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Dear Professor Todini, 

 

I am sincerely grateful for your review and very valuable remarks and suggestions. My comments to the issues raised by you 5 

please find as follows: 

 

Field of application. Since the concept is (I guess) relatively new, till present I have had rather limited number of well-

measured real field records to verify the wider scope of SC2 applicability. My intention was to analyze “at first glimpse” 

only mathematical assumptions and theoretical features of the solution and get in the meantime (next paper, maybe?) some 10 

more detailed knowledge on the practical effectiveness of the model as some possible applications I can only presage at the 

moment. I am convinced about the usability of SC2 at the baseflow analysis and can have a flicker of hope for other cases, 

like subsurface of surface outflow even; however, I understand the possible needs of readers. Thus, I feel encouraged by you 

and shall follow your suggestion. Some further remarks I put forward while discussing “physical aspects” problem. 

 15 

Behavior of the model under precipitation. Sure, the idea is brilliant and thank you again for this suggestion. I shall work it 

out using theoretical hyetographs, since real ones may create some additional problems like e.g. effective rainfall computing. 

I assume your prompt has referred to such cases, i.e. not only the Dirac impulse, but time-distributed rainfall intensities. 

 

Physical aspects. Frankly, preparing submission of my paper I was thinking about the physical aspects description, but it 20 

seemed to be a little bit too risky for me. I was afraid (and still I am) of “playing to do a philosopher instead a hydrologist” 

since physical interpretation of conceptual models may lead sometimes to hazardous statements. Nevertheless, as I have 

mentioned above, now I feel to be more authorized by you to do so. The similarities of the SC2 assumptions to the 

groundwater flow, in particular to the Darcy law and Dupuit equation, are evident and this is my ground for the expectations 

about the model usefulness. I presume that some relations to the surface flow may be formulated as well, in particular at 25 

catchments with differentiated surface configuration. 

 

Editorial issues. Figure 1 shows no real, calculation case, even for time t=0, if only the first reservoir in a chain is supplied 

by a rainfall, as you have mentioned. The colour filling particular reservoirs in this figure does not mean any real situation at 

any time and was applied by me only to denote the storage abilities of each of them. Of course, you are right – after reading 30 

the entire paper this figure seems to be irrational. I shall improve. Determinants – yes, better to use the notation “det| |”; 

double vertical lines may be confused with a norm applied in the functional analysis. Pi – sorry, my fault. Moving the 

mathematical derivation to an appendix – my first impulse was to set up a protest, but after some deliberations I cannot 

disagree. Discouragement of even one reader would be inexcusable. Please let me, however, wait for the Editor’s standpoint. 

 35 

Yours sincerely,  

Jacek Kurnatowski 

 

Received and published: 7 December 2016 
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Dear Sir/Madam, 

 

Thank you very much for your comments and remarks. Generally, I cannot disagree with the majority of them. In particular, 

I am fully aware of the limited applicability of the SC2 model, although, in my opinion, the usefulness of SC2 to surface 

runoff cannot be arbitrarily disregarded. You are also right with the statements that the model is (or maybe) too simple to 45 
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spatially differentiated /rasterized catchments. On the other hand, some simplifications of any model structure are 

unavoidable sometimes and the well-known problem of seeking the rational equilibrium between the accuracy, simplicity 

and universality of a model invariably matters. I do not claim a too large universality of SC2 since as a new concept it should 

first of all be tested with the proper carefulness and in accordance with the rules of mathematical models development. I can 

express a hope that this model will be tested in the foreseeable future not only by me. 5 

 

The problem of hysteretic behaviors of modeled phenomena – in my opinion, such problems do not require nonlinearity of 

models arbitrarily. I can imagine the effect of hysteresis modeled e.g. by variations of storage coefficients (simplified as 

discrete in time, otherwise such a model would be nonlinear, of course). This is far-reaching future for me, considering the 

present state of the SC2 model development and testing. 10 

 

Your suggestion concerning the sensitivity analysis is very valuable and I shall take care of that. 

 

Integer versus non-integer number of reservoirs – the Nash model allows to introduce the non-integer number of reservoirs 

due to the fact that the factorial of number of reservoirs n! appearing in the hydrograph formula can be replaced by gamma 15 

function Γ(n) being the continuous generalization of the factorial. The SC2 model does not have such a possibility, 

unfortunately. 

 

Language – I am sorry, my English can be surely polished up as I am not a native speaker. Nonetheless, I am confused  

a little bit since the word “researches” appears in the whole paper only twice (taking no account to the proper noun of one 20 

Polish institute) and in “Conclusions” once. Of course I can replace it by e.g. “analysis”. I promise that before final 

submission I shall spare no pains in order to smooth up the entire text. 

 

Yours faithfully, 

 25 

Jacek Kurnatowski 

 

 

Received and published: 7 December 2016 
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Dear Readers, 

 

I must admit with a great distress that I have found an error affecting the formulas No. 17-21 in my manuscript . Fortunately, 

this error does not influence the next part of the paper, in particular figures and tables, which are correct. I apologize for the 

situation. Please find the corrected formulas attached. Among others, please notice the change of the formulas numbering – 35 

of course, all next formulas should have numbers amended consequently. 

 

Regards, 

 

Jacek Kurnatowski 40 
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Received and published: 5 August 2017 

 

Dear Editor, 

 

Unfortunately, just before submission of the final version of my manuscript I found two errors in the appendix formulas. 5 

These errors do not affect the correctness of the next formulas; however, should be eliminated before the final submission. 

Please find the relevant errata attached. 

 

Sincerely, 

 10 

Jacek Kurnatowski 

 

Please also note the supplement to this comment:  

https://www.hydrol-earth-syst-sci-discuss.net/hess-2016-531/hess-2016-531-AC5- 

supplement.pdf 15 
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Cascade of submerged reservoirs as a rainfall-runoff model 
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Abstract. The rainfall-runoff conceptual model as a cascade of submerged linear reservoirs with particular outflows 

depending on storages of adjoining reservoirs is developed. The model output contains different exponential functions with 

roots of Chebyshev polynomials of the first kind as exponents. The model is applied to IUH and recession curves problems 

and compared with the analogous results of the Nash cascade. Case study is performed on a basis of 46 recession periods. 

Obtained results show the usefulness of the model as an alternative concept to the Nash cascade. 10 

 

Keywords: rainfall-runoff models, submerged reservoirs, Chebyshev polynomials, IUH, recession 

1 Introduction 

The significance of the rainfall-runoff relation conceptual model introduced by Nash as a linear cascade of reservoirs (Nash, 

1957) and developed later as parallel cascades (Wittenberg, 1975; Oben-Nyarko, 1976) known nowadays as the Diskin 15 

model (Diskin et al., 1978; Diskin, 1980) cannot be overestimated. These models have been widely applied in the 

mathematical modeling of catchments for many years and are still in use. Undoubtedly, one of the advantages of these 

models is the simplicity related to the linearity, what corresponds inter alia to the real baseflow features (Fenicia et al., 

2006). However, the Nash and Diskin models do not represent many real hydrographs correctly enough, including peak 

flows (Singh, 1976). Bárdossy (2007) noticed the great uncertainty of the identified cascade parameters and related 20 

difficulties in the determination of the optimum parameters set for a particular catchment. These problems together 

considered with the high diversity of real hydrographs shapes including recession curves (Stoelzle et al., 2003) force search 

for new solutions. One of the modern tendencies are nonlinear models (e.g. Liu and Todini, 2002; Ding, 2011; Kim and 

Georgakakos, 2015). This direction of research may be perceived as an expression of disappointment due to unsatisfactory 

results of linear models applications. On the other hand it seems that the possibilities of linear models have not been 25 

exploited enough. The linear model of cascaded reservoirs generating outputs different from the classical Nash hydrographs, 

which may be an alternative solution to standard ones, is presented below. 

mailto:jkurnatowski@zut.edu.pl
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2 Submerged cascade model 

2.1 Theoretical considerations 

The peculiarity of the model is replacing classical reservoirs of the Nash cascade by submerged ones (Fig. 1), where 

outflows depend on storages of adjoining reservoirs (except the last reservoir in a chain). Assuming the linearity of the 

system, it is described by the set of constitutive equations: 5 
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Substituting (1) to (2) and introducing a commonly used simplification: 

kkkk n  21            (3) 10 

yields the following set of equations: 
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To solve the nonhomogeneous set of equations (4), the solution to a homogeneous set is necessary. At P = 0 the set of 

equations (4) generates a tridiagonal matrix: 
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If all eigenvalues of the matrix nnA  are different, the global solution to the set (4) with the condition P = 0 is: 
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 (6) 

where  is a vector of the matrix nnA  eigenvalues,  – matrix of coefficients creating a fundamental set of solutions and  5 

C – vector of coefficients depending on initial conditions.  

Determination of the eigenvalues vector requires the solution to the equation: 

  0det  nnn IA             (7) 

where nI is the identity matrix of size n. After substituting  = k∙   the equation (7) may be written in the form: 
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Values Wn() may be determined by the recurrence formula: 
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Figure 2 shows the Wn() functions for different numbers of reservoirs n. Due to the Favard’s theorem (Favard, 1935) the 

values Wi produce a sequence of orthogonal polynomials, resulting from the 3-term recurrence relation. However, the roots 

of these polynomials of higher degrees are difficult to calculate. Therefore, the above concept of submerged cascade requires 15 
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modification, facilitating calculations of the consecutive eigenvalues (as a consequence, also  coefficients). This can be 

done by increasing the storage coefficient k for the last reservoir in a chain twice (model SC2):  

,121 kkkk n    kkn 2                 (10) 

It is worth noting that the concept of differentiating k value of the last reservoir in relation to the rest of the chain is not new; 

in 2006 was introduced by Szilagyi to a model with fractional numbers of reservoirs (Szilagyi, 2006).  5 

The matrix of equations set constituting the SC2 model has the form:   
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Thus, analogously to the formulas (7) and (8), the determination of the eigenvalues vector requires the solution to the 

equation: 
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and the function Wn() may be calculated recursively: 
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Thus, 
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where Tn is a Chebyshev polynomial of the first kind and n-th degree. Functions Wn() are shown in Fig. 3. 15 

Roots of the Chebyshev polynomials of any degree satisfy the relation: 
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so the eigenvalues of the matrix (11) yield: 
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The derivation of the coefficients ij is given in Appendix A. Finally, the general solution (6) for SC2 yields: 5 
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In particular, for the last reservoir in a chain: 
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Determination of the constants of integration to the SC2 model requires the following formula application:   

 0QC  1
γ                    (19) 10 

where Q(0) is a vector of initial conditions, depending on the analyzed problem. The derivation of the inverse matrix 
-1

 is 

given in Appendix A. 

2.2 Physical interpretation of the SC2 model assumptions 

The conditions of the filling/emptying rates for cascades of reservoirs is the basic feature differentiating (in a physical sense) 

the SC2 and Nash models. In the SC2 model this rate depends on storages of both adjoining reservoirs (except the last 15 

reservoir in a chain), while in the Nash one it depends on the upper reservoir storage only. In other words, the present state of 

the reservoir in the Nash model does not affect the upper part of the cascade. This difference is analogous to the distinction 

between supercritical and subcritical flows in open channels, where any action can affect the upper part of a stream in the 

subcritical flow only. It is worth noting that the difference between storages of two neighboring reservoirs may be perceived 

analogously to the hydraulic slope in the groundwater flow; therefore, the SC2 model is a conceptual performance of the 20 

Darcy law. This analogy allows anticipation of the usefulness of the SC2 application first of all with regard to baseflow 

modeling. 

Doubling of the storage coefficient for the last reservoir is a measure to obtain a simple, transparent algorithm for 

analytical solutions at any number of reservoirs; however, in real catchments the last phase of outflow transformation takes 
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place in watercourses and is characterized by distinctly different features in relation to the previous phases, i.e. surface, 

subsurface and baseflow. Similarly to the real conditions, the last reservoir in a SC2 cascade shows higher ability to empty in 

comparison with the upper ones. 

2.3 Solution to the IUH problem 

Considering the IUH problem the following initial conditions are introduced: 5 

,11 S    02  nSS                 (20) 

Hence, 

  ,01 kQ        0002  nQQ                (21) 

Numerical values of the constants of integration Cj for IUH in the SC2 model obtained from the equation (19) with 

conditions (21) for n = 2 to n = 6 at k = 1 are given in Table 1.  10 

Figure 4 shows the IUHs for consecutive reservoirs of the SC2 cascade for number of reservoirs varying from n = 2 to  

n = 6 (k = 1).  The relatively small difference between IUH values for Q5 and Q6 at n = 6 is apparent, which may suggest the 

irrationality of increasing n above these numbers in practical applications. 

2.3 Solution to recession curves 

Initial conditions for recession curves in the Nash model may be determined by considering the equal storage for each 15 

reservoir with no rainfall supply. Such assumption is rational and justified in particular at long-lasting rainfall before the 

recession period. However, in the SC2 model such a rainfall does not lead to the situation of equal storage of reservoirs since 

in that case no flows between adjoining reservoirs exist. Therefore, the initial conditions for SC2 may be formulated as:  

      021 000 QQQQ n                 (22) 

This corresponds to the situation of permanent decrease of storage for successive reservoirs. Figure 5 shows recession curves 20 

for successive reservoirs of the SC2 cascade from n = 2 to n = 6 (k = 1). Similarly to the IUH problem, the difference 

between graphs for n = 5 and n = 6 may be perceived as inconsiderable. Table 2 shows numerical values of the constants of 

integration Cj for recession curves with initial conditions (22) at Q0 = 1 and k = 1 from n = 2 to n = 6. 

3   Comparison of SC2 and Nash model hydrographs  

IUHs and recession curves yielded by SC2 were compared with analogous Nash model results. In order to ensure the 25 

similarity of both cascades, the storage coefficient k for the last reservoir in the Nash model was doubled. Additionally, the 

following conditions were assumed: 
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Lower indices in (16) represent values in Nash and SC2 models, respectively. To fulfill (23) the storage coefficient in the 

Nash model kN should be assumed as: 
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Figure (6) allows comparison of IUHs for both models with different numbers of reservoirs n. It should be noticed that IUH 5 

of SC2 model attenuates at higher n values much more than IUH of the Nash cascade, what may suggest a better condition 

for this number identification for SC2. However, the same feature can be a disadvantage of SC2, since this model, opposite 

to the Nash one, does not have the possibility of non-integer number of reservoirs application and may create too large 

discretization of the solutions space.   

Figures 7 and 8 show peak flows (Fig. 7) and lag time (Fig. 8) versus storage coefficient k for SC2 and Nash models. These 10 

functions are of the same type for both models (peak flow – linear, lag time – hyperbolic), but SC2 shows higher lag time 

variability in comparison to the Nash cascade. Since the lag time is one of the most essential parameters being used for 

conceptual models calibration, this feature confirms the advantages of SC2. 

Figure 9 shows recession curves for both models (in order to obtain better comparativeness of all graph pairs, values of 

storage coefficients for particular number of reservoirs are differentiated). Differences of both hydrographs shapes are 15 

apparent; in particular, curves generated by SC2 in their upper parts tend to decrease faster than the Nash ones. This leads to 

the conclusion that SC2 can be a good alternative to the Nash cascade at rapid transitions of hydrographs curvature from 

concave to convex one. 

Figure (10) shows the reaction of both cascades to the precipitation occurring during recession period. A rainfall with 

constant intensity lasting one time unit was introduced to the recessive scenario. Independently of the number of reservoirs, 20 

the peak flow generated by the time-distributed rainfall appears earlier and is more distinct in the SC2 cascade than in the 

Nash one. This testifies the rationality of further attempts of SC2 application not only to the baseflow, but to the surface flow 

as well. 
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4 Case study – recession curves for real catchments 

To examine the usefulness of the SC2 model for practical purposes 12 catchments of Vistula and Oder river basins with 

areas of 500-1000 km
2 

were selected. Next, for the set of 46 rainless periods lasting from 7 to 32 days the recession curves 

were distinguished. For each catchment the condition of minimum number of recession curves equal to three was applied. 

Flow values for these catchments were taken from published records of the Polish Institute of Meteorology and Water 5 

Management – National Research Institute and were determined by the Institute due to the stage-discharge relations with the 

accuracy of three significant digits.  

Since each of the selected periods was preceded by rainfall of different height and intensity, application of initial 

conditions neither relating to the equal storage of all reservoirs in the Nash cascade nor to the condition (22) in the SC2 

model was possible. Therefore, the initial conditions defined by the vector C were optimized for each recession curve 10 

together with the storage coefficient k, assuming the Nash-Sutcliffe efficiency index (Nash and Sutcliffe, 1970) as an 

objective function. Calculations were carried out separately for both models according to the following formulas: 

– in the SC2 model – equation (18); 

– in the Nash model: 
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Figures 9 and 10 show the optimization results. Despite the fact that the SC2 model does not allow application of non-

integer number of reservoirs and the Nash model was not analyzed from this point of view, graphs are presented as 

continuous lines, which facilitates the analysis of the variability of the optimized values. Figure 11 shows exemplary results 

of the optimization for one of the catchments (Ścinawka river, Gorzuchów gauge station) and Fig. 12 shows the averaged 

values of storage coefficients k and Nash-Sutcliffe indices Ef for particular catchments. 20 

Comparison of graphs for both models leads to the following regularities:  

 Ef values exceed 0,95 for both models as a rule, in particular at high numbers of reservoirs, which shows the quality of 

both models quite well; 

 at low n the value Ef in the SC2 model is generally higher than in the Nash one, although at higher n the SC2 model does 

not show any significant growth of this value, opposite to the Nash model achieving the highest Ef at high n values. This 25 

may testify the better elasticity of the Nash model, i.e. better ability to fit the modeled hydrographs shapes to the various 

recession curves;   

 optimized values of storage coefficient k in the SC2 depend on the assumed n value insignificantly (except transition from 

n = 2 to n = 3). In the Nash model these values successively increase due to n.  This regularity may suggest the possibility 
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of the SC2 model application to determine the characteristic value of k for given catchment and, consequently, facilitate 

the model calibration process by independent optimization of the parameters k and n.  

5 Conclusions 

In this study the rainfall-runoff conceptual model as a cascade of submerged linear reservoirs is proposed. The supply of 

each reservoir (except the first one in a chain) depends on the storage of the upper reservoir and the considered one as well. 5 

Additionally, to obtain the recurrence solution to the set of equations describing water flow throughout the cascade, the  

value of the storage coefficient k for the last reservoir in the chain is doubled in relation to the previous reservoirs (model 

SC2), which allows determination of the eigenvalues of the equations set as roots of successive Chebyshev polynomials of 

the first kind. Obtained output hydrographs contain exponential functions with different exponents in contradistinction to the 

Nash model, which generates hydrographs with the singular exponent. 10 

Comparison of features of IUHs and theoretical recession curves generated by SC2 and Nash models suggests possibility 

and even advisability of further attempts to replace the Nash model by the SC2 one, in particular with regards to baseflow 

modeling. This is confirmed by the analysis of measured recession curves. Results of the analysis show that the optimized 

values of storage coefficients k in the SC2 model are practically constant for each curve and independent of the number of 

reservoirs n, which can be useful considering as the identification process carried on separately for both calibrated 15 

parameters (n, k) as the possible correlation between values of identified storage coefficients and catchment parameters. 

However, the lack of solutions at non-integer number of reservoirs can be a serious disadvantage of the SC2 model. Thus, 

the applicability of SC2 requires further analyses with a greater number of catchments. Application of the SC2 model to one 

of the cascades representing baseflow in the Diskin model may be an interesting experience as well. 
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Appendix A 

Derivation of the analytical formula for the matrix γ and inverse matrix γ
-1

 in the SC2 model equation 

Determination of the matrix  consists in the solution to the following set of equations at successive values of j (j = 1,2,…n): 25 
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          (A1) 

Theory of differential equations proves that the order of the square matrix in (A1) equals 1n ; hence, one of the equations 

depends on the others, which allows the assumption of any value of one coefficient. Thus, putting:  

1, jn                  (A2) 

remaining coefficients may be calculated from the relations: 5 

jnjnnjjn

njjn

,,1,,2

,,1

2 










              (A3) 

Hence: 

 njmjmn T ,,    

or                  (A4) 

 njinji T ,,    10 

Since for Chebyshev polynomials at any values p, x the following identities are satisfied: 

     xTxT p
p

p 1                (A5) 

and 

  pxxTp coscos             (A6) 

the coefficients 
ji,  may be calculated as: 15 

    






 



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j
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ji

2

12
cos1,          (A7) 

The elements of the inverse matrix γ
-1

 are: 

    






 





n

i
jn

n

jn
ji

2

12
cos

2
1

1
,  for j = 1,2,...n–1        (A8) 

and 
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n
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11
, 


  for j = n.            (A9) 

The proof of the formulas (A8) and (A9) requires proofs of the following two lemmas: 

Lemma1. For any natural numbers m, n while m>0, n>0 is:  
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Proof: Let . 
n

m
 Then: 5 
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After substituting Lagrange’s trigonometric identities (Jeffrey and Dai, 2008): 
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   (A12) 

the sum B is reduced to: 

 

2
sin2

sin



n
B              (A13) 10 

Since sin(n) = sin(m) = 0, then B = 0.  ■ 

Lemma 2. For the matrix nnγ  is: 





n

j

jkji

1

,, 0  for ,ki            (A14) 

which means that rows of the matrix nnγ  create a base of orthogonal vectors, and: 





n

j

ji

n

1

2
,

2
             (A15) 15 

Proof:  Applying well-known product-to-sum trigonometric identities: 
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Thus, by Lemma 1, for ki   both sums are equal to 0, while for ki  : 
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Evidently, for i = k = n : 





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jn n
1

2
,  ■           (A18) 5 

Lemma 2 entails the formula for the product of the matrix γ and its transpose γ
T
: 
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and consequently: 
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2
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Since for any square invertible matrix: 10 

  1TT1
AAAA

             (A21) 

then: 
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2
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2
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2T1
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and in the shape of an array: 
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Fig. 1. Conceptual model of submerged reservoirs 
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Fig. 2. Graphs Wn() at different numbers of reservoirs n; values of k the same for all reservoirs (model SC) 
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Fig. 3. Graphs Wn() at different numbers of reservoirs n; value of k for last reservoir in a chain doubled (model SC2) 
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Fig. 4. IUH at different numbers of reservoirs in SC2 model, kSC2 = 1  
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Fig. 5. Recession curves at different numbers of reservoirs in SC2 model, kSC2 = 1 
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Fig. 6. Comparison of IUH in SC2 and Nash models, kSC2 = 1 
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Fig. 7. IUH peak values in SC2 and Nash models versus storage coefficient k 
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Fig. 8. IUH lag time in SC2 and Nash models versus storage coefficient k 
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Fig. 9. Comparison of recession curves in SC2 and Nash model, kSC2 = n 
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Fig. 10. Comparison of reaction of SC2 and Nash model to a precipitation 
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Fig. 11. Exemplary values of storage coefficient k [d–1] in the SC2 model (a) and Nash one (b) and Nash-Sutcliffe efficiency index Ef 5 
for the SC2 model (c) and the Nash one (d) versus number of reservoirs; the Ścinawka river catchment, water gauge 

Gorzuchów, 6 independent recession curves 
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Fig. 12. Mean values of storage coefficient k [d–1] in the SC2 model (a) and Nash one (b) and Nash-Sutcliffe efficiency index Ef for 

the SC2 model (c) and the Nash one (d) versus number of reservoirs for particular catchments 5 
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Table 1. Numerical values of constants of integration to IUH in the SC2 model, k = 1 

Constant n = 2 n = 3 n = 4 n = 5 n = 6 

C1 –0,70711 0,33333 –0,19134 0,12361 –0,08627 

C2 0,70711 –0,66667 0,46194 –0,32361 0,23570 

C3  0,33333 –0,46194 0,40000 –0,32198 

C4   0,19134 –0,32361 0,32198 

C5    0,12361 –0,23570 

C6     0,08627 

 

  5 
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Table 2. Numerical values of constants of integration to recession curves in the SC2 model, k = 1, Q0 = 1 

Constant n = 2 n = 3 n = 4 n = 5 n = 6 

C1 –0,20711 0,08932 –0,04973 0,03168 –0,02194 

C2 1,20711 –0,33333 0,16704 –0,10191 0,06904 

C3  1,24402 –0,37415 0,20000 –0,12789 

C4   1,25684 –0,39252 0,21720 

C5    1,26275 –0,40237 

C6     1,26596 

 

 

 


