
January 27, 2017 

Dr Marie-Claire ten Veldhuis 

Editor 

Hydrology and Earth System Sciences (HESS) 

 

RE: hess-2016-530 

Dear Editor, 

Please find enclosed the revised manuscript: "Partitioning the impacts of spatial and climatological rainfall variability 

in urban drainage modelling", previously entitled “Partitioning spatial and temporal rainfall variability in urban 

drainage modelling” by Nadav Peleg, Frank Blumensaat, Peter Molnar, Simone Fatichi and Paolo Burlando. The 

manuscript has been revised according to the comments of the two reviewers. We would like to thank the Editor and 

the two reviewers (Susana Ochoa Rodriguez and an anonymous reviewer) for their efforts and constructive comments. 

Detailed answers to the reviewers' comments are given below. 

 

Reviewer #1: 

General Comments: The paper is very interesting and tries to add new knowledge to the field of urban hydrology. The 

use of stochastic rainfall generators and their impact in urban drainage is very important and recent. The authors try to 

quantify, not only the impact of spatial component of rainfall, but also its temporal component. 

We thank the reviewer for his time and effort reviewing our manuscript. 

Specific comments: 

 

1) It would be interesting to know the drainage area of each location where the flow analysis was conducted. 

Contributing area: 11.5 ha total area (5.3 ha impervious area) is connected to location A and 30.2 ha (13.6 ha) is 

connected to locations B and C, whereas the two latter locations are constrained through the overflow weir structure. 

This information was added in manuscript. 

 

2) Why you didn’t test more locations in the upstream part of the catchment. It would be interesting to see the climate 

and spatial contribution in smaller drainage areas (for example an upstream pipe and one not affected by hydraulic 

structures, such as CSOs.) This would be important, since some authors showed that upstream pipes are more sensitive 

to spatial variability (eg. Gires et al., 2012) 

Location A is located upstream of the CSO, but clearly not affected by water backing up due to the hydraulic constraint 

at the CSO structure. Examining the effects of contributing area on peak flows depending on the topological location 

within the network indeed requires analyzing further locations, and it is an interesting point to examine. However, we 

did not include this aspect into our analysis for two reasons: (i) we did not want to repeat analyses that had been done 

already in previous studies (e.g. by Gires et al., 2012); and (ii) the examined system is too small to obtain a 

representative answer on this aspect. Instead, we focus on the system response for three distinctively chosen, 

characteristic locations, differing regarding their functional hierarchy (A - upstream in the catchment, B – downstream 

of overflow structure at the overflow outlet, C – downstream overflow structure in the carry-on flow). By doing so, we 

believe that the analysis has an added value since effects of spatial and climatological rainfall variability can be 

differentiated depending on the function of the network element.  

We still think it would be interesting to see if results shown by Gires et al. (2012) on the spatial variability in the upper 

part of the catchment, similar like location A, can be reproduced. However, we clearly think a larger urban drainage 

network, i.e. a larger number of nodes, should be examined following the same methodology to come to a 

representative conclusion with this regard. Finally, we addressed this issue in the revised version of the manuscript by 

discussing potential options to conduct this extended analysis depending on the topological location in the network: 



  

“The three locations analyzed in this study were deliberately chosen according to their functional hierarchy within the 

combined drainage system (i.e. inner network node, carry-on flow and overflow). By doing so, we can clearly 

differentiate the effect of spatial and climatological rainfall variability on elements depending on their function within 

the network. On the other hand, previous studies showed a tendency that conduits located upstream, not affected by 

hydraulically constraining structures, are more sensitive to rainfall spatial variability in comparison to conduits located 

downstream (e.g. Gires et al., 2012). While it would be interesting to further investigate flow variability due to different 

spatial rainfall characteristics (e.g. the rainfall spatial correlation) at various upstream locations (similar as location A), 

this type of analysis would require larger drainage networks in comparison to the one presented here. Future studies 

will benefit from examining several different urban drainage systems with rainfall input from different high-resolution 

products to test the robustness of the findings”. 

 

3) Is there flooding in any node? How did your SWMM model deal with it? If there is flooding, what is the impact in 

the flow return period. 

Yes, flooding occurs at several nodes when simulating the 30 year period(s). For example at location A, for the 

reference period 1980 – 2010 surface flooding was estimated for 34 events (0.1 – 1.5 hours of duration) using measured 

single gauge rainfall data. The number of nodes at which flooding is observed is limited; location A is one of the few 

locations (8 – 10 in total) where flooding occurs. Surface flooding is accounted for by allowing excess water to leave 

a manhole in case sewer capacity is exceeded. Due to the lack of detailed land use and surface topography data it was 

found inadequate to define a node-specific ‘ponding area’ (i.e. surface area that is available allowing the water to 

spread at the surface around a manhole). Hence surface flooding is taken into account but excess water leaving the 

manhole is routed into a virtual sink and does not re-enter through the manhole lid after sewer capacity is available 

again. We evaluated simulation runs with different simulation options to consider flooded water volume re-entering 

the system (namely: a) ponding area left undefined; b) definition of generally 100 m² ‘ponding area’) specifically 

focusing on deviations of flow rates at study relevant locations. Results from benchmarking simulations (see collection 

of figures below; notated with F#) clearly show that choosing different simulation options does not significantly affect 

the in-sewer flow rates, which had been selected as evaluation criterion in this study. We verified this for short periods, 

i.e. a series of events (example in F1 to F3, upper graphs), as well as for long terms (example in F1 to F3, lower graphs), 

whereas series labelled as ‘ref data’ stand for simulations without having a ponding area defined and series labelled 

with ‘sim data’ represent simulation for which a ponding area of 100m² had been defined. Performance metrics (Bias, 

Nash-Sutcliff-Efficiency, Index of Agreement, volume balance) indicate the low order of magnitude for flow rate, i.e. 

flow return period deviations. Still, for simulations for which excess water is not allowed to re-enter the system (‘ref 

data’, ‘Vref’) the flow volume is – as expected - slightly lower. The following paragraph was added to the manuscript 

in Section 3.4 explain how surface flooding is considered in the study: “Surface flooding is accounted for by allowing 

excess water to leave a manhole in case sewer capacity is exceeded. Due to the lack of detailed land use and surface 

topography data at meter scale it was found inadequate to further define a manhole-specific "ponding area" allowing 

the water to spread at the surface around a manhole. Hence excess water leaving the manhole is routed into a virtual 

sink and does not re-enter the system even though sewer capacity is available again.”.   

 

 

 



   

   
F1: Location A F2: Location B F3: Location C 

 

4) Figure 3 could be improved showing the inverse-CDF curve of all the 30 events, not only the mean. 

It is represented (shaded red area) for the 5-95 quantile of all 30 events. The range is very thin and almost unnoticeable. 

 

5) In section 3 (1st paragraph) is not clear why do you use IDF and FDF curves, instead of the obtained/simulated 

values. I agree with the strategy, but a clear explanation should be added. 

A sentence rationalizing the use of a parametric distribution fitting to compute the IDF and FDF curves was added to 

Section 3.5: “The fitting of the parametric distribution is a required step for the partition analysis to be conducted (see 

next section) as it results in a continuous estimates of the curves quantiles (i.e. the return period)”. 

 

6) Figure 2 needs a better explanation 

The caption of Figure 2 was changed as follows: “A schematic illustration of the methods used in this study: (i) 

STREAP model was used to simulate multiple realizations of 2-D rain fields based on radar and gauged data (Section 

3.2); (ii) rainfall was generated for four distinct cases which were defined in order to explicitly account for the climate 

variability, spatial rainfall variability and total variability of the flow (3.3); (iii) EPA SWMM model was used to 

calculate the flow over the catchment (3.4); (iv) IDF and FDF curves were computed for the annual maxima of the 

mean areal rainfall and flow, respectively, at three different locations (3.5); and (v) the total flow variability was 

partitioned (3.6)”. 

 

Technical corrections: 

1) Figure 2 needs more quality 

The quality of Figure 2 was enhanced to 600 dpi. 

 

2) In Figure 5 legend, where is “quantile range is than calculated for each” should be “quantile range is then calculated 

for each” 

Thank you for pointing out this typo. The sentence was corrected. 

 

 



Reviewer #2 (Susana Ochoa Rodriguez):  

This study explores the influence of the spatial and natural climatological variability of rainfall on rainfall and 

associated flow return period estimation in urban areas. For this purpose, a stochastic rainfall generator was employed 

to generate rainfall time series with and without spatial variability. The resulting rainfall time series (corresponding to 

4 different scenarios including combinations of spatial and climatological rainfall variability) were applied as input to 

the urban drainage model of a test catchment in Lucerne, Switzerland. Based on the results, both rainfall and flow 

return periods were computed and the individual influence of spatial and climatological rainfall variability on extremes 

was quantified. The study is very interesting and the results constitute a valuable contribution towards improved design 

of urban drainage systems. The paper is well written and we certainly enjoyed reading it. 

We thank the reviewers for their kind words and for the time and effort reviewing our manuscript. 

 

I suggest that the authors clarify/address the following points prior to publication: 

 

1. Please specify the drainage area of the points at which urban flows were analysed. As highlighted in previous studies, 

the drainage area of interest has a significant impact on the impact of spatial rainfall variability on simulated urban 

flows. In fact, in the figures provided in the supplement of the manuscript under consideration, it can be seen that the 

impact of spatial variability is somewhat different at the different locations at which flows are analysed. This is likely 

partly due to differences in the drainage areas associated to each point under consideration (this is, the areas upstream 

of the point of interest). Please provide information about the drainage areas under consideration and briefly analyse 

the impact of this factor on your results (a detailed analysis of this could also be suggested as ‘future work’). 

The drainage area connected to locations of interest is: 11.5 ha total area (5.3 ha impervious area) are connected to 

location A and 30.2 ha (13.6 ha) are connected to locations B and C, whereas locations B and C are constrained through 

the overflow weir structure. This information was added in the manuscript. Location A is located upstream of the CSO 

and is not affected by it. In the study we focus on the system response for three distinctively chosen, characteristic 

locations, differing regarding their functional hierarchy (A - upstream in the catchment, B – downstream of overflow 

structure at the overflow outlet, C – downstream overflow structure in the carry-on flow). By doing so, we can show 

that effects due spatial and climatological rainfall variability need to be differentiated depending on the function of the 

corresponding network element and not only depending on the contributing area. Examining the effects of contributing 

area on peak flows depending on the topological location within the network indeed requires analyzing further 

locations within the drainage system upstream of the hydraulically constraining structures. Although this analysis is 

interesting, it was not a key aspect of this paper. We think it will require a larger drainage network than examined in 

the presented case study. We addressed this issue in the discussion section in the revised version of the manuscript as 

follows: 

“The three locations analyzed in this study were deliberately chosen according to their functional hierarchy within the 

combined drainage system (i.e. inner network node, carry-on flow and overflow). By doing so, we can clearly 

differentiate the effect of spatial and climatological rainfall variability on elements depending on their function within 

the network. On the other hand, previous studies showed a tendency that conduits located upstream, not affected by 

hydraulically constraining structures, are more sensitive to rainfall spatial variability in comparison to conduits located 

downstream (e.g. Gires et al., 2012). While it would be interesting to further investigate flow variability due to different 

spatial rainfall characteristics (e.g. the rainfall spatial correlation) at various upstream locations (similar as location A), 

this type of analysis would require larger drainage networks in comparison to the one presented here. Future studies 

will benefit from examining several different urban drainage systems with rainfall input from different high-resolution 

products to test the robustness of the findings”. 

 

2. While 2 km radar data were employed to calibrate the rainfall generator, 100 m spatial data were then generated. 

Please discuss the implications of this and whether the downscaling model that was employed accounts for scaling, 

thus making it appropriate to downscale down to 100 m (although the model was only calibrated based on 2km data). 



The rainfall model was downscaled to 100 m resolution using power laws functions, as mentioned in Section 3.2.1. A 

figure was added in the supplementary material (new Figure S1) showing the scaling of the rainfall coefficient of 

variation from the weather radar resolution to the high-resolution required for the analysis: 

 
with the following caption: “Figure S1. Rainfall coefficient of variation (CV) power law surface-fit for temporal 

resolution of 5 min. X-axis refer to the domain area, Y-axis refer to the dimension of the rainfall grid cell and Z-axis 

represent the rainfall CV. Data was derived from MeteoSwiss weather radar system for domain areas of 64-1024 km2 

and grid sizes of 2-16 km for domains overlapping the studied catchment. For the case study, rainfall was generated 

over an area of 2.25 km2 using grid size of 100 m, thus a CV of 1.5 was used“. 

A short explanation was added to the text for the choice of rainfall spatial correlation structure used: “In addition, no 

direct measurements are available to estimate the small-scale rainfall spatial correlation structure for this region. The 

spatial structure was estimated using data from three dense rain-gauge networks (Moszkowicz, 2000; Müller and 

Haberlandt, 2016; Peleg et al., 2013), recording rainfall over small spatial distances (i.e. in the scale of 101–102 m) and 

temporal scales (i.e. 5–10 min)”. A new figure (Fig. S2) was added to the supplementary material: 

 



with the following caption: “Figure S2. Small-scale spatial correlation structure for 5-min temporal resolution as was 

recorded using dense rain-gauge networks in Germany, Poland and Israel. The average correlation structure of the 

three (expressed by the three-parameter exponential function given in the figure) was used in this study“. 

 

3. The temporal resolution adopted in the study (10 min) may be too coarse for urban applications and may result in 

smoothing of urban flows, which may in turn result in underestimation of flow extremes (as indicated in Ochoa-

Rodriguez et al. (2015), temporal resolutions <= 5 min are required for urban hydrological applications, with 

resolutions of 10 min leading to large underestimation of peak flows. Likewise, Wang et al. (2015) showed results of 

flow simulations resulting from rainfall inputs at temporal resolutions from 1 to 10 minutes and compared them against 

flow observations; the results associated to 10 min rainfall inputs largely underestimated observed flow peaks and 

resulted in ‘distorted’ hydrographs). I understand that the temporal resolution of choice was likely constrained by the 

resolution at which rain gauge rainfall records were available. Please discuss the implications and limitations of the 

temporal resolution of choice and clearly mention in the future work section that tests should be conducted at finer 

temporal resolutions. 

The rainfall temporal resolution was indeed set to 10 min following the temporal resolution of observed rainfall 

records. We do agree that temporal resolution of rainfall data used as model input significantly influences flow 

dynamics including peak flows. We added the following sentence in the manuscript in section 3.2: “For this analysis, 

rainfall was generated with a spatial resolution of 100 m x 100 m for a domain size of 1.5 km x 1.5 km (see mesh in 

Fig. 1) and a temporal resolution of 10 min. For urban drainage applications 10 min can be considered a rather coarse 

temporal discretization, however we searched consistency with the observed rainfall record which is only available in 

10 min resolution.”. 

We are fully aware of that this is a suboptimal compromise. However, considering the fact that we calibrated the model 

using a one-year measured flow reference record and calibration results clearly show that the model can reproduce 

flow dynamics adequately, we think that using a 10 min rainfall resolution is more justified than generating rainfall 

data with a higher temporal resolution than the observed rainfall reference.   

 

4. The current title of the paper is rather misleading and I would suggest changing it to better reflect the purpose and 

focus of the study. For example, the focus on extreme values / return period should somehow be mentioned. 

Furthermore, I would suggest changing ‘temporal variability’ to ‘natural climatological variability’. The term temporal 

variability conveys the idea of temporal resolution, which, as described above, is not the purpose of this study and is 

in fact one of its shortcomings. 

We agree with the reviewer comment. A new title for the manuscript is suggested: “Partitioning the impacts of spatial 

and climatological rainfall variability in urban drainage modelling”.  

 

Finally, we would like again to express our thanks to the Editor and to the two reviewers who have helped us to 

significantly improve the paper.   

Sincerely, 

Nadav Peleg and Frank Blumensaat on behalf of the authorship 
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Abstract. The performance of urban drainage systems is typically examined using hydrological and hydrodynamic models

where rainfall
::::
input

:
is uniformly distributedand derived from a single rain–gauge or spatially distributed and obtained from

a weather radar system
:
,
:::
i.e.

::::::
derived

:::::
from

::::
one

:::::
single

:::
or

::::
very

:::
few

:::::::::::
rain–gauges. When models are fed with a single

::::::
rainfall

realization, the response of the urban drainage system to the spatio-temporal variability of rainfall remains unexplored. High

resolution stochastic rainfall generators allow studying the response and sensitivity of urban drainage networks to these spatial5

and temporal rainfall variabilities. The goal in this study was to understand how climate variability and spatial rainfall variabil-

ity, jointly or individually considered, affect the response of a calibrated hydrodynamic urban drainage model. A stochastic high

resolution rainfall generator (STREAP) was used to simulate many realizations of rainfall for a period of 30 years, accounting

for both climate variability and spatial rainfall variability. The generated rainfall was then used as input into a calibrated hy-

drodynamic model (EPA SWMM) to simulate
::
for

:::::::::
simulating

:
surface runoff and channel flow for

:
in
:
a small urban catchment10

in the city of Lucerne, Switzerland. The variability of peak flows at three different locations in the urban drainage network in

::
in response to rainfall of different return periods was evaluated

::
at

::::
three

::::::::
different

:::::::
locations

:::
in

:::
the

:::::
urban

:::::::
drainage

:::::::
network

:
and

partitioned among it
::
its

:
sources. We found that the main contribution to the total flow variability originates from the natural

climate variability (on average over 74%). In addition, the contribution of spatial rainfall variability to the total flow variability

was found to increase with longer return periods. This implies
::::::
suggest that while the use of spatially distributed rainfall data15

can supply valuable information for sewer network design (
:::::::
typically based on rainfall with return periods from 5 to 15 years),

there is a more pronounced relevance when conducting flood risk assessments for larger return periods. The results clearly

show the importance of using stochastic rainfall generators in urban hydrology studies not only to
:
to

:::
not

::::
only

:
capture the total

variability in the response of the urban drainage systems to heavy rainfall but also to gain transparency regarding
::::::
identify the

origin of this variability.20

1 Introduction

Urban drainage systems are designed to ensure safe wastewater handling
:::::::
disposal

:
(focus: dry weather) and adequate storm

water conveyance
:::::::
handling

:
(focus: wet weather). Whereas the variability of dry weather flows is rather low and well pre-

dictable, rain-induced flow dynamics may cover
::::
scale

::::
over

:
several orders of magnitude and require stochastic analysis due

1



to the high variability of rainfall. The latter is often addressed by summarizing the rainfall input in the form of Inten-

sity–Duration–Frequency (IDF) curves (e.g. Guo, 2006; Yazdanfar and Sharma, 2015), which are essentially relating maxima

of rainfall intensity for a given duration to their return period (Koutsoyiannis et al., 1998). For urban drainage system design,

engineers choose return periods for which they expect the urban drainage system to perform with a certain reliability (e.g. an

acceptable number of failures such as overflows or flooding in a given return interval).5

A common practice to evaluate the performance of urban drainage systems for different forcing situations is by using a

model with a hydrological component to simulate the transformation of rainfall into runoff at the urban catchment scale and

a hydrodynamic component to simulate the flow in the drainage system itself. Rainfall is defined as the most important input

required by these models (Vaes et al., 2001). It is recommended to use high resolution rainfall data in space and time as an input

because of the fast
::::
short

:
concentration time of urban drainage systems, and because this increases flow prediction accuracy10

and reduces
:
it
:::::::

reduces
::::
flow

:::::::::
prediction

:
uncertainty. The required spatial and temporal resolution depends on the size of the

urban catchment, characteristics of the drainage system, and local climate. A general recommendation is to use rainfall data

in a resolution similar to (or higher than) that produced by a typical X–band weather radar system, i.e. minutes in time and

sub-kilometer in space (see discussion by Berne et al., 2004; Bruni et al., 2015; Ochoa-Rodriguez et al., 2015; Wright et al.,

2014b).15

Rainfall input may be given by observations of rain–gauges and weather radar, however this limits the analysis only
:
;

:::::::
however

:::
this

:::::::::
constrains

:::
the

:::::::
analysis

:
to storms observed in a limited time period. Stochastic modeling of space-time rainfall

fields on the other hand allows a full exploration of the potential impacts of space-time variability in rainfall on the urban

drainage system. The spatial rainfall variability is defined as the variability derived from having multiple (stochastic) spatial

rainfall distributions for a given rainfall. The temporal component, here referred to as climate variability, is defined as the20

variability derived from having multiple (natural) climate trajectories forcing
:::::::::
generating different distribution of storms and

rainfall intensities in time. It is also known as "internal variability" or "stochastic climate variability" (Deser et al., 2012; Fatichi

et al., 2016; Hawkins and Sutton, 2009). The consideration is that observed rainfall represents only one trajectory of a given

climate and producing stochastic rainfall based on observed rainfall statistics results in many climate realizations, each one

equally probable (see for example Peleg et al., 2015).25

The use of stochastic rainfall generators that account for both spatial rainfall distribution and temporal climatic variability

in urban hydrology applications is still rather new. Wright et al. (2014a) used stochastic storm transposition to synthesize long

records of rainfall based on radar rainfall fields over the metropolitan area of Charlotte, North Carolina (USA), in order to

estimate the discharge return periods for points inside the urban catchment. McRobie et al. (2013) extended the earlier Willems

method (Willems, 2001) to generate spatially distributed Gaussian rainfall cells based on weather radar data for the Counters30

Creek catchment sewerage system in London (UK). Simoes et al. (2015) produced stochastic urban pluvial flood hazard maps

for the Cranbrook urban catchment (UK) using the McRobie et al. (2013) rainfall generator. Gires et al. (e.g., 2012, 2013) used

a multifractal model to generate space-time rainfall fields for the same storm but with different spatial structures, to study their

effect on the simulated flow in conduits in the Cranbrook catchment. The most recent stochastic rainfall generators that are

2



able to produce rainfall fields in a high spatial and temporal resolution and may be useful for urban applications are STREAP

(Paschalis et al., 2013, 2014), HiReS-WG (Peleg and Morin, 2014) and STEPS (Foresti et al., 2016; Niemi et al., 2016).

The main objective of this paper is to investigate the relative contribution of the spatial versus climatic rainfall variability

for flow peaks at different locations in the drainage network and for different return periods. We apply a new and advanced

stochastic rainfall generator to simulate rainfall inputs for a small urban catchment in Lucerne (Switzerland) and simulate flow5

dynamics in the sewer system. The stochastic rainfall generator is used to simulate multiple 30–years
:::::::
30–year

:
realizations

of rainfall over the catchment, accounting for both climate variability and spatial rainfall variability. This work demonstrates

the potential of high resolution stochastic rainfall generators for urban applications and the benefits gained compared to other

methods, such as bootstrapping rainfall events from a long rainfall series.

2 Case Study10

The case study is an urban catchment located near the city center of Lucerne, Switzerland (Fig. 1). The catchment in total

covers 77.0 ha, whereas 30.2 ha are connected to the combined sewer network
:
:
::::
11.5

::
ha

:::
of

::::
total

:::
area

::::
(5.3

:::
ha

:::::::::
impervious

:::::
area)

::
are

:::::::::
connected

::
to
:::::::
location

:::
A

:::
and

::::
30.2

:::
ha

:::::
(13.6

:::
ha)

:::
are

:::::::::
connected

::
to

::::::::
locations

::
B

::::
and

::
C. The catchment drains towards Lake

Lucerne, with higher gradients at the upper part and moderate to low gradients in the lower part. The drainage system consists

of separate and combined sewers (storm water and foul sewage share one pipe infrastructure) with a total network length of 11.215

km; hereinafter only combined sewers are considered. Both storm water and wastewater flows are solely driven by gravity. An

overflow structure is built in the lower part of the catchment to alleviate network capacity excess during heavy rainfall .
:::::
(CSO

::::::
location

:::
in

:::
Fig.

:::
1).

:
In this case, the carry-on flow towards the sewage treatment plant is hydraulically constrained (location B

in Fig. 1), and excess water is spilled via a side-flow weir followed by a small retention tank (approximate 100 m3) into Lake

Lucerne (location C in Fig. 1).20

The flow rate at the outlet of the combined sewer system (location B) is monitored for a period of about 12 months from

July 2014 to June 2015. In order to reduce measurement uncertainty, the water level and flow velocity was recorded using

two different combi-sensors with different monitoring techniques (in-situ Doppler-ultrasound technique, ex-situ ultrasound-

radar technique) in parallel. The recording interval was set to 1 min and 15 min for the Doppler-ultrasound sensor and

the ultrasound-radar sensor, respectively. This data is used to calibrate and validate (split-sample approach) a hydrodynamic25

sewer model which was set up based on infrastructure data from the municipality cadaster database. More details on the

catchment, particularly on the urban land use characteristics, the monitoring set-up, model calibration procedure are given in

Tokarczyk et al. (2015) .

3 Methods and Data

A stochastic high resolution space-time rainfall generator was used to simulate multiple realizations of 2-D rain fields for30

30 years. The rainfall was generated for four distinct cases which were defined in order to explicitly account for the climate

3



variability, spatial rainfall variability and total variability of the flow. The generated rainfall was used as an input into a hy-

drodynamic model. For each of the four cases, IDF curves were computed for the annual maxima of the mean areal rainfall

and Flow–Duration–Frequency (FDF) curves were computed for annual flow maxima simulated at three different network ele-

ments, representing different aspects in the assessing of the performance of urban drainage systems. The total flow variability

was partitioned into the part originating from climate variability and the part
::::::::
additional

::::::::::
contribution

:
due to spatial rainfall5

variability. The methods are illustrated in Fig. 2.

3.1 Rainfall Data

Rainfall data originate from two sources: a rain–gauge located about 2 km west to the test catchment (Fig. 1) and a C–band

weather radar composite. Both devices are operated by MeteoSwiss, the Swiss Federal Office of Meteorology and Climatology.

The tipping bucket rain–gauge records rainfall in 10 min intervals with a precision of 0.1 mm. A 34 year record was10

used in this study, covering the period 1981–2014. High-resolution 10 min min data were benchmarked with hourly rainfall

data (validated record provided by MeteoSwiss) and deviations were corrected. The length of the observed record allows an

adequate estimation of the rainfall characteristics, especially regarding high rainfall intensities of short durations and with

return periods up to 30 years. Climatological stationarity has been assumed for the observed record.

The high resolution radar rainfall data (2 km and 5 min) for the 8 year period 2003–2010 are from a third-generation weather15

radar system of MeteoSwiss (Gabella et al., 2005; Germann et al., 2006). Radar grid cells were examined for substantial

ground clutter or beam blockage and errors were excluded. This data was only used for the study of the rainfall structure over

the catchment and not for the calculation of IDF curves, as the accuracy of rainfall intensity recorded by the weather radar

(binned data) is not high enough
:::::::
sufficient to address extremes. Extreme rainfall intensity for a 1 km spatial resolution can be

analyzed in Switzerland (e.g. Panziera et al., 2016) using the fourth-generation weather radar system (Germann et al., 2015)20

or the gridded CombiPrecip products (Sideris et al., 2014). However, a longer period of high resolution rainfall from the latter

mentioned products would be required in order to properly account for the climate variability discussed in this study.

3.2 Stochastic Rainfall Generator

Rainfall fields in a high spatial and temporal resolution were generated using the STREAP model (Space-Time Realizations

of Areal Precipitation). STREAP was presented by Paschalis et al. (2013) and used to generate rainfall over a large rural25

catchment for flood investigations (Paschalis et al., 2014) and to analyze the variability of extreme rainfall intensity over radar-

pixel scales (Peleg et al., 2016). It is composed of three hierarchical modules describing: (i) the storm arrival process; (ii)

temporal evolution of the mean areal intensity and fraction of wet area during a storm; and (iii) evolution of the space–time

structure of rainfall during a storm.

For this analysis, rainfall was generated with a spatial resolution of 100 m x 100 m for a domain size of 1.5 km x 1.5 km30

(see mesh in Fig. 1) and a temporal resolution of 10 min.
:::
For

:::::
urban

:::::::
drainage

::::::::::
applications

:::
10

::::
min

:::
can

:::
be

:::::::::
considered

::
a

:::::
rather

:::::
coarse

::::::::
temporal

:::::::::::
discretization,

::::::::
however

::
we

::::::::
searched

:::::::::
consistency

::::
with

:::
the

::::::::
observed

::::::
rainfall

::::::
record

:::::
which

::
is

::::
only

:::::::
available

::
in

:::
10

::::
min

:::::::::
resolution. The spatial resolution was chosen to roughly match the discretization required for the urban sub-catchments,
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i.e. about two sub-catchments per ha resulting in 158 individual sub-catchments within 77 ha, and the temporal resolution was

set to match the temporal resolution of the rain–gauge observations.

3.2.1 STREAP Calibration

The calibration process of STREAP using weather radar products was discussed in detail by Paschalis et al. (2013). Some

modifications were made to tailor STREAP to the specific case study presented here. Due to the short period of the weather5

radar records (8 years), the storm arrival process (first module) was calibrated using the rain–gauge data (34 years). That

allowed a better representation of the statistics of storm probability of occurrence and duration.

Changes were also applied to the second module. Originally, mean areal intensity and fraction of wet area during a storm

are simulated as a bi-variate autocorrelated
::::::::::::
auto-correlated

:
stochastic processes that also depend on storm duration. Here, due

to the small extent of the spatial domain, the wet area ratio was assumed to be equal to zero during intra-storm periods and10

assumed to be equal to one during storms, i.e. during storms all grid cells over the catchment were
:::
are experiencing rainfall. The

mean areal intensity is simulated using an AR(1) model which simulates a normalized quantile time series that is later inverted

using a mixed-exponential function (Furrer and Katz, 2008; Smith and Schreiber, 1974), which parameters are computed using

rain–gauge data.

No modifications were needed for the last module. However, some model parameters (e.g. rainfall coefficient of variation)15

could not be directly estimated from the weather radar data as the spatial resolution of the radar product (2 km) is too coarse

compared to the model resolution (100 m). Therefore the required parameters were first estimated using the weather radar

data for a coarse spatial resolution and then scaled
:::::::::
downscaled

:
to higher resolution using power law functions

::::
(Fig.

::
S1

:::
in

::
the

:::::::::::::
supplementary

::::::::
material) as described in (Peleg et al., 2016) .

::::::::::::::::
Peleg et al. (2016) .

::
In

::::::::
addition,

:::
no

:::::
direct

::::::::::::
measurements

:::
are

:::::::
available

::
to

::::::::
estimate

:::
the

:::::::::
small-scale

:::::::
rainfall

::::::
spatial

:::::::::
correlation

::::::::
structure

:::
for

:::
this

::::::
region.

::::
The

::::::
spatial

::::::::
structure

:::
was

:::::::::
estimated20

::::
using

::::
data

::::
from

:::::
three

:::::
dense

:::::::::
rain-gauge

:::::::
networks

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Moszkowicz, 2000; Müller and Haberlandt, 2016; Peleg et al., 2013) ,

::::::::
recording

::::::
rainfall

::::
over

:::::
small

:::::
spatial

::::::::
distances

::::
(i.e.

::
in

:::
the

::::
scale

::
of

::::::::
101–102

:::
m)

:::
and

::::::::
temporal

:::::
scales

:::
(i.e.

:::::
5–10

:::::
min).

::::
The

::::
data

::
is

::::::::
presented

::
in

:::
Fig.

:::
S2.

:

3.2.2 STREAP Evaluation

The evaluation of STREAP, its ability to reproduce the rainfall intensity over the domain (with emphasis on the high rainfall25

intensity), and its performance with regard to the natural climate variability of the annual maxima in rainfall intensity, are

discussed below.

The ability of STREAP to reproduce the rainfall intensity over the domain is shown using the inverse cumulative distribution

function for the 10 min mean areal rainfall intensity (Fig. 3). Up to the 0.95 quantile, STREAP consistently underestimates the

rainfall intensity, but this underestimation is minor (maximum difference 0.052 mm h−1) and is not expected to bias the flow30

in the catchment. When we focus on the 0.95–1 quantile range which reflects the heavy rainfall intensity, and especially on

the upper 0.99–1 quantile range, which represent the extremes, STREAP performs very well, with small differences between

simulated and observed values (maximum difference 1.177 mm h−1). The maximum difference and the maximum error cal-

5



culated for the 0.9995–1 quantile range, which covers the entire
::::::
entirely

:
annual maxima rainfall intensities that were observed,

are as low as 1.072 mm h−1 and 1.54 % (respectively). An example of STREAP ability to simulate spatially distributed an-

nual maxima rainfall intensity over the catchment is given in Fig. 4. The ability of STREAP to reproduce the natural climate

variability in relation to the annual maxima rainfall intensity is discussed and presented in the Supplementary Material (Fig.

S1
::
S3).5

3.3 Rainfall Cases Classification

Four rainfall cases were defined in order to account for climate variability and spatial rainfall variability and to allow the

investigation of their effect on the urban drainage:

– Case 1: Consists of one time series of rainfall derived from the Lucerne rain–gauge (observed data, 34 years long). For

this case, rainfall was not spatially distributed using STREAP but was uniformly distributed, i.e. same rainfall intensity10

was assigned to all sub-catchments for a given time step. In this case the rain–gauge time series represents also the mean

areal rainfall over the catchment. Thus
::::
This is a common and critical assumption in hydrological studies, where point

rainfall represents
:
is

::::
used

::
to

::::::::
represent areal rainfall (Rodriguez-Iturbe and Mejia, 1974; Peleg et al., 2016; Sivapalan and

Bloschl, 1998; Svensson and Jones, 2010).

– Case 2: consists of 30 realizations of the same time series (rain–gauge observations) that was used in case 1, but spatially15

distributed using STREAP. Cases 1 and 2 differ in the spatial configuration of the rainfall (uniformly distributed vs.

spatially distributed) which will later allow to explicitly analyze how the spatial rainfall variability is affecting
::::::
affects

the flow.

– Case 3: consists of 30 realizations of 30 years generated by STREAP. For this case, STREAP was set to generate only

the mean areal rainfall and to uniformly distribute it over the sub-catchments (similar to case 1). Comparing the urban20

drainage response to the rainfall given from cases 1 and 3 will allow us to account for the climate variability component

directly, as case 3 represents 30 alternative and equiprobable trajectories of the rainfall series given in case 1.

– Case 4: consists of 900 realizations accounting for both the spatial rainfall variability and the climate variability. Each of

the 30 realizations that were generated for case 3 were re-generated 30 times using STREAP. The forcing has a different

spatial distribution of the rainfall over the sub-catchments for each re-generation. This allows computing urban drainage25

dynamics subjected to the total variability.

3.4 Hydrodynamic Model

Flow simulations were conducted using USEPA’s Storm Water Management Model (EPA SWMM), a dynamic 1-D model

coupling rainfall–runoff processes with hydrodynamic channel flow (Rossman, 2010). EPA SWMM was chosen as it represents

a standard open-source application in urban drainage modeling (e.g. Hsu et al., 2000; Liong et al., 1995; Meierdiercks et al.,30

2010).
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EPA SWMM is composed of two modules: the surface runoff (hydrological) and the in-sewer flow (hydraulic) model. The

hydrological model calculates the direct runoff under consideration of initial precipitation losses (i.e. evaporation and wetting

losses) and soil infiltration (here using the Horton method). The resulting surface runoff is then used as input for the hydraulic

model to simulate the pipe flow using the 1-D Saint-Venant equations. The diffusive wave approximation and a routing step

of 10 s was applied for all simulations.
::::::
Surface

::::::::
flooding

::
is

:::::::::
accounted

:::
for

::
by

::::::::
allowing

::::::
excess

:::::
water

::
to
:::::

leave
::
a
:::::::
manhole

:::
in5

:::
case

::::::
sewer

:::::::
capacity

::
is

::::::::
exceeded.

::::
Due

::
to

:::
the

::::
lack

::
of

:::::::
detailed

::::
land

:::
use

::::
and

::::::
surface

::::::::::
topography

::::
data

::
at

:::::
meter

::::
scale

::
it

::::
was

:::::
found

:::::::::
inadequate

::
to

::::::
further

:::::
define

::
a

::::::::::::::
manhole-specific

::::::::
"ponding

:::::
area"

:::::::
allowing

:::
the

:::::
water

::
to

::::::
spread

::
at

:::
the

::::::
surface

::::::
around

::
a
::::::::
manhole.

:::::
Hence

::::::
excess

:::::
water

:::::::
leaving

:::
the

::::::::
manhole

::
is

:::::
routed

::::
into

::
a
::::::
virtual

::::
sink

::::
and

::::
does

:::
not

:::::::
re-enter

:::
the

:::::::
system

::::
even

::::::
though

::::::
sewer

:::::::
capacity

:
is
::::::::
available

:::::
again.

:

The
:::::
sewer

:::::
model

::::::::::
application

::
is

:::::
based

:::
on

::::::::::::
infrastructure

::::
data

:::::
from

:::
the

::::::::::::
municipality’s

:::::::
cadaster

:::::::::
database.

:::
The

::::::
model

::::
has10

:::::::
carefully

:::::
been

::::::::
calibrated

::::
and

::::::::
validated

:::::::::::
(split-sample

::::::::
approach)

:::::
using

:::
the

::::::
above

:::::::::
mentioned

::::::::
one-year

::::
flow

::::
data

::::::
record.

:::::
Flow

::::::::
dynamics

:::
can

:::
be

:::::::::
adequately

::::::::::
reproduced

:::::::::
throughout

:::
the

::::
year

::::::
despite

::::
the

:::::
rather

::::::
coarse

::
10

::::
min

:::::::
rainfall

:::::
input

::::
data

:::::::::
resolution.

::::
More

::::::
details

:::
on

:::
the

::::::::::
catchment,

::::::::::
particularly

::
on

:::
the

::::::
urban

::::
land

:::
use

:::::::::::::
characteristics,

:::
the

::::::::::
monitoring

::::::
set-up,

:::::
model

::::::::::
calibration

::::::::
procedure

:::
are

:::::
given

::
in

::::::::::::::::::::
Tokarczyk et al. (2015) .

::::
The runoff-generating surfaces are distributed over the entire catchment. This

is represented by 158 individual sub-catchment entities with an area ranging between 0.02 and 0.84 ha. The rainfall fields gen-15

erated by STREAP were intersected with the sub-catchment areas and rainfall intensity was assigned for each sub-catchment

based on the weighted sum of the intersect area (cf. Gires et al., 2012). EPA SWMM was set-up for a continuous long-term

simulation of 30 and 34 years, respectively, depending on the examined rainfall case. Unlike for the design-storm approach

::
or

:::
the

:::::::
isolated

:::::::
analysis

::
of

:::::
single

:::::
storm

::::::
events

::
as

:::::::::
researched

:::
in

:::::
many

:::::::
previous

::::::
studies, antecedent hydrological conditions in

the catchment and the drainage network are implicitly taken into account here
::
to

::::
fully

::::::
address

::::::::
potential

::::::::::::
climatological

:::::::
changes20

:::
also

::::::::
regarding

::::
dry

:::::
spells.

3.5 Computation of IDF and FDF Curves

The generalized extreme value
::::::::::
Generalized

:::::::
Extreme

:::::
Value

:
(GEV) distribution (Jenkinson, 1955) is commonly used in hydro-

logical studies to model extreme rainfall intensity (e.g. Koutsoyiannis and Baloutsos, 2000; Marra and Morin, 2015) and flows

(e.g Zaidman et al., 2003) since it covers the Gumbel, Fréchet and Weibull distributions (Katz et al., 2005). IDF and FDF25

curves were calculated by fitting a GEV distribution to the series of annual maxima of the mean areal rainfall intensity and the

conduit flow time series (respectively).
:::
The

:::::
fitting

::
of

:::
the

:::::::::
parametric

::::::::::
distribution

::
is

:
a
::::::::

required
:::
step

:::
for

:::
the

::::::::
partition

:::::::
analysis

::
to

::
be

:::::::::
conducted

:::
(see

::::
next

:::::::
section)

::
as

::
it

::::::
results

::
in

:
a
:::::::::
continuous

::::::::
estimates

::
of

:::
the

::::::
curves

::::::::
quantiles

:::
(i.e.

:::
the

::::::
return

::::::
period).

:

IDF curves were calculated for two datasets: observed data derived from the Lucerne rain–gauge and simulated data that were

generated using STREAP. For the observed dataset, one IDF curve was computed for the 34 years of records. For the simulated30

dataset, 30 IDF curves were calculated for the 30 stochastic realizations (of 30 years each). The curves were calculated for a

10 min duration.

FDF curves were calculated for the simulated flow at three locations which were chosen according to their function within

the drainage network (see Fig. 1): (i) about 200 m upstream of the combined sewer overflows (CSO) structure in a sewer section
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that was previously identified as prone to pipe surcharge (location A - inner network node); (ii) about 200 m downstream of

the CSO structure (location B – carry-on flow to sewage treatment works); and (iii) at the CSO outlet to lake (location C -

overflow). The number of derived FDF curves follow the rainfall cases as described in Section 3.3, i.e. 1 for the first case

(34 years), 30 for the second and third cases (30 years each) and 900 for the fourth case (30 years each). FDF curves were

calculated for a 5 min duration.5

Note that no condition was imposed on the time concurrency of annual maxima of mean areal rainfall intensity and conduit

flow, i.e. annual peak flow can precede, overlap or follow the annual maxima of mean areal rainfall intensity.

3.6 Variability Partitioning

The partition method used in this study follows the guidelines suggested by Fatichi et al. (2016). We assume that there are

interactions between the two sources of variability(,
:
i.e. they cannot be treated independently)

:
, as the spatial pattern of the10

rainfall annual maxima is dependent on the extreme rainfall intensity that is driven by a given climate trajectory. The climate

variability, CLM , is defined as the 5–95 quantile range of the flow that is calculated using the 30 spatial uniform climate

realizations simulated for case 3 (i.e. the outcome is one flow range for a given return period). The
::
For

:::::
each

::
of

:::
the

::
30

:::::::
climate

::::::::::
realizations,

:::
the spatial rainfall variability, SPT , is defined as the 5–95 quantile difference of the flow calculated for each of

the 30 climate realizations using the 30 spatially variable realizations
::::
using

:::
the

::::::::
spatially

:::::::
variable

::::::
rainfall

:
simulated for case 415

(i.e. the
:
4.

::::
The

:
outcome is 30 different flow ranges, SPT 1

RP ,SPT 2
RP , ...,SPT 30

RP , one for each climate trajectory and for a

given return period). The 5–95 quantile range was used because of the different sample sizes between case 3 (30 realizations)

and case 4 (900 realizations). The contribution of
::::
ratio

:::::::
between

:::
the climate variability, ϕCLM to

::::::
CLM

:::
and the total variability,

TOT , for each return period, RP , can then be estimated as:

ϕCLM,RP =
CLMRP

TOTRP
(1)20

where the total variability for a given return period is the difference between the maximum and minimum spatial variability

simulated per return period from all climate trajectories:

TOTRP =maxSPTRP −minSPTRP (2)

Note that the
:::
The

:
total variability for a given return period, TOTRP , calculated above will be always smaller comparing to

the total variability that will be calculated by summing
:::
than

:::
the

::::
sum

:::
of the flow variability from case 4, because there is a25

dependency between the two sources of uncertainty.
::::
Note

::::
that

:::::::::::
1−ϕCLM,RP::

is
:::::::::::
representing

:::
the

::::::
unique

::::::::::
contribution

::
of

::::::
spatial

::::::::
variability

::
to
:::

the
:::::

total
::::::::
variability

:::
for

::
a
:::::
given

:::::
return

:::::::
period,

:::::::
however

:::
the

::::
total

::::::
spatial

:::::::::
variability,

:::::::::::::

∑N
i=1SPT i

RP

N :
,
::
is
:::::
larger

:::
or

::::
equal

::
to
::::::::::::
1−ϕCLM,RP:::::::::::::::::::::

(see Fatichi et al., 2016) .
:
An illustrative example for the partition method is given in Fig. 5.

4 Results and Discussion

In the following, we present computed IDF (rain) and FDF (flow) curves and discuss the contributions of individual rainfall30

variabilities to the modelled sewage flow variability at three different locations: A – inner network node (Fig. S2 and S4
:::
and
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::
S6), B - carry-on flow (Fig. 6 and 7), and C - combined sewer overflow (Fig. S3 and S5

:::
and

:::
S7). The partitioning of the flow

variability was conducted
:
is
::::::::
presented

:
for all three locations (Fig. 8).

The effect of spatial rainfall variability on the flow can be directly estimated by examining the flow variability from case

2 (Fig. 6c, S2c and S4c). The effect of spatial rainfall variability is derived from the analysis of flow extremes occurring in a

continuous time series of 30 years. The variability in annual flow maxima is computed from the spread in simulations for a5

given return period. This variability is expressed here in its simplest form, as the difference between the highest and lowest

flows simulated for the 30 realizations for a given return period. The effect of spatial rainfall variability on urban hydrology was

researched in the past (e.g. Bruni et al., 2015; Gires et al., 2012; Simoes et al., 2015; Willems and Berlamont, 2002) leading

to the conclusion that this variability should be taken into consideration when running urban hydrological models. Indeed, for

return periods between 2 and 30 years, the peak flow variability was found to vary between 18.3 and 55.1 l s−1 at location A10

(Fig. S2c) and
:::
S4c)

::::
and

:::::::
between 91.2 and 179 l s−1 at location C (Fig. S4c

:::
S6c). At location B, peak flow variability was found

to be low (vary
::::
lower

:
(between 2.9 and 6.2 l s−1, Fig. 6c) due to the fact that flow is hydraulically constrained though

::
by the

upstream located throttle pipe.

The effect of the climate variability over the catchment is calculated from the 30 rainfall realizations stochastically simulated

for cases 3 and 4 (left panel in Fig. 7). Similar to the flow variability, the climate variability is expressed as the difference15

between the highest and lowest mean areal rainfall found for a given return period. In agreement with Peleg et al. (2016), the

climate variability was found to increase with longer return periods, from 11.8 mm h−1 for the two year return period to 47.2

mm h−1 for the 30 year return period.

The effect of the climate variability on the flows in the catchment is estimated from case 3 (Fig. 7b, S3b and S5b). For the

return periods of 2 to 30 years, the flow variability at location C, resulting only from climate variability, was found to be in20

the range 278.9–420.3 l s−1. For most of the return periods this variability is more than doubles the flow variability resulting

from the spatial rainfall variability. The results for location C suggest that the role of climate variability is considerably more

important than the role of spatial rainfall variability. The flow variability for the return periods 2–30 years for locations A

and B were found to be in the range of 33.3–48.5 and 7.3–11.6 l s−1 (respectively). As for location C, the flow variability

resulting from climate variability is higher than the flow variability resulting from the spatial rainfall variability. However,25

the relative differences in variability around the median peak flow, calculated for the 30 years return period, reveal that the

differences between the individual variabilities are much less meaningful
::::::::::
pronounced for locations A and B (1.7% to 3.2%

and 0.8% to 2.1%, respectively) in comparison to location C (3.5% to 10.7%). The
:::::
These differences regarding the absolute

flow variability are expected as location B is located downstream of a hydraulic constraint (throttle pipe at CSO structure), thus

flow is eventually levelled out, while at location A runoff is drained directly from its associated
:::::::::
contributing

:
sub-catchment30

without any buffering but still constrained due to surface flooding, i.e. excess flows leave the manhole through the lid and do

not contribute to the actual peak flow.

The total flow variability is calculated using the data of case 4 (Fig. 7c). As expected, the total flow variability is larger than

the flow variability resulting from either the spatial rainfall variability (case 2, Fig. 6) or from the climate variability alone

(case 3, Fig. 7). The partitioning of the total flow variability into its individual sources
:::::::::
components

:
is presented for all three35
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locations in Fig. 8. Results indicate that climate variability is the dominant contributor of the total variability of flow in the

catchment. This applies to peak flows analyzed at all three locations in the urban drainage system. The highest contribution

of the climate variability to
::::
ratio

:::::::
between

::::::
climate

:::::::::
variability

::::
and total variability is for location B, 83% for 2.2 years return

period, and decreases for longer return periods to 57% for the 30 years return period. This decreasing trend was found to be less

prominent for locations A and C, but statistically significant for all three locations as supported by a trend analysis using the5

Mann-Kendall test (Kendall, 1975; Mann, 1945). For location A, the relative mean contribution of the climate
::::
ratio

:::::::
between

:::
the

::::::
climate

:::
and

:::
the

::::
total

:
variability was found to be around 81%. For location C, the mean contribution of climate variability was

found to be
::::::
climate

::::::::
variability

::::::::
accounts

:::
for 75% for the 2 to 10 year return periods, decreasing to 62% for the 30 year return

period. Averaged over all three locations and all return periods the mean contribution of
:::
ratio

::::::::
between the climate variability

to
:::
and

:
the total variability is 74%, leaving 26% contribution from

:::
due

::
to
::::

the
:::::::
addition

::
of

:
spatial variability. The results of10

the partitioning suggests that using traditional methods to quantify variability in urban drainage, such as bootstrapping, will

likely result in an underestimation of the variability (and uncertainty) as only the climate variability will be represented. This

is especially important for return periods that are longer than 10 years. While the use of spatially distributed rainfall data can

supply valuable information for sewer network design (based on rainfall with return periods from 5 to 15 years), it will become

even more important when performing flood risk assessments of extreme events (larger return periods).15

The rainfall generator was used to simulate rainfall for the weather radar subpixel scale, i.e. in a finer spatial resolution than

can be estimated using the MeteoSwiss radar. The rainfall data required for a complete validation of the rainfall generator for

this resolution can be obtained from a dense rain–gauge network (for networks examples see Muthusamy et al., 2016; Peleg

et al., 2013) but such a network is not available for our
::
in

:::
the

:::::::
analyzed

:
region. Therefore some assumptions need to be

::::
were

made. Two of those assumptions should be
:::
are discussed in the light of missing information for the subpixel scale: (i) the20

rain fields are simulated following a lognormal distribution. We assume that the non-zero part of the subpixel spatial rainfall

distribution follows the observed lognormal distribution that is recorded by the weather radar for this region (as in Paschalis

et al., 2014; Peleg et al., 2016). Choosing a
:
A different spatial rainfall distribution to follow will significantly affects the results

of the extreme rainfall distribution; (ii) we assume that same occurrence and intensity statistics are applied
::::
equal

:
for each of

the grid cellsequally, i.e. no filter
:::::
spatial

::::::::::
correlation is applied for the spatial rainfall occurrence or intensity. That means that25

no orographic, distance from the lake or urban micro-climate effects are considered. Provided they are known these effects can

be included.
:::
not

:::::::::
considered.

:
No automatic calibration process exists for STREAP. The model requires not only high-resolution

rainfall data but also an expert user for the calibration process, as modifications for
:
to
:

the calibration procedure (e.g. for this

study, scaling for
:::::
scaling

::
at
:

higher spatial resolution) are needed in order to tailor STREAP for a given location.
:
to

::
a
:::::
given

:::::::::
application.

:
30

:::
The

:::::
three

::::::::
locations

::::::::
analyzed

::
in

::::
this

:::::
study

:::::
were

::::::::::
deliberately

:::::::
chosen

::::::::
according

:::
to

::::
their

:::::::::
functional

:::::::::
hierarchy

:::::
within

::::
the

::::::::
combined

:::::::
drainage

::::::
system

::::
(i.e.

:::::
inner

:::::::
network

::::
node,

::::::::
carry-on

::::
flow

:::
and

:::::::::
overflow).

:::
By

:::::
doing

::
so,

:::
we

::::
can

::::::
clearly

::::::::::
differentiate

:::
the

:::::
effect

::
of

:::::
spatial

::::
and

:::::::::::
climatological

:::::::
rainfall

::::::::
variability

:::
on

:::::::
elements

:::::::::
depending

::
on

::::
their

::::::::
function

:::::
within

:::
the

:::::::
network.

:::
On

:::
the

:::::
other

::::
hand,

::::::::
previous

::::::
studies

::::::
showed

::
a

:::::::
tendency

::::
that

:::::::
conduits

::::::
located

::::::::
upstream,

:::
not

:::::::
affected

:::
by

:::::::::::
hydraulically

::::::::::
constraining

:::::::::
structures,

::
are

:::::
more

::::::::
sensitive

::
to

::::::
rainfall

::::::
spatial

::::::::
variability

::
in
::::::::::

comparison
::
to
::::::::
conduits

::::::
located

::::::::::
downstream

::::::::::::::::::::
(e.g. Gires et al., 2012) .

::::::
While35
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:
it
::::::
would

::
be

:::::::::
interesting

:::
to

::::::
further

:::::::::
investigate

::::
flow

:::::::::
variability

::::
due

::
to

:::::::
different

::::::
spatial

:::::::
rainfall

::::::::::::
characteristics

::::
(e.g.

:::
the

:::::::
rainfall

:::::
spatial

::::::::::
correlation)

::
at
:::::::
various

::::::::
upstream

::::::::
locations

::::::
(similar

:::
as

:::::::
location

:::
A),

::::
this

::::
type

::
of

:::::::
analysis

::::::
would

::::::
require

:::::
larger

::::::::
drainage

:::::::
networks

::
in
::::::::::
comparison

::
to

:::
the

::::
one

::::::::
presented

::::
here.

::::::
Future

::::::
studies

::::
will

::::::
benefit

::::
from

:::::::::
examining

::::::
several

:::::::
different

:::::
urban

::::::::
drainage

::::::
systems

::::
with

:::::::
rainfall

::::
input

:::::
from

:::::::
different

:::::::::::::
high-resolution

:::::::
products

::
to

:::
test

:::
the

:::::::::
robustness

::
of

:::
the

::::::::
findings.

The computational cost of running a rainfall generator combined with an urban drainage model is also a matter for discussion
::::
may5

:::::::
constrain

:::
the

::::
use

::
of

:::
the

::::::::
proposed

::::::::
approach

::
for

::::::::
practical

:::::::::::
applications.

:::
But

:::::
given

:::
the

::::::::
advances

::
in

:::
the

:::::::::
availability

:::
of

:::::::::
computing

:::::::
capacity,

::::
also

::
for

::::::::::::
non-scientific

::::::::::
institutions,

::::
such

:::::::::
application

::::
will

:::::::
becomes

:::::::
feasible

::
in

:::
the

::::
near

:::::
future. We have used a powerful

20 core desktop machine
:::::
(Intel

:::::
Xeon

::::
CPU

::::::::::
E5-2687W) to run the 961 stochastic rainfall realizations with STREAP in approx-

imately 4 days. We estimated that the time needed to run SWMM using the same machine will be
:::::::::
stand-alone

:::::::
machine

::::::
would

::::
have

::::
been

:
about 4 months. This is a too prolong time

:
,
:::::
which

::
is
:::::::::::
impractically

:::::
long

:::::::
duration, especially considering the small10

size of the urban catchment. Ultimately
:::::::
Therefore, we have used an HPCcluster, a collection of

:
a
::::
high

:::::::::::
performance

:::::::::
computing

:::::
(HPC)

::::::
cluster

::::
with

:
hundreds of computing nodes allowing high-performance scientific computations, to run SWMM simula-

tions in less than 48 hours.

5 Conclusions

Output from a stochastic rainfall generator was used as an input into an urban drainage model to investigate the effect of spatial15

rainfall variability and climate variability on peak flows in an urban drainage system located in central Switzerland. It is
:::
We

found that the climate variability is the main contributor (74 % on average) to the total flow variability, but that the
::::::
relative

contribution of the
:::::::
addition

::
of

:
spatial rainfall variability increases with return period.

The analysis presented in this study was conducted at three different locations in the urban drainage system which reflect

different system functions. Deviations in flow quantities and dynamics were expected and are, in fact, observed within the20

catchment depending on the corresponding location (i.e. up- or downstream of the overflow structure, or the overflow itself).

Despite this, in agreement for all three locations we found that the climate variability is the dominate
:::::::
dominant

:
contributor to

the flow variability for all return periods.

We present only a single case study, a relatively small,
:::
but

:::::::
typical urban catchment located in the foothills of the Swiss

Alps. However, we argue that the partitioning of the spatial rainfall variability and climate variability
::::::::
variability

::::::::::
partitioning is25

likely to be similar for most small to medium size urban catchment, meaning that
:::::
small–

::
to
:::::::::::::
medium–sized

:::::
urban

::::::::::
catchments.

::::
That

::
is

::
to

:::
say,

:
the climate variability will constitute the largest contribution to the overall flow variability also in other urban

catchments, and spatial variability will gain more importance as longer return periods are being considered. It is probable

that the contribution of
::::::
Further

::::::::::::
investigations

:::
are

::::::
needed

::
to

:::::::
examine

:::
the

:::::::::::
contributions

::
of

:::
the

:::::::::
variability

::::::::::
components

:::
in

:::::
larger

:::::::::
catchments

::::::::::
(potentially

:::::
more

:::::
prone

::
to
:

spatial rainfall variabilitywill increase with increasing of the urban catchment area,30

however a further investigation is needed to establish this as it can be buffered by the complexity of the drainage system, e.g.

by compensating due to hydraulic inner network dependencies
:
)
::::
with

:
a
:::::
more

:::::::
complex

:::::::
drainage

:::::::
network

::::::::::
(potentially

::::
with

:::::
more

::::
flow

::::::::::
attenuation).
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Regarding the added value in using high resolution stochastic rainfall generators for urban drainage applications, based on

our results we conclude that not addressing the spatial rainfall variability will result in a significant
::::::::::
considerable

:
underes-

timation of the variability
:::::::::
uncertainty in catchment response, especially for longer return periods which are likely of main

interest. Stochastic rainfall generators should become an integral part of the urban hydrologist toolbox, particularly when es-

timating hazards of urban flooding. However, these methods are still not commonly used by planning engineers for designing5

and evaluating urban drainage systems. We identify three
:::
four main aspects that contribute to the reluctant acceptance among

practitioners:

– High-resolution rainfall data are required (from a weather radar system or from a dense rain–gauge network) as well as

an expert user for the calibration process. Setting up an automatic calibration process is however not a realistic
:::::::::
unrealistic

option due to the spatio-temporal differences between weather radar systems and the need to tailor the rainfall generator10

for
:
to
:
specific locations.

– The
:::
high

:
computational cost of running a rainfall generator combined with an urban drainage model may be prohibitive

for common applications, even for a small urban catchment. The resources requires
:
.
:::::
Today

:::
the

:::::::::
resources

:::::::
required for

an efficient time-consuming computation (e.g. HPC cluster) are often not
::::
(yet) available in the private sector.

– The struggle to overcome old engineering paradigms towards accepting variability ranges as useful information on the15

one hand and the
::
for

::::::
design

::::
and

::::::::::
performance

::::::::::
assessment.

:

–
:::
The

:
difficulty of rainfall generators modelers to transparently convey the modeling chain, its results and uncertaintieson

the other hand.

These aspects should be addressed in future development
::::::::::
applications of high-resolution stochastic rainfall generators in order

to make them more accessible to the urban drainage community.20
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Figure 1. Location map of the case study catchment (bounded with black line). The black mesh represents the 1.5 x 1.5 km2 domain (grid cell

resolution of 100 x 100 m2) for which stochastic rainfall was generated. The red lines represent the drainage system (thicker lines per pipe

diameter) and the blue circle (inner network node), rectangle (carry-on flow) and triangle (combined sewer overflow) symbols represent the

location for which the flow analysis was conducted. The
:::::::
combined

:::::
sewer

:::::::
overflows

:
(CSO structure(

:
, blue romb symbol) is located between

locations A and B.
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Figure 2. A schematic illustration of the methods used in this study
:
:
::
(i)

:::::::
STREAP

:::::
model

::::
was

::::
used

:
to
:::::::

simulate
:::::::
multiple

::::::::
realizations

::
of
::::

2-D

:::
rain

::::
fields

:::::
based

::
on

:::::
radar

:::
and

::::::
gauged

:::
data

:::::::
(Section

::::
3.2);

::
(ii)

::::::
rainfall

:::
was

::::::::
generated

:::
for

:::
four

::::::
distinct

:::::
cases

::::
which

:::::
were

:::::
defined

::
in
:::::

order
::
to

:::::::
explicitly

::::::
account

:::
for

::
the

::::::
climate

::::::::
variability,

::::::
spatial

:::::
rainfall

::::::::
variability

:::
and

::::
total

::::::::
variability

::
of

:::
the

:::
flow

:::::
(3.3);

:::
(iii)

::::
EPA

::::::
SWMM

:::::
model

::::
was

:::
used

::
to

:::::::
calculate

:::
the

:::
flow

::::
over

::
the

::::::::
catchment

::::
(3.4);

:::
(iv)

::::
IDF

:::
and

:::
FDF

:::::
curves

::::
were

::::::::
computed

::
for

:::
the

:::::
annual

::::::
maxima

::
of
:::
the

::::
mean

::::
areal

::::::
rainfall

:::
and

::::
flow,

:::::::::
respectively,

::
at

::::
three

::::::
different

:::::::
locations

:::::
(3.5);

:::
and

::
(v)

:::
the

::::
total

:::
flow

::::::::
variability

:::
was

::::::::
partitioned

::::
(3.6).
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Figure 3. An inverse cumulative distribution function of the 10 min mean areal rain intensity over the catchment [The 0.1–1 quantile is

presented in (a) and the 0.95–1 quantile range is zoomed in (b)]. Blue line represents 34 years of observed data (1981–2014) and red line

represents the median of 30 realizations of 30 years. The simulated mean 5–95 quantile range of the rainfall intensity of the 30 realizations

is also presented (shaded red).

Figure 4. An example of STREAP ability to spatially distribute the annual maxima rainfall intensity over the catchment. The annual maxima

recorded by Lucerne gauge for the year 1981 is 80.4 mm h−1 for duration of 10 min. Without STREAP, this value is assumed to be

uniformly distributed over the domain (panel a). STREAP accounts for the spatial distribution of rainfall, thus while the areal average is

preserved for each time step, some grid cells (100 x 100 m2 resolution) will record higher rainfall intensity and some lower values. Example

of the footprint of the annual maxima rainfall intensity for three random realizations of the year 1981 generated by STREAP are presented

in panels b–d.

19



Figure 5. An example for the partition method (illustrative) for the 2 years return period (zoomed panel). 3 climate trajectories are plotted

(red lines) for which the 5–95 quantile range is calculated (ϕCLM,2, red area). For each climate trajectory, 30 spatial realizations are plotted

(grey lines). The 5–95 quantile range is than
:::
then

:
calculated for each of the 30 spatial realizations (SPT 1

2 ,SPT 2
2 ,SPT 3

2 , plotted as blue

arrows) and the total variability, TOT2 (blue area), is defined by bounding the maximum and minimum flows defined by the spatial variability

(maxSPT2 and minSPT2, respectively). The partition of the climate variability, ϕCLM,2, out of the total variability is then calculated as a

simple division
::::
ratio between the two.

.
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Figure 6. Rainfall and flow results for cases 1 and 2. In the left panel, the IDF curve computed for the mean areal rainfall over the catchment

is presented. In the right panels, FDF curves for location B are presented. Blue line represents the IDF curve and the FDF curves computed

from the observed uniformly distributed rainfall. Gray lines represent the FDF curves computed for the realizations with spatial rainfall

variability.

Figure 7. Same as Fig. 6, but for cases 3 and 4.
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Figure 8. The contribution of
:::
ratio

::::::
between

:
the spatial rainfall variability (light blue area) and climate variability (dark blue area) to

:::
and

:
the

total flow variability for a given return period and for different locations within the urban drainage system
:
is

:::::::::
represented

::
in

:::
dark

::::
blue.

::::
The

:::::::
remaining

::::::::::
contribution

:
is
:::
due

::
to

:::
the

::::::
addition

::
of

:::::
spatial

::::::
rainfall

::::::::
variability

::::
(light

::::
blue).
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