey,

2014), matched for the range of 10 years pre-fire and 5 years post-fire for each selected watershed. Monthly precipitation

data was collected from the PRISM database, a nation-wide 4 km resolution gridded monthly dataset that extrapolates station

climate measurements over unmonitored areas using a topographic- and climate-based algorithm (PRISM Climate Group,20

2004). Monthly national precipitation rasters were averaged for each watershed for all months within the flow record period.

3.1.3 Climatological data

Watershed climatological parameters included percent of precipitation that falls as snow (%Snow/PPT) and the aridity index

(AI). The %Snow/PPT for each watershed was available through the GAGES-II dataset (Falcone, 2011) and the aridity index

was calculated for each watershed as:25

AI =
Pavg

PETavg
(1)

where Pavg is average annual precipitation and PETavg is average annual potential evapotranspiration, both of which were

available in the GAGES-II dataset.
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3.1.4 Burn Severity data

Burn severity is the classification of burn areas relating visible changes in living and non-living biomass, fire byproducts,

and soil exposure within one growing season, including low, moderate, and high severity categories (Eidenshink et al., 2007).

Though categorization varies by region, some generalizations can be made. Typical high severity burns result in complete kills

of canopy trees and almost complete consumption of surface litter and organic soil layers (Neary et al., 2005). Characteris-5

tics of moderate burn severity include partial canopy cover kill, completely charred or consumed understory vegetation, and

widespread destruction of the soil organic layer. Low severity burns lightly scorch trees, char or consume surface litter, and

produce little to no charring of the soil organic layer. Wildfires are almost always a patchwork of varying degrees of burn

severity. More specifically, burn severity is the qualitative assessment of the heat pulse directed toward the ground during a

fire, relating soil heating, fuel consumption, and mortality of buried plant parts (National Wildfire Coordinating Group, 2016).10

Burn severity data were obtained for each unique fire through the MTBS database (Eidenshink et al., 2007) and quantified as

the percent area burned of the total watershed area. Values were categorized as unburned-low severity, moderate severity, and

high severity (Eidenshink et al., 2007).

3.1.5 Vegetation data

Vegetation data were identified for each burn area prior to the fire event. Due to the temporal gaps in the National Land15

Cover Database (Homer et al., 2004), an averaged normalized difference vegetation index (NDVI) was collected for pre-fire

burn areas to quantitatively summarize vegetation conditions, similar to previous studies (Barbosa et al., 1999; Kinoshita and

Hogue, 2011; Lee and Chow, 2015). NDVI is defined as:

NDV I =
anir − avis
anir + avis

(2)

where anir and avis are surface reflectance averaged over the ranges of wavelengths in the near infrared and visible spectrums,20

respectively. Despite NDVI having been shown to have accuracy issues related to atmospheric interference and variations in

soil brightness (Carlson and Ripley, 1997), the extended timespan over which values were being averaged may have muted any

such error responses.

Average values were collected for each watershed through national 32-day NDVI rasters hosted on Google Earth Engine

(GEE) (Google, Inc.), in turn calculated from Landsat5 composite satellite data freely available through the U.S. Landsat25

archive at the USGS Earth Resources Observation and Science (EROS) Center (Woodcock et al., 2008). Mean NDVI values

were produced for the burn areas of all watersheds for four years pre-fire.

3.1.6 Soils data

Soils data were collected through an adapted version of the State Soil Geographic (STATSGO) database, a national collec-

tion of over 78,000 polygons containing a host of soil characteristics (Schwartz and Alexander, 1995). The soil erodibility30

factor (Kfact) was utilized to numerically represent average soil types, as it provides a quantitative description of a soil’s
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erodibility. The calculation included values of particle size, percent organic matter, percent clay, soil structure index, and

profile-permeability class factor (Goldman et al., 1986). Kfact increases as the potential erodibility of a soil increases.

3.1.7 Topographic data

Utilized topographic data included watershed area and the elevation, slope, and aspect of burn areas, calculated through a 30

meter resolution CONUS Digital Elevation Model (U.S. Geological Survey, 2015). Percent burn areas of watersheds through5

intersection of watershed and MTBS fire polygons.

3.2 Response Variables

A range of response values were selected to quantify post-fire flow changes across a variety of flow conditions, including flows

relating to dry season (low flows, base flows) and wet season (high flows, peaks flows).

3.2.1 Low, high, and peak flows10

Low flow and high flow metrics were calculated for each of the ten years prior to the fire water year and averaged to produce a

single value. Low flows were defined as the average of mean daily flows with a 90% exceedance within a single water year. To

reduce calculation bias due to zero flow days commonly found in ephemeral stream systems, zero flow days were eliminated

from exceedance value calculations. High flows were defined similarly, with a 10% exceedance threshold used to isolate larger

volume flows (Kinoshita and Hogue, 2015). Changes in low flows and high flows were calculated as the post-fire percent15

change from the average of 10 water years pre-fire. Post-fire values were calculated for the 1st year, the 2nd year, and the 5

year mean. Peak flows were defined as the largest mean daily flow measurement each water year and post-fire changes were

calculated as the percent change of the 1st year, 2nd year, and 5 year mean peak flow measurements from the pre-fire ten year

mean. Percent changes in the number of zero flow days were calculated similarly.

3.2.2 Runoff Ratios20

The runoff ratio is defined as the fraction of total annual runoff depth over total annual precipitation:

RO =
Qtot/Aws

Ptot
(3)

where Ptot is total annual precipitation, Qtot is total annual runoff depth, and Aws is watershed area. Runoff ratio was calculated

for the ten years pre-fire and 5 years post-fire using PRISM precipitation and USGS mean daily flow data. Post-fire runoff

ratio response was calculated as the percent change between the 1st year, 2nd year, and average 5 year values post-fire and the25

pre-fire 10 year mean.
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3.2.3 Base flow and Richards-Baker indices

Base flow index, defined as the fraction of total streamflow that is baseflow (Baker et al., 2004), was calculated for each water

year through the R package ‘hydrostats’ (Bond, N., 2015), that applies the Lyne-Hollick filter (Ladson et al., 2013). Baseflow

index response was calculated as the percent change of the 1st, 2nd, and 5 years post-fire from the mean of the 10 years pre-fire.

The Richards-Baker index quantifies the frequency and rapidity of short-term changes in streamflow (flashiness) based on5

daily flow data through the equation:

R−BIndex=

∑n
i=1 |qi− qi−1|∑n

i=1 qi
(4)

where q is mean daily flow and t is time (Baker et al., 2004). Richards-Baker response was calculated as the percent change

from the average value over the ten years pre-fire to the average 1 year, 2 years, and 5 years post-fire.

3.3 k-means Clustering10

To create region-specific regression models, watersheds were classified into unique areas through k-means clustering (Mac-

Queen, 1967) based on all GAGES II watersheds. This approach partitions an N-dimensional population of observations into

clusters with minimal variation, allowing for relatively simple similarity grouping. For the current study, the ideal ensemble

of clusters was one that produced easily recognizable regions with unique climatological characteristics. Large-scale cluster-

ing methods have been applied in prior watershed classification studies, but utilized more complex streamflow and ecological15

indices as parameters (McManamay et al., 2014; Poff, 1996).

Wildfires in this study are primarily in western evergreen and shrub environments, so clustering using only these watersheds

would likely produce regions biased by fire occurrence. To limit this impact, we applied the mclust package in R (Fraley et

al., 2012) to cluster using the entire 9,000 GAGES-II watersheds to produce national regions. The mclust package was chosen

over the standard kmeans function in R due to its inclusion of numerous model-based approaches and application of the Bayes20

Information Critera (BIC) to determine the most accurate model and cluster count (Schwarz, 1978). Various groupings of

simple parameters were used for clustering including watershed latitude and longitude, elevation, AI, %Snow/PPT, and mean

monthly and seasonal flow statistics.

3.4 Control Evaluation Methods

Characterization of the influence of watershed geophysical parameters on flow response was performed using three approaches.25

First, calculation of the Spearman correlation coefficient between independent and response variables. Second, calculation of

two types of regression equations: 1) a standard multiple linear regression model, and 2) a logistic regression model where

responses greater than 20% are assigned a value of 1 and responses less than 20% are assigned a value of 0. Third, application

of a conditional inference tree algorithm through the “party” package in R (Hothorn et al., 2006). This algorithm first applies

a significance test to identify the independent variables that have the strongest association with the response variable. It then30

searches for the best split points in those independent variables to partition the data into a tree.
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Figure 4. CONUS scale map of the results of k-means clustering of the GAGES-II watershed set by climate variables.
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Figure 5. CONUS scale map of the k-means clustered study watersheds.

4 Results and Discussion

4.1 Clustering

The k-means clustering performed on the GAGES-II watershed set yielded 9 clusters or regions (Fig. 4). The most useful

clusters for the current study are 6 through 9, which assemble 77 of the 82 watersheds into unique regions (Fig. 5). These four

clusters have unique characteristics (Fig. 6). Watersheds in cluster 6, on average, have the highest Kfact, though almost all are5

burned less than 20%. They have relatively moderate %Snow/PPT values and the lowest AI values. Watersheds in cluster 7

have the highest average area and elevation, and accordingly the highest %Snow/PPT and the lowest NDVI. Cluster 8 contains

watersheds with the widest range of relative fire sizes, including watersheds burned from as little as 10% to as great as 97%.

Watersheds in cluster 8 also have the lowest average elevations and areas, as well as the smallest %Snow/PPT and low AI. The
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Figure 6. Boxplots of the variation in explanatory variables by cluster.

percent of the burn area rated as high burn severity is also the greatest, on average, in cluster 8 watersheds. Cluster 9 watersheds

have the lowest KFACT and highest elevations. These watersheds also have high %Snow/PPT and AI.

4.2 Response Variable Distribution and Analyses

Calculated flow response variables indicate an extremely wide range of post-fire system responses (Fig. 7). The greatest ranges

occur within variables representing changes in low flows, such as first year change to number of zero flow days (st. dev =5

243%), first year baseflow index (236%) and five year change to number of zero flow days (201%). The tightest ranges are

typically found within mean five year variables where extreme changes are muted, such as five year Richards-Baker (28%),

runoff ratio (39%), and baseflow index (48%). Response variable means range from as low as 0.92% (five year Richards-Baker)

to as great as 115% (first year change to number of zero flow days). Due to the nature of response calculations, number of zero

flow day values were limited. First and second year zero flow day responses were found for only 22 watersheds, and for 2710

watersheds for the five year values.
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4.2.1 Trend Analysis
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Figure 8. Scatterplots of 1st and 2nd year response variables versus 5 year means with lines-of-best-fit.
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Comparison of 1st year response variables to 5 year mean variables typically results in slope values greater than one, with a

mean slope of 1.9 (Fig. 8) and the greatest slopes being found in first year low flow, high flow, and baseflow index response

variables. Best fit lines of 2nd year response variables versus 5 year mean variables produce significantly lower slopes, with a

mean of 0.78. We can infer from this that the greatest increases in these response variables are typically generated in the first

year following a fire. Similarly, in comparing response variables to percent area burned (Fig. 9), best fit lines show the greatest5

slopes in 1st year values for low flows, high flows, and peak flows. Slopes in second year values are almost always less than

those of the first year values and almost always greater than those of the 5 year mean values. The exception to this are second

year number of zero flow days values that decrease with increased fire size. Overall, number of zero flow days is observed

to increase post-fire, though due to both a small sample size and a short time period, results are most likely unreliable. Only

Richards-Baker indicates little linear correlation to burn area, yielding marginal first and second year slopes, and five year10

mean values decrease with percent area burned.
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Figure 9. Scatterplots of response variables versus percent watershed burned. Best fit lines provided to demonstrate correlation.

These findings largely confirm those of previous studies which posit that streamflow response tends to be greatest immedi-

ately following a wildfire. While there is significant noise in the data, we find similar results. While response tends to increase

overall within five years of a wildfire, the greatest increases are frequently found within the first year.
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4.2.2 Response variability by cluster
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Figure 10. Boxplots of relative response variables by cluster. Relative response is actual response divided by percent area burned, in order to

show response relative to fire size.

Boxplots for response variables show differences across the four significant clusters noted above (Fig. 10). In this instance and

that of the CONUS plots, all variables are scaled by dividing the variable by the percent burn area of the watershed in order

to show relative response. Generalizing variability and magnitudes, dramatic differences can be established between clusters.

Most noteworthy is Cluster 9, which dominantly produces negative streamflow responses post-fire. The largest magnitude5

relative responses are found in Cluster 6, which results in the greatest variability between variables (st.dev = 8.5). The most

positive responses are found in Cluster 8, which frequently exhibits large positive responses and infrequent low negative

responses. Cluster 7 produces low magnitude responses. Though they are, on average, positive there are also several negative

responses.

Evaluating cluster responses when they are not scaled relative to fire size percent area burned shows many similarities to10

the transformed results. For instance, average response in Cluster 9 is still dominantly negative with an overall low magnitude.

Cluster 8 demonstrates the greatest overall variability and magnitude. On average, response in this cluster is strongly positive.

Cluster 7 responses are small relative to other clusters in this study with a negative trend. Cluster 6 still exhibits high variability

and low magnitude. What we surmise from these results is that watersheds in the Cluster 8 region will most likely be impacted

the most from wildfire in terms of flow response. Watersheds in Clusters 7 and 9 see substantially lower responses, if any at15

all. Cluster 6 may prove to be the most difficult to predict due to its high variability in response.
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Evidence of temporal patterns is sometimes noticeable when examining response by cluster. In Clusters 6 and 9, there are no

distinct trends between first, second, and five year mean relative values. In some response variables, there are increases in the

values of second year variables within Cluster 9. Cluster 7 typically shows negative relative and responses in first year values,

but increasing positive values in the second and five year means. Cluster 8 produces largest response values in the first year

after a fire. Relative values tend to be negative in the second year and positive over the five year mean. Actual values are still5

positive in the second year.

By examining response values by cluster, we are able to identify more intricate and robust trends than by simply examining

the dataset as a whole. Spatially, we find that watersheds in Cluster 8 produces much greater and more predictable post-fire

flow responses than watersheds in Cluster 6, 7, and 9. Responses in Clusters 7 and 9, overall, tend to be low magnitude and

negative. Cluster 6 watersheds yield highly variable responses. Watersheds in Cluster 8 follow the temporal trend found when10

examining all study watersheds as a whole, with greatest responses occurring in the first post-fire year and decreasing over time.

However, the magnitude of the response of these fires skewed the results of the generalized examination at the beginning of

this section. Cluster 7 watersheds, in fact, produce decreased responses in the first year post-fire with increased flows occurring

at the second year and five year mean time periods. Clusters 6 and 9 exhibit little to no temporal trends at all.
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Figure 11. Scatterplots of the R2 and p-value results of simple linear regression modeling of response variables versus an increasing percent

burn limitation. Response variables are abbreviated as LF (low flow), HF (high flow), RO (runoff ratio), PF (peak flow), BFI (base flow

index), and RB (Richards-Baker).
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Variability in response variables also generally decreases with increasing percent watershed burned. Linear regression mod-

eling of response variables by percent watershed burned yields the error statistics found in Figure 10 (i.e. decreasing sample

size with increasing percent area burned). Figures include the adjusted R2 and p-value significance tests (alpha = 0.05). Gener-

ally, linear modeling of 1st year response variables increases in accuracy as included values are limited by increasing percent

burn area. First year low flow, high flow, peak flow, and Richards-Baker variables show substantial increases in adjusted R25

once included watersheds are limited to those exceeding a 50% burn area (n=12). Included p-values indicate that several of the

first year low flow and peak flow models are statistically significant.

Applying the same methods to 2nd year values shows dissimilar results, with adjusted R2 exceeding 0.5 in only a single

instance (second year high flows), and few significant p-values. However, in the cases of second year low flow and Richards-

Baker, R2 values increase with increasing percent burn threshold. Simple regression of 5 year mean values versus percent area10

burned produce mixed results with only 5 year mean low flow and peak flow allowing for adjusted R2 values greater than

0.5, few of which are statistically significant. 5 year mean baseflow index shows a single instance of a high adjusted R2 value

but is statistically insignificant. Simple regression modeling was also performed on response variables by limiting included

watersheds by decreasing percent area burned (i.e. decreasing sample size with decreasing percent area burned) and results

demonstrated zero significant adjusted R2 values.15

The results from Cluster 8, a dominantly chaparral environment, agree with other studies within the same region (Coombs

and Melack, 2013; Kinoshita and Hogue, 2011 and 2015; Loáiciga et al., 2001) and in chaparral environments outside the

United States (Hessling, 1999; Lavabre et al., 1993; Lindley et al., 1988; Scott, 1993). As mentioned in the introduction, some

studies find little to no change in streamflow post-fire (Aronica et al., 2002; Bart and Hope, 2010; Britton, 1991; Townsend and

Douglas, 2000).20

4.3 Influence of Geophysical parameters on response

4.3.1 Spearman Correlation

Spearman correlation between the independent and dependent variables, averaged across response variables, shows somewhat

muddled disordered results (Fig. 12). Generally, NDVI, AI, %Snow/PPT, and slope are positively correlated with flow response.

Low burn severity area, KFACT, and watershed area are typically negatively correlated with flow response. Thus, as NDVI,25

AI, %Snow/PPT, and slope increase, response increases. As low burn severity, KFACT, and watershed area increase, response

decreases. More difficult to interpret are the results for other independent variables, including moderate burn severity, high burn

severity, elevation, etc. The correlation of these variables appears to switch from positive to negative by cluster. Ascertaining a

significance for their relationships may be impossible via correlation for such a small sample size.

Correlation coefficients tend to be most different within Cluster 6, where NDVI, AI, percent area burned, KFACT, high burn30

severity, and moderate burn severity show values contradicting those produced for Clusters 7-8, as well as for the fires as a

whole. This is most likely indicative of a significant difference in response patterns for the region. Unfortunately, identifying

significant trends is difficult given the relatively small dataset currently available.
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Figure 12. Heatmap of the averaged Spearman correlation coefficients of independent variables versus response variables, by cluster.

Figure 13 demonstrates the correlation coefficients found across all fires. The largest absolute correlation value is 0.32,

only 20% of coefficients are greater than 0.10, and only 10 correlations are statistically significant according to asymptotic

p-values. As relative fire size is progressively limited to larger and larger values, correlation coefficients increase. NDVI, AI,

percent watershed burned, slope, high burn severity, and moderate burn severity are dominantly positively correlated with flow

response. Low burn severity, KFACT, and watershed area are dominantly negatively correlated with flow response. Elevation5

and %Snow/PPT display more varied correlations, but are generally negatively correlated with flow response. From these

results, we can surmise that as the NDVI, AI, percent area burned, slope, and moderate/high burn severity area increase, flow

response values will increase as well. Furthermore, as low burn severity, KFACT, and watershed area increase, flow response

will decrease.
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Figure 13. Heatmap of Spearman correlation coefficients of independent variables versus each response variable, for all watersheds. Re-

sponse variables are abbreviated as LF (low flow), HF (high flow), RO (runoff ratio), PF (peak flow), BFI (base flow index), and RB

(Richards-Baker). "One", "Two", and "Five" refer to the year of the response variable.

4.3.2 Regression

Figure 14 show the beta (coefficient) values produced by averaging the results of the linear and logistic regression models. The

resulting betas are highly variable and thus trends are either difficult to interpret or nonexistent. To clarify results, Figure 15

is provided with logical values, where positive and negative betas are shown as values 1 and -1, respectively. Some trends are

in agreement with those of the correlation results, such as moderate burn severity being positively correlated with response.5

Watershed area is also in agreement, showing negative correlation with response. All other independent variables that were

dominant under Spearman correlation are either too variable between clusters to accurately characterize, or are opposed to

correlation results. For instance, NDVI and AI can be strongly positively or negatively correlated with response depending on

cluster. Clusters 7 and 8 demonstrate an expected response of inverse correlation between NDVI and runoff; i.e. as vegetation

becomes denser and ET processes recover, less water exits the watershed through streamflow.10
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Figure 14. Heatmap of the averaged regression model beta values for each cluster.

Similarly, as AI increases, streamflow increases; i.e. in more arid watersheds post-fire vegetation is likely less dense, using

less water and more is released through streamflow. However, in cluster 6, NDVI appears to be positively correlated with

streamflow and AI negatively correlated. Thus, as vegetation density increases and aridity decreases, streamflow increases.

These unexpected deviations in trends may be due in part to climate fluctuations that can have a strong impact on results due

to the small sample size. High burn severity is shown to be negatively correlated with response across all clusters. Because the5

sample size of these clusters is so small (ranging from n=12 to 29), regression results may not be appropriate.
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Figure 15. Heatmap of logical values of the averaged regression model beta values for each cluster shown in Figure 14.

4.3.3 Random forest

Application of the random forest method provided little further insight into controlling watershed parameters. Applying the

algorithm to the response values resulted in significant trees for only first year low flow, high flow, runoff ratio, and peak flow,

as well as for second year low flow. For the low flow response variables, area burned and aspect were the dominant controlling

independent variables. For first year low flow, watersheds burned greater than 23.3% show the greatest response. Of those5

burned less than that threshold, some significant responses are found when burn areas have an aspect greater than 215 degrees.

For second year low flow, the largest responses are found in watersheds burned greater than 37%.

First year high flow, runoff ratio, and peak flow are identified as being significantly affected by slope. Slopes of 7.0, 7.0,

and 9.8 degrees divide response, respectively. Watersheds with greater than these slopes demonstrate much greater high flow,

runoff ratio, and peak flow in the first year than those with gentler slopes. This may be because steeper watersheds produce10

greater overland flow velocities or support shallower soil layers, and thus have lower water absorption rates than in more gently

sloped basins.

4.3.4 Discussion of Geophysical Parameters

Through Spearman correlation, the independent variables NDVI, AI, percent area burned, slope, moderate burn severity, and

high burn severity are positively correlated with post-fire flow response. Low burn severity, KFACT, and watershed area are15

negatively correlated with response. The results of several regression models are less clear, with inconstant relationships across
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all fires and clusters. Generally, they show that only moderate burn severity is dominantly positively correlated with response

and that watershed area and, somehow high burn severity are negatively correlated with response. Random forest analysis

shows that significant relationships can be found for the first year low flow, high flow, runoff ratio, and peak flow response

variables, as well as second year low flow. These relationships are dominated by dependence on either percent burn area or by

slope.5

Overall, results of geophysical parameter characterization are somewhat inconsistent, likely due to the sample size of this

study. Though it is one of the largest to date, there are still too few fire events relative to the number of geophysical parameters

to produce consistent results. What can be gleaned from the various methods used in this section is that slope is frequently a

strong predictor of response. Possible reasons for this are that water absorption into soil may decrease along steeper slopes due

to greater overland flow velocity (i.e. less time available for absorption), or that soils along steeper slopes may be shallower, thus10

decreasing potential absorption volume. Both of these possibilities may account for increased water contribution to streamflow

in regions with greater slope.

Support for this argument is found in the Spearman correlation coefficient analysis in Figures 12 and 13, where slope is

shown to be strongly correlated with low flow, high flow, peak flow, and runoff responses, as well as in the random forest

analysis where slope is one of the few independent variables to be identified as significant.15

Determining the influence of independent variables on response at the cluster level seems, with this sample size, unreason-

able . Furthermore, several explanatory variables are significantly correlated. Although LASSO regression and random forest

methods identify correlated values, reducing the overall number of variables in future studies may yield more understandable

models. There is too much variance in flow regimes to complete a trend analysis with groupings of the size produced in this

study. However, over the next decade the sample size of this study should be able to be increased significantly and provide a20

more robust dataset for analysis.

5 Conclusions

Post-fire changes in streamflow are found to be highly variable across regions of the western U.S. and some trends can be

difficult to discern or may be non-existent. In general, flow response for the study watersheds was found to be greatest in

both magnitude and variability within the first year following a fire and shown to decrease over a five year period. However,25

upon examination of response by cluster we find that these general trends are dominated by the high-magnitude responses of

watersheds from Cluster 8. While watersheds from Clusters 6 and 9 do not show identifiable trends, Cluster 7 shows decreased

responses in the first year following fires and positive, increasing responses in just the second year and in the five year means,

indicating that Cluster 7 watersheds have a more delayed flow response. Trends within Cluster 8 agree with other studies

within the same region and in chaparral environments in other parts of the world. This study similarly identifies several regions30

(Clusters 6 and 9) that also do not exhibit significant distinguishable trends.

Identification of controlling watershed parameters on response provided somewhat weak results. Various methods showed

sometimes contrary results, or none at all. Spearman correlation indicated that watershed slope, normalized difference vegeta-
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tion index (NDVI), aridity index (AI), and percent of precipitation that falls as snow (%Snow/PPT) are positively correlated

with flow response. Percent area low burn severity, erodibility factor (Kfact), and watershed area were shown to be negatively

correlated with response. These correlations largely agree with the positions asserted by Moody et al. (2013), Biggio and

Cannon (2001), and Neary et al. (2005). Regression models showed that only moderate burn severity and watershed area are

consistently positively and negatively correlated, respectively, with flow response. Random forest models indicated that percent5

area burned and slope are the only significant factors, and only for first year response metrics.

The observed changes in streamflow following wildfire identified have wide-ranging implications for better understanding

post-fire water budgets, downstream flood response, long-term water yield, and watershed modeling. Improved streamflow pre-

dictions will ultimately allow water resource managers in water-scarce regions to anticipate surplus volume in their budgeting

forecast calculations and also help flood forecasters to identify areas at greater risk for damage and infrastructure overload.10

Identification of the influence of watershed geophysical parameters on post-fire streamflow should also enable improved cali-

bration of regional models for burned watersheds.

Acknowledgements. This work was partially supported by a USGS internship through the Colorado Water Science Center. We thank the

reviewers for their constructive comments and insight during the review process which improved our manuscript.

22



References

Aronica, G., Candela, A., and Santoro, M. (2002). Changes in the hydrological response of two Sicilian basins affected by fire. (IAHS Press),

pp. 163–169.

Baker, D.B., Richards, R.P., Loftus, T.T., and Kramer, J.W. (2004). A New Flashiness Index: Characteristics and Applications to Midwestern

Rivers and Streams1. JAWRA Journal of the American Water Resources Association 40, 503–522.5

Barbosa, P.M., Stroppiana, D., Gregoire, J.M., and Pereira, J.M.C. (1999). An assessment of vegetation fire in Africa (1981-1991): Burned

areas, burned biomass, and atmospheric emissions. Glob. Biogeochem. Cycle 13, 933–950.

Bart, R., and Hope, A. (2010). Streamflow response to fire in large catchments of a Mediterranean-climate region using paired-catchment

experiments. Journal of Hydrology 388, 370–378.

Benavides-Solorio, J., and MacDonald, L.H. (2001). Post-fire runoff and erosion from simulated rainfall on small plots, Colorado Front10

Range. Hydrol. Process. 15, 2931–2952.

Biggio, E.R., and Cannon, S.H. (2001). Compilation of post-wildfire runoff data from the Western United States (U.S. Geological Survey).

Bond, N. (2015). hydrostats: Hydrologic Indices for Daily Time Series Data.

Britton, D.L. (1991). Fire and the chemistry of a South African mountain stream. Hydrobiologia 218, 177–192.

Burke, M.P., Hogue, T.S., Ferreira, M., Mendez, C.B., Navarro, B., Lopez, S., Jay, J.A. (2010). The effect of wildfire on soil mercury15

concentrations in southern California watersheds. Water, Air, Soil Pollution 212, 369-385.

Burke, M.P., Hogue, T.S., Kinoshita, A., Barco, J., Wessel, C., Stein, E. (2013). Pre- and post-fire pollutant loads in an urban watershed in

southern California. Environmental Monitoring and Assessment 185, 10131-10145.

Cannon, S.H., Kirkham, R.M., and Parise, M. (2001). Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado.

Geomorphology 39, 18.20

Carlson, T.N., and Ripley, D.A. (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of

Environment 62, 241–252.

Coombs, J.S., and Melack, J.M. (2013). Initial impacts of a wildfire on hydrology and suspended sediment and nutrient export in California

chaparral watersheds. Hydrol. Process. 27, 3842–3851.

DeBano, L.F. (2000). The role of fire and soil heating on water repellency in wildland environments: a review. J. Hydrol. 231, 195–206.25

Eidenshink, J., Schwind, B., Brewerm K., Zhu, Z., Quayle, B., Howard, S. (2007). A project for monitoring trends in burn severity. Fire

Ecology Special Issue 3.

Emelko, M.B., Silins, U., Bladon, K.D., and Stone, M. (2011). Implications of land disturbance on drinking water treatability in a changing

climate: Demonstrating the need for “source water supply and protection” strategies. Water Research 45, 461–472.

Emmerich, W.E., and Cox, J.R. (1994). Changes in Surface Runoff and Sediment Production after Repeated Rangeland Burns. Soil Science30

Society of America Journal 58, 199.

Falcone, J. (2011). GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow (Reston, Virginia: U.S. Geological Survey).

Fraley, C., Raftery, A.E., Murphy, T.B., and Scrucca, L. (2012). mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clus-

tering, Classification, and Density Estimation (Department of Statistics, University of Washington).

Goldman, S.J., Jackson, K., and Bursztynsky, T.A. (1986). Erosion and sediment control handbook (McGraw-Hill).35

Google, Inc. Google Earth Engine. Accessed 2015.

23



Hessling, M. (1999). Hydrological modelling and a pair basin study of mediterranean catchments. Physics and Chemistry of the Earth, Part

B: Hydrology, Oceans and Atmosphere 24, 59–63.

Hester, J.W., Thurow, T.L., and Charles A. Taylor, J. (1997). Hydrologic Characteristics of Vegetation Types as Affected by Prescribed

Burning. Journal of Range Management 50, 199–204.

Homer, C., Huang, C., Wylie, B., and Coan, M. (2004). Development of a 2001 National Landcover Database for the United States. Pho-5

togrammetric Engineering and Remote Sensing 70, 829–840.

Hothorn, T, Hornik, K., Zeileis, A. (2006). Unbiased Recursive Partitioning: A Conditional Inference Framework. Journal of Computational

and Graphical Statistics, 15(3), 651–674.

Kinoshita, A.M., and Hogue, T.S. (2011Spatial and temporal controls on post-fire hydrologic recover in southern California watersheds.

Catena 87, 240-252.10

Kinoshita, A.M., and Hogue, T.S. (2015). Increased dry season water yield in burned watersheds in Southern California. Environ. Res. Lett.

10, 014003.

Ladson, A.R., Brown, R., Neal, B., Nathan, R. (2013). A standard approach to baseflow separation using the Lyne and Hollick filter. Aus-

tralian Journal of Water Resources 17, 24-34.

Lavabre, J., Torres, D.S., and Cernesson, F. (1993). Changes in the hydrological response of a small Mediterranean basin a year after a15

wildfire. Journal of Hydrology 142, 273–299.

Lee, R.J., and Chow, T.E. (2015). Post-wildfire assessment of vegetation regeneration in Bastrop, Texas, using Landsat imagery. GISci.

Remote Sens. 52, 609–626.

Lindley, A.J., Bosch, J.M., and van Wyk, D.B. (1988). Changes in water yield after fire in fynbos catchments. Water SA 14, 7–12.

Littell, J.S., McKenzie, D., Peterson, D.L., and Westerling, A.L. (2009). Climate and wildfire area burned in western U.S. ecoprovinces,20

1916–2003. Ecological Applications 19, 1003–1021.

Loaiciga, H.A., Pedreros, D., and Roberts, D. (2001). Wildfire-streamflow interactions in a chaparral watershed. Advances in Environmental

Research 5, 295–305.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. (The Regents of the University of Califor-

nia).25

McManamay, R.A., Bevelhimer, M.S., and Kao, S.-C. (2014). Updating the US hydrologic classification: an approach to clustering and

stratifying ecohydrologic data. Ecohydrol. 7, 903–926.

Meyer, G.A., Pierce, J.L., Wood, S.H., and Jull, A.J.T. (2001). Fire, storms, and erosional events in the Idaho batholith. Hydrol. Process. 15,

3025–3038.

Moody, J.A., and Martin, D.A. (2001). Initial hydrologic and geomorphic response following a wildfire in the Colorado Front Range. Earth30

Surface Processes and Landforms 26, 1049–1070.

Moody, J.A., Shakesby, R.A., Robichaud, P.R., Cannon, S.H., and Martin, D.A. (2013). Current research issues related to post-wildfire runoff

and erosion processes. Earth-Science Reviews 122, 10–37.

Moritz, M.A., Moody, T.J., Krawchuk, M.A., Hughes, M., and Hall, A. (2010). Spatial variation in extreme winds predicts large wildfire

locations in chaparral ecosystems. Geophys. Res. Lett. 37, L04801.35

National Wildfire Coordinating Group. Glossary of Wildland Fire Terms, accessed 2016.

Neary, D.G. (2003). Post-wildfire watershed flood responses.

Neary, D.G., Ryan, K.C., and DeBano, L.F.; (2005). Wildland fire in ecosystems: effects of fire on soils and water.

24



Owens, P.N., Giles, T.R., Petticrew, E.L., Leggat, M.S., Moore, R.D., and Eaton, B.C. (2013). Muted responses of streamflow and suspended

sediment flux in a wildfire-affected watershed. Geomorphology 202, 128–139.

Pausas, J.G., Llovet, J., Rodrigo, A., and Vallejo, R. (2008). Are wildfires a disaster in the Mediterranean basin? – A review. International

Journal of Wildland Fires 17(6), 713–723.

Pierson, F.B., Moffet, C.A., Williams, C.J., Hardegree, S.P., and Clark, P.E. (2009). Prescribed-fire effects on rill and interrill runoff and5

erosion in a mountainous sagebrush landscape. Earth Surface Processes and Landforms 34, 193-203.

Poff, N. (1996). A hydrogeography of unregulated streams in the United States and an examination of scale-dependence in some hydrological

descriptors. Freshwater Biology 36, 71–79.

PRISM Climate Group (2004). Oregon State University, http://prism.oregonstate.edu.

Santos, R.M.B., Sanches Fernandes, L.F., Pereira, M.G., Cortes, R.M.V., and Pacheco, F.A.L. (2015). Water resources planning for a river10

basin with recurrent wildfires. Science of The Total Environment 526, 1–13.

Schwartz, G.E., and Alexander, R.B. (1995). Soils data for the Conterminous United States Derived from the NRCS State Soil Geographic

(STATSGO) Data Base.

Schwarz, G. (1978). Estimating the Dimension of a Model. Ann. Statist. 6, 461–464.

Scott, D.F. (1993). The hydrological effects of fire in South African mountain catchments. J Hydrol. Journal of Hydrology 150, 409–432.15

Shakesby, R.A., and Doerr, S.H. (2006). Wildfire as a hydrological and geomorphological agent. Earth-Sci. Rev. 74, 269–307.

Smith, H.G., Sheridan, G.J., Lane, P.N.J., Nyman, P., and Haydon, S. (2011). Wildfire effects on water quality in forest catchments: A review

with implications for water supply. Journal of Hydrology 396, 170–192.

Stein, E.D., Brown, J.S., Hogue, T.S., Burke, M.P., and Kinoshita, A. (2012). Stormwater contaminant loading following southern California

wildfires. Environ. Toxicol. Chem. 31, 2625–2638.20

Townsend, S.A., and Douglas, M.M. (2000). The effect of three fire regimes on stream water quality, water yield and export coefficients in a

tropical savanna (northern Australia). Journal of Hydrology 229, 118–137.

U.S. Geological Survey (2014). National Water Information System—NWISWeb: accessed on various dates in 2014 at

http://waterdata.usgs.gov.

Watson, F., Vertessy, R., McMahon, T., Rhodes, B., and Watson, I. (2001). Improved methods to assess water yield changes from paired-25

catchment studies: application to the Maroondah catchments. Forest Ecology and Management 143, 189–204.

Westerling, A.L., Hidalgo, H.G., Cayan, D.R., and Swetnam, T.W. (2006). Warming and earlier spring increase western US forest wildfire

activity. Science 313, 940–943.

Westerling, A.L. (2016). Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Philosophical Transac-

tions of the Royal Society B (371).30

Wilkinson, S.N., Wallbrink, P.J., Hancock, G.J., Blake, W.H., Shakesby, R.A., and Doerr, S.H. (2009). Fallout radionuclide tracers identify a

switch in sediment sources and transport-limited sediment yield following wildfire in a eucalypt forest. Geomorphology 110, 140–151.

Whitlock, C. (2004). Land management: Forests, fires and climate. Nature 432, 28–29.

Woodcock, C.E., Allen, R., Anderson, M., Belward, A., Bindschadler, R., Cohen, W., Gao, F., Goward, S.N., Helder, D., Helmer, E., Nemani,

R., Oreopoulos, L., Schott, J., Thenkabail, P.S., Vermote, E.F., Vogelmann, J., Wulder, M.A., Wynne, R. (2008). Free access to Landsat35

imagery. Science 320.

25


