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Abstract. The rainfall-runoff conceptual model as a cascade of submerged linear reservoirs with particular outflows 

depending on storages of adjoining reservoirs is developed. The model output contains different exponential functions with 

roots of Chebyshev polynomials of the first kind as exponents. The model is applied to IUH and recession curves problems 

and compared with the analogous results of the Nash cascade. Case study is performed on a basis of 46 recession periods. 

Obtained results show the usefulness of the model as an alternative concept to the Nash cascade. 10 
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1 Introduction 

The significance of the conceptual model of the rainfall-runoff relation conceptual model introduced by Nash as a linear 

cascade of reservoirs (Nash, 1957) and developed later as parallel cascades (Wittenberg, 1975; Oben-Nyarko, 1976) known 15 

nowadays as the Diskin model (Diskin et al., 1978; Diskin, 1980) cannot be overestimated. These models have been widely 

applied in the mathematical modeling of catchments for many years and are still are in use. Undoubtedly, one of the 

advantages of these models is the simplicity related to the linearity, what corresponds inter alia to the real baseflow features 

(Fenicia et al., 2006). However, the Nash and Diskin models do not represent many real hydrographs correctly enough, 

including peak flows (Singh, 1976). Bárdossy (2007) noticed the great uncertainty of the identified cascade parameters and 20 

related difficulties with in the determination of the optimum parameters set for a particular catchment. These problems 

considered together considered with the high diversity of real hydrographs shapes including recession curves (Stoelzle et al., 

2003) imply force searches for new solutions. One of the modern tendencies are nonlinear models (e.g. Liu and Todini, 

2002; Ding, 2011; Kim and Georgakakos, 2015). This direction of researches may be perceived as an expression of 

disappointment due to unsatisfactory results of linear models applications. On the other hand it seems, however, that the 25 

possibilities of linear models have not been exploited enough. The linear model of cascaded reservoirs generating outputs 

different from the classical Nash hydrographs, which may be an alternative solution to standard ones, is presented below. 
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2 Submerged cascade model 

2.1 Theoretical considerations 

The peculiarity of the model is replacing classical reservoirs of the Nash cascade by submerged ones (Fig. 1), where 

outflows depend on storages of adjoining reservoirs (except the last reservoir in a chain). Assuming the linearity of the 

system, it is described by the set of constitutive equations: 5 
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and continuity equations: 
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Substituting (1) to (2) and introducing a commonly used simplification: 

kkkk n  21            (3) 10 

yields the following set of equations: 
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To solve the nonhomogeneous set of equations (4), the solution to a homogeneous set is necessary. At P = 0 the set of 

equations (4) generates a tridiagonal matrix: 
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If all eigenvalues of the matrix nnA  are different, the global solution to the set (4) with the condition P = 0 is: 
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where  is a vector of the matrix nnA  eigenvalues,  – matrix of coefficients creating a fundamental set of solutions and  

C – vector of coefficients depending on initial conditions.  5 

Determination of the eigenvalues vector requires the solution to the equation: 

  0det  nnn IA             (7) 

where nI is the identity matrix of size n. After substituting  = k∙   the equation (7) may be written in a the form: 
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Values Wn() may be determined by the recurrence formula: 10 
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Figure 2 shows the Wn() functions for different numbers of reservoirs n. Due to the Favard’s theorem (Favard, 1935) the 

values Wi produce a sequence of orthogonal polynomials, what resultsing from the 3-term recurrence relation. However, the 

roots of these polynomials of higher degrees are difficult to calculate. Therefore, the above concept of submerged cascade 
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requires the modification, facilitating calculations of the consecutive eigenvalues (as a consequence, also  coefficients). This 

can be done by increasing the storage coefficient k for the last reservoir in a chain twice (model SC2):  

,121 kkkk n    kkn 2                 (10) 

It is worth noting that the concept of differentiating k value of the last reservoir in relation to the rest of the chain is not new; 

in 2006 was introduced by Szilagyi to a model with fractional numbers of reservoirs (Szilagyi, 2006).  5 

The matrix of equations set constituting the SC2 model has the form:   
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Thus, analogously to the formulas (7) and (8), the determination of the eigenvalues vector requires the solution to the 

equation: 
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and the function Wn() may be calculated recursively: 
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Thus, 
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where Tn is a Chebyshev polynomial of the first kind and n-th degree. Functions Wn() are shown in Fig. 3. 15 

Roots of the Chebyshev polynomials of any degree satisfy the relation: 
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so the eigenvalues of the matrix (11) yield: 

  knjj  ,22  , where 
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The derivation of the coefficients ij is given in Appendix A. Finally, the general solution (6) for SC2 yields: 5 
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In particular, for the last reservoir in a chain: 
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Determination of the constants of integration to the SC2 model requires the following formula application:   

 0QC  1γ                    (19) 10 

where Q(0) is a vector of initial conditions, depending on the analyzed problem. The derivation of the inverse matrix -1 is 

given in Appendix A. 

2.2 Physical interpretation of the SC2 model assumptions 

The conditions of the filling/emptying rates for cascades of reservoirs are is the basic feature differentiating (in a physical 

sense) the SC2 and Nash models. In the SC2 model this rate depends on storages of both adjoining reservoirs (except the last 15 

reservoir in a chain), while in the Nash one it depends on the upper reservoir storage only. In other words, the present state of 

the reservoir in the Nash model does not affect the upper part of the cascade. This difference is analogous to the distinction 

between supercritical and subcritical flows in open channels, where any action can affect the upper part of a stream in the 

subcritical flow only. It is worth noting that the difference between storages of two neighboring reservoirs may be perceived 

analogously to the hydraulic slope in the groundwater flow; therefore, the SC2 model is a conceptual performance of the 20 

Darcy law then. This analogy allows to anticipateion of the usefulness of the SC2 application first of all with regard to the 

baseflow modeling. 

Doubling of the storage coefficient for the last reservoir is a measure to obtain a simple, transparent algorithm for 

analytical solutions at any number of reservoirs; however, in real catchments the last phase of outflow transformation takes 
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place in watercourses, so and is characterized by distinctly different features in relation to the previous phases, i.e. surface, 

subsurface and baseflow. Similarly to the real conditions, the last reservoir in a SC2 cascade shows higher ability to 

emptying in comparison with the upper ones. 

2.3 Solution to the IUH problem 

Considering the IUH problem the following initial conditions are introduced: 5 

,11 S    02  nSS                 (20) 

Hence, 

  ,01 kQ        0002  nQQ                (21) 

Numerical values of the constants of integration Cj for IUH in the SC2 model obtained from the equation (19) with 

conditions (21) for n = 2 to n = 6 at k = 1 are given in Table 1.  10 

Figure 4 shows the IUHs for consecutive reservoirs of the SC2 cascade for number of reservoirs varying from n = 2 to  

n = 6 (k = 1).  The relatively small difference between IUH values for Q5 and Q6 at n = 6 is apparent, what which may 

suggest the irrationality of increasing n above these numbers in practical applications. 

2.3 Solution to recession curves 

Initial conditions for recession curves in the Nash model may be determined by considering the equal storage for each 15 

reservoir with no rainfall supply. Such assumption is rational and justified in particular at long-lasting rainfall before the 

recession period. However, in the SC2 model such a rainfall does not lead to the situation of equal storage of reservoirs since 

in that case no flows between adjoining reservoirs exist then. Therefore, the initial conditions for SC2 may be formulated as:  

      021 000 QQQQ n                 (22) 

This corresponds to the situation of permanent decrease of storage for successive reservoirs. Figure 5 shows recession curves 20 

for successive reservoirs of the SC2 cascade from n = 2 to n = 6 (k = 1). Similarly to the IUH problem, the difference 

between graphs for n = 5 and n = 6 may be perceived as inconsiderable. Table 2 shows numerical values of the constants of 

integration Cj for recession curves with initial conditions (22) at Q0 = 1 and k = 1 from n = 2 to n = 6. 

3   Comparison of SC2 and Nash model hydrographs  

IUHs and recession curves yielded by SC2 were compared with analogous Nash model results. In order to ensure the 25 

similarity of both cascades, the storage coefficient k for the last reservoir in the Nash model was doubled. Additionally, the 

following conditions were assumed: 
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Lower indices in (16) represent values in Nash and SC2 models, respectively. To fulfill (23) the storage coefficient in the 

Nash model kN should be assumed as: 
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Figure (6) allows to compareison of IUHs for both models with different numbers of reservoirs n. It should be noticed that 5 

IUH of SC2 model attenuates at higher n values much more than IUH of the Nash cascade, what may suggest a better 

condition for this number identification for SC2. However, the same feature can be a disadvantage of SC2, since this model, 

opposite to the Nash one, does not have the possibility of non-integer number of reservoirs application and may create too 

large discretization of the solutions space.   

Figures 7 and 8 show peak flows (Fig. 7) and lag time (Fig. 8) versus storage coefficient k for SC2 and Nash models. These 10 

functions are of the same type for both models (peak flow – linear, lag time – hyperbolic), but SC2 shows higher lag time 

variability in comparison to the Nash cascade. Since the lag time is one of the most essential parameters being used for 

conceptual models calibration, this feature confirms the advantages of SC2. 

Figure 9 shows recession curves for both models (in order to obtain better comparativeness of all graph pairs, values of 

storage coefficients for particular number of reservoirs are differentiated). Differences of both hydrographs shapes are 15 

apparent; in particular, curves generated by SC2 in their upper parts tend to decrease faster than the Nash ones. This leads to 

the conclusion that SC2 can be a good alternative to the Nash cascade at rapid transitions of hydrographs curvature from 

concave to convex one. 

Figure (10) shows the reaction of both cascades to the precipitation occurring during recession period. A rainfall with 

constant intensity lasting one time unit was introduced to the recessive scenario. Independently of the number of reservoirs, 20 

the peak flow generated by the time-distributed rainfall appears earlier and is more distinct in the SC2 cascade than in the 

Nash one. This testifies the rationality of further attempts of SC2 application not only to the baseflow, but to the surface flow 

as well. 
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4 Case study – recession curves for real catchments 

To examine the usefulness of the SC2 model for practical purposes 12 catchments of Vistula and Oder rivers basins with 

areas of 500-1000 km2 were selected. Next, for the set of 46 rainless periods lasting from 7 to 32 days the recession curves 

were distinguished. For each catchment the condition of minimum number of recession curves equal to three was applied. 

Flow values for these catchments were taken from published records of the Polish Institute of Meteorology and Water 5 

Management – National Research Institute and were determined by the Institute due to the stage-discharge relations with the 

accuracy of three significant digits.  

Since each of the selected periods was preceded by rainsfall of different height and intensity, application of initial 

conditions neither relating to the equal storage of all reservoirs in the Nash cascade nor to the condition (22) in the SC2 

model was possible. Therefore, the initial conditions defined by the vector C were optimized for each recession curve 10 

together with the storage coefficient k, assuming the Nash-Sutcliffe efficiency index (Nash and Sutcliffe, 1970) as an 

objective function. Calculations were carried out separately for both models according to the following formulas: 

– in the SC2 model – equation (18); 

– in the Nash model: 
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Figures 9 and 10 show the optimization results. Despite the fact that the SC2 model does not allow to applyication of the 

non-integer number of reservoirs and the Nash model was not analyzed from this point of view, graphs are presented as 

continuous lines, whatich facilitates the analysis of the variability of the optimized values. Figure 11 shows exemplary 

results of the optimization for one of the catchments (Ścinawka river, Gorzuchów gauge station) and Fig. 12 shows the 

averaged values of storage coefficients k and Nash-Sutcliffe indices Ef for particular catchments. 20 

Comparison of graphs for both models leads to the following regularities:  

 Ef values exceed 0,95 for both models as a rule, in particular at high numbers of reservoirs, what which testifies shows the 

quality of both models quite well; 

 at low number n the value Ef in the SC2 model is generally higher than in the Nash one, although at higher n the SC2 

model does not show any significant growth of this value, opposite to the Nash model achieving the highest Ef at high n 25 

values. This may testify the better elasticity of the Nash model, i.e. better ability to fit the modeled hydrographs shapes to 

the various recession curves;   

 optimized values of storage coefficient k in the SC2 depend on the assumed n value insignificantly (except transition from 

n = 2 to n = 3). In the Nash model these values successively increase due to n.  This regularity may suggest the possibility 
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of the SC2 model application to determine the characteristic value of k for given catchment and, consequently, facilitate 

the model calibration process by independent optimization of the parameters k and n.  

5 Conclusions 

In this study the rainfall-runoff conceptual model as a cascade of submerged linear reservoirs is proposed. The supply of 

each reservoir (except the first one in a chain) depends on the storage of as the upper reservoir as and the considered one as 5 

well. Additionally, to obtain the recurrence solution to the set of equations describing water flow throughout the cascade, the  

value of the storage coefficient k for the last reservoir in the chain is doubled in relation to the previous reservoirs (model 

SC2), whatich allows to determineation of the eigenvalues of the equations set as roots of successive Chebyshev polynomials 

of the first kind. Obtained output hydrographs contain exponential functions with different exponents in contradistinction to 

the Nash model, which generates hydrographs with the one and only singular exponent. 10 

Comparison of features of IUHs and theoretical recession curves generated by SC2 and Nash models suggests possibility 

and even advisability of next further attempts to replace the Nash model by the SC2 one, in particular with regards to at 

baseflow modeling. This is confirmed by the analysis of the measured recession curves. Results of the analysis show that the 

optimized values of storage coefficients k in the SC2 model are practically constant for each curve and independent of the 

number of reservoirs n, whatich can be useful considering as the identification process carried on separately for both 15 

calibrated parameters (n, k) as the possible correlation between values of identified storage coefficients and catchment 

parameters. However, the lack of solutions at non-integer number of reservoirs can be a serious disadvantage of the SC2 

model. Thus, the applicability of SC2 requires further analyses with a greater number of catchments. Application of the SC2 

model to one of the cascades representing baseflow in the Diskin model may be an interesting experience as well. 
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Appendix A 

Derivation of the analytical formula for the matrix γ and inverse matrix γ-1 in the SC2 model equation 

Determination of the matrix  consists in the solution to the following set of equations at successive values of j (j = 1,2,…n): 25 
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Theory of differential equations proves that the order of the square matrix in (A1) equals 1n ; hence, one of the equations 

depends on the others, whatich allows to the assumeption of any value of one coefficient. Thus, putting:  

1, jn                  (A2) 

remaining coefficients may be calculated from the relations: 5 
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Hence: 
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 njinji T ,,    10 

Since for Chebyshev polynomials at any values p, x the following identities are satisfied: 

     xTxT p
p
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and 

  pxxTp coscos             (A6) 

the coefficients ji ,  may be calculated as: 15 
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The elements of the inverse matrix γ-1 are: 
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The proof of the formulas (A8) and (A9) requires proofs of the following two lemmas: 

Lemma1. For any natural numbers m, n while m>0, n>0 is:  
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After substituting Lagrange’s trigonometric identities (Jeffrey and Dai, 2008): 

 
2

sin2

2

1
sin

2

1
cos

1 


















 




N

j
N

j

,     
2

sin2

2

1
cos

2
cot

2

1
sin

1



















 




N

j
N

j

   (A12) 

the sum B is reduced to: 
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Since sin(n) = sin(m) = 0, then B = 0.  ■ 

Lemma 2. For the matrix nnγ  is: 
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which means that rows of the matrix nnγ  create a base of orthogonal vectors, and: 
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Proof:  Applying well-known product-to-sum trigonometric identities: 
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Thus, by Lemma 1, for ki   both sums are equal to 0, while for ki  : 
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Evidently, for i = k = n : 
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Lemma 2 entails the formula for the product of the matrix γ and its transpose γT: 
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Since for any square invertible matrix: 10 
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and in the shape of an array: 
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Fig. 1. Conceptual model of submerged reservoirs 
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Fig. 2. Graphs Wn() at different numbers of reservoirs n; values of k the same for all reservoirs (model SC) 
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Fig. 3. Graphs Wn() at different numbers of reservoirs n; value of k for last reservoir in a chain doubled (model SC2) 
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Fig. 4. IUH at different numbers of reservoirs in SC2 model, kSC2 = 1  
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Fig. 5. Recession curves at different numbers of reservoirs in SC2 model, kSC2 = 1 
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Fig. 6. Comparison of IUH in SC2 and Nash models, kSC2 = 1 
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Fig. 7. IUH peak values in SC2 and Nash models versus storage coefficient k 
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Fig. 8. IUH lag time in SC2 and Nash models versus storage coefficient k 
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Fig. 9. Comparison of recession curves in SC2 and Nash model, kSC2 = n 
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Fig. 10. Comparison of reaction of SC2 and Nash model to a precipitation 
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Fig. 11. Exemplary values of storage coefficient k [d–1] in the SC2 model (a) and Nash one (b) and Nash-Sutcliffe efficiency index Ef 5 
for the SC2 model (c) and the Nash one (d) versus number of reservoirs; the Ścinawka river catchment, water gauge 
Gorzuchów, 6 independent recession curves 
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Fig. 12. Mean values of storage coefficient k [d–1] in the SC2 model (a) and Nash one (b) and Nash-Sutcliffe efficiency index Ef for 
the SC2 model (c) and the Nash one (d) versus number of reservoirs for particular catchments 5 
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Table 1. Numerical values of constants of integration to IUH in the SC2 model, k = 1 

Constant n = 2 n = 3 n = 4 n = 5 n = 6 

C1 –0,70711 0,33333 –0,19134 0,12361 –0,08627 

C2 0,70711 –0,66667 0,46194 –0,32361 0,23570 

C3  0,33333 –0,46194 0,40000 –0,32198 

C4   0,19134 –0,32361 0,32198 

C5    0,12361 –0,23570 

C6     0,08627 

 

  5 
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Table 2. Numerical values of constants of integration to recession curves in the SC2 model, k = 1, Q0 = 1 

Constant n = 2 n = 3 n = 4 n = 5 n = 6 

C1 –0,20711 0,08932 –0,04973 0,03168 –0,02194 

C2 1,20711 –0,33333 0,16704 –0,10191 0,06904 

C3  1,24402 –0,37415 0,20000 –0,12789 

C4   1,25684 –0,39252 0,21720 

C5    1,26275 –0,40237 

C6     1,26596 

 

 

 


