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Abstract. Fractal analysis relies on scale invariance armd dbncept of fractal dimension enables to chariaeteand
guantify the space filled by a geometrical set bitinig complex and tortuous patterns. Fractal téage been widely used
in hydrology but seldom in the specific contexudban hydrology. In this paper fractal tools arecuto analyse surface and
sewer data from 10 urban or peri-urban catchmemgatéd in 5 European countries. The aim was toachenise urban
catchment properties accounting for the complerityl inhomogeneity typical of urban water systemeswed system
density and imperviousness (roads or buildingg)regented in rasterized maps of 2 m x 2 m pixekyevanalysed to
quantify their fractal dimension, characteristic @faling invariance. The results showed that betlves density and
imperviousness exhibit scale invariant features@dbe characterized with the help of fractal disiens ranging from 1.6
to 2, depending on the catchment. In a given aoeaistent results were found for the two geomedtfeatures, yielding a
robust and innovative way of quantifying the leweélurbanization. The representation of imperviogsni operational
semi-distributed hydrological models for these katents was also investigated by computing fractaledsions of the
geometrical sets made up of the sub-catchments ceiffficients of imperviousness greater than a eamigthresholds. It

enabled to quantify how well spatial structuresngferviousness were represented in the urban hygioal models.

1 Introduction

The aim of this paper is to consistently charaseernirban catchment properties accounting for thapéexity and

inhomogeneity typical of urban water systems. Ifdsused on two main properties of urban catchmemasnely the
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geometry of the sewer system and the distributibimpervious surfaces. Such characterisation isoittgmt to obtain
insights in the urban catchment response behawibtie various spatial scales that control thetiogldbetween rainfall and
sewer flows; to develop convenient methods thatvwakkvaluation of the urban catchment charactesistigplemented in
urban drainage models (the ones that are of impoetéor obtaining reliable spatially variable urbzaichment responses;
e.g. spatial imperviousness structure); to devetethod that support the urban hydrological modétie¢he decision about
the spatial details required to obtain reliable slofimpact) results. Achieving this has proved ® difficult using
traditional tools, mostly based upon Euclidean getoyn due to the variability and inhomogeneity iatahment
characteristics (ex among other Berne et al, 20@d)alternative to traditional tools could be theewf fractal geometry
(Mandelbrot, 1983), which relies on the conceptscdle invariance, i.e. similar structures are lésist all scales. The
concept of fractal dimension enables to charaaeinza scale invariant way the space filled by angetrical set in its
embedding space. Fractal analysis and more gepsrlling analysis have been often and successfatigd in geophysics,
including hydrology, but seldom in the specific t®ti of urban hydrology.

For example, they have been used to charactevisenetworks, including quantification of main stne sinuosity (Nikora ,
1991; Hjeimfeit, 1988), quantification of how thetwork fills space (La Barbera and Rosso, 1989;ayaku, 1990;
Foufoula-Georgiou and Sapozhnikov, 2001; Gangodagenet al., 2011, 2014,), and simultaneous queatidin of both
features (Tarboton et al., 1988; Rosso et al., 1%aidboton, 1996; Veltri et al. 1996). River basies/e also been analysed
with fractal analysis. For instance, Bendjoudi &hdert (2002) showed that the perimeters of theubar(Eastern Europe)
and Seine (France) river basins are too tortuouetscale-independent. Rainfall occurrence pattalists appear to exhibit
fractal features (Lovejoy and Mandelbrot, 1985;90iset al., 1993; Hubert et al., 1995). In extemsimcluding the use of
multifractal tools, i.e. for fields and not simpigometrical shapes, such tools have also beentostddy river discharges
and rainfall time series (see Tessier et al., 168®andey et al., 1998, for examples combiningp)oot

Some authors relied on the same concept of fralitaénsion for characterizing land use cover inoasicontexts. For
example Cheng et al. (2001) computed a fractal dgioa for various land use classes and used itatyse land use change
between two areal pictures taken 20 years apant @v knf mountainous catchment. Darrel and Wu (2001) coetput
fractal dimensions of three land use classes -fjemgriculture and urban- and used it to analysér tvolution during a
century over a 69 km x 89 km area around Phoeniz(ha, United States of America). This alloweddstigating the
effect of urbanization over landscape and was tsei@velop a model to reproduce observed feat&Gieslarly, Tannier et
al. (2011) used this concept to identify the motpbizal boundary of urban areas in a scale invaneay. lverson (1988)
estimated fractal dimensions for numerous landtypes to study the evolution of landscape over y&érs in lllinois
(United States of America). Soil features have deen studied with fractal analysis. For instancan@/et al. (2006)
analysed particle size distribution with fractahcepts. A feature emphasized by many authors iseflidionship between
fractal features and power law decay (i.e. non Gaunsbehaviour) of various fields such as rivertiparlength, rainfall
event duration, particle size distribution or dista between buildings (Mandelbrot, 1983; Lavergmad Golé, 1998;
Tarboton, 1996; Wang et al., 2006; Tannier et 2011). This implies that up- and downscaling of enedlogical and
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hydrological parameters needs to account for tlia-@aussian behaviour. For hydrological analysisngans that
hydrological models are likely to be sensitive tale differences between rainfall input and catahmrredharacterisation
(Ogden and Julien, 1994).

Despite this wide range of applications, fractahlgsis has seldom been used to specifically addresgopic of urban
hydrology. Initial attempts to characterize urbaaighge networks (Sarkis, 2008; Gires et al., 204)mperviousness
(Gires et al. 2014) have been carried out on lahdeeas. In this paper we go a step further andeimgnt fractal analysis
on 10 urban catchments with different charactedstocated across 5 European countries. The imaith includes
analysis of the sewer network geometry and disiobuof imperviousness derived from available GEgad including the
way in which it is represented in operational sdiatributed hydrodynamic urban drainage modelsoriter to be able to
use the same technique to analyse both sewer netwwod map of distributed imperviousness, we wsetdt tools on them,
and not multifractal ones as the one found in Dada et al. (2004, 2006) for river networks. Mirtictals will be used in
the characterization of the representation of imipeisness in models. This multi-catchment invesitgaallows obtaining
robust results which are representative of a rarfgeydrological characteristics. The opportunitycarry out this multi-
catchment investigation arose from the InterregtiNgvest Europe (NWE) project RainGain, which focuse improving

rainfall estimation and pluvial flood modelling anthnagement in urban areas across NWE.

The paper is organised as follows. In section 2atla@lable dataset over the 10 pilot catchmentieseribed. The concept of
fractal dimension and the methodology used to caenjilare explained in section 3. Results are miteseand discussed in

section 4. In section 5 the main conclusions aesgmted and future work is discussed.

2 Experimental sitesand datasets

Ten urban catchments, with areas in the range of @ knf and located in five European countries (UK, Frartbe
Netherlands, Belgium and Portugal) were adoptegilassites in this study. The general locatiortted pilot catchments is
shown in Figure 1 and their main characteristiessatmmarised in Table 1.

For each pilot catchment three types of data aaéysed in this paper and Fig. 2 displays them lidha catchments :

(i) The sewer system, which is considered as a arétwf linear pipes (left column in Fig. 2). Thevét of precision of
available data is not the same for all the catchsdndeed for the Morée-Sausset and Torquay caotenonly the main
pipes are taken into account, whereas for the ath@ipes down to street level (not the conneaifrom building or houses
to the network) are available

(i) An imperviousness map at a resolution of 2 @ m generated with the help of QGIS (www.qgis.drgsed on data
derived mainly from Open Street Map (http://www.npeetmap.org/) (middle column in Fig. 2). Moregsely, for each
catchment the road layer (of polyline type) wasieged from the Open Street Map platform and a #uffer (adopted

based on normal width of roads in urban and pdr&arcatchments) was set on both sides of this ipeljayer. The

3



10

15

20

25

30

building layer was retrieved either from the sarfaform or from local building register datasetfie$e two data sets were
rasterized in a map with pixels of size 2 m x 2An.imperviousness map was then derived in whichxal ggontaining
roads or buildings is marked as impervious andrgihels are marked as pervious.

(i) A map of imperviousness derived from catchmeepresentation in semi-distributed hydrodynamiodeis (right
column in Fig. 2). A validated operational semitdizited hydrodynamic model was available for eadhthe pilot
catchments, except for Jouy-en-Josas. In this ¢§peodel the whole catchment is split into a numisesub-catchment, an
independent hydrological block corresponding toogipn of the full catchment. The models are na #ame for all the
pilot sites but they all function with the same ariging principles. Each sub-catchment containsixa @f pervious and
impervious surfaces whose runoff drains to a commatet point, which could be either a node of dihainage network or
another sub-catchment (Rossman, 2010). Each sohroant is characterised by a number of parametaisiding total
area, length, slope, proportion of each land usksail type characteristics. Rainfall is inputtexit®domogeneous in space
within each sub-catchment, and based on the sabhoaint’s characteristics, the total runoff is estiea with the help of a
lumped model and routed to the outlet point. Thevfin pipes is then represented with the help ihatical approximation
of 1D shallow water equations. The size and distiilm of sub-catchments depend on the modellertscels according to
the local features, the available data and de$inesl of precision, Based on the percentage of inipas areas assigned to
each sub-catchment within each pilot catchmeraster map with pixels of size 2 m x 2 m was geeerédr each pilot site.
The distribution of sub-catchments is visible ig.R2 because the values of imperviousness areromid@er them. Average
size of sub-catchment elements varies greatly doogto the studied area (see Table 1). For instaihés much greater in
Sucy-en-Brie than in Rotterdam-Kralingen. The psgof the paper is not to evaluate the performafitkose models all
previously validated and used operationally by fiti@oers but to characterize their inputs, notahlgomparison with more

refined impervious data maps. Discussions on ositpithese models can be found in Ochoa-Rodriguakz 2015.

3 Methodology

As explained in section 1, the concept of fractedehsion was used in this paper to characterizewsigeometrical sets (

namely the sewer network and imperviousness), ed#abih a 2-dimensional space. Let's consider susbuaded seh of

outer scalelo. The first step consists in changing its resohytice. modifying its observation scdle The resolutio/ is

defined as the ratio between the outer scale andtibervation scaled(= |—°). This is achieved by representing it with the

help of non-overlapping pixels of sikeAt a given scale the sAtis represented by all pixels overlaying the geoiceitset.

A range of values is tested fbrin this study, the analysis started at the srefiecel size available, i.e. 2 m. The pixel size
is then multiplied by two at each step, i.e. fodjagent pixels are merged, up to a maximum pixag svhich covers as
much of the total catchment area as possible. Wstibtion of this process for the sewer systenthef Herent case is

displayed in Fig. 3. Limited differences are visiwhen changing the observation scale from 2 mrio (4ome details are
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lost in the intersections, and close pipes mergett),they are much more pronounced with observatiates equal to 16 m
and 64 m (merging of numerous pipes). These obiengaare actually consistent with the scale breta4 m that will be
identified and discussed in section 4.1.

This means that the outer scale of the studiedvdlehecessarily be the original pixel size muligd by a power of two,
closest to the maximum catchment scale (pixelsnaeeged 4 by 4 in order to maximise the number dhtgoin the
following linear regression; less reliable resulMsuld be obtained with by merging pixels 9 by 92& by 25). As a
consequence, square areas are extracted fromuiiedsicatchments to be analysed with the helpauftét analysis. Their
size is chosen as a balance between achieving¢iategt possible coverage (which increases theerahgvailable scales)
and limiting the portion of the square extendindgsae the catchment boundary (given that the aidifizeros in these
portions might bias the analysis due to side effecthe studied areas within each catchment arerslio Fig. 2 for all
catchments. In four catchments (Cranbrook, Ghemteht and Torquay) two areas are studied, sometistightly
overlapping (Cranbrook and Ghent).

Now that the methodology to change the resolutibth® data set was explained, it is possible t@iiles the computation
of its fractal dimension with the help of the basuating method (Hentschel and Proccacia, 1983; jogvet al. 1987). Let

N, » be the number of non-overlapping pixels of dinecessary to cover the getFor a fractal object this number and the

resolution are power-law related in the high resofulimit (A — +00), with an exponent equal to the fractal dimension

(Dg) of the set; i.e. we have:
N, ,=A% (1)

A standard technique to estimate a fractal dimensothe box-counting one which relies on the prasiequation. To
implement this technique, one defines non-overlagpixels of sizé as explained in the previous paragraph and plgts E
on a log-log scale. For a fractal set the point$ bé along a straight line which slope is equaDio The quality of the
scaling is assessed with the help of the coeffioiérdeterminatiorr? of the linear regression. It is an imperfect irdis,

especially given the limited number of points aablé, and should be completed by visual inspeciitie, fractal dimension

guantifies the sparseness of the/Adte. how much space it fills across scales.

The notion of fractal dimension is well suited &iudying binary field such as a sewer network op m&imperviousness.
However when the field can have more than two stas it is the case in this paper for the mapeepfesentation of
imperviousness inputted in semi-distributed hydradyics models, multifractals tools might be needetlitively such
fields are characterized with the help of varioefal dimensions, i.e. for each threshold, thengetdcal set of the areas
where the field exceeds it exhibits a differentcfeh dimension. More rigorously the notion of thvelsl, which is scale
dependent, is replaced by the scale invariant dérsingularity,y. Then and the portions of a multifractal fieldwhere it

exceeds the threshald at a given resolutioh are studied. Their probability scales as:
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Prle, > )= 10 (2)

wherec(y) is the co-dimension function which fully charattes the variability not only at a single scal¢ &cross scales of
€ (see Schertzer and Lovejoy 2011 and referencesith®r a recent review of this formalisng(y) corresponds to the
fractal co-dimension (equal to the embedding Eiatidlimension — 2 here — minus the fractal dimen)sid the geometrical

set whereg), exceeds\’. In the specific framework of Universal Multifrat$ (Schertzer and Lovejoy 1987, 1997), the co-

dimension function only depends on three parametdrich have a physical interpretatioht the non conservation
parameter which measures the scaling behavioureofriean of the studied fielcﬂxﬂ > = A" | H=0 for a conservative field),

C; the mean intermittency which measures the clusjesf the average intensity (mathematically it(%) wherey; is the
singularity corresponding to the meah=0 for an homogenous field); amdthe multifractality which measures how the
mean intermittency evolves when considering sinmifiga slightly different fromy, (a=0 for a fractal field). These

parameters are estimated with the help of the Bolikhce Moment Technique (DTM) (Lavallée et al, 399

4 Results and discussion
4.1 Sewer network and distributed land use

Figure 4 shows a log-log plot b(}) versusk (Eqg. 1) for the Torquay North case study. A sirggtaling behaviour over the
whole range of available scales is not retrievadekd, the plot exhibits a scale break at roughlyn@ixel scale, separating
two distinct scaling regimes. Over each regime sitading is robust with® all above 0.99, and visible straight lines. Simila
qualitative features, i.e. two distinct well defihecaling regimes separated by a break, are rettiéar the other studied
areas and not displayed. Numerical values of tmepeted fractal dimensions and the values of scadakofor all studied
area are reported in Table 2.

For the scaling regime associated with small sqakesright portion of the graph), a fractal dinseon basically equal to 1 is
found for all the study areas. This does not caniaformation on the network’s features but simpdflects the linear
structure of the pipes at these scales. It alsoadeat the maximum resolution of the availabledatm pixels here) is not
critical to the analysis and does not introduceotemtial bias. Indeed increasing or decreasingoitildl simply yield to
extending or shrinking the widths of the scale mofjthis regime but will not affect the valueslager scales discussed
below. The break is located at roughly 64 m for hadghe areas, which is consistent with the distalnetween two streets.
Itis at 32 m in Coimbra and Rotterdam-Centrum Wwhiorrespond to densely urbanized city centres.bFbak at 128 m for
the Morée-Sausset sewer is due to the fact thgtroajor sewer pipes are available and includedhénrtumerical network
model meaning small scale features simply exteretr @ider range of scales. Including more pipes wdikely lead to
shifting the scale break to smaller scales. It appehat for all the catchments the break is oleskrat roughly the

approximate inter-pipe distance of the portion @fwork taken into account. For the large scalesrmed~ 64 m to 2048 m),
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an actual fractal dimension between 1 and 2 chenattg the space filled by the network is retriévé\ccording to
catchment we findr ranging from 1.69 to 1.94. With smaller scalegs tkegime is expected to continue until the physica
scales of structures is reached below which adtalinension of 2 would obviously be found. Itisany case smaller than
two meaning that the network does not completelly tfie 2D-space. An interpretation of these valigsthat are
representative of the level of urbanization of éiheas. For instance, we find the greater fractakdsions in the Rotterdam
districts and smaller ones in less-urbanised Jouyesas and Torquay. This will need to be confirmétl the analysis of
imperviousness maps.

These results are consistent with values foundirmla studies for drainage networks. Sarkis (206@)nd a fractal
dimension equal to 1.67 for the pluvial drainagémogek of the Val-de-Marne County (South-East ofiBlarbased on an
analysis at scales of 290 m to 18 km, only considethe main pipe network. Typical values for natuiver network
fractal dimensions (computed with the box countteghnique) are usually smaller than those founck Her urban
catchments. For instance Takayasu (1990) faunfbr the Amazon and Nile Rivers equal to 1.85 ardréspectively.
Figure 5 displays the impervious pixels (in bluehng with the computation of the fractal dimensadrthe corresponding
geometrical set for the Torquay North area. It @ppehat a unique scaling regime on the whole rafigavailable scales is
identified (single straight line), resulting in @tal dimension 1.81. Unique scale regimes are fdsad for impervious
surface distributions in the all other studied arélghe scaling regime is robust with visible sthaiines as in Fig. 5 (right)
andr? always greater than 0.995. The uniqueness ofetiene also means that results are not sensititieetdnitial pixel
size of 2 m as for the sewer system analysis (dua fdifferent reason). Increasing this size waitdply reduce the width
of the range of scales available to compute thetdtalimension but not change its value. Numenedlies of these fractal
dimensions are reported in Table 2. Despite the tfzt the impervious pixels do not represent & @ resolution the
majority of the pixels, their fractal dimensionregher elevated meaning that the impervious ardagie space in urban
areas. As expected less urbanised areas exhitet lipactal dimension.

For a given catchment, numerical values of fragtalension for distributed imperviousness are sintibathe ones found at
large scales in the sewer system analysis. Disooéggmare usually smaller than 0.1; smaller thandifferences between
the various catchments. Areas of similar urban itletve similar fractal dimensions and lower dgnsirban areas are
consistently characterised by lower fractal dimensi These numerical similarities are worth noing actually one of the
main finding of this analysis, confirmed on a wigkt of study areas. Indeed it suggests that tHmgdsehaviours observed
on sewer networks and distributed land use havestree physical basis and reflect a unique undeylyavel of
urbanisation. The only difference being that ipstat the inter-pipe distance for the sewer netwdrkreas it expands down
to 2 m scale for the imperviousness. Contrary heioformalisms such as the use of a single pergergdimperviousness
defined with data at an arbitrary scale, this fsthdimension is a quantity valid across scalesfarttiermore based on the
characterization of two aspects related to urbaoizgnamely the sewer network and the distribubaplerviousness) which
makes it robust.
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4.2 Representation of imperviousnessin semi-distributed models

After having investigated the fractal behavioursefver system and imperviousness with the help sifibuited data, the
imperviousness distribution used in operationalististributed hydrodynamic models is studied insteection. A given
thresholdT is selected and fractal features of the geometsigh-set made up of the sub-catchments with impesness
greater than the threshold representing different degrees of impervioushegshis caseare analysed. Figure 6 illustrates
the corresponding sub-sets and computation ofrtéieal dimensions fof equal to 20, 50 and 80% for the Torquay North
study area. Figure 7 displays(coefficient of determination of the linear regsiemis definingDg) vs. T (top) andDg vs. T
(bottom) for all pilot areas.

As expected, at higher thresholds, the remainingeivious areas are smaller and the associatedlfidiotensions are also
smaller. It should be noted that the quality of sitaling also tends to diminish for increasing impmisness thresholds.
This effect is significant for some areas such awedd-Sausset, Herent and Sucy-en-Brie and hendss lihe possible
interpretation of this analysis. In these casesetlis a very limited (one or sometimes even zeuojber of remaining sub-
catchments at high imperviousness thresholds, wisidikely to bias the analysis. This phenomenonlug the smaller
number of sub-catchment in these cases. The mitisakone is that of Sucy-en-Brie, for which thedel consists of only
eight sub-catchments (see Fig. 2). Such low spagisblution hampers implementation of fractal asiglyand this is
reflected in the low? for thresholds greater than 40% (no data for T>B0@omputations on larger areas, that would
include more sub-catchments or a higher model uéisol (smaller sub-catchment size and greater nunabesub-
catchments as done in other study areas) with thgjtee of imperviousness (as it is the case foRibtterdam-Centrum
study area), would be needed to confirm this imtetgtion. This issue illustrates the need for medéth a number of sub-
catchment enabling to fully represent the varigbitf imperviousness. The use of fully distributebdels is a way to
improve this representation. For hydrological psgmthe use of more distributed model also enabletter account for
the spatio-temporal rainfall variability which isé&wn to have a significant impact on simulated otggGires et al. 2014).
Interestingly, the fractal dimension estimates ireoverall agreement with the level of urbanizatidiscussed in the
previous section, i.e. the most urbanized areabiethe greatest fractal dimension for all threslso This is especially true
for thresholds lower than 60%. For greater onegysetestimates are less reliable, more differeneesated. For instance
De with T>60% for London-Cranbrook are much smallart for Ghent whereas the estimates from the bliged data are
rather close (Table 2). This reflects differenticbe by the modellers in the representation ofuttian catchment. Indeed,
imperviousness is one of the main ‘tuning’ variablesed in the calibration of urban drainage modee differences in
imperviousness observed between semi-distributedeta@nd distributed datasets may be caused bpitgirof catchment
characteristics in the models and errors in theghadd/or in the distributed datasets. This efédsd partially explains the
fact that disparities between the catchments tendtriengthen with increasing thresholds which #ely to be more
affected by modellers’ choices. Another possiblgl@xation that would need to be further confirmgdahalysis on a larger

number of data sets is simply that the spatiakcttire of the highly impervious areas could exhébitlear difference with



10

15

20

25

30

regards to less urbanised ones (see also multfraoglysis). It should be mentioned that simitathe findings of the
previous section, estimates obtained for variogmsmwithin a given catchment are rather similacepk for Herent. In
Herent the impervious areas fill a greater spadhénEast study area than in the West one, whichnea the case for the
imperviousness from the distributed data. Thisxiganed by different modelling choices with respecthe level of detail
in catchment representation. Models could also Hzaen calibrated long time before the GIS data wlsined. For
Coimbra the differences, especially for low thrddepare smaller than the ones observed on therssygéeem and the

distributed imperviousness.

Given that we found that the fractal dimension ob-satchments’ imperviousness of the semi-distetutodels was
dependent on the threshold used to define it, vierally investigated the possibility of using a tifuhctal framework to
analyse this dependency. This is achieved by chgcltie adequacy of the empirical co-dimension fonct(y) with its

theoretical expected shape. More precisely, anthgimum resolution\, for each studied threshold the corresponding

T
singularity ) is estimated ak)g,\— ,Where<T> is the average of the studied thresholds and emqu8D here. The

()
empirical value ofc( ) ) is then simply given by the fractal co-dimens{@D). Finally 2D is plotted as a function of

Yz, along with the theoretical shapeagf). This technique is known as functional box-cougtin the literature (Lovejoy et

al. 1987). The UM parameters and C, used are those retrieved from DTM analysis ananted in Table 2. They are
generally in the range 1.2-1.6 for and 0.01-0.09 folC,. The quality of the scaling related toand C; is low with
coefficient of determination in the linear regress of the order 0.8-0.9, meaning that their rdligtbis not very high.
Figure 8 displays these curves for four represmetatases. It should be mentioned that the thaadeturve ofc(y) was
shifted horizontally “manually” to better fit thempirical points. This mimics the effect bf, which it was not possible to
estimate robustly with this data set. It appeaas e agreement between the empirical points laewkétical expectations is
good in most of the cases (Herent West, CranbradkTarquay on Fig. 8), and it remains valid onrgdarange ot(y). In
other cases such as Coimbra West, it is less godd@me discrepancies are visible. These resuttsidlonly be taken as
preliminary ones that should be confirmed by furthialysis on extended data sets given the liroitatof this study: small
range of available scales, low quality of the datsch is not actual physical data but a represematvith different
resolution in models, and manual fitting léf In some cases such as Torquay North and to aemeaitent Herent West in
Fig. 8, there seems to be a linear behaviour fqrieral points associated with large singulariti€his is the signature of a
multifractal phase transition which reflects thegkascale influence of small scale variability. Slehaviour is commonly
found in geophysical fields. It is associated wihpower-law tail for the probability distributionf dhe pixels'
imperviousness. Results are not reliable enougjetalefinitive conclusions, but they are encourggind should be a first

step before a more in-depth analysis of the notibimperviousness and its characterization in dirsgdramework. A
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possible useful application would be the possipild easily and realistically fill gaps of missinigta in imperviousness

maps.

Finally, fractal dimensions of the imperviousneemputed for the semi-distributed models were coexpan those derived
from fully distributed GIS-data (section 4.1). Tiésdone in Fig. 9 for three studied ardas.vs. T for the model is plotted
(same as in Fig. 7 bottom) along with the fractaiehsion from the distributed data (horizontal Jiaad the percentage of
impervious pixels with 2 m size pixels (verticaid). If the spatial distribution of the averagecbatent imperviousness is
realistically represented in the model, the intetis@ of these two straight lines should be locatadtheDr vs. T curve.
This is clearly visible in Fig. 8 for Morée-Saussetd Herent West; much less for Cranbrook. Thetimcaof the
intersection of the two straight lines below theveuindicates that the Cranbrook model overestimageace filled by the
areas with imperviousness greater than the avehageder to quantify this effect, the differenck(oted %) between the
value of T at the intersection of thBg vs. T curve with the horizontal line and the percentafiempervious pixels is
reported in Table 2. The absolute value of thifed#ince is always smaller than 18% and smaller 184 in 5 cases. There
is no obvious relation between the numerical valughis quantity and the level of resolution of tiygrodynamic model.
The percentages of distributed imperviousnégsat the highest resolution and of the imperviousness of semi-distributed

models $6+%yi) could be compared to the percentages of impeswiess resulting from the fractal dimension estimate

%, = 100A°F 2 Figure 10 displays the results of such a compariist of all, this figure (Fig. 10.a) demonstsathat

for several catchments uncertainties in scalingnagés result in visible discrepancies between ¥ (%DF) that are

expected to be identical in the case of a “perfectling. The difference of these two estimatdsaised on the fact that the
percentages of distributed imperviousness (%) mprdged at the highest resolutidnonly, whereas the fractal dimension
estimates are computed across all the scales arma liesult in a multiscale characteristic for eaatcthment. Then, the
adjusted percentage of the imperviousness of sesmillited models, in general, diverges even segong.r.t. the one
resulting from the fractal dimension estimates. ®hl two improvements were observed for the Rdaer-Kralingen and
Herent West catchments (see Fig.10.b).

Such analysis could support validation of the repngation of catchments in semi-distributed modtis; smaller the
difference, the better catchment imperviousnesepsesented by the model. It should be mentionattthis interpretation
assumes that data available for analysing distibimnperviousness is accurate and complete, whigemerally supported

by the scaling behaviour of the data.
4.3 Representation of imper viousness of buildings

In this sub-section we discuss the results of taparison of fractal dimensions computed on twdedint geometrical

sets: the total imperviousness areas as roadsualidéihigs Or ) and the buildings onlyXs ,ig). Obtained results show that
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for each catchment the geometrical set of buildimgne behaves as a fractal set. Indeed as faarthlysis carried out in
section 4.1 (total imperviousness) straight linesfaund in the linear regression of Eq. 1 in log-plot (not shown) with?
remaining greater than 0.99, meaning that numevialales of fractal dimensions are robust. Obvioly,iq could not be

greater tharDe 4, since the building areas are embedded withirrgetafractal set of all impervious areas, and weeha
Nuita = NPFbin = POF A The empirical results displayed on Fig.11 suggeat a common value=0.945 remains

suitable for the majority of the catchmeraich small coefficient may influence the scalibghe smallest scales only. The
changes seem to increase with smaller values eitkaning that the network of road has a greateoitapce in these cases,
or simply due to a slight decline of scaling. Indielby comparing Figures 10 and 11, one may notiglat @mplification of

scaling issues compared to those observed forateeptages of distributed imperviousness.

This analysis was made to investigate the relatipssbetween the fractality of building distributgy as a source for
potential green roofs implementation for water flomanagement, within fractality of the whole impewnsness areas.
Indeed green roof are one of the available to@s ¢an be used to optimize (if needed) water flowsrban and peri-urban
areas, hence a need to understand better theintjabtdistribution. More precisely, to increase flu@ctionality of green

roofs over the full range of catchment scales (Méet al., 2016), an optimization of green roofdtions could be maid to
increase their fractal dimension up to the fradiaiension of the total imperviousness area. Thetdtdools could be also

used to evaluate the potential impact of greenstoof

5 Conclusions

In this paper we implemented (multi-)fractal anayi® the context of urban hydrology on ten catchtsdocated in five
European countries. The results have consequetiesrbterms of urban catchment characterizatiah r@presentation in
urban hydrological models.

First, it appears that the fractal dimension ofieitthe sewer network or the impervious pixels deoar houses) on a 2 m
pixels map can be used to characterize the levethznization of a given area. In fact, for a giaeea similar estimates are
obtained for both geometrical sets. The main diffiee is that the scale invariance is valid from enfew kilometres down
to only approximately inter-pipe distance for tleaver network whereas it extends down to 2 m fordmusness, which
matches with the spatial resolution of the impeusitess datasets. This tool is innovative in theectrof urban hydrology,
because it provides a quantitative estimate ofel lef urbanization which is valid across scaled aat only at the scale at
which it is defined as for other tools. These fimgh open new practical perspectives that shoulekptored in future work.
An example is the possibility of indentifying cosigint — across scales — areas that should be mdd&lparately. Another
one is the possibility of relying on the scale inaace features to fill gaps of missing data irealistic way. This issue is
increasingly visible as one goes toward higherluism model. It is furthermore an acknowledgmehthe complexity of

the notion of imperviousness which is usually sifigll in state-of-the-art urban hydrological mod&iswhich it is often
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represented as a mere percentage, thus negleciiihgutvtaking into account its heterogeneous distion. Using scale
invariant concepts able to handle more appropyidiedse features is a lead that should used tovatively improve
distributed hydrological models.

Second, the representation of imperviousness imatipaal semi-distributed models was analysed.plpears that, by
analysing the geometrical set made of sub-catctsngith imperviousness greater than a given threshibis possible to
retrieve urbanization patterns. In this study, iswfound that fractal dimension values decreasen flo9-2.0 for
imperviousness degrees above 10% down to 1.4-lr6infiperviousness degrees above 90%. Results fohehig
imperviousness degrees were subject to larger taier as a result of data scarcity; findings sddug verified in studies
based on larger datasets.

It was also shown that comparing fractal dimensi@iues related to modelled imperviousness to impasness
represented in high resolution GIS datasets altovegiantify how well imperviousness is represeritedrban hydrological
models. These results open perspectives for thelag@went of tools to verify whether a hydrologicabdel properly
represents the degree of imperviousness in a catthamd also to study urbanisation patterns emgrafindifferent degrees
of imperviousness. Such insights could latter kexlun support of hydrological analysis as well #sourban development

analyses.
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Tables:

Catchment characteristics Model characteristics
Total
Pop. )
Area Lengthf Slopé Land densit pipe Num. Mean / STD
ensi
[ha] [km] [m/m] us¢ y length | of SC' | SC size [ha]
[per/ha]
[km]

Cranbrook,
UK 865 6.10 0.0093 R&C 48 98 1765 0.49/0.71,
Torquay (Town

570 5.35 0.0262 R&C 60 41 492 1.16/1.09
Centre), UK
Morée-Sausset,
R 560 5.28 0.0029 R&C 70 15 47 11.92/10.34
Sucy-en-Brie, FR 269 4.02 0.0062 R&C 95 4 9 29.892
Herent,
BE 511 8.16 0.0083 R 20 67 683 0.71/1.27
Jouy-en-Josas,

302 2.47 0.037 R 15 - - -
FR
Ghent, BE 649 4.74 0.0001 R 24 83 1424 0.46/0.89
Rotterdam -
Kralingen, 670 ~2 0.0003 R&C 154 143 2435 0.12/0.13
NL
Rotterdam 0.0769/

340 ~f 0.0001 R&C 88 140 2832
Centrum, NL 0.0737
Coimbra, PT 158 4.21 0.0333 R&C 116 34.76 911 0.2%

#Length of longest flow path (through sewers) tahatent outfall;

® Catchment slopeDifference in ground elevation between upstreamtmont and outlet / catchment length. This sinjlis
indictor is used to estimate of whether the catattneghibits strong slopes on average (Ochoa-Rodrigu al. 2015). Other
types of studies such as ones of surface runoffldvindeed require more refined analysis of the gppphy but they are
outside the scope of this paper and refined digialation models was not available for all studieehs.

“Predominant land use types: R = residential; Crmmercial
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4 SC = sub-catchments

® The definition (1) is not straightforward due b@tloopedness of the catchment

Table 1: General characteristics of the pilot urban catchments and their semi-distributed urban drainage models

Sewer system Distributed %gii | UM parameters fo
imperviousness imperviousness
map for semi-
distributed models

Outer | Dg for | De for | Scale | D for | % of o C;

scale | large | small | of the| all impervious

(m) scales | scales | break | scales | pixels
Rotterdam- | 1024 1.94 1.07 32 1.93 61 -9 1.29 0.017
Centrum
Rotterdam- | 2048 1.94 1.17 64 1.89 46 -3 0.71 0.064
Kralingen
Cranbrook 2048 1.94 0.97 64 1.83 29 14 1.36 0.018
North
Cranbrook | 2048 | 1.90 0.97 64 181 26 17 1.25 0.025
South
Coimbra 512 1.90 1.03 32 1.96 75 -18 1.37 0.009
West
Ghent North | 2048 1.86 1.06 64 1.80 24 14 1.10 0.057
Ghent South | 2048 1.85 1.06 64 1.82 27 16 1.01 0.054
Herent West | 1024 1.82 1.06 64 1.71 19 -1 1.28 0.074
Herent East 2048 1.81 1.08 64 1.72 16 16 0.87 0.083
Sucy-en-Brie| 1024 1.80 1.00 64 1.79 26 11 1.60 .01
Coimbra 512 1.79 0.97 32 1.86 45 13 1.71 0.20
East
Jouy-en- 1024 1.79 1.79 64 1.75 22 X X X
Josas
Torquay 1024 1.77 1.77 64 1.86 38 -16 1.45 0.062
South
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Torquay 1024 1.71 1.71 64 1.82 29 -6 1.44 0.08
North

Morée- 4096 | 1.69 1.69 128 1.88 34 -1 1.64 0.02
Sausset

! see explanations in last paragraph of sectiomAd2Fig. 9

Table 2: Estimated fractal dimensions of the sewer system and impervious areasfor all the studied areas.

Figures:

* Rotterdam - Kraligen
Rotterdam - Centrum
Jouy-en-Josas
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b Torquay

France

250 o

Figure 1: Location of the pilot urban catchments
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Figure 2 : Sewer system (left), distributed imperviousness map with pixels of size 2 m (middle) and maps of the imperviousness
(%) as assigned to each sub-catchment in the semi-distributed models (right) of the pilot catchments. The axes correspond to
meters (m). The black squares (visiblein the middle column) correspond to the studied areasin the fractal analysis.
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Torquay North
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Figure 4. Sewer system (left) and computation of the corresponding fractal dimension, i.e. Eq. 1 in log-log plot (right), for the
Torquay North study area. For theleft figure, the axes correspond to meters (m).
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Figure 5: Impervious pixels at a 2 m resolution (left) and computation of the fractal dimension of the corresponding geometrical
set,i.e. Eg. 1inlog-log plot, (right) for the Torquay North study area. For theleft figure, the axes correspond to meters (m).
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Figure 6: Illustration of the computation of the fractal dimension of the area cover ed by the sub-catchments whose imper viousness
is greater than a threshold T for T equal to 20% (left), 50% (middle) and 80% (right) for the Torquay North study area:
corresponding geometrical set (top) and Eq. 1in log-log plot (bottom). For the upper figures, the axes correspond to meters (m)
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Figure 8: Functional box counting analysis of the map of sub-catchments imperviousness for 4 selected catchments. Triangles: for

each threshold 2-De (Fig. 7) vs. the corresponding singularity )/ is estimated as IOgA

(M)

(Where <T> is the average of the
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studied thresholds and equal to 50 here). Salid line: theoretical shape of c(y) with UM parameters estimated with the help of DTM
technique (Table 2).
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Figure 9: For four study areas. Dg vs. T for the map of sub-catchments imperviousness in model is plotted (same asin Fig. 7),
fractal dimension from the distributed data (horizontal line), and percentage of impervious pixel at the two meter resolution
(vertical line)
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Figure 10: The percentages of distributed imperviousness (%) at the highest data resolution (a) and of the imper viousness of semi-
distributed models (%+% qir) (b) as function of the percentages of imperviousness resulting from the fractal dimension estimates

(%DF ). Theblack lineindicatesthe first bisector.
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