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Abstract. In recent years, copula multivariate functions were used to model, probabilistically, the most important variables

of flood events: discharge peak, flood volume and duration. However, in most of the cases the sampling uncertainty, from

which small-sized samples suffer, is neglected. In this paper, considering as a case study a real reservoir controlled by a dam,

we apply a structure-based approach to estimate the probability of reaching specific reservoir levels, taking into account the

key components of an event (flood peak, volume, hydrograph shape) and of the reservoir (rating curve, volume-water depth5

relation). Additionally, we improve information about the peaks from historical data and reports through a Bayesian framework,

allowing the incorporation of supplementary knowledge from different sources and its associated error. As it is seen here, the

extra information can result in a very different inferred parameter set and consequently this is reflected as a strong variability

of the reservoir level, associated with a given return period. Most importantly, the sampling uncertainty is accounted for in both

cases (single site and multi-site with historical information) and Monte Carlo confidence intervals for the maximum water level10

are calculated. It is shown that water levels of specific return periods in a lot of cases overlap, thus making risk assessment

without providing confidence intervals deceiving.

1 Introduction

In the relatively recent literature there is a wide application of the copula functions to model the natural variability of hy-

drometeorological variables, ranging from rainfall (De Michele and Salvadori, 2003; Zhang and Singh, 2007; Balistrocchi and15

Bacchi, 2011; Singh and Zhang, 2007; Ariff et al., 2012) to floods (Aronica et al., 2012; Balistrocchi et al., 2014; Candela

et al., 2014; Domeneghetti et al., 2013; Gräler et al., 2013; Ganguli and Reddy, 2013).

An important application of this multivariate analysis is the determination of the risk of failure of a hydraulic structure.

De Michele et al. (2005) were the first to check the adequacy of a dam’s spillway under a bivariate hydrological load, followed

by Requena et al. (2013), while Volpi and Fiori (2014) formalised the idea that the return period of a failure of a structure20

depends on the structure of interest and therefore the interaction between the hydrological loads and the structure should be

taken into consideration by fixing a "structure-based" return period.

In the same conceptual framework, Serinaldi (2016) suggested that the choice between a univariate and multivariate risk

assessment should not be based on whether one or the other over/under estimate the risk but rather on the operational criteria

of the problem, or simpler on what is the mechanism of failure.25
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Copulas are functions that combine marginal distributions to the joint cumulative distribution, therefore the latter is only

indirectly affected by the choice of the marginals. So, the practical problem of identification and estimation of the joint dis-

tribution is handled from two non-interwinding aspects; the dependence structure of the set of variables and the marginal

distributions.

In the majority of the studies, the communication of the sampling uncertainty- an integral component in a univariate30

framework- is overlooked in a multivariate case. Serinaldi (2013) studied the effect of sample size on the confidence bands of

the probability of exceedance curves of a joint peak-volume event and showed that in small and medium sample sizes these

curves largely overlap. Similarly, Zhang et al. (2015) implemented a Bayesian inference approach to account for the uncer-

tainty of parameter estimation and for the occurrence of a drought, coming to the conclusion that the 95 % confidence interval

of a 20-year event can include the expected values of 10 up to 50-year events.35

In order to account for the sampling uncertainty of multivariate cases, where a variable of interest can be expressed as a

function of one or more variables, Serinaldi (2016) proposed a Monte Carlo procedure. He also underlined the importance of

including confidence intervals when providing point estimates of the variable of interest, which is even more necessary in the

multivariate frequency analysis, where the unknown dependence structure contributes to the uncertainty.

The sampling uncertainty in a joint peak-volume event was quantified by Dung et al. (2015) who used two bootstrapping40

methods- one developed by the authors and the second by Serinaldi (2013)- and concluded, as the previous, that the model

selection and parameter estimation methods is of minor significance in uncertainty estimation in respect with sampling uncer-

tainty, even in relatively large sample sizes. They suggested that efforts should be focused on the expansion of the data set in

order to achieve a reduction of uncertainty.

The data expansion can be temporal, spatial and causal (Merz and Blöschl, 2008), thus enriching the available evidence with45

information from neighbouring basins, previous periods and by comprehension of the flood-generating mechanisms. In the

past, many researchers (Parent and Bernier, 2003; Reis Jr and Stedinger, 2005; Gaume et al., 2010; Halbert et al., 2016; Parkes

and Demeritt, 2016; Viglione et al., 2013) have dealt with the extension of the available data using information on paleo-floods,

historical flood reports, marks of the river stage during important flood events, expert judgement etc. with the aim of reducing

the range of uncertainty bands or simply to reach a more realistic design value. Bayesian inference allows the integration of50

information from different sources and their associated uncertainty and errors and provides a mean of conveying hydrological

reasoning in a mathematical context.

In this research we validate a methodology of flood risk assessment in a real case-study, where risk is expressed in terms of

probability of exceeding a given reservoir level in an on-line flood mitigation dam. We consider this level as a function of flood

peak, volume and hydrograph shape and, consequently, multivariate modelling is implemented with the use of copulas. The55

characteristics of the reservoir- also a function of the level- are synthesised in the rating curve and the volume-level curve. The

main scope is to integrate the associated sampling uncertainty and to build confidence intervals for each water level through

Monte Carlo simulations. Furthermore, we incorporate additional information on the peaks in a Bayesian framework and we

examine its effect on the distributions, their confidence intervals, as well as the ones of the reservoir level frequency curve.
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2 Case study and data60

We have focused our interest on the Panaro catchment- an important influent of Po river in Northern Italy. In particular, the

watershed under investigation is composed by the Panaro river itself, the Scoltenna and the Leo tributaries with an outlet

upstream of the Panaro dam (Fig. 1) and occupies an area of 876 km2. Panaro has its source at Monte Cimone (2.165 m a.s.l.)

and flows into Po, at Bondeno; It takes its name at the valley of Montespecchio after converging with the Leo and Scoltenna

streams, that constitute the upper part of the river network. The hydrographic network of the watershed shows a low degree65

of hierarchy, indicating an evolving state which is also evident by the existence of torrential dynamic phenomena (Autorità di

bacino del fiume Po, 2006).

The influence of snowfall is negligible due to the modest land elevation and the majority of rainfall events occur seasonally

(September-April). The average precipitation height ranges between 700 and 2000 mm/year (Autorità di bacino del fiume Po,

2006).

The basin’s permeability is low and therefore the runoff is influenced little by water infiltration. In fact, the study basin

consists mostly of sandstones and silicatic alternating sequences (44 % of total area) and marls and clay (34 %).5

The Panaro dam is a concrete gravity dam (150 m in length), located near the city of Modena and constructed for flood

mitigation purposes. The hydraulic system consists of two reservoirs, a principal on the river course and a secondary at the

right river bank, and a series of levees that enclose them. The crest of the principal levees are at 44.85 m a.s.l.. The reservoirs

can hold in total 23.66 hm3 up to the spillway’s crest at 41.1 m a.s.l.. There are also nine discharge outlets at the bottom of the

dam that ensure constant flow to the downstream valley.10

The available flood data included a 52-year discharge series (1936-1943,1945 and 1946 were missing) with an hourly time

interval from the Bomporto station located downstream, near the current location of the dam. The hydrological characteristics

of the study basin are briefly presented in Table 1.

Additional data included the annual peaks of the missing years from the same station (Servizio Idrografico Italiano, 1939,1953)

and recent annual peaks from upstream stations, after consulting the annual hydrological reports of ARPA- Emilia Romagna15

published in its website (www.arpae.it); in specific for 2003 from Pievepelago, for 2004, 2005 and 2015 from Ponte Samone,

and for 2006 to 2014 from Spilamberto.

In a report about natural disaster risks in the city of Modena (Nora and Ghinoi, 2009) it is also stated that the most disastrous

flood events of the 20th century happened during the last 40 years (1966, 1969, 1972 and 1973). In November 1966 the flooded

area from the Panaro covered 9400 ha, in September 1972 2540 ha and in September 1973 6000 ha (Nora and Ghinoi, 2009).20
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3 Methodology

3.1 Data regionalisation

In order to rescale the flood information from subcatchments and from the downstream station, depending on the area, the

following scale function was used:

Q(A1) =Q(A2)(A1/A2)
m (1)25

where Q(A1) is the rescaled discharge, Q(A2) a known discharge and m a regional scale exponent.

De Michele and Rosso (2002) clustered basins with similar flood generation mechanism and checked the homogeneity of

the grouped regions. The study area was located in North-western Italy and included the Panaro watershed. The proposed scale

exponent m for this region is 0.772 with a standard deviation of 0.072. In our case the rescaling regarded different locations

of the same basin, although in theory neighbouring basins could have been used (e.g Secchia), but they did not add additional30

information here.

3.2 Incorporating additional data

Thomas Bayes’ theorem expresses how an individual’s degree of belief can change after the presence of new evidence. Bayes’

theorem can be formulated as:

p(θ |D) =
l(D | θ)π(θ)∫
l(D | θ)π(θ)dθ

∝ l(D | θ)π(θ) (2)35

where π(θ) is the prior density distribution of the parameters θ, p(θ |D) is the posterior distribution after the introduction of

the observed information D and l(D | θ) is the likelihood of the data. The denominator serves only as a normalisation constant

to ensure unity of the area under p(θ |D), so the equality sign can be substituted with the proportionality sign. This integral

cannot be solved analytically, so for its computation Monte Carlo Markov Chain algorithms are employed. In each Markov

chain the aim is the maximisation of the logarithm of the unnormalised joint posterior distribution starting from an initial value40

and proceeding iteratively in order to arrive at each target distribution (Statisticat, LLC, 2016).

In a Bayesian framework the model’s parameters are handled as stochastic variables in order to incorporate the uncertainty of

their values (Ouarda and El-Adlouni, 2011). In the present case the model’s parameters were the parameter of the peak marginal

distribution and the scale exponent. We used non-informative prior distribution for the marginal and a normal distribution prior

for the exponent mvN(0.772,0.072). We integrated a perception threshold XP - a value which only in k number of years in45

a historic period of h years was exceeded; here it is set as at about 1000 m3/s, a value thought to be exceeded only once in

a historic period of 117 years since flood reports indicate that during the early years of 1900s, when systematic records were

non-existent, the flood events were of less significance in comparison with the events occurring at the 70s. Additionally we

have introduced the uncertainty of the scale exponent m. Therefore, the likelihood function of the data is set as:

l(D | θ) =

h
k

FX(XP )
(h−k)

s∏
i=1

[

ni∏
j=1

fx(yij(A/Ai)
m)] (3)50
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where

h
k

= h!
k!(h−k)! is the binomial coefficient, s is the number of different sites of the recorded flood peaks, ni is the

number of recorded peaks for each site, yij are the annual peaks from the different sites.

The Bayesian inference was conducted in R with the package LaplacesDemon (Statisticat, LLC, 2016) and the MCMC algo-

rithm utilised was the Componentwise Hit-And-Run Metropolis. The logarithm of the posterior distribution to be maximised

is the sum of the logarithm of the likelihood and the logarithm of the priors:55

log(p(µ,σ,m |D) = log(l(D | µ,σ,m)+ log(π(m)) (4)

where µ and σ are the mean and shape parameters of the peak distribution.

3.3 Copula and marginal inference

Copulas are functions that describe the dependence structure between variables independently of the choice of marginal distri-

butions. The joint distribution functions and the marginals are linked by Sklar’s theorem (Sklar, 1959):60

F (x1, ...,xd) = C(F1(x1), ...,Fd(xd)) (5)

for all x ∈Rd, where the Fi, i= 1, ...,d are the marginals of F and C is the copula function.

Copulas provide a powerful tool for the statistical modelling of multivariate data: for a theoretical introduction see Nelsen

(2006); Joe (2014); Durante and Sempi (2015), for a practical engineering approach see Genest and Favre (2007); Salvadori

et al. (2007); Salvadori and De Michele (2007).65

The application of copula functions has facilitated overcoming some inadequacies of traditional multivariate distributions

such as that the marginals must derive from the same distribution family and their parameters may define the dependence

structure between the variables (Salvadori et al., 2007).

The degree of relation between pairs of variables was examined by measures of association. These include Kendall’s τ ,

Spearman’s ρS which express the existence or absence of concordance and Pearson’s ρP which expresses linear dependence.70

For the observed discharge/volume pairs these were equal to 0.58, 0.77 and 0.81, accordingly and indicate strong dependence.

In the absence of a long sample, the copulas that fit the data can be numerous and goodness-of-fit tests cannot distinguish

between them (Serinaldi, 2013). Since inferring the "correct" copula model is not the aim of this research and since this

endeavour at this point can be futile, given the available data set, the final choice was based partly on the preference of

previous published research towards the Gumbel, including conference proceedings by Balistrocchi et al. (2014) who fitted75

the Gumbel on peaks obtained from a Peak-Over-Threshold method on the same discharge time series. In the present case

both the Gaussian and the Gumbel-Hougaard one-parameter copula passed the goodness-of-fit tests (Cramer-von Mises and

Kolmogorov-Smirnov) and demonstrated the smallest Akaike weights- or else the probability that the chosen model is the most

apt among the tested ones (Burnham and Anderson, 2004). However, we thought that if tail-dependence exists, Gumbel would

be more appropriate (belonging to the extreme value copula family), as the Gaussian has no tail dependence. We recall the80
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Gumbel-Hougaard copula as:

C(u,v) = exp[−((− log(u))θ +(− log(v))θ)1/θ (6)

where u, v are the pseudo-observations and θ the copula parameter.

The existence of tail dependence between peak and volume was also implied by some historical evidence. Many significant

events in Italy occur when a frontal perturbation, generated by the cold high masses coming from the North Atlantic Ocean or85

the Arctic Ocean, meets Mediterranean southward warm fronts. Depending on the persistence of the south and north current,

the generated front begins to develop covering a large area (e.g. 104 km2). Inside this warm front, the energy content is very

high. This causes local convective phenomena enhanced by orographic effects. So, thunderstorms can appear locally producing

rainfall whose values can surpass one third of the mean annual in 24-30 hours. In the vicinity of the local thunderstorms the

rainfall is moderately high producing large soil saturation and increasing, significantly, the contribution to the groundwater.90

This kind of rainfall events produces not only maximum observed peaks of flood in many rivers of small (<100 km2) and

medium size (<2000 km2) but also the largest observed volumes associated with the persistence of the global event. This is the

case, for example, for the flood in Florence and Triveneto on 4th November 1966, in Valtellina on 18-25th July 1987, along

Tanaro on 5-6th November 1994, along Po in Piedmont on 17-21st October 2000, etc.

Unfortunately, tail dependence estimators such as the ones of Frahm et al. (2005) and Schmidt and Stadtmüller (2006) can95

be biased and susceptible to high uncertainty even in large sample sizes (Serinaldi et al., 2015), thus their use in this case is

discouraged.

Regarding the choice of the marginal distributions, we preferred distributions that were more parsimonious, thus reducing

the additional statistical uncertainty introduced by an extra parameter, following the logic of Occam’s razor, and that provided

a nice visual fit. The differences between the corrected AIC, BIC and Akaike weighted values were not sufficient to make a100

safe distinction between the models. The peaks were modelled with the Inverse Gaussian distribution (two parameters instead

of three of the GEV) and their corresponding volumes with the one-parameter Rayleigh. It is, however, imperative to note that

there was no clear indication of overall performance superiority of the chosen distributions.

The parameters of the inferred distributions (copula and marginals) are presented in Table 2.

3.4 Hydrograph selection

The shape of the "design hydrograph" is often considered an important factor in the design procedure and is related to the spatial

and temporal rain distribution as well as the basin’s shape and behaviour (Singh, 1997). Therefore typical hydrographs were

determined from the annual maxima flood events extracted from the available time series. In particular, the events’ hydrographs

were clustered according to their characteristics and utilizing the methodology proposed by Dyck and Peschke (1995) which5

suggests the normalisation of the hydrograph (after the removal of the baseflow) by

Qnorm = (Q− qbase)/(Qmax− qbase) (7)
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tnorm = t/tQmax (8)

where Qmax the hydrograph’s peak, qbase the base flow and tmax the time to peak, starting from the rising limb of the flood10

event.

Consequently, the normalised peak equals to one at time 1. All normalised hydrographs were extended to a common duration

(for comparison purposes) and cluster analysis with the Ward method and Euclidean distances was implemented (Aronica et al.,

2012).

3.5 Structure-based risk analysis15

Volpi and Fiori (2014) associated the return period with the structure of interest by relating the structure design parameter to

the hydrological load through the function Z = g(X). Consequently the structure-oriented return period of a value z takes the

form:

TSTR =
µT

1−FZ(z)
(9)

where µT is the mean interarrival time between two consecutive occurrences of z (in our case µT = 1 year), FZ is the probabil-20

ity distribution function of the derived variable Z, which in this case is the reservoir level and X≡ (Q,V,shape, ...). Here, the

structure function is very complex, since the reservoir level is a function of the spillway’s rating curve and the flood’s natural

variables, and therefore the whole analysis must be based on Monte Carlo simulations. This adds to the computational burden,

specifically when dealing with the quantification of the uncertainty.

3.6 Uncertainty estimation25

In order to account for sampling uncertainty and to estimate the confidence intervals the following Monte Carlo procedure was

implemented, originally proposed by Serinaldi (2016).

1. Estimate the parameter θ̂ of the copula for the observed sample as well as the parameter of the flood volume distribution.

2. Simulate B bivariate samples of size n (equal to the number of years of the observed sample) using the estimated copula

parameter and then transform into volume using the estimated parameter of the marginal.30

3. Calculate the copula parameter θ̂ and the volume marginal parameter for each sample with the same estimation method

used for the observed sample.

4. Simulate B bivariate samples of size M with the copula parameter θ̂ estimated in the previous step.

5. Transform the samples from the unit interval to discharge and volume using the estimated marginal parameters. Generate

B×M hydrographs with an assigned peak, volume and shape and route them to calculate the reservoir level and the35

frequency curves of all B samples.

7



6. Build the confidence intervals of the reservoir level frequency curves.

In the present research B was set equal to 10000 and M equal to 1000.

The confidence intervals of the peaks marginal distribution parameters have been estimated in a Bayesian framework, as

stated previously, in order to incorporate the additional knowledge and to account for the scaling uncertainty.40

The parameter uncertainty of additional distributions that fit the data could be introduced in the procedure, leading in larger

confidence intervals. However, in this case, only the parameter uncertainty of the inferred models was of interest.

4 Results and discussion

Initially we have clustered the hydrograph shapes into four characteristic groups. After simulating 10000 peak-volume pairs

from the inferred distributions, we assigned to each one a specific hydrograph shape (respecting their frequency of occurrence).45

Then, we denormalised and routed the hydrographs; we repeated the same procedure but after clustering into only one group,

thus considering a global "mean" hydrograph. The characteristic shapes are depicted in Fig. 2a, along with the "mean" shape

(Fig. 2b). The level frequency curve showed small differences between the two cases (Fig. 3) and as we shall see later this

difference is negligible in comparison with the estimated uncertainty. So, we have proceeded with the uncertainty assessment

considering one "mean" hydrograph.50

We have implemented the Bayesian framework on the peaks extracted from the systematic discharge series recorded at

Bomporto station, adding also the uncertainty of the scaling exponent of the regionalisation relation. In the second scenario,

we also included recently recorded annual peaks from other hydrometric stations of the same basin, mentioned previously,

as well as information from flood reports, while integrating the uncertainty of the scaling exponent. As it can be seen in

Fig. 4, when ignoring the additional information, the estimate of discharge peak is lower for a given return period. We focus55

our attention on relatively small return periods since any extrapolation beyond the available time period is subject to great

uncertainty. Indicatively, a peak with a univariate return period of 50 years can increase by 18%, exceeding the confidence

intervals of the fitted distribution. This occurs because during the last 10 years crucial flood events appeared in the area. In

Table 2 we note that in the second case the distribution’s mean is bigger and the shape parameter is smaller with a significantly

lower standard deviation.60

The 95 % confidence interval of both of the peak distributions can be wide (Fig. 4), e.g. for a univariate return period of

50 years it can span from 665 to 941 m3/s (29 % difference) and from 837 to 1092 m3/s (23 % difference) for the first and

second case.

Similarly, in the case of the flood volume the 95 % confidence interval for a univariate return period of 50 years can span

from 95.5 to 120 hm3 (20 % difference) (Fig. 5).65

The confidence intervals of the parameters of the inferred distributions are presented in Table 2.

The results of the increased peaks are reflected also on the frequency curve of the maximum water level (MWL). The return

period here corresponds to a water level, so it is considered structure-based, since the level is a function of the structural and

operational characteristics of the dam, among others. As it can be seen (Fig. 6), the MWL is significantly lower in the case of
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no extra information, especially for greater return periods. For a return period of 50 years the average MWL can differ 1.2 m-70

a considerable magnitude in terms of volume and when considering that the safety margin above the spillway’s crest is in some

cases 1 m.

In Fig. 7 highest density regions depict a sort of confidence intervals of the MWL for specific return periods for each case

(single site information & multi-site with historical information). These regions can be defined as the smallest areas in the

sample space with a certain probability coverage and they have the advantage of displaying multimodal distributions, thus75

they may consist of disjoint subsets (Hyndman, 1996). They are particularly suitable in multivariate cases or for asymmetrical

distributions. In the HDR boxplots the mode (horizontal line) substitutes the median and the darker region corresponds to a

probability coverage of 50 %, the lighter to a coverage of 95 % and the points outside to the data beyond the 95 % probability.

The span of the highest density regions slightly decreases as more information is introduced. However, this decrease in

uncertainty seems small and we cannot conclude whereas the extra information has contributed to a systematic uncertainty80

reduction. An increase in the simulation size could lead to a slightly different picture, however the added computational burden

is prohibitive and anyhow, as Salvadori et al. (2015) stated, a clear rule-of-thumb regarding the simulation size does not exist.

In any case the size is considered large enough for some safe conclusions, especially for the smaller return periods.

Within a certain return period the parameter uncertainty can lead to substantial MWL variations, e.g. for 20 years (in the

case of extra information), the span of the MWL with a density of 50 % and 95 % is of 0.8 and 2.3 m, accordingly, which85

correspond to huge volume differences. These can have devastating effects not only in the case of overtopping but also because

the remaining water can cause bank failure due to piping. These spans could increase for larger return periods, where the

uncertainty is bound to get vaster.

As the results of previous studies suggested (Serinaldi, 2013; Dung et al., 2015; Zhang et al., 2015; Serinaldi, 2016), the re-

gions of the return periods can overlap; in this case the 95 % confidence interval of an event of 20 years can include, marginally,90

the expected values of events of 10 up to 50 years (e.g. single-site scenario). For the multi-site with extra information scenario

the overlapping region is smaller.

In Fig. 8 the highest density regions (50, 75 & 95 %) are depicted in a two-dimensional plane (discharge-volume) that

correspond to a return period of 50 years. For events that result in a MWL with a specific return period, the variation of

discharge and volume can be huge even when looking in the smaller density regions (e.g. 50 %). For example, in the 95%95

region the discharge can assume values with a univariate return period from 1 to 50 years (for the multi-site scenario), which

is a strong indicator of the non-linearity of the problem. The same applies for the flood volume.

5 Conclusions

This analysis focuses on the uncertainty introduced when calculating the probability of exceeding specific water levels in a

flood control reservoir, which is a result of the parameter uncertainty of the marginals of the hydrological variables, as well5

as the copula multivariate function, due to the small size that characterises in most cases a hydrological sample. Therefore,

we attempted to quantify this uncertainty, without aiming our attention to copula/marginals inference. Instead, we studied the
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effect of additional flood information not only on the distribution parameters but also on the uncertainty range in a Bayesian

framework that among else permits the consideration of errors from different sources.

The extra flood data that included additional peaks from different hydrometric stations leaded to a peak distribution with10

bigger mean and smaller shape parameters and thus to elevated peaks, since it includes flood events of recent years that exceed

in magnitude the events of the historical data series. Consequently, including the additional information translates into a general

bigger estimate of the peaks, which is also reflected on the MWL’s, as the peak is a driving factor of the routing process.

The uncertainty range of discharge and volume is considerable and affects, along with the copula parameter, the MWL.

The variations in the MWL for the same structure-based return period correspond to significant variation in the stored water15

volume. Most importantly, the return period of a specific water level cannot be determined with certainty because the return

periods of the events overlap. Naturally, the range of discharge and volume values for a given structure-based return period is

very ample due to the wide range of the parameters of the inferred distributions.

A clear observation of whether uncertainty is systematically reduced with the introduction of additional information cannot

be made, here. Nonetheless, a Bayesian framework allows a certain degree of transparency (Parkes and Demeritt, 2016).20

Incorporating knowledge about water levels during historic events, e.g. at the locality of Navicello for the 1783 and 1842 flood,

could result in a more significant change in the uncertainty range, as past researches have shown. But, one must consider also

the great amount of error involved in these data in the Bayesian framework.

As a general remark one can deduce that the process of risk estimation is inherently crippled by uncertainty that can be

quantified or at least approximated. Any attempt to obscure this uncertainty could create a false notion about its existence in a25

multivariate problem with eventual implications in dam safety.
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Table 1. Main hydrological characteristics of the Panaro watershed (areaA, main stream length L, minimum elevationHmin, elevation drop

∆H , time of concentration tc).

A [km2] 876

L [km] 124.4

Hmin [m] 32

∆H [m] 1449.9

tc [h] 10.0

Table 2. Estimated parameters of the inferred distributions and their confidence interval (95%).

Parameter name Estimated parameter Confidence interval (95%) Standard deviation

Gumbel-Hougaard θ 2.27 [1.79,3.01] 0.38

Inverse Gaussian for peak (single site) µ 364.12 [323.64,416.40] 23.67

λ 1957.16 [1288.05,2820.61] 380.17

Inverse Gaussian for peak (multi-site & µ 398.61 [358.42,442.54] 21.89

historical information) λ 1533.41 [1108.84,2058.99] 256.37

Rayleigh for volume σ 386.58×105 [343.18,430.53]×105 26.54×105

14

http://dx.doi.org/10.1016/j.jhydrol.2006.06.033
http://dx.doi.org/http://dx.doi.org/10.1016/j.gloplacha.2015.03.001


Figure 1. Panaro study watershed
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Figure 2. Characteristic normalised hydrograph shapes (a) with a certain probability of occurrence; (b) "Mean" normalised hydrograph

shape.
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Figure 3. Frequency curves of maximum water level of synthetic hydrographs for four clusters and one cluster and corresponding levels of

observed hydrographs.
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Figure 4. Flood frequency curves with 95 % confidence limits for the single-site data and the multi-site data with extra information case.

Observed peaks are also plotted with the Gringorten plotting position.
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Figure 5. Flood volume curve with 95 % confidence limits. Observed flood volumes are also plotted with the Gringorten plotting position.
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Figure 6. MWL frequency curves with 95 % confidence limits for the single-site data and the multi-site data with extra information case.
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Figure 7. High density region boxplots of MWL for return periods of 10, 20 and 50 years for (a) single-site data and (b) multi-site data with

historical information.
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Figure 8. 50, 75 and 95 % of the kernel density areas of MWL’s with a return period of 50 years on the discharge-volume plane, for single-site

data (a) and multi-site data with historical information (b).
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