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Comments addressed to the first reviewer (Dr F. Serinaldi) 

Abstract: The abstract was completely rewritten as the aim of the research was focused on the uncertainty, 
upon the two reviewers’ suggestions.  

Section 1.1: The Literature Review (now titled Introduction) was completely rewritten and uninformative 
references were avoided. Only relevant studies and our eventual contribution were mentioned. 

Section 1.2: We have followed the reviewer’s suggestion. 

P4L11: The numerical effect of the correlation that you mention also in your paper (Serinaldi and Kilsby, 
2013) can be a result of the high threshold (80th, 90th, 95th percentile) on the discharge measurements. Here, 
the threshold was basically equal to each episode’s baseflow. The dependence structure of peak and volume 
does not seem to change (Figure 1), but for a few values, when only the “net” volume is considered. However, 
given the limited data set we understand that such correlation is difficult to observe. 

 

Figure 1. Comparison of peak and volume pairs in the case of total and “net” volume  

Section 2: The scope of this paper has changed, focusing on the uncertainty of the structure-based return period 
of the maximum water level reached in a reservoir. A Bayesian framework was also implemented to 
comprehend how the levels and the associated uncertainty is affected after the introduction of additional 
information. 

Section 2.1: AIC and BIC formulas were removed and the relevant literature was referenced. The use of the 
indices was also mentioned. 

Section 2.2: Chi- and K-plots were removed. 

P4L11 and Section 2.3: Firstly, a preliminary analysis of statistical dependence between peak and volume 
(Table 5 of submitted manuscript) demonstrated that the hypothesis of zero correlation is rejected. The 
significance of zero correlation is numerically lower than 10-9. This result of course does not imply definitively 
the tail dependence condition but when extraordinary peaks occur, extraordinary volume are expected, 
producing an extraordinary event (Bacchi and Maione, 1984)  

Many significant events, at least in Italy, occur when a frontal perturbation generated by the cold high masses 
coming from the North Atlantic Ocean or the Arctic Ocean, meets Mediterranean southward warm fronts. 
Depending on the persistence of the south and north current, the generated front begins to develop covering a 
large area (e.g. 104 km2). Inside this warm front, the energy content is very high. This causes local convective 
phenomena enhanced by orographic effects. So, thunderstorms can appear locally producing rainfall whose 
values can surpass one third of the mean annual in 24-30 hours. In the vicinity of the local thunderstorms the 
rainfall is moderately high producing large soil saturation and increasing, significantly, the contribution to the 
groundwater. This kind of rainfall events produce not only maximum observed peaks of flood in many rivers 
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of low (<100 km2) and medium size (<2000 km2) but also the largest observed volumes associated with the 
persistence of the global event. This is the case, for example, for the flood in Florence and Triveneto on 4th 
November 1966, in Valtellina on 18-25th July 1987, along Tanaro on 5-6th November 1994, along Po in 
Piedmont on 17-21st October 2000, etc.  

We understand, however, that such tail dependence is difficult to detect in a small sample size and that such 
coefficients can be defective. Thus, they were removed. 

Section 2.5: We have removed the part of the various multivariate return periods. 

Section 4.1 and 4.2: See response in Section “Comment on the marginal distribution inference” during the 
discussion phase. Model inference was not the scope of this paper, so, as we have made clear in the reviewed 
manuscript, there is no clear way to see each model’s superiority in a limited data set. We based our choice on 
the models’ parsimony. 

Section 4.3: We have changed the title appropriately and the communication of the associated uncertainty has 
an integral role in the reviewed revision.          

Comments addressed to the second reviewer 

Page(s) 1, Abstract: See response in the previous section. 

Page(s) 3, Line(s) 16-17: The scope of the paper was changed, as mentioned before.   

Page(s) 4, Line(s) 17-ff: The baseflow was removed from the analysed hydrographs in an attempt to render, as 
much as possible, independent the peaks from the previous rainfall events. The baseflow removal is reported 
also in other works (Apel et al., 2004; Aronica et al., 2012). The abrupt change in the discharge marks the start 
of the direct runoff. The end of the direct runoff- or at least the runoff caused by the same rainfall event- is 
considered when the discharge falls below a certain empirical threshold and, at the same time, the gradient of 
the recession limb becomes steadily small. We considered that baseflow was changing linearly between the 
start and the end of the direct runoff. Each hydrograph was then visually inspected and heuristic corrections 
were made when necessary. 

The other comments are accepted. 

Page(s) 4, Line(s) 25-26: We agree with the reviewer. 

Page(s) 5, Line(s) 16-ff: We agree with the reviewer but we would like to add that statistical tests were derived 
as a more satisfactory method after graphical control.  

Page(s) 6, Line(s) 16-ff: We have made the appropriate change. 

Page(s) 6, Line(s) 6-7: We accept the suggestion. 

Page(s) 6, Line(s) 8-ff: We agree on the existence of uncertainty concerning the TDC but as described before, 
the hypothesis of the positive TDC is “supported” by physical extreme flood processes. 

Page(s) 6, Line(s) 15-ff: We have made the correction.   

Page(s) 8, Line(s) 15-ff: Bootstrapped values were considered. 

Page(s) 8, Line(s) 18-19 & 29-31: See response to the first reviewer. 

Page(s) 9, Line(s) 6-8: The mentioned figures were discarded. 

Page(s) 9, Line(s) 9-ff: Regarding the copula information criteria (Grønneberg and Hjort, 2014), we have 
conducted a Monte Carlo simulation for our sample size (52), the sample’s Kendall tau and three one-parameter 
copulas that gave the smallest AIC, namely Gaussian, Gumbel and Frank. In 76% of the generated samples 
from a Gaussian copula the AIC was able to “identify” the copula in comparison with 56% of the Copula 
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information Criteria. For samples drawn from the Gumbel copula the percentages for AIC and CIC were 83% 
and 73%, accordingly. Of course, these percentages are very likely to change as more copulas are added into 
the selection and they are dependent on the sample size, as well as Kendall’s tau. The difficulty in 
understanding the systematic difference in performance of the two criteria is supported by Jordanger and 
Tjøstheim (2014). 

Page(s) 9, Line(s) 11: The sample size is small, statistically speaking, so the appropriate change will be made. 
However, we would like to add that it is considered at least of medium size, hydrologically speaking.  

On the other hand, if we consider a quite long hydrological series of 70-100 years of flows, frequently it is not 
possible to state if we are dealing with a sample extracted from the same population (hypothesis of stationarity 
of the process) or if the series is composed by the union of two or three different populations. As an example, 
the dams that were built in Sicily in the period of 1970 up to 2000 only during the years 2005 up to 2016 have 
reached the maximum regulation level. During the building period, a vivid discussion began between 
politicians and engineers that regarded the possible overestimation of the dam’s size. This discussion is now 
closed, since the annual rainfall is not similar to that of the period from 1945 to 1970 that was used for storage 
design.       

Page(s) 9, Line(s) 21-22: We agree on the comment. 

Page(s) 9, Line(s) 27-ff: Upon the reviewers’ suggestions the objective of the paper has completely changed, 
focusing on the uncertainty, which is not dealt in De Michele et al. (2005). 

Page(s) 10, Line(s) 5-8: This sentence was removed. 

Page(s) 10, Line(s) 25-26: Any references to multivariate return periods were removed.   
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Defining flood risk in a multivariate framework: Application on the
Panaro watershed

:::::::::::
Dealing

:::::::
with

::::::::::::::::::
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::::
in

:::::
the

::::::::::::::::::
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:::
of

::::::::::::::::::
overtopping

::::
of

::
a

::::::::
flood

::::::::::::::::
mitigation

::::::::
dam
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Abstract. One of the most important tasks a hydrologist must face is to estimate the hydrological risk (i.e. probability) of

a variable exceeding a certain threshold. This risk is often expressed in terms of a Return Period, T, and refers to failure of

the hydraulic structure which controls this variable. Sometimes the "structure" is simply the river embankments- the failure

of which means their overtopping by the river. The widely adopted definition of T, in a problem regarding the maxima of

hydrological variables, is "the average time elapsing between two successive occurrences of an event exceeding a given5

magnitude of the natural variables". Conventional approaches for the estimation of T involve a single natural variable (i. e.

flood peak, maximum rainfall intensity, etc.) and its frequency analysis. However, a univariate approach in complex problems

ignores the effect of other significant variables leading to different risk levels for each quantity of interest and resulting in an

inaccurate estimate of the risk- often wrongfully set equal to the risk of the hydrological event. For example, if one considers

the flood inflow in a lake around which establishments are positioned, the variable to be investigated relating to risk assessment10

is the lake water level. The same water level may occur from very different flood hydrographs, even when the same initial water

level and specific spillway characteristics are taken into account . We considered this a result of the interaction of three joint

factors: the hydrograph’s peak, volume and hydrograph shape. Consequently, we apply a multivariate distribution framework

(using copula functions) in order to find a region where all underlying events are assigned to the same risk- associated here to

the maximum water level.15

::
In

:::::
recent

::::::
years,

:::::
copula

:::::::::::
multivariate

::::::::
functions

::::
were

:::::
used

::
to

::::::
model,

::::::::::::::
probabilistically,

:::
the

::::
most

:::::::::
important

::::::::
variables

::
of

:::::
flood

::::::
events:

::::::::
discharge

:::::
peak,

:::::
flood

:::::::
volume

::::
and

:::::::
duration.

:::::::::
However,

::
in

:::::
most

::
of

::::
the

:::::
cases

:::
the

::::::::
sampling

::::::::::
uncertainty,

:::::
from

::::::
which

:::::::::
small-sized

:::::::
samples

::::::
suffer,

::
is

:::::::::
neglected.

::
In

::::
this

:::::
paper,

::::::::::
considering

::
as
::

a
::::
case

:::::
study

::
a
:::
real

::::::::
reservoir

:::::::::
controlled

:::
by

:
a
:::::
dam,

:::
we

::::
apply

::
a
:::::::::::::
structure-based

::::::::
approach

:::
to

:::::::
estimate

:::
the

::::::::::
probability

::
of

::::::::
reaching

:::::::
specific

::::::::
reservoir

::::::
levels,

::::::
taking

:::
into

:::::::
account

::::
the

:::
key

::::::::::
components

::
of

:::
an

:::::
event

:::::
(flood

:::::
peak,

:::::::
volume,

::::::::::
hydrograph

::::::
shape)

:::
and

:::
of

:::
the

:::::::
reservoir

::::::
(rating

::::::
curve,

::::::::::::
volume-water

:::::
depth20

:::::::
relation).

:::::::::::
Additionally,

:::
we

:::::::
improve

::::::::::
information

:::::
about

::
the

:::::
peaks

:::::
from

::::::::
historical

:::
data

::::
and

:::::
reports

:::::::
through

:
a
::::::::
Bayesian

::::::::::
framework,

:::::::
allowing

:::
the

:::::::::::
incorporation

::
of
:::::::::::::

supplementary
:::::::::
knowledge

::::
from

::::::::
different

::::::
sources

::::
and

::
its

:::::::::
associated

:::::
error.

:::
As

:
it
::
is
::::
seen

:::::
here,

:::
the

::::
extra

::::::::::
information

:::
can

:::::
result

::
in
::
a
::::
very

:::::::
different

:::::::
inferred

:::::::::
parameter

::
set

::::
and

:::::::::::
consequently

:::
this

::
is
::::::::
reflected

::
as

:
a
::::::

strong
:::::::::
variability

::
of

:::
the

:::::::
reservoir

:::::
level,

::::::::
associated

::::
with

::
a
:::::
given

:::::
return

::::::
period.

::::
Most

:::::::::::
importantly,

::
the

::::::::
sampling

::::::::::
uncertainty

:
is
:::::::::
accounted

:::
for

::
in

::::
both

::::
cases

::::::
(single

:::
site

::::
and

::::::::
multi-site

::::
with

::::::::
historical

::::::::::
information)

:::
and

::::::
Monte

:::::
Carlo

:::::::::
confidence

:::::::
intervals

:::
for

:::
the

:::::::::
maximum

::::
water

:::::
level25
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::
are

::::::::::
calculated.

::
It

::
is

:::::
shown

::::
that

:::::
water

:::::
levels

:::
of

::::::
specific

::::::
return

::::::
periods

::
in
::

a
:::
lot

::
of

:::::
cases

:::::::
overlap,

::::
thus

:::::::
making

:::
risk

::::::::::
assessment

::::::
without

::::::::
providing

::::::::::
confidence

:::::::
intervals

:::::::::
deceiving.

1 Introduction

1.1 Literature review

In recent years, the application of copula functions has facilitated overcoming the inadequacies of traditional multivariate5

distributions such as that the marginals must derive from the same distribution family and their parameters may define the

dependence structure between the variables (Salvadori et al., 2007). Copulas are functions that combine marginal distributions

to the joint cumulative distribution, therefore the latter is only indirectly affected by the choice of the marginals. So the

practical problem of identification and estimation of the joint distribution is handled from two non-interwinding aspects; the

dependence structure of the set of variables and the marginal distributions. De Michele and Salvadori (2003) have utilised the10

Frank copula and marginals belonging to the heavy-tailed Generalised Pareto distribution to model the intensity and duration

of extreme rainfall events in a basin in Liguria. Zhang and Singh (2007) have analysed three rainfall variables (intensity,

depth, and duration) from three sites in Louisiana in a bivariate framework and have concluded that the Gumbel-Hougaard

copula performed better in simulating the rainfall depth and duration at one site, the Ali-Mikhail-Haq copula the intensity and

depth for all three sites and the Frank copula the intensity and duration for all three sites and the depth and duration at two15

sites. Balistrocchi and Bacchi (2011) researched the dependence between rainfall volume, wet weather duration and interevent

period for three time series recorded in different Italian climates and have attained that the first pair can be modelled by the

Gumbel-Hougaard copula while when considering the interevent dry period, the independence case cannot be rejected.

In other papers (Singh and Zhang, 2007; Ariff et al., 2012) the Frank copula was used to simulate the rainfall intensity and

duration and to derive IDF curves which were later compared to the empirical IDF curves, derived from common practice.20

Both works concluded that the two methods are in agreement.

In recent literature, focusing on the flood natural variables, the use of copulas is increasing. Aronica et al. (2012) carried out

a bivariate analysis of flood peaks and volumes, introducing also the hydrograph shape as an independent variable in a Monte

Carlo framework to produce flood hazard maps. The Gumbel-Hougaard copula was deemed appropriate for the peak-volume

pair. Balistrocchi et al. (2014) have studied the Panaro (which is also the study watershed for this research) and the Tagliamento25

watershed and modelled the flood peak, volume and duration pairs using the Gumbel-Hougaard copula, that fitted well

despite the various regional diversities. Candela et al. (2014) derived synthetic hydrographs through bivariate rainfall analysis

(intensity-duration simulated with Frank copula), stochastic temporal pattern rain generation and a rainfall-runoff model. The

Gumbel-Hougaard copula was adopted to fit the flood peaks and volumes resulting from the synthetic hydrographs and in

order to generate peak-volume pairs and synthetic hydrographs through cluster statistics. Domeneghetti et al. (2013) studied30

the effect of the uncertainties of the rating curve in flood mapping and have considered the uncertainty of the flood hydrograph

through the Gumbel copula for the peak and volume.
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A thorough study in a multivariate framework was carried out by Salvadori et al. (2011) who defined and compared three

different approaches for the representation of the return period- not uniquely defined in the multidimensional case- and have

suggested a method to select the design event. Following the latter, Gräler et al. (2013) applied the different definitions of

the return period in a trivariate framework (discharge peak, volume and duration), implementing high-dimensional structures

called vines. Additionally, Ganguli and Reddy (2013) applied fully nested Archimedean copulas on the aforementioned flood

variables using data of the Delaware River basin and have concluded that the results obtained by the various return periods may5

vary substantially. Salvadori et al. (2013) revisited the concept of the multivariate return period and introduced an alternative

expression of it that possess an advantage over the others (details in Sect. Defining the return period)

De Michele et al. (2005) were the first (to our knowledge) to check the adequacy of a dam’s spillway under a bivariate

hydrological load. They have done so by creating 1000 synthetic hydrographs- of specific peak and volume generated by a fitted

Gumbel copula- using the Nash model and routing them to obtain a frequency curve. Pinya et al. (2009) applied a multivariate10

copula framework (peak at different locations, volume and duration) to a catchment in Denmark in order to estimate the cdf

of the sea water level at the stream outlet. Comparison of the results with a continuous river flow simulation of observed data

shows a significant difference in the tails. Recently, Requena et al. (2013) - also using the Gumbel copula- directly associated

the return period to the risk of dam overtopping and have compared the results with the ones obtained from the association

of the return period to a natural probability of flood occurrence. Volpi and Fiori (2014) stressed out that the return period of a15

failure of a structure depends on the structure of interest and therefore the interaction between the hydrological loads and the

structure should be taken into consideration. In particular, they illustrated a structure-based return period and compared it with

the design event-based approach, applied on a theoretical structure.

Serinaldi was critical about the use of the appropriate return period, stating that its implementation should be based on the

definition of risk in the case at hand and that every comparison between the different definitions is of little sense since they20

refer to different mechanisms of failure.

A comprehensive and regularly updated list of the publications that regard the use of copula can be found at the website of

STAHY.

::
In

:::
the

::::::::
relatively

::::::
recent

::::::::
literature

:::::
there

::
is

:
a
:::::

wide
::::::::::
application

::
of

:::
the

::::::
copula

:::::::::
functions

::
to

::::::
model

:::
the

::::::
natural

:::::::::
variability

:::
of

:::::::::::::::::
hydrometeorological

::::::::
variables,

:::::::
ranging

::::
from

::::::
rainfall

::::
(De

:::::::
Michele

::::
and

::::::::
Salvadori,

:::::
2003;

::::::
Zhang

::::
and

:::::
Singh,

:::::
2007;

:::::::::::
Balistrocchi25

:::
and

::::::
Bacchi,

:::::
2011;

::::::
Singh

:::
and

::::::
Zhang,

:::::
2007;

:::::
Ariff

::
et

::
al.,

::::::
2012)

::
to

:::::
floods

::::::::
(Aronica

::
et

:::
al.,

:::::
2012;

::::::::::
Balistrocchi

::
et

:::
al.,

:::::
2014;

:::::::
Candela

:
et
:::
al.,

:::::
2014;

::::::::::::
Domeneghetti

::
et

:::
al.,

:::::
2013;

::::::
Gräler

::
et

:::
al.,

:::::
2013;

:::::::
Ganguli

:::
and

::::::
Reddy,

:::::
2013)

::
An

:::::::::
important

::::::::::
application

::
of

:::
this

:::::::::::
multivariate

:::::::
analysis

::
is

:::
the

::::::::::::
determination

::
of

:::
the

::::
risk

::
of

::::::
failure

:::
of

:
a
:::::::::
hydraulic

::::::::
structure.

::::::::::::::::::::::::
De Michele et al. (2005) were

:::
the

:::
first

:::
to

:::::
check

:::
the

::::::::
adequacy

::
of

:
a
:::::
dam’s

:::::::
spillway

:::::
under

::
a
:::::::
bivariate

:::::::::::
hydrological

::::
load,

::::::::
followed

::
by

::::::::::::::::::
Requena et al. (2013),

::::::
while

:::::::::::::::::::::::::::
Volpi and Fiori (2014) formalised

::::
the

::::
idea

:::
that

::::
the

:::::
return

::::::
period

::
of

::
a
::::::
failure

::
of

::
a
::::::::
structure30

:::::::
depends

::
on

:::
the

::::::::
structure

::
of

:::::::
interest

:::
and

::::::::
therefore

:::
the

:::::::::
interaction

:::::::
between

::::
the

::::::::::
hydrological

:::::
loads

::::
and

:::
the

:::::::
structure

::::::
should

:::
be

::::
taken

::::
into

:::::::::::
consideration

:::
by

:::::
fixing

:
a
:::::::::::::::
"structure-based"

:::::
return

::::::
period.
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::
In

:::
the

:::::
same

:::::::::
conceptual

::::::::::
framework,

::::::::::::::::::::::
Serinaldi (2016) suggested

::::
that

:::
the

::::::
choice

:::::::
between

::
a

::::::::
univariate

::::
and

::::::::::
multivariate

::::
risk

:::::::::
assessment

::::::
should

:::
not

::
be

:::::
based

:::
on

:::::::
whether

:::
one

:::
or

:::
the

::::
other

:::::::::
over/under

::::::::
estimate

:::
the

:::
risk

:::
but

:::::
rather

:::
on

:::
the

::::::::::
operational

::::::
criteria

::
of

:::
the

:::::::
problem,

::
or

:::::::
simpler

::
on

:::::
what

::
is

:::
the

:::::::::
mechanism

::
of

:::::::
failure.35

:::::::
Copulas

:::
are

::::::::
functions

:::
that

::::::::
combine

::::::::
marginal

::::::::::
distributions

:::
to

:::
the

::::
joint

:::::::::
cumulative

:::::::::::
distribution,

::::::::
therefore

:::
the

:::::
latter

::
is

::::
only

::::::::
indirectly

:::::::
affected

:::
by

:::
the

::::::
choice

::
of
::::

the
:::::::::
marginals.

:::
So,

::::
the

:::::::
practical

::::::::
problem

::
of

::::::::::::
identification

:::
and

:::::::::
estimation

:::
of

:::
the

:::::
joint

:::::::::
distribution

::
is

:::::::
handled

:::::
from

:::
two

:::::::::::::::
non-interwinding

:::::::
aspects;

:::
the

::::::::::
dependence

:::::::
structure

:::
of

:::
the

::
set

:::
of

:::::::
variables

::::
and

:::
the

::::::::
marginal

::::::::::
distributions.

:

::
In

:::
the

::::::::
majority

::
of

:::
the

:::::::
studies,

::::
the

:::::::::::::
communication

::
of

::::
the

::::::::
sampling

::::::::::
uncertainty-

:::
an

:::::::
integral

::::::::::
component

::
in

::
a
:::::::::
univariate5

:::::::::
framework-

::
is
::::::::::

overlooked
::
in

::
a
::::::::::
multivariate

:::::
case.

::::::::::::::::::::
Serinaldi (2013) studied

:::
the

:::::
effect

::
of

:::::::
sample

:::
size

:::
on

:::
the

:::::::::
confidence

::::::
bands

::
of

:::
the

:::::::::
probability

:::
of

::::::::::
exceedance

::::::
curves

::
of

::
a

::::
joint

:::::::::::
peak-volume

:::::
event

::::
and

:::::::
showed

:::
that

:::
in

:::::
small

:::
and

::::::::
medium

::::::
sample

:::::
sizes

::::
these

::::::
curves

::::::
largely

::::::::
overlap.

::::::::
Similarly,

:::::::::::::::::::::::::::
Zhang et al. (2015) implemented

::
a
::::::::
Bayesian

::::::::
inference

::::::::
approach

::
to
:::::::

account
::::

for
:::
the

:::::::::
uncertainty

::
of

:::::::::
parameter

:::::::::
estimation

:::
and

:::
for

:::
the

::::::::::
occurrence

::
of

:
a
::::::::

drought,
::::::
coming

:::
to

:::
the

:::::::::
conclusion

::::
that

:::
the

::
95

::
%

::::::::::
confidence

::::::
interval

::
of

::
a

::::::
20-year

:::::
event

:::
can

:::::::
include

:::
the

:::::::
expected

::::::
values

::
of

::
10

:::
up

::
to

:::::::
50-year

:::::
events10

::
In

:::::
order

::
to

:::::::
account

:::
for

:::
the

::::::::
sampling

:::::::::
uncertainty

:::
of

::::::::::
multivariate

:::::
cases,

::::::
where

:
a
:::::::

variable
:::

of
::::::
interest

::::
can

::
be

:::::::::
expressed

::
as

::
a

:::::::
function

::
of

:::
one

::
or

:::::
more

::::::::
variables,

::::::::::::::::::::::
Serinaldi (2016) proposed

:
a
::::::
Monte

:::::
Carlo

::::::::
procedure

:
.
:::
He

::::
also

:::::::::
underlined

:::
the

::::::::::
importance

::
of

::::::::
including

:::::::::
confidence

:::::::
intervals

:::::
when

:::::::::
providing

::::
point

::::::::
estimates

:::
of

:
a
:::::::
variable

:::
of

:::::::
interest,

:::::
which

::
is

::::
even

:::::
more

::::::::
necessary

:::
in

:::
the

::::::::::
multivariate

::::::::
frequency

:::::::
analysis,

::::::
where

:::
the

::::::::
unknown

::::::::::
dependence

:::::::
structure

:::::::::
contributes

:::
to

::
the

::::::::::
uncertainty.

:

:::
The

::::::::
sampling

::::::::::
uncertainty

::
in

::
a

::::
joint

:::::::::::
peak-volume

:::::
event

::::
was

::::::::
quantified

:::
by

:::::::::::::::::::
Dung et al. (2015) who

::::
used

::::
two

::::::::::::
bootstrapping15

:::::::
methods-

::::
one

:::::::::
developed

::
by

::::
the

::::::
authors

::::
and

:::
the

::::::
second

:::
by

::::::::::::::
Serinaldi (2013)-

::::
and

:::::::::
concluded,

::
as

:::
the

::::::::
previous,

::::
that

:::
the

::::::
model

:::::::
selection

:::
and

:::::::::
parameter

::::::::
estimation

::::::::
methods

:
is
::
of

::::::
minor

:::::::::
significance

::
in
::::::::::
uncertainty

:::::::::
estimation

:
in
::::::
respect

::::
with

::::::::
sampling

::::::::::
uncertainty,

::::
even

::
in

::::::::
relatively

::::
large

::::::
sample

:::::
sizes.

:::::
They

::::::::
suggested

::::
that

:::::
efforts

::::::
should

:::
be

::::::
focused

:::
on

:::
the

::::::::
expansion

::
of

:::
the

::::
data

:::
set

::
in

:::::
order

::
to

::::::
achieve

:
a
::::::::
reduction

:::
of

::::::::::
uncertainty.

:::
The

::::
data

:::::::::
expansion

:::
can

:::
be

::::::::
temporal,

::::::
spatial

::::
and

:::::
causal

:::::::::::::::::::::::
(Merz and Blöschl, 2008) ,

::::
thus

::::::::
enriching

:::
the

::::::::
available

::::::::
evidence20

::::
with

::::::::::
information

::::
from

:::::::::::
neighbouring

::::::
basins,

::::::::
previous

::::::
periods

::::
and

::
by

:::::::::::::
comprehension

:::
of

:::
the

:::::::::::::
flood-generating

:::::::::::
mechanisms.

:::
In

::
the

:::::
past,

:::::
many

:::::::::
researchers

:::::::
(Parent

:::
and

:::::::
Bernier,

::::::
2003;

::::
Reis

::
Jr

:::
and

:::::::::
Stedinger,

:::::
2005;

:::::::
Gaume

::
et

:::
al.,

:::::
2010;

::::::
Halbert

::
et
::::

al.,
:::::
2016;

:::::
Parkes

::::
and

::::::::
Demeritt,

:::::
2016;

::::::::
Viglione

::
et

:::
al.,

::::::
2013)

::::
have

:::::
dealt

::::
with

:::
the

::::::::
extension

:::
of

:::
the

::::::::
available

::::
data

:::::
using

::::::::::
information

:::
on

::::::::::
paleo-floods,

::::::::
historical

:::::
flood

:::::::
reports,

:::::
marks

:::
of

:::
the

::::
river

:::::
stage

::::::
during

::::::::
important

:::::
flood

::::::
events,

::::::
expert

::::::::::
judgement

:::
etc.

:::::
with

:::
the

:::
aim

::
of

::::::::
reducing

:::
the

:::::
range

::
of

:::::::::
uncertainty

:::::
bands

:::
or

::::::
simply

::
to

::::
reach

::
a
::::
more

:::::::
realistic

::::::
design

:::::
value.

::::::::
Bayesian

::::::::
inference

::::::
allows

:::
the25

:::::::::
integration

::
of

::::::::::
information

::::
from

:::::::
different

:::::::
sources

:::
and

::::
their

:::::::::
associated

::::::::::
uncertainty

:::
and

:::::
errors

:::
and

::::::::
provides

:
a
:::::
mean

::
of

:::::::::
conveying

::::::::::
hydrological

::::::::
reasoning

::
in
::
a
:::::::::::
mathematical

:::::::
context.

::
In

:::
this

:::::::
research

:::
we

:::::::
validate

:
a
:::::::::::
methodology

:::
of

::::
flood

::::
risk

:::::::::
assessment

::
in

::
a

:::
real

:::::::::
case-study,

::::::
where

:::
risk

::
is
:::::::::
expressed

::
in

:::::
terms

::
of

:::::::::
probability

::
of

::::::::
exceeding

::
a
:::::
given

:::::::
reservoir

::::
level

::
in
:::
an

::::::
on-line

::::
flood

:::::::::
mitigation

:::::
dam.

:::
We

:::::::
consider

:::
this

::::
level

:::
as

:
a
:::::::
function

::
of

:::::
flood

::::
peak,

:::::::
volume

:::
and

::::::::::
hydrograph

:::::
shape

::::
and,

::::::::::::
consequently,

::::::::::
multivariate

:::::::::
modelling

::
is

:::::::::::
implemented

::::
with

:::
the

:::
use

:::
of

:::::::
copulas.

::::
The30

:::::::::::
characteristics

:::
of

:::
the

::::::::
reservoir-

:::
also

::
a
:::::::
function

::
of

:::
the

:::::
level-

:::
are

::::::::::
synthesised

::
in

:::
the

:::::
rating

:::::
curve

:::
and

:::
the

:::::::::::
volume-level

:::::
curve.

::::
The

::::
main

:::::
scope

::
is

::
to

::::::::
integrate

:::
the

:::::::::
associated

::::::::
sampling

:::::::::
uncertainty

::::
and

::
to

:::::
build

:::::::::
confidence

:::::::
intervals

:::
for

::::
each

:::::
water

:::::
level

:::::::
through
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:::::
Monte

:::::
Carlo

:::::::::::
simulations.

:::::::::::
Furthermore,

:::
we

:::::::::
incorporate

:::::::::
additional

::::::::::
information

::
on

:::
the

::::::
peaks

::
in

:
a
::::::::
Bayesian

:::::::::
framework

::::
and

:::
we

:::::::
examine

::
its

:::::
effect

:::
on

:::
the

:::::::::::
distributions,

::::
their

:::::::::
confidence

::::::::
intervals,

::
as

::::
well

::
as

:::
the

::::
ones

::
of

:::
the

::::::::
reservoir

::::
level

:::::::::
frequency

:::::
curve.

1.1 Objective of the study and outline of the paper

The main objective of this study is to state in a clear manner if it is possible, in a multivariate context, to define the return

period (here abbreviated as RP ) of an "event" which is expressed as a point in the positive Rd space. As stated in a lot of

papers (partially referenced here) it is possible to define some sort of return period (e. g. TOR, TAND, TKEND, TSKEND).

However, all these values are strongly different from the hydrological concept of the return period T which assesses the value5

of an interest variable with exceedance probability of one time in T years. When a surjective application from positive Rd to

R+ is established it becomes possible to identify a subset of positive Rd so that all points belonging to this subregion produce

in R+ values of interest with RP > T . Applying this concept to a design or a verification of a hydraulic structure we can refer

to the return period as structure-oriented RP .

For this analysis, we consider as the interest variable, the maximum water level (MWL) in a reservoir of a flood routing dam.10

Therefore we expressed the RP in terms of probability of exceedance of this variable, since the risk of a given natural variable

(e.g. rainfall height, intensity, flood peak etc.) translates into a different risk of failure for the structure of interest, due to the

system’s non-linearity.

Apart from the determination of the bivariate function of flood peak and volume, which relate to the MWL, the hydrograph

shape was taken also into account. An intensive analysis demonstrated that if one assumes, in a random manner, a shape15

derived from the clustering of available real hydrographs in more than one "mean" dimensionless shape, the sub-region of the

application of positive Rd to R+ becomes not univocally identifiable.

In short, after we extracted the flood events from the continuous time runoff series, we modelled the co-dependence of flood

peak and volume by a copula function and generated a certain amount of duples. From the historic series we identified typical

hydrograph shapes to obtain the synthetic hydrographs. Next, we routed them through the dam and we calculated the MWL20

for each. We repeated the routing process for the observed hydrographs and compared their MWL to the synthetic ones. In

addition, the RP in terms of dam overtopping was compared to the RP associated to the natural variables (presented in Sect.

Defining the return period). Finally, the same procedure was followed after clustering in only one "mean" shape. A general

flowchart of the procedure is depicted in Fig. 1.

The structure of this paper is as follows. First, we introduce the methodology; that, includes the procedure for the extraction25

of events, the choice of marginal and joint distributions, the Monte Carlo framework and an overview of the return periods.

Next, we present the study area and the data followed by the results of the analysis and the conclusions.

2 Case study
:::
and

::::
data

We have focused our interest on the Panaro catchment- an important influent of Po river in Northern Italy. In particular, the

watershed under investigation is composed by the Panaro river itself, the Scoltenna and the Leo tributaries with an outlet at30
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:::::::
upstream

:::
of the Panaro dam (Fig. 2

:
1) , that

:::
and occupies an area of 876 km2. The Panaro tributary has its source at Monte

Cimone (2.165 m a.s.l.) and flows into Po, at Bondeno; It takes its name at the valley of Montespecchio after converging with

the Leo and Scoltenna streams, that constitute the upper part of the river network. The hydrographic network of the watershed

shows a low degree of hierarchy, indicating an evolving state which is also evident by the existence of torrential dynamic

phenomena (Autorità di bacino del fiume Po, 2006).

The influence of snowfall is negligible due to the modest land elevation and the majority of rainfall events occur seasonally

(September-April). The average precipitation height ranges between 700 and 2000 mm/year (Autorità di bacino del fiume Po,

2006).5

The basin’s permeability is low and therefore the runoff is influenced little by water infiltration. In fact, the study basin

consists mostly of sandstones and silicatic alternating sequences (44 % of total area) and marls and clay (34 %).

The Panaro dam is a concrete gravity dam (150 m in length), located near the city of Modena and constructed for flood

mitigation purposes. The hydraulic system consists of two reservoirs, a principal on the river course and a secondary at the

right river bank, and a series of levees that enclose them. The crest of the principal levees are at 44.85 m a.s.l.. The reservoirs10

can hold in total 23.66 hm3 up to the spillway’s crest at 41.1 m a.s.l.. There are also nine discharge outlets at the bottom of the

dam that ensure constant flow to the downstream valley.

The available flood data included a 52-year discharge series (1936-1943,1945 and 1946 were missing) with an hourly time

interval
:::
from

:::
the

:::::::::
Bomporto

::::::
station

::::::
located

:::::::::::
downstream,

::::
near

:::
the

::::::
current

:::::::
location

::
of

:::
the

::::
dam. The hydrological characteristics

of the study basin as well as a summary of the available data are briefly presented in Table 1and 2.15

:::::::::
Additional

:::
data

::::::::
included

:::
the

::::::
annual

:::::
peaks

::
of

:::
the

:::::::
missing

:::::
years

::::
from

:::
the

:::::
same

::::::
station

::::::::
(Servizio

:::::::::
Idrografico

::::::::
Italiano,

:::::
1939,

:::::
1953)

:::
and

::::::
recent

::::::
annual

:::::
peaks

:::::
from

::::::::
upstream

::::::::
stations,

::::
after

:::::::::
consulting

:::
the

::::::
annual

:::::::::::
hydrological

:::::::
reports

::
of

:::::::
ARPA-

::::::
Emilia

::::::::
Romagna

::::::::
published

::
in

::
its

:::::::
website

:::::::::::::
(www.arpae.it);

::
in

:::::::
specific

:::
for

::::
2003

::::
from

:::::::::::
Pievepelago,

:::
for

:::::
2004,

::::
2005

::::
and

::::
2015

:::::
from

:::::
Ponte

:::::::
Samone,

:::
and

:::
for

:::::
2006

::
to

::::
2014

:::::
from

::::::::::
Spilamberto.

:

::
In

:
a
:::::
report

:::::
about

::::::
natural

:::::::
disaster

::::
risks

::
in

:::
the

:::
city

::
of

:::::::
Modena

::::::::::::::::::::::
(Nora and Ghinoi, 2009) it

::
is

::::
also

:::::
stated

:::
that

:::
the

::::
most

:::::::::
disastrous20

::::
flood

::::::
events

::
of

:::
the

::::
20th

::::::
century

::::::::
happened

::::::
during

:::
the

:::
last

::
40

:::::
years

::::::
(1966,

:::::
1969,

::::
1972

:::
and

::::::
1973).

::
In

:::::::::
November

::::
1966

:::
the

:::::::
flooded

:::
area

:::::
from

:::
the

::::::
Panaro

::::::
covered

:::::
9400

:::
ha,

::
in

:::::::::
September

::::
1972

:::::
2540

:::
ha

:::
and

::
in

:::::::::
September

::::
1973

:::::
6000

::
ha

:::::::::::::::::::::
(Nora and Ghinoi, 2009).

:

3 Methodology

2.1 Univariate flood frequency analysis

The annual maximum discharge peaks were extracted from the time series. For the calculation of the flood volume the25

episode’s start and finish had to be well defined and multipeak events should be considered as one. Since the event separation

procedure can be characterized as intuitive and well-established rules do not exist, heuristic criteria were applied. After careful

examination of the time series at the considered basin, general criterias were established in order to define the start of the rising

limb and the end of the recession limb. Also, consecutive peaks with an interarrival greater than the time of concentration were

considered parts of a multipeak event.30
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The marginal distributions of flood peak and volume (after the baseflow removal) were selected taken into consideration the

Bayesian information criterion (BIC) value- which gives similar results to the Akaike information criterion (AIC) value but

has a preference towards more parsimonious models (Laio et al., 2009). Akaike (1974) and Schwarz (1978) have defined their

criteria as

AIC =−2log(L)+ 2k

BIC =−2log(L)+ log(n)k5

where L is the maximum likelihood value of the marginals, k the number of the parameters and n the number of observations.

The parameters of the distributions were estimated by maximizing the likelihood function. Lastly, the Kolmogorov-Smirnov,

the Anderson-Darling and the Cramér-von Mises tests were carried out to test the goodness-of-fit.

2.1
::::

Data
:::::::::::::
regionalisation

::
In

:::::
order

::
to

::::::
rescale

:::
the

:::::
flood

::::::::::
information

:::::
from

::::::::::::
subcatchments

::::
and

::::
from

:::
the

:::::::::::
downstream

::::::
station,

:::::::::
depending

:::
on

:::
the

:::::
area,

:::
the10

::::::::
following

::::
scale

:::::::
function

::::
was

:::::
used:

Q(A1) =Q(A2)(A1/A2)
m

::::::::::::::::::::::
(1)

:::::
where

::::::
Q(A1)::

is
:::
the

:::::::
rescaled

::::::::
discharge,

::::::
Q(A2)::

a
::::::
known

::::::::
discharge

:::
and

::
m

::
a
:::::::
regional

::::
scale

:::::::::
exponent.

::::::::::::::::::::::::::::::::
De Michele and Rosso (2002) clustered

:::::
basins

:::::
with

::::::
similar

:::::
flood

:::::::::
generation

:::::::::
mechanism

::::
and

:::::::
checked

:::
the

:::::::::::
homogeneity

:::
of

::
the

:::::::
grouped

:::::::
regions.

::::
The

:::::
study

:::
area

::::
was

::::::
located

::
in

::::::::::::
North-western

::::
Italy

::::
and

:::::::
included

:::
the

::::::
Panaro

:::::::::
watershed.

:::
The

::::::::
proposed

:::::
scale15

:::::::
exponent

:::
m

:::
for

:::
this

::::::
region

::
is

:::::
0.772

::::
with

:
a
::::::::
standard

::::::::
deviation

::
of

::::::
0.072.

::
In

:::
our

::::
case

:::
the

::::::::
rescaling

:::::::
regarded

::::::::
different

::::::::
locations

::
of

:::
the

::::
same

::::::
basin,

:::::::
although

::
in

::::::
theory

:::::::::::
neighbouring

:::::
basins

:::::
could

:::::
have

::::
been

::::
used

::::
(e.g

::::::::
Secchia),

:::
but

::::
they

:::
did

:::
not

:::
add

:::::::::
additional

:::::::::
information

:::::
here.

2.2
:::::::::::
Incorporating

::::::::::
additional

::::
data

::::::
Thomas

::::::
Bayes’

::::::::
theorem

::::::::
expresses

::::
how

::
an

::::::::::
individual’s

::::::
degree

::
of

:::::
belief

:::
can

::::::
change

::::
after

:::
the

::::::::
presence

::
of

::::
new

::::::::
evidence.

::::::
Bayes’20

:::::::
theorem

:::
can

::
be

:::::::::
formulated

:::
as:

:

p(θ |D) =
l(D | θ)π(θ)∫
l(D | θ)π(θ)dθ

∝ l(D | θ)π(θ)
::::::::::::::::::::::::::::::::::::

(2)

:::::
where

::::
π(θ)

::
is

:::
the

:::::
prior

::::::
density

::::::::::
distribution

::
of

:::
the

:::::::::
parameters

::
θ,
::::::::
p(θ |D)

:
is
:::

the
::::::::

posterior
::::::::::
distribution

::::
after

:::
the

::::::::::
introduction

:::
of

::
the

::::::::
observed

::::::::::
information

::
D

::::
and

::::::
l(D | θ)

::
is
:::
the

:::::::::
likelihood

::
of

:::
the

::::
data.

::::
The

::::::::::
denominator

::::::
serves

::::
only

::
as

:
a
::::::::::::
normalisation

:::::::
constant

::
to

:::::
ensure

:::::
unity

::
of

:::
the

::::
area

:::::
under

::::::::
p(θ |D),

:::
so

:::
the

:::::::
equality

::::
sign

:::
can

::
be

::::::::::
substituted

::::
with

:::
the

::::::::::::
proportionality

:::::
sign.

::::
This

:::::::
integral25

:::::
cannot

:::
be

::::::
solved

::::::::::
analytically,

::
so

:::
for

:::
its

:::::::::::
computation

:::::
Monte

::::::
Carlo

::::::
Markov

::::::
Chain

:::::::::
algorithms

:::
are

:::::::::
employed.

::
In
:::::

each
:::::::
Markov

7



::::
chain

:::
the

::::
aim

:
is
:::
the

::::::::::::
maximisation

::
of

:::
the

::::::::
logarithm

::
of

:::
the

:::::::::::
unnormalised

::::
joint

::::::::
posterior

::::::::::
distribution

::::::
starting

:::::
from

::
an

:::::
initial

:::::
value

:::
and

:::::::::
proceeding

:::::::::
iteratively

::
in

:::::
order

::
to

:::::
arrive

::
at

::::
each

:::::
target

::::::::::
distribution

::::::::::::::::::::
(Statisticat, LLC, 2016).

::
In

:
a
::::::::
Bayesian

:::::::::
framework

:::
the

::::::
model’s

::::::::::
parameters

:::
are

::::::
handled

::
as

:::::::::
stochastic

:::::::
variables

::
in

:::::
order

::
to

:::::::::
incorporate

:::
the

::::::::::
uncertainty

::
of

::::
their

:::::
values

::::::::::::::::::::::::::
(Ouarda and El-Adlouni, 2011).

::
In

:::
the

::::::
present

::::
case

:::
the

:::::::
model’s

:::::::::
parameters

::::
were

:::
the

::::::::
parameter

::
of

:::
the

::::
peak

::::::::
marginal

:::::::::
distribution

::::
and

::
the

:::::
scale

::::::::
exponent.

:::
We

::::
used

::::::::::::::
non-informative

::::
prior

::::::::::
distribution

::
for

:::
the

::::::::
marginal

:::
and

::
a

::::::
normal

:::::::::
distribution

:::::
prior

::
for

:::
the

::::::::
exponent

:::::::::::::::::::
mvN(0.772,0.072).

:::
We

::::::::
integrated

::
a

:::::::::
perception

::::::::
threshold

::::
XP -

:
a
:::::
value

:::::
which

::::
only

::
in
::
k
:::::::
number

::
of

:::::
years

::
in

:
a
::::::
historic

::::::
period

::
of
::
h
:::::
years

::::
was

::::::::
exceeded;

::::
here

::
it
::
is

:::
set

::
as

::
at

:::::
about

:::::
1000

:::::
m3/s,

::
a
:::::
value

::::::
thought

:::
to

::
be

::::::::
exceeded

::::
only

:::::
once

::
in

:
a
::::::
historic

::::::
period

::
of

::::
117

:::::
years

::::
since

:::::
flood

::::::
reports

:::::::
indicate

::::
that

:::::
during

:::
the

:::::
early

:::::
years

::
of

::::::
1900s,

:::::
when

:::::::::
systematic

::::::
records

:::::
were5

::::::::::
non-existent,

:::
the

:::::
flood

::::::
events

::::
were

:::
of

:::
less

::::::::::
significance

:::
in

::::::::::
comparison

::::
with

:::
the

::::::
events

::::::::
occurring

::
at

:::
the

::::
70s.

:::::::::::
Additionally

:::
we

::::
have

:::::::::
introduced

:::
the

:::::::::
uncertainty

::
of

:::
the

:::::
scale

::::::::
exponent

::
m.

:::::::::
Therefore,

:::
the

:::::::::
likelihood

:::::::
function

::
of

:::
the

::::
data

::
is

::
set

:::
as:

:

l(D | θ) =

h
k

FX(XP )
(h−k)

s∏
i=1

[

ni∏
j=1

fx(yij(A/Ai)
m)]

:::::::::::::::::::::::::::::::::::::::::::::

(3)

:::::
where

:::::::::::::

h
k

= h!
k!(h−k)!:::

is
:::
the

::::::::
binomial

:::::::::
coefficient,

::
s
::
is

:::
the

:::::::
number

::
of

::::::::
different

::::
sites

::
of

::::
the

:::::::
recorded

:::::
flood

::::::
peaks,

:::
ni ::

is
:::
the

::::::
number

::
of

::::::::
recorded

:::::
peaks

:::
for

::::
each

::::
site,

::
yij:::

are
:::
the

::::::
annual

:::::
peaks

:::::
from

:::
the

:::::::
different

::::
sites.

:
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:::
The

::::::::
Bayesian

::::::::
inference

::::
was

:::::::::
conducted

:::
in

::
R

::::
with

:::
the

::::::::
package

:::::::::::::
LaplacesDemon

::::::::::::::::::::::::
(Statisticat, LLC, 2016) and

:::
the

:::::::
MCMC

::::::::
algorithm

::::::
utilised

::::
was

::
the

::::::::::::::
Componentwise

:::::::::::
Hit-And-Run

:::::::::
Metropolis.

::::
The

::::::::
logarithm

::
of

:::
the

:::::::
posterior

::::::::::
distribution

::
to

::
be

:::::::::
maximised

:
is
:::
the

::::
sum

::
of

:::
the

::::::::
logarithm

:::
of

:::
the

::::::::
likelihood

::::
and

:::
the

::::::::
logarithm

::
of

:::
the

::::::
priors:

log(p(µ,σ,m |D) = log(l(D | µ,σ,m)+ log(π(m))
::::::::::::::::::::::::::::::::::::::::::

(4)

:::::
where

::
µ

:::
and

::
σ

:::
are

:::
the

::::
mean

::::
and

:::::
shape

:::::::::
parameters

::
of

:::
the

:::::
peak

::::::::::
distribution.15

2.3
::::::
Copula

:::
and

:::::::::
marginal

::::::::
inference

:::::::
Copulas

:::
are

::::::::
functions

::::
that

:::::::
describe

::::
the

::::::::::
dependence

::::::::
structure

:::::::
between

::::::::
variables

::::::::::::
independently

:::
of

:::
the

::::::
choice

:::
of

::::::::
marginal

::::::::::
distributions.

::::
The

::::
joint

::::::::::
distribution

::::::::
functions

:::
and

:::
the

:::::::::
marginals

::
are

::::::
linked

::
by

:::::::
Sklar’s

:::::::
theorem

:::::::::::
(Sklar, 1959):

:

F (x1, ...,xd) = C(F1(x1), ...,Fd(xd))
::::::::::::::::::::::::::::::

(5)

::
for

:::
all

:::::::
x ∈Rd,

:::::
where

:::
the

:::
Fi,:::::::::

i= 1, ...,d
:::
are

:::
the

::::::::
marginals

::
of

::
F

::::
and

::
C

:
is
:::
the

::::::
copula

::::::::
function.20

:::::::
Copulas

::::::
provide

::
a

:::::::
powerful

::::
tool

:::
for

:::
the

::::::::
statistical

:::::::::
modelling

::
of

::::::::::
multivariate

:::::
data:

:::
for

:
a
:::::::::
theoretical

::::::::::
introduction

::::
see

::::::
Nelsen

::::::
(2006);

:::
Joe

::::::
(2014);

:::::::
Durante

::::
and

:::::
Sempi

:::::::
(2015),

::
for

::
a
:::::::
practical

::::::::::
engineering

::::::::
approach

:::
see

::::::
Genest

:::
and

:::::
Favre

:::::::
(2007);

::::::::
Salvadori

::
et

::
al.

::::::
(2007);

::::::::
Salvadori

::::
and

:::::::::
DeMichele

:::::::
(2007).

:::
The

::::::::::
application

::
of

::::::
copula

::::::::
functions

:::
has

:::::::::
facilitated

::::::::::
overcoming

:::::
some

:::::::::::
inadequacies

::
of

:::::::::
traditional

::::::::::
multivariate

:::::::::::
distributions

::::
such

::
as

::::
that

:::
the

::::::::
marginals

:::::
must

::::::
derive

::::
from

::::
the

::::
same

::::::::::
distribution

::::::
family

::::
and

::::
their

::::::::::
parameters

::::
may

:::::
define

::::
the

::::::::::
dependence25

:::::::
structure

:::::::
between

:::
the

::::::::
variables

:::::::::::::::::::
(Salvadori et al., 2007).

:
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:::
The

::::::
degree

::
of
:::::::

relation
::::::::
between

::::
pairs

:::
of

:::::::
variables

::::
was

:::::::::
examined

::
by

:::::::::
measures

::
of

::::::::::
association.

::::::
These

::::::
include

::::::::
Kendall’s

:::
τ ,

:::::::::
Spearman’s

:::
ρS::::::

which
::::::
express

:::
the

::::::::
existence

::
or

:::::::
absence

::
of

:::::::::::
concordance

:::
and

:::::::::
Pearson’s

:::
ρP :::::

which
::::::::
expresses

:::::
linear

:::::::::::
dependence.

:::
For

:::
the

:::::::
observed

:::::::::::::::
discharge/volume

::::
pairs

:::::
these

::::
were

:::::
equal

::
to

:::::
0.58,

::::
0.77

:::
and

:::::
0.81,

::::::::::
accordingly

:::
and

:::::::
indicate

:::::
strong

:::::::::::
dependence.

::
In

:::
the

:::::::
absence

::
of

:
a
::::
long

:::::::
sample,

:::
the

:::::::
copulas

::::
that

::
fit

:::
the

::::
data

:::
can

:::
be

::::::::
numerous

::::
and

::::::::::::
goodness-of-fit

::::
tests

::::::
cannot

::::::::::
distinguish

:::::::
between

::::
them

:::::::::::::::
(Serinaldi, 2013).

::::::
Since

:::::::
inferring

::::
the

::::::::
"correct"

::::::
copula

:::::
model

:::
is

:::
not

:::
the

::::
aim

::
of

::::
this

:::::::
research

::::
and

:::::
since

::::
this

::::::::
endeavour

::
at
::::

this
:::::
point

::::
can

::
be

::::::
futile,

:::::
given

:::
the

::::::::
available

::::
data

::::
set,

:::
the

::::
final

::::::
choice

::::
was

::::::
based

:::::
partly

:::
on

:::
the

:::::::::
preference

:::
of

:::::::
previous

::::::::
published

:::::::
research

:::::::
towards

:::
the

::::::::
Gumbel,

::::::::
including

:::::::::
conference

:::::::::::
proceedings

::
by

::::::::::
Balistrocchi

::
et
:::

al.
::::::
(2014)

:
,
::::
who

:::::
fitted5

::
the

::::::::
Gumbel

::
on

:::::
peaks

::::::::
obtained

:::::
from

:
a
::::::::::::::::::
Peak-Over-Threshold

:::::::
method

::
on

::::
the

::::
same

:::::::::
discharge

::::
time

::::::
series.

::
In

:::
the

:::::::
present

::::
case

::::
both

:::
the

::::::::
Gaussian

:::
and

:::
the

::::::::::::::::
Gumbel-Hougaard

::::::::::::
one-parameter

::::::
copula

::::::
passed

:::
the

:::::::::::::
goodness-of-fit

::::
tests

:::::::::::
(Cramer-von

:::::
Mises

::::
and

::::::::::::::::::
Kolmogorov-Smirnov)

::::
and

:::::::::::
demonstrated

:::
the

:::::::
smallest

::::::
Akaike

:::::::
weights-

::
or

::::
else

:::
the

:::::::::
probability

:::
that

:::
the

::::::
chosen

::::::
model

::
is

::
the

:::::
most

::
apt

::::::
among

:::
the

:::::
tested

:::::
ones

::::::::::::::::::::::::::
(Burnham and Anderson, 2004).

::::::::
However,

:::
we

:::::::
thought

:::
that

::
if

:::::::::::::
tail-dependence

:::::
exists,

:::::::
Gumbel

::::::
would

::
be

:::::
more

:::::::::
appropriate

::::::::::
(belonging

::
to

:::
the

:::::::
extreme

:::::
value

::::::
copula

:::::::
family),

::
as

:::
the

::::::::
Gaussian

::::
has

::
no

::::
tail

::::::::::
dependence.

::::
We

:::::
recall

:::
the10

:::::::::::::::
Gumbel-Hougaard

::::::
copula

:::
as:

C(u,v) = exp
:::::::::::

[−((− log(u))θ +(− log(v))θ)1/θ
::::::::::::::::::::::::::

(6)

:::::
where

::
u,

::
v

:::
are

::
the

:::::::::::::::::
pseudo-observations

::::
and

:
θ
:::
the

::::::
copula

:::::::::
parameter.

:::
The

::::::::
existence

::
of

:::
tail

::::::::::
dependence

:::::::
between

:::::
peak

:::
and

:::::::
volume

:::
was

::::
also

::::::
implied

:::
by

:::::
some

::::::::
historical

::::::::
evidence.

:::::
Many

:::::::::
significant

:::::
events

::
in

::::
Italy

:::::
occur

:::::
when

:
a
::::::
frontal

:::::::::::
perturbation,

::::::::
generated

:::
by

:::
the

::::
cold

::::
high

::::::
masses

::::::
coming

:::::
from

:::
the

:::::
North

:::::::
Atlantic

::::::
Ocean

::
or15

::
the

::::::
Arctic

::::::
Ocean,

:::::
meets

:::::::::::::
Mediterranean

::::::::
southward

::::::
warm

:::::
fronts.

::::::::::
Depending

::
on

:::
the

::::::::::
persistence

::
of

:::
the

:::::
south

:::
and

:::::
north

:::::::
current,

::
the

:::::::::
generated

::::
front

::::::
begins

::
to

:::::::
develop

:::::::
covering

::
a
::::
large

::::
area

::::
(e.g.

::::
104

:::::
km2).

::::::
Inside

:::
this

:::::
warm

:::::
front,

:::
the

::::::
energy

:::::::
content

::
is

::::
very

::::
high.

::::
This

::::::
causes

::::
local

:::::::::
convective

::::::::::
phenomena

::::::::
enhanced

::
by

:::::::::
orographic

::::::
effects.

:::
So,

::::::::::::
thunderstorms

::::
can

:::::
appear

::::::
locally

:::::::::
producing

::::::
rainfall

:::::
whose

::::::
values

:::
can

::::::
surpass

::::
one

::::
third

::
of

:::
the

:::::
mean

:::::
annual

::
in
:::::
24-30

::::::
hours.

::
In

:::
the

::::::
vicinity

::
of

:::::
local

::::::::::::
thunderstorms

:::
the

::::::
rainfall

:
is
::::::::::
moderately

::::
high

:::::::::
producing

::::
large

:::
soil

:::::::::
saturation

:::
and

::::::::::
increasing,

::::::::::
significantly,

:::
the

:::::::::::
contribution

::
to

:::
the

:::::::::::
groundwater.

::::
This

::::
kind20

::
of

::::::
rainfall

::::::
events

:::::::
produces

:::
not

:::::
only

::::::::
maximum

::::::::
observed

:::::
peaks

::
of

:::::
flood

::
in

:::::
many

:::::
rivers

::
of

:::::
small

::::::
(<100

::::
km2)

::::
and

:::::::
medium

::::
size

::::::
(<2000

:::::
km2)

:::
but

::::
also

:::
the

::::::
largest

::::::::
observed

:::::::
volumes

:::::::::
associated

::::
with

:::
the

::::::::::
persistence

::
of

:::
the

::::::
global

:::::
event.

::::
This

::
is

:::
the

:::::
case,

:::
for

:::::::
example,

:::
for

:::
the

:::::
flood

::
in

:::::::
Florence

::::
and

::::::::
Triveneto

:::
on

:::
4th

:::::::::
November

:::::
1966,

::
in

::::::::
Valtellina

::
on

:::::::
18-25th

::::
July

:::::
1987,

:::::
along

::::::
Tanaro

:::
on

::::
5-6th

:::::::::
November

:::::
1994,

:::::
along

:::
Po

::
in

::::::::
Piedmont

::
on

:::::::
17-21st

:::::::
October

:::::
2000,

:::
etc.

:

::::::::::::
Unfortunately,

:::
tail

::::::::::
dependence

:::::::::
estimators

::::
such

::
as

:::
the

::::
ones

:::
of

:::::::::::::::::::
Frahm et al. (2005) and

::::::::::::::::::::::::::::::
Schmidt and Stadtmüller (2006) can25

::
be

::::::
biased

:::
and

::::::::::
susceptible

::
to

::::
high

::::::::::
uncertainty

::::
even

::
in

:::::
large

::::::
sample

::::
sizes

::::::::::::::::::::
(Serinaldi et al., 2015),

:::
thus

:::::
their

:::
use

::
in

::::
this

::::
case

::
is

::::::::::
discouraged.

:

::::::::
Regarding

:::
the

::::::
choice

::
of

:::
the

::::::::
marginal

:::::::::::
distributions,

:::
we

::::::::
preferred

:::::::::::
distributions

:::
that

:::::
were

::::
more

::::::::::::
parsimonious,

::::
thus

::::::::
reducing

::
the

:::::::::
additional

::::::::
statistical

::::::::::
uncertainty

:::::::::
introduced

::
by

::
an

:::::
extra

:::::::::
parameter,

::::::::
following

:::
the

:::::
logic

::
of

:::::::
Occam’s

:::::
razor,

::::
and

:::
that

::::::::
provided

:
a
::::
nice

:::::
visual

:::
fit.

::::
The

:::::::::
differences

:::::::
between

:::
the

:::::::::
corrected

::::
AIC,

::::
BIC

::::
and

::::::
Akaike

::::::::
weighted

:::::
values

:::::
were

:::
not

::::::::
sufficient

::
to

:::::
make

::
a30

:::
safe

:::::::::
distinction

:::::::
between

:::
the

:::::::
models.

::::
The

:::::
peaks

::::
were

::::::::
modelled

::::
with

:::
the

:::::::
Inverse

:::::::
Gaussian

::::::::::
distribution

::::
(two

::::::::::
parameters

::::::
instead

9



::
of

::::
three

::
of

:::
the

::::::
GEV)

:::
and

::::
their

::::::::::::
corresponding

:::::::
volumes

::::
with

:::
the

::::::::::::
one-parameter

:::::::::
Rayleigh.

:
It
:::
is,

:::::::
however,

:::::::::
imperative

::
to

::::
note

::::
that

::::
there

::::
was

::
no

::::
clear

:::::::::
indication

::
of

::::::
overall

:::::::::::
performance

:::::::::
superiority

::
of

:::
the

::::::
chosen

:::::::::::
distributions.

:::
The

:::::::::
parameters

:::
of

::
the

:::::::
inferred

:::::::::::
distributions

::::::
(copula

::::
and

:::::::::
marginals)

:::
are

::::::::
presented

::
in

:::::
Table

:
2.

2.4 Hydrograph clustering
:::::::
selection

The shape of the
:
"design hydrograph

:
"is often considered an important factor in the design procedure and is related to the spatial

and temporal rain distribution as well as the basin’s shape and behaviour (Singh, 1997). Therefore typical hydrographs were

determined from the annual maxima flood events extracted from the available time series. In particular, the events’ hydrographs5

were clustered according to their characteristics and utilizing the methodology proposed by Dyck and Peschke (1995) which

suggests the normalisation of the hydrograph (after the removal of the baseflow) by

Qnorm = (Q− qbase)/(Qmax− qbase) (7)

tnorm = t/tQmax (8)10

where Qmax the hydrograph’s peak, qbase the base flow and tmax the time to peak, starting from the rising limb of the flood

event.

Consequently, the normalised peak equals to one at time 1. All normalised hydrographs were extended to a common

duration (for comparison purposes) and cluster analysis with the Ward method and Euclidean distances was implemented

(Aronica et al., 2012).15

2.5 Dependence structure between variables

The degree of relationship between pairs of variables was examined by measures of association. These include Kendall’s τ ,

Spearman’s ρS which express the existence or absence of concordance and Pearson’s ρP which expresses linear dependence.

The p value that corresponds to each coefficient was also calculated to test for independence, rejecting it if p is less than 0.05.

To graphically assess independence chi-plots and Kendall plots were generated. Chi-plots’ patterns portray characteristics20

such as independence, complexity of dependence and existence of monotonicity up to some degree. Chi-plots display a measure

of distance, λi, of each observation from the centre of the data against a measure of association between the marginals, χi. The

values of the ranks of the data determine the shape of the graph. If a certain percentage, i.e. 95 % of the points, lie between the

confidence line the two variables are considered independent, whereas positive and negative dependence is indicated when the

points lie above the upper limit and below the lower limit, accordingly (Fischer and Schwarz, 1985, 2001).25

Kendall plots preserve some of the desirable properties of the chi-plots, like their reliance on ranks, but also give a better

understanding of the nature of dependence. They plot the measure of concordance, Hi against its expected value under the null

hypothesis of independence, Wi:n. The distance from the diagonal line is an indication of the greatness of the dependence. If

the points lie above the diagonal line positive dependence is present and if they lie below negative. The lack of association is

10



depicted with a straight diagonal line and in the case of comonotonicity the points will follow the curve or the horizontal axis30

for Kendall’s τ = 1 and τ =−1, accordingly (Genest and Boies, 2003).

2.5 Multivariate analysis using copula functions

Copulas are functions that describe the dependence structure between variables independently of the choice of marginal

distributions. The joint distribution functions and the marginals are linked by Sklar’s theorem (Sklar, 1959) :

F (x1, ...,xd) = C(F1(x1), ...,Fd(xd))

for all x ∈Rd, where the Fi are the marginals of F and C the copula function.5

Theoretical background is included in Sklar (1959) and Nelsen (2013) as well as in the more hydrologically-oriented

publication of Salvadori et al. (2007) .

First, a copula function was selected, according to the BIC, and its goodness-of-fit was tested for the peak/volume pair

utilising the Kolmogorov-Smirnov and the Cramér-von Mises test for Archimedean bivariate copulas based on Kendall’s

process investigated by Genest and River (1993), Wang and Wells (2000). P values for these tests are calculated using a10

parametric bootstrap procedure.

Since we are dealing with extremes we also assessed the tail dependence of the observations. The tail dependence coefficient

was calculated for the observations and was compared with the theoretical coefficient of the chosen copula. We preferred the

estimator proposed by Frahm et al. (2005), expressed as

λ̂CFG = 2− 2exp[
1

n

n∑
i=1

log{

√
log 1

ui
log 1

vi

log 1
max(ui,vi)2

}]15

over the one proposed by Schmidt and Stadtmüller (2006) since the latter varies greatly in base of threshold selection. Here, n

is the sample size, ui = F1(x1,i) and vi = F2(x2,i).

Next, 10000 pairs of values were generated using that copula and their fitted parameters.

2.5 Defining the return period

The definition of the return period in a multivariate case can be approached through various ways. Salvadori et al. (2011, 2013)20

have included an overview of these approaches for the multivariate framework, the choice of which should be based on the

engineer’s interest (Serinaldi, 2014). Two widely used jointRP ’s are the so-called OR and AND return periods that are defined

by the following equations :

TOR =
µT

1−C(u,v)

where µT is the mean interarrival time between two consecutive occurrences of (X1,X2) (in this case µT = 1 year). The OR25

alludes to the probability P [X1 > x1 ∨X2 > x2]. Consequently TOR refers to a specific value of the C(U,V ) that an infinite
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number of pairs (u,v) satisfy. From the inverse of the marginal CDFs we obtain:

x1,OR = F−1
1 (u) , x2,OR =F2

−1(v)

Similarly, the AND return period is defined as:

TAND =
µT

1−F1−F2 +C(u,v)

The AND alludes to the probability P [X > x∧Y > y].5

Salvadori et al. (2016) noted that the ORRP can be optimal for estimating the flood risk for example, at the confluence of two

rivers and the ANDRP for scenarios where the combined effect of two or more variables can be damaging. Dung et al. (2015) stated

that flood volume can be an equally governing factor with the peak in the inundation process- taking as an example events from

the Mekong Delta in Vietnam- and utilised the AND RP for their risk analysis.

In the OR and AND case realisations of the same critical level do not always yield the same dangerous region. So Salvadori10

et al. (2011) included an additional definition called secondary RP or Kendall’s RP expressed as:

TKEND =
µT

1−KC(t)
=

µT
1−P (C(U,V )≤ t)

KC is the Kendall’s measure and t is a copula level curve.

The latter definition implies that some joint events that lie in the safe region may have larger marginal values than events on

or above the design level. Salvadori et al. (2013) have introduced the Survival Kendall RP that yields a bounded safe region,15

containing multivariate events with limited marginals.

TSKEND =
µT

1−KC(t)
=

µT

1−P (Ĉ(1−U,1−V )> t)

where KC is the Kendall’s survival function and Ĉ is the survival copula for which Ĉ(u,v) = u+ v− 1+C(1−u,1− v).
Salvadori et al. (2016) suggested that both Kendall RP ’s are useful for a preliminary risk assessment analysis to understand

what can be expected regarding the joint probability of occurrences since theseRP ’s don’t identify beforehand the contribution20

of each variable to the risk.

2.5
:::::::::::::

Structure-based
::::
risk

:::::::
analysis

Volpi and Fiori (2014) associated the RP
::::
return

::::::
period with the structure of interest by relating the structure design parameter

to the hydrological load through the function Z = g(X1,X2). Consequently the structure-oriented RP
:::::
return

:::::
period

:::
of

:
a
:::::
value

:
z
:::::
takes

:::
the

::::
formwould be expressed as :25

TSTR =
µT

1−FZ(z)
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where
:::
µT :

is
:::
the

:::::
mean

:::::::::
interarrival

::::
time

:::::::
between

::::
two

:::::::::
consecutive

::::::::::
occurrences

::
of

::
z

::
(in

:::
our

::::
case

::::::
µT = 1

:::::
year),FZ is the probability

distribution function of the derived variable Z
:::::
which

::
in
::::
this

::::
case

::
is

:::
the

:::::::
reservoir

:::::
level

:::
and

:::::::::::::::::::
X≡ (Q,V,shape, ...)In this case

::::
Here,

:
the structure function is very complex

:
,
::::
since

:::
the

::::::::
reservoir

::::
level

::
is

:
a
:::::::
function

::
of

:::
the

:::::::::
spillway’s

:::::
rating

:::::
curve

:::
and

:::
the

::::::
flood’s

::::::
natural

::::::::
variables, and therefore the whole analysis must be based on Monte Carlo simulations.

::::
This

::::
adds

::
to

:::
the

::::::::::::
computational

::::::
burden,

::::::::::
specifically

::::
when

:::::::
dealing

::::
with

:::
the

:::::::::::
quantification

:::
of

::
the

::::::::::
uncertainty.5

2.6
::::::::::
Uncertainty

:::::::::
estimation

::
In

::::
order

::
to
:::::::
account

:::
for

::::::::
sampling

:::::::::
uncertainty

:::
and

:::
to

:::::::
estimate

:::
the

:::::::::
confidence

:::::::
intervals

:::
the

::::::::
following

::::::
Monte

:::::
Carlo

::::::::
procedure

::::
was

:::::::::::
implemented,

::::::::
originally

::::::::
proposed

:::
by

::::::::::::::
Serinaldi (2016).

1.
:::::::
Estimate

:::
the

::::::::
parameter

::
θ̂
::
of

:::
the

::::::
copula

::
for

:::
the

::::::::
observed

::::::
sample

::
as

::::
well

::
as

:::
the

:::::::::
parameter

::
of

:::
the

::::
flood

:::::::
volume

::::::::::
distribution.

2.
:::::::
Simulate

::
B

::::::::
bivariate

::::::
samples

:::
of

:::
size

::
n

:::::
(equal

::
to

:::
the

:::::::
number

::
of

:::::
years

::
of

:::
the

:::::::
observed

:::::::
sample)

:::::
using

:::
the

::::::::
estimated

::::::
copula10

::::::::
parameter

:::
and

::::
then

:::::::::
transform

:::
into

:::::::
volume

:::::
using

::
the

:::::::::
estimated

::::::::
parameter

::
of

:::
the

::::::::
marginal.

3.
::::::::
Calculate

:::
the

:::::
copula

:::::::::
parameter

:
θ̂
::::
and

:::
the

::::::
volume

::::::::
marginal

::::::::
parameter

:::
for

::::
each

:::::::
sample

::::
with

:::
the

::::
same

:::::::::
estimation

:::::::
method

::::
used

::
for

:::
the

::::::::
observed

:::::::
sample.

4.
:::::::
Simulate

::
B

::::::::
bivariate

:::::::
samples

::
of

:::
size

:::
M

::::
with

:::
the

::::::
copula

::::::::
parameter

::
θ̂
::::::::
estimated

::
in

:::
the

:::::::
previous

:::::
step.

5.
::::::::
Transform

:::
the

:::::::
samples

::::
from

:::
the

::::
unit

::::::
interval

::
to

::::::::
discharge

::::
and

::::::
volume

:::::
using

:::
the

::::::::
estimated

:::::::
marginal

::::::::::
parameters.

::::::::
Generate15

::::::
B×M

:::::::::::
hydrographs

::::
with

::
an

::::::::
assigned

:::::
peak,

::::::
volume

::::
and

:::::
shape

::::
and

::::
route

:::::
them

::
to

::::::::
calculate

:::
the

::::::::
reservoir

::::
level

::::
and

:::
the

::::::::
frequency

::::::
curves

::
of

::
all

::
B
::::::::
samples.

6.
::::
Build

:::
the

::::::::::
confidence

:::::::
intervals

::
of

:::
the

::::::::
reservoir

::::
level

::::::::
frequency

:::::::
curves.

::
In

:::
the

::::::
present

:::::::
research

::
B

::::
was

::
set

:::::
equal

::
to
::::::
10000

:::
and

:::
M

:::::
equal

::
to

:::::
1000.

:::
The

:::::::::
confidence

::::::::
intervals

::
of

:::
the

::::::
peaks

:::::::
marginal

::::::::::
distribution

::::::::::
parameters

::::
have

::::
been

:::::::::
estimated

::
in

::
a

::::::::
Bayesian

:::::::::
framework,

:::
as20

:::::
stated

:::::::::
previously,

::
in

:::::
order

::
to

:::::::::
incorporate

:::
the

:::::::::
additional

:::::::::
knowledge

:::
and

::
to
:::::::
account

:::
for

:::
the

::::::
scaling

::::::::::
uncertainty.

:

:::
The

:::::::::
parameter

:::::::::
uncertainty

::
of

:::::::::
additional

::::::::::
distributions

::::
that

::
fit

:::
the

::::
data

:::::
could

::
be

:::::::::
introduced

::
in

:::
the

:::::::::
procedure,

:::::::
leading

::
in

:::::
larger

:::::::::
confidence

::::::::
intervals.

::::::::
However,

::
in

:::
this

:::::
case,

::::
only

:::
the

::::::::
parameter

::::::::::
uncertainty

::
of

:::
the

::::::
inferred

:::::::
models

:::
was

::
of
:::::::
interest.

:

3 Results
:::
and

:::::::::
discussion

::::::
Initially

:::
we

:::::
have

:::::::
clustered

:::
the

::::::::::
hydrograph

::::::
shapes

::::
into

::::
four

:::::::::::
characteristic

:::::::
groups.

:::::
After

:::::::::
simulating

:::::
10000

:::::::::::
peak-volume

:::::
pairs25

::::
from

:::
the

:::::::
inferred

::::::::::
distributions,

:::
we

::::::::
assigned

::
to

::::
each

:::
one

:
a
:::::::
specific

:::::::::
hydrograph

:::::
shape

::::::::::
(respecting

::::
their

::::::::
frequency

::
of

:::::::::::
occurrence).

:::::
Then,

::
we

::::::::::::
denormalised

:::
and

::::::
routed

:::
the

:::::::::::
hydrographs;

:::
we

:::::::
repeated

:::
the

:::::
same

::::::::
procedure

:::
but

::::
after

:::::::::
clustering

::::
into

::::
only

:::
one

::::::
group,

:::
thus

::::::::::
considering

::
a

:::::
global

:::::::
"mean"

::::::::::
hydrograph.

::::
The

:::::::::::
characteristic

::::::
shapes

:::
are

:::::::
depicted

::
in

::::
Fig.

:::
2a,

:::::
along

::::
with

:::
the

:::::::
"mean"

:::::
shape

::::
(Fig.

::::
2b).

:::
The

:::::
level

::::::::
frequency

::::::
curve

::::::
showed

:::::
small

::::::::::
differences

:::::::
between

:::
the

::::
two

:::::
cases

::::
(Fig.

::
3)
::::

and
::
as

:::
we

:::::
shall

:::
see

::::
later

::::
this
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::::::::
difference

::
is

::::::::
negligible

:::
in

:::::::::
comparison

:::::
with

:::
the

::::::::
estimated

::::::::::
uncertainty.

:::
So,

:::
we

::::
have

:::::::::
proceeded

::::
with

:::
the

:::::::::
uncertainty

::::::::::
assessment30

:::::::::
considering

::::
one

::::::
"mean"

::::::::::
hydrograph.

:

:::
We

::::
have

:::::::::::
implemented

:::
the

::::::::
Bayesian

::::::::::
framework

:::
on

:::
the

:::::
peaks

::::::::
extracted

:::::
from

:::
the

:::::::::
systematic

:::::::::
discharge

:::::
series

::::::::
recorded

::
at

::::::::
Bomporto

:::::::
station,

::::::
adding

:::
also

:::
the

::::::::::
uncertainty

::
of

:::
the

:::::::
scaling

::::::::
exponent

::
of

:::
the

::::::::::::
regionalisation

:::::::
relation.

:::
In

:::
the

::::::
second

::::::::
scenario,

::
we

::::
also

::::::::
included

:::::::
recently

::::::::
recorded

::::::
annual

:::::
peaks

::::
from

:::::
other

:::::::::::
hydrometric

::::::
stations

:::
of

:::
the

:::::
same

:::::
basin,

:::::::::
mentioned

::::::::::
previously,

::
as

::::
well

::
as

:::::::::::
information

::::
from

:::::
flood

:::::::
reports,

:::::
while

:::::::::
integrating

::::
the

:::::::::
uncertainty

:::
of

:::
the

::::::
scaling

:::::::::
exponent.

:::
As

::
it

:::
can

:::
be

::::
seen

:::
in5

:::
Fig.

::
4,

:::::
when

::::::::
ignoring

:::
the

::::::::
additional

:::::::::::
information,

:::
the

:::::::
estimate

::
of

::::::::
discharge

:::::
peak

::
is

:::::
lower

:::
for

:
a
:::::
given

:::::
return

:::::::
period.

:::
We

:::::
focus

:::
our

:::::::
attention

:::
on

::::::::
relatively

:::::
small

::::::
return

::::::
periods

:::::
since

::::
any

:::::::::::
extrapolation

::::::
beyond

::::
the

:::::::
available

:::::
time

:::::
period

::
is
:::::::

subject
::
to

:::::
great

:::::::::
uncertainty.

:::::::::::
Indicatively,

:
a
:::::

peak
::::
with

::
a

::::::::
univariate

::::::
return

:::::
period

:::
of

::
50

:::::
years

::::
can

:::::::
increase

:::
by

:::::
18%,

::::::::
exceeding

:::
the

::::::::::
confidence

:::::::
intervals

::
of

:::
the

:::::
fitted

::::::::::
distribution.

:::::
This

:::::
occurs

:::::::
because

::::::
during

:::
the

::::
last

::
10

:::::
years

::::::
crucial

:::::
flood

::::::
events

::::::::
appeared

::
in

:::
the

::::
area.

:::
In

::::
Table

::
2
:::
we

::::
note

:::
that

::
in

:::
the

::::::
second

::::
case

:::
the

:::::::::::
distribution’s

:::::
mean

:
is
::::::
bigger

:::
and

:::
the

:::::
shape

:::::::::
parameter

::
is

::::::
smaller

::::
with

:
a
:::::::::::
significantly10

:::::
lower

:::::::
standard

::::::::
deviation.

:

:::
The

:::
95

::
%

:::::::::
confidence

:::::::
interval

::
of

:::::
both

::
of

:::
the

::::
peak

:::::::::::
distributions

:::
can

:::
be

::::
wide

:::::
(Fig.

:::
4),

:::
e.g.

:::
for

::
a
::::::::
univariate

::::::
return

:::::
period

:::
of

::
50

:::::
years

:
it
::::

can
::::
span

:::::
from

:::
665

::
to

::::
941

:::::
m3/s

:::
(29

::
%

::::::::::
difference)

:::
and

:::::
from

:::
837

::
to

:::::
1092

:::::
m3/s

:::
(23

::
%

::::::::::
difference)

:::
for

:::
the

:::
first

::::
and

::::::
second

::::
case.

::::::::
Similarly,

::
in

:::
the

::::
case

::
of

:::
the

:::::
flood

:::::::
volume

:::
the

::
95

:::
%

:::::::::
confidence

::::::
interval

:::
for

::
a
::::::::
univariate

::::::
return

:::::
period

:::
of

::
50

:::::
years

:::
can

:::::
span15

::::
from

::::
95.5

::
to

:::
120

:::::
hm3

:::
(20

::
%

:::::::::
difference)

:::::
(Fig.

::
5).

:::
The

:::::::::
confidence

::::::::
intervals

::
of

:::
the

:::::::::
parameters

::
of

:::
the

:::::::
inferred

::::::::::
distributions

:::
are

:::::::::
presented

::
in

::::
Table

::
2.

:::
The

::::::
results

::
of

:::
the

::::::::
increased

:::::
peaks

:::
are

:::::::
reflected

::::
also

::
on

:::
the

:::::::::
frequency

:::::
curve

::
of

:::
the

::::::::
maximum

:::::
water

:::::
level

:::::::
(MWL).

:::
The

::::::
return

:::::
period

::::
here

::::::::::
corresponds

::
to
::

a
:::::
water

:::::
level,

::
so

::
it

::
is

:::::::::
considered

:::::::::::::
structure-based,

:::::
since

:::
the

::::
level

::
is
::
a

:::::::
function

::
of

:::
the

::::::::
structural

::::
and

:::::::::
operational

::::::::::::
characteristics

::
of

:::
the

:::::
dam,

::::::
among

::::::
others.

::
As

::
it

:::
can

:::
be

::::
seen

::::
(Fig.

:::
6),

:::
the

:::::
MWL

::
is

::::::::::
significantly

:::::
lower

:::
in

:::
the

::::
case

::
of20

::
no

::::
extra

:::::::::::
information,

::::::::
especially

:::
for

::::::
greater

::::::
return

:::::::
periods.

:::
For

:
a
::::::
return

:::::
period

::
of

:::
50

:::::
years

:::
the

::::::
average

::::::
MWL

:::
can

:::::
differ

:::
1.2

:::
m-

:
a
::::::::::
considerable

:::::::::
magnitude

::
in
:::::
terms

::
of

:::::::
volume

:::
and

:::::
when

::::::::::
considering

:::
that

:::
the

:::::
safety

::::::
margin

::::::
above

::
the

:::::::::
spillway’s

::::
crest

::
is

::
in

:::::
some

::::
cases

::
1

::
m

::
In

:::
Fig.

::
7
::::::
highest

:::::::
density

::::::
regions

::::::
depict

:
a
::::
sort

::
of

:::::::::
confidence

:::::::
intervals

:::
of

:::
the

:::::
MWL

:::
for

:::::::
specific

:::::
return

:::::::
periods

::
for

:::::
each

::::
case

:::::
(single

::::
site

::::::::::
information

::
&

:::::::::
multi-site

::::
with

::::::::
historical

:::::::::::
information).

::::::
These

::::::
regions

::::
can

::
be

:::::::
defined

::
as

:::
the

::::::::
smallest

::::
areas

:::
in

:::
the25

::::::
sample

:::::
space

::::
with

::
a

::::::
certain

:::::::::
probability

::::::::
coverage

::::
and

::::
they

::::
have

:::
the

:::::::::
advantage

:::
of

:::::::::
displaying

::::::::::
multimodal

:::::::::::
distributions,

::::
thus

:::
they

::::
may

::::::
consist

::
of
:::::::
disjoint

::::::
subsets

::::::::::::::::
(Hyndman, 1996) .

::::
They

:::
are

::::::::::
particularly

:::::::
suitable

::
in

::::::::::
multivariate

:::::
cases

::
or

::
for

::::::::::::
asymmetrical

::::::::::
distributions.

:::
In

:::
the

:::::
HDR

:::::::
boxplots

:::
the

:::::
mode

::::::::::
(horizontal

::::
line)

:::::::::
substitutes

:::
the

:::::::
median

:::
and

:::
the

::::::
darker

::::::
region

::::::::::
corresponds

::
to

::
a

:::::::::
probability

:::::::
coverage

:::
of

::
50

:::
%,

:::
the

:::::
lighter

::
to
::
a
::::::::
coverage

::
of

::
95

::
%

::::
and

:::
the

:::::
points

::::::
outside

::
to
:::
the

::::
data

::::::
beyond

:::
the

:::
95

::
%

::::::::::
probability.

:::
The

::::
span

:::
of

:::
the

:::::::
highest

::::::
density

:::::::
regions

::::::
slightly

:::::::::
decreases

::
as

:::::
more

::::::::::
information

::
is

::::::::::
introduced.

::::::::
However,

::::
this

:::::::
decrease

:::
in30

:::::::::
uncertainty

::::::
seems

:::::
small

:::
and

:::
we

::::::
cannot

::::::::
conclude

:::::::
whereas

:::
the

:::::
extra

::::::::::
information

:::
has

::::::::::
contributed

::
to
::

a
:::::::::
systematic

::::::::::
uncertainty

::::::::
reduction.

:::
An

:::::::
increase

::
in

:::
the

:::::::::
simulation

:::
size

:::::
could

::::
lead

::
to

:
a
:::::::
slightly

:::::::
different

:::::::
picture,

:::::::
however

:::
the

:::::
added

::::::::::::
computational

::::::
burden

:
is
::::::::::
prohibitive

:::
and,

::::::::
anyhow,

::
as

::::::::::::::::::::::::
Salvadori et al. (2015) stated,

:
a
::::
clear

::::::::::::
rule-of-thumb

::::::::
regarding

:::
the

:::::::::
simulation

::::
size

::::
does

:::
not

:::::
exist.

::
In

:::
any

::::
case

:::
the

::::
size

:
is
::::::::::
considered

::::
large

::::::
enough

:::
for

:::::
some

::::
safe

::::::::::
conclusions,

:::::::::
especially

::
for

:::
the

:::::::
smaller

:::::
return

::::::
periods

:
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:::::
Within

::
a
::::::
certain

:::::
return

::::::
period

:::
the

:::::::::
parameter

::::::::::
uncertainty

:::
can

::::
lead

::
to

:::::::::
substantial

::::::
MWL

:::::::::
variations,

:::
e.g.

:::
for

:::
20

:::::
years

:::
(in

:::
the35

:::
case

:::
of

::::
extra

::::::::::::
information),

:::
the

::::
span

::
of

:::
the

::::::
MWL

::::
with

::
a

::::::
density

::
of

:::
50

::
%

::::
and

:::
95

::
%

::
is

::
of

:::
0.8

::::
and

:::
2.3

:::
m,

::::::::::
accordingly,

::::::
which

:::::::::
correspond

::
to

::::
huge

:::::::
volume

:::::::::
differences.

::::::
These

:::
can

::::
have

::::::::::
devastating

:::::
effects

:::
not

::::
only

::
in

:::
the

::::
case

::
of

::::::::::
overtopping

:::
but

::::
also

:::::::
because

::
the

:::::::::
remaining

:::::
water

::::
can

:::::
cause

:::::
bank

::::::
failure

:::
due

:::
to

::::::
piping.

:::::
These

:::::
spans

::::::
could

:::::::
increase

:::
for

:::::
larger

::::::
return

:::::::
periods,

::::::
where

:::
the

:::::::::
uncertainty

::
is

:::::
bound

::
to
:::
get

::::::
vaster.

::
As

:::
the

:::::::
results

::
of

::::::::
previous

::::::
studies

:::::::::
suggested

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Serinaldi, 2013; Dung et al., 2015; Zhang et al., 2015; Serinaldi, 2016),

::::
the5

::::::
regions

::
of

::::
the

:::::
return

:::::::
periods

:::
can

::::::::
overlap;

::
in

::::
this

::::
case

:::
the

:::
95

::
%

::::::::::
confidence

:::::::
interval

::
of

:::
an

:::::
event

::
of

:::
20

:::::
years

::::
can

:::::::
include,

:::::::::
marginally,

:::
the

:::::::
expected

::::::
values

::
of

:::::
events

::
of

:::
10

::
up

::
to

::
50

:::::
years

::::
(e.g.

::::::::
single-site

:::::::::
scenario).

:::
For

:::
the

::::::::
multi-site

::::
with

::::
extra

::::::::::
information

:::::::
scenario

:::
the

::::::::::
overlapping

:::::
region

::
is

:::::::
smaller.

::
In

::::
Fig.

:
8
:::

the
:::::::

highest
:::::::
density

::::::
regions

::::
(50,

:::
75

::
&

:::
95

:::
%)

:::
are

::::::::
depicted

::
in

:
a
:::::::::::::::

two-dimensional
:::::
plane

::::::::::::::::
(discharge-volume)

::::
that

:::::::::
correspond

::
to

::
a
:::::
return

::::::
period

:::
of

::
50

::::::
years.

:::
For

::::::
events

::::
that

:::::
result

::
in
::

a
::::::
MWL

::::
with

::
a

::::::
specific

::::::
return

::::::
period,

::::
the

:::::::
variation

:::
of10

::::::::
discharge

:::
and

:::::::
volume

:::
can

:::
be

::::
huge

:::::
even

:::::
when

::::::
looking

:::
in

:::
the

::::::
smaller

:::::::
density

::::::
regions

:::::
(e.g.

::
50

::::
%).

:::
For

::::::::
example,

::
in

:::
the

:::::
95%

:::::
region

:::
the

::::::::
discharge

::::
can

::::::
assume

::::::
values

::::
with

:
a
:::::::::
univariate

:::::
return

::::::
period

::::
from

::
1

::
to

::
50

:::::
years

::::
(for

:::
the

::::::::
multi-site

::::::::
scenario),

::::::
which

:
is
::
a
:::::
strong

::::::::
indicator

::
of

:::
the

:::::::::::
non-linearity

::
of

:::
the

::::::::
problem.

:::
The

:::::
same

::::::
applies

:::
for

:::
the

::::
flood

:::::::
volume.

3.1 Selection of marginals and hydrograph clustering

Various theoretical distribution were fitted (Fig. 3a) to the ecdf of the discharge peaks and the appropriate distribution (i.e.15

Inverse Gaussian with parameters shown in Table 3) was chosen based on the BIC value and the tail’s behaviour and after

being tested by the Kolmogorov-Smirnov, the Anderson-Darling and the Cramér-von Mises goodness-of-fit test (Table 4). The

p values were much greater than 0.05 so the hypothesis of this distribution could not be rejected. We fitted the distributions

using maximum likelihood estimation. The fitted Birnbaum-Sanders and Lognormal gave results very similar to the Inverse

Gaussian, with a higher BIC value. The very heavy tail of the Generalised Extreme Value (GEV) distribution appears to20

overestimate the peak in the upper quantile (5%) and consequently, was not preferred. The interest is not focused on very

high quantile estimates (>99%), but on a correct definition of the risk in the range of a return period comparable with the

observation period. These results were corroborated when we used discharge peak data from the missing years of our study

period. Unfortunately these data included only information about the peak and not about the temporal evolution of the flood.

After examining each event of the time series in Panaro, we applied empirical criteria for the event separation- successive25

peaks with an interarrival time of less than seven times the time of concentration are considered parts of a multipeak event, the

episode’s start occurs when the inclination of the rising limb supersedes a threshold for a certain number of intervals and the

end when it falls below a threshold for the same number of intervals.

Then we calculated the volume of each event. Similarly to the marginal distribution selection for the discharge peaks, we

chose the Rayleigh distribution (Table 3) based on the smallest BIC value and the modelling of the upper tail (Fig. 3b).30

The Birnbaum-Sanders and Inverse Gaussian are much more heavy-tailed and therefore yield increased volume values in the

upper quantile (5%) and consequently, were not preferred. The goodness of fit tests permitted our selection since the p values

exceeded 0.05 (Table 4).
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Next, the hydrographs were classified in 4 clusters whose shapes are depicted in Fig. 4a, left. The characteristic shapes

include hydrographs with one and two peaks and with abrupt or gradual recession limbs with specific probabilities of occurrence.

While respecting these probabilities, 10000 cluster numbers were generated.

3.1 Copula selection

We implemented a two-variate frequency analysis on the hydrograph variables, flood peak and volume, and studied their5

dependence structure using copula functions. Initially, we calculated Kendall’s, Spearman’s (rank-based measures of association)

and Pearson’s coefficients (Table 5), whose high values indicated the existence of strong positive dependence between the

considered variables. The majority of the points in the chi-plot lies in the upper area, thus suggesting a positive dependence

(Fig. 5). We obtained similar results from the Kendall plot (Fig. 6); the majority of the points were located above the diagonal,

which is also a sign of positive dependence.10

Among all the copula distributions that were tested (Gauss, Gumbel, Student t, Frank, Clayton, Joe, BB1, BB6, BB7,

BB8)-whose parameters were estimated with maximum likelihood estimation- the Gumbel (Table 6) and the Gaussian copula

yielded similar BIC and AIC values. This similarity is a consequence of the medium sample size (set of 52 values). Since

the Gumbel copula has been extensively used in the past to model peak/volume pairs, not only for the Panaro basin but also

for other basins worldwide (see Sect. Literature review) it has been preferred over the Gaussian (see additionally Balistrocchi15

and Bacchi (2011). We based also our selection on the fact that the Gumbel copula has an upper tail dependence coefficient

allowing the modelling of extreme events; on the contrary, the Gaussian copula does not. The Gumbel’s upper tail dependence

coefficient (λC=0.643) approximates the empirical non-parametric (λ̂CFG =0.646) and satisfies the assumption of an extreme

value copula. However, the available data for the tail dependence analysis are scarce so the coefficient can only be used

qualitatively, as an indication of modelling tail dependence, and not as a model selection tool. It should be noted that the20

assumption that the dataset is characterised by upper tail dependence is based on past research and is somewhat intuitive;

the empirical non-parametric coefficient suffers from bias, as mentioned in an extensive research of Serinaldi et al. (2015) ,

and tends to indicate upper tail-dependence even if it does not exist. (Serinaldi et al., 2015) proposed alternatives that are

satisfactorily unbiased, but as it is logical when dealing with upper quantiles, they require large datasets in order to make a safe

inference.25

The goodness-of-fit test has shown that the hypothesis of the selected copula construction cannot be rejected (p values in

Table 7 greater than 0.05). In Fig. 7 the scatter plot prior to the rank transformation, the scatterplot after the rank transformation-

both indicating positive dependence- and the contours of the copula’s cdf are depicted after the rank transformation of the data

and the randomisation of the ties.

3.2 Return period estimation30

Following the generation of 10000 pairs of flood peak and volume values from the selected copula and their random assignment

to a specific cluster group, the typical hydrographs were rescaled and routed through the Panaro dam in order to obtain the

maximum water level reached during each event.
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In addition, the observed hydrographs were routed through the reservoir and their corresponding water levels were compared

to the levels of the synthetic ones (Fig. 8). The results appear to be in accordance, with the only exceptions being the points

corresponding to the 13, 18 and 26-year RPs for which the difference in the MWL reaches up to 1.50 meters. This frequency

curve corresponds also to the frequency curve of the peak discharge downstream.

In Fig. 9 it is noted that events assigned to the same hydrograph shape are clustered together and events with the same

return period but in different cluster groups can differ in the peak by 8 % when considering almost the same volume and in the5

volume by 27 % when considering almost the same discharge. This variability prohibits the clear definition of a region where

all multivariate events produce risk lower than an assigned value.

When looking at the effect of the hydrograph shape of a specific peak (i.e. ± 0.25 %) on MWL it seems that the least

favorable is shape 1 and most favorable shape 3 and 4 (Fig. 10a). However in the case of constant peak and volume this

comparison does not make much sense since when denormalising, in order to preserve the desired volume (after the baseflow10

removal) and peak, the peak time must assume small values; as a result the recession limb will be shortened. For this reason,

under these conditions, the differences in the recession limbs of the typical shapes will be annulled. This is visible in Fig. 10a,

where shape 4 seems to have the shortest recession limb despite belonging to the group with the longest one (Fig. 4a) and

in the cases of groups 1 and 2 whose shapes are very similar but for the recession limb’s duration, their differences may be

indiscernible. The only safe inference that can be made is that the hydrograph shape’s role is secondary in comparison with the15

peak’s.

When clustering in one "mean" group instead of four the change detected in the frequency curve becomes acceptable

(maximum difference is 0.37 m) (Fig. 8). In this case, the desired region can be defined (Fig. 11) but depends on the hydrological

regime as well as the hydraulic and geometric characteristic of the structure of interest. Discharge peak is a more defining factor

in MWL than flood volume, since for the same return period the maximum difference between the peaks is 11% and between20

the flood volumes 26% (Fig. 11) for RP = 20 years. The secondary axes correspond to the univariate RP for each variable.

It is evident that for an event with a certain RP (i.e. 20 years) the univariate RP can span from 15 to 27 years for peak and

from 7 to 34 years for volume. For RP = 10 and 50 years the results are similar (Fig. 11). Of course, the conclusion that

peak is more significant than volume in MWL is structure-dependent. Requena et al. (2013) demonstrated this by changing the

spillway setting; when the reservoir volume was increased (under constant spillway length) the defining factor was the peak25

but when the spillway length (under constant volume) was increased the MWL was influenced more by volume.

In order to highlight the importance of choosing the appropriate return period expression we have included the comparison

between the various definitions. As stated also by Serinaldi (2014), the choice of the proper RP definition (OR, AND, KEND,

SKEND or structure-oriented) depends on the problem at hand and the definition of risk of the case study. It is logical that the

five approaches yield completely different results (Fig. 8).30

4 Conclusions
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In this paper we evaluated the risk of reaching specific water levels in the reservoir of the Panaro dam by implementing a

multivariate Monte Carlo analysis on three key-components; flood peak, volume and hydrograph shape. We modelled the first

two by applying a copula bivariate function, while we considered the latter independent and we modelled it through cluster

analysis and Monte Carlo simulations. Next, we compared the maximum water levels from the synthetic events with the

observed.

Results have shown that there is an agreement between the simulations and the observations and therefore copula functions5

and cluster analysis can serve as a valuable tool for risk estimation. Even though some hydrograph shapes give more elevated

levels than others, a clear comparison between them cannot be drawn. However the hydrological regime permits the consideration

of a mean hydrograph- not changing significantly the frequency curve- thus simplifying the process and making possible the

definition of a risk region. This risk region corresponds only to the MWL in the reservoir and not to flood variables.

The results of this structure-oriented approach are case specific and therefore the outline of this research can only serve as10

a methodology that can be applied to other areas and not as a stepping-stone to generalise the findings (e.g. the risk region).

Understanding the mechanisms of failure of our problem is crucial and can guide our decision regarding the return period

definition which differentiates greatly the results.

Needless to say, the importance of data availability for the areas of interest is immense in order to validate this procedure

locally and reduce the uncertainty that surrounds a multivariate analysis.15

::::
This

:::::::
analysis

::::::
focuses

:::
on

:::
the

:::::::::
uncertainty

:::::::::
introduced

:::::
when

:::::::::
calculating

:::
the

::::::::::
probability

::
of

::::::::
exceeding

:::::::
specific

:::::
water

:::::
levels

::
in

::
a

::::
flood

::::::
control

:::::::::
reservoir,

:::::
which

::
is

:
a
::::::

result
::
of

:::
the

:::::::::
parameter

:::::::::
uncertainty

::
of

::::
the

::::::::
marginals

::
of

:::
the

:::::::::::
hydrological

::::::::
variables,

:::
as

::::
well

::
as

:::
the

::::::
copula

::::::::::
multivariate

::::::::
function,

:::
due

:::
to

:::
the

:::::
small

:::
size

::::
that

:::::::::::
characterises

::
in

:::::
most

:::::
cases

:
a
:::::::::::
hydrological

:::::::
sample.

:::::::::
Therefore,

::
we

:::::::::
attempted

::
to

:::::::
quantify

:::
this

::::::::::
uncertainty,

:::::::
without

::::::
aiming

:::
our

::::::::
attention

::
to

::::::::::::::
copula/marginals

:::::::::
inference.

:::::::
Instead,

::
we

:::::::
studied

:::
the

:::::
effect

::
of

::::::::
additional

:::::
flood

::::::::::
information

:::
not

::::
only

:::
on

:::
the

::::::::::
distribution

:::::::::
parameters

:::
but

::::
also

:::
on

:::
the

:::::::::
uncertainty

:::::
range

::
in

::
a
::::::::
Bayesian20

:::::::::
framework

:::
that

::::::
among

::::
else

::::::
permits

:::
the

:::::::::::
consideration

:::
of

:::::
errors

::::
from

::::::::
different

:::::::
sources.

:::
The

:::::
extra

::::
flood

::::
data

::::
that

::::::::
included

::::::::
additional

:::::
peaks

:::::
from

:::::::
different

:::::::::::
hydrometric

:::::::
stations

::::::
leaded

::
to

:
a
:::::
peak

::::::::::
distribution

::::
with

:::::
bigger

:::::
mean

:::
and

:::::::
smaller

:::::
shape

:::::::::
parameters

:::
and

::::
thus

::
to

:::::::
elevated

::::::
peaks,

::::
since

::
it

:::::::
includes

:::::
flood

:::::
events

::
of

::::::
recent

::::
years

::::
that

::::::
exceed

::
in

::::::::
magnitude

:::
the

::::::
events

::
of

:::
the

::::::::
historical

:::
data

::::::
series.

::::::::::::
Consequently,

:::::::
including

:::
the

:::::::::
additional

::::::::::
information

::::::::
translates

:::
into

:
a
:::::::
general

:::::
bigger

:::::::
estimate

::
of

:::
the

::::::
peaks,

:::::
which

::
is
::::
also

:::::::
reflected

:::
on

:::
the

:::::::
MWL’s,

::
as

:::
the

::::
peak

::
is

:
a
:::::::
driving

:::::
factor

::
of

:::
the

::::::
routing

:::::::
process.25

:::
The

::::::::::
uncertainty

:::::
range

::
of

:::::::::
discharge

:::
and

:::::::
volume

::
is

:::::::::::
considerable

:::
and

:::::::
affects,

:::::
along

::::
with

:::
the

::::::
copula

:::::::::
parameter,

::::
the

::::::
MWL.

:::
The

:::::::::
variations

::
in

:::
the

:::::
MWL

:::
for

:::
the

:::::
same

:::::::::::::
structure-based

:::::
return

::::::
period

:::::::::
correspond

::
to
:::::::::

significant
::::::::
variation

::
in

:::
the

::::::
stored

:::::
water

::::::
volume.

:::::
Most

::::::::::
importantly,

::::
the

:::::
return

::::::
period

::
of

:
a
:::::::

specific
:::::
water

:::::
level

:::::
cannot

:::
be

::::::::::
determined

::::
with

:::::::
certainty

:::::::
because

:::
the

::::::
return

::::::
periods

::
of

:::
the

::::::
events

:::::::
overlap.

::::::::
Naturally,

:::
the

:::::
range

::
of

::::::::
discharge

::::
and

::::::
volume

::::::
values

:::
for

:
a
:::::
given

:::::::::::::
structure-based

:::::
return

::::::
period

::
is

::::
very

:::::
ample

:::
due

::
to
:::
the

:::::
wide

:::::
range

::
of

:::
the

:::::::::
parameters

::
of

:::
the

:::::::
inferred

:::::::::::
distributions.30

:
A
:::::
clear

::::::::::
observation

::
of

:::::::
whether

:::::::::
uncertainty

::
is

::::::::::::
systematically

:::::::
reduced

::::
with

:::
the

::::::::::
introduction

::
of

:::::::::
additional

::::::::::
information

::::::
cannot

::
be

:::::
made

:::::
here.

:::::::::::
Nonetheless,

::
a
::::::::
Bayesian

:::::::::
framework

:::::::
allows

:
a
:::::::

certain
::::::
degree

::
of

:::::::::::
transparency

:::::::::::::::::::::::::
(Parkes and Demeritt, 2016) .

:::::::::::
Incorporating

:::::::::
knowledge

::::::
about

:::::
water

:::::
levels

::::::
during

:::::::
historic

::::::
events,

::::
e.g.

::
at

:::
the

:::::::
locality

::
of

::::::::
Navicello

:::
for

::::
the

::::
1783

::::
and

:::::
1842

18



:::::
flood,

:::::
could

::::
result

::
in
::
a
::::
more

:::::::::
significant

::::::
change

::
in

:::
the

::::::::::
uncertainty

:::::
range,

::
as

::::
past

:::::::::
researches

::::
have

::::::
shown.

::::
But,

:::
one

::::
must

::::::::
consider

:::
also

:::
the

:::::
great

::::::
amount

::
of

:::::
error

:::::::
involved

::
in

:::::
these

::::
data

::
in

:::
the

:::::::
Bayesian

::::::::::
framework.

::
As

::
a
::::::
general

:::::::
remark

:::
one

::::
can

::::::
deduce

::::
that

:::
the

:::::::
process

::
of

::::
risk

:::::::::
estimation

::
is

::::::::
inherently

::::::::
crippled

::
by

::::::::::
uncertainty

::::
that

:::
can

:::
be

::::::::
quantified

::
or

::
at

::::
least

::::::::::::
approximated.

::::
Any

:::::::
attempt

::
to

:::::::
obscure

:::
this

:::::::::
uncertainty

:::::
could

::::::
create

:
a
::::
false

::::::
notion

:::::
about

::
its

::::::::
existence

::
in

::
a

::::::::::
multivariate

:::::::
problem

::::
with

:::::::
eventual

::::::::::
implications

::
in
::::
dam

::::::
safety.
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Table 2.
::::::::
Estimated

::::::::
parameters

::
of

:::
the

::::::
inferred

:::::::::
distributions

:::
and

::::
their

::::::::
confidence

::::::
interval

::::::
(95%).

Parameter name Estimated parameter Confidence interval (95%) Standard deviation

Gumbel-Hougaard θ 2.27 [1.79,3.01] 0.38

Inverse Gaussian for peak (single site) µ 364.12 [323.64,416.40] 23.67

λ 1957.16 [1288.05,2820.61] 380.17

Inverse Gaussian for peak (multi-site & µ 398.61 [358.42,442.54] 21.89

historical information) λ 1533.41 [1108.84,2058.99] 256.37

Rayleigh for volume σ 386.58×105 [343.18,430.53]×105 26.54×105

Chi-plot of peak/volume pairs

K-plot of peak/volume pairs

Scatter (a & b) & contour plot (c) of the theoretical and observed values

Comparison of joint RP curves (OR, AND, KEND, SKEND) with events (assigned to a hydrograph shape) with RP T=20

years685

(a). Comparison of effect of hydrograph shape on MWL for events with equal peaks; (b). Selected (noted in rectangle)

hydrographs with equal peaks and volumes

Risk region of events with RP of T=10, 20 and 50 years derived from one hydrograph group
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Figure 1. Panaro study watershed
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Figure 2. Normalised clustered hydrographs and their probability of occurrence; 4 clusters (a) & 1 cluster (b)
::::::::::
Characteristic

:::::::::
normalised

::::::::
hydrograph

::::::
shapes

::
(a)

::::
with

:
a
:::::
certain

:::::::::
probability

::
of

::::::::
occurrence;

:::
(b)

::::::
"Mean"

::::::::
normalised

:::::::::
hydrograph

:::::
shape.
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Figure 3. Frequency curve of MWL of synthetic and observed hydrographs for four clusters and one cluster
::::::::
Frequency

:::::
curves

::
of

::::::::
maximum

::::
water

::::
level

::
of

:::::::
synthetic

:::::::::
hydrographs

:::
for

:::
four

::::::
clusters

:::
and

:::
one

:::::
cluster

::::
and

::::::::::
corresponding

:::::
levels

::
of

:::::::
observed

::::::::::
hydrographs.
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Figure 4.
::::

Flood
:::::::
frequency

::::::
curves

:::
with

:::
95

::
%

::::::::
confidence

:::::
limits

:::
for

::
the

::::::::
single-site

::::
data

:::
and

:::
the

:::::::
multi-site

::::
data

:::
with

:::::
extra

:::::::::
information

::::
case.

:::::::
Observed

::::
peaks

:::
are

:::
also

::::::
plotted

::::
with

::
the

:::::::::
Gringorten

::::::
plotting

::::::
position.
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Figure 5.
:::::
Flood

:::::
volume

:::::
curve

:::
with

:::
95

::
%

::::::::
confidence

:::::
limits.

:::::::
Observed

::::
flood

:::::::
volumes

::
are

::::
also

:::::
plotted

::::
with

:::
the

::::::::
Gringorten

::::::
plotting

:::::::
position.
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Figure 6.
:::::
MWL

:::::::
frequency

:::::
curves

::::
with

::
95

::
%
:::::::::
confidence

::::
limits

:::
for

::
the

::::::::
single-site

::::
data

:::
and

::
the

::::::::
multi-site

:::
data

::::
with

::::
extra

:::::::::
information

::::
case.
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Figure 7.
::::
High

::::::
density

:::::
region

::::::
boxplots

::
of

:::::
MWL

:::
for

::::
return

::::::
periods

::
of

:::
10,

::
20

:::
and

::
50

::::
years

:::
for

::
(a)

::::::::
single-site

::::
data

:::
and

::
(b)

::::::::
multi-site

:::
data

::::
with

:::::::
historical

:::::::::
information.
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Figure 8.
::
50,

:::
75

:::
and

::
95

::
%

:
of
:::
the

:::::
kernel

:::::
density

:::::
areas

:
of
::::::
MWL’s

::::
with

:
a
:::::
return

:::::
period

:
of
:::
50

::::
years

::
on

:::
the

:::::::::::::
discharge-volume

::::
plane,

:::
for

::::::::
single-site

:::
data

::
(a)

:::
and

::::::::
multi-site

:::
data

::::
with

:::::::
historical

:::::::::
information

:::
(b).
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