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Abstract. Corporations, industries and non-governmental organizations have become increasingly concerned with growing 

water risks in many parts of the world. Most of the focus has been on water scarcity and competition for the resource 

between agriculture, urban users, ecology and industry. However, water risks are multid imensional. Water  related hazards 

include flooding due to extreme rainfall, persistent drought, and pollution, either due to industrial operations  themselves, or 10 

to the failure of infrastructure. Most companies have risk management plans at each  operational location to add ress these 

risks to a certain  design level. The residual risk may or may not be managed, and is typically not quantified at a  portfolio 

scale, i.e ., across many sites. Given that climate is the driver of many of these extreme events, and there is evidence of quasi-

periodic climate reg imes at inter-annual and decadal time scales, it is possible that a portfolio is subject to persistent, mult i-

year exceedances of the design level. In other words, for a mult i-national corporation, it  is possible that there is correlation in 15 

the climate induced portfolio water risk across its operational sites as multip le sites may experience a hazard beyond the 

design level in a g iven year. Therefore, from an investor’s perspective, a need exists for a water risk index that allows an 

exploration of the possible space and/or time clustering in  exposure across many sites contained in a portfolio.  This paper 

represents a first attempt to develop an index for financial exposure of a geographically diversified, g lobal portfolio to th e 

time-vary ing risk of climatic ext remes using long daily global rainfall data sets derived from climate re -analysis models. 20 

Focusing on extreme daily rainfall amounts and using examples from major mining companies, we illustrate how the index 

can be developed. We discuss how companies can use it  to exp lore their corporate exposure, and what they may need to 

disclose to investors and regulators to promote transparency as to risk exposure and mitigation efforts. For the examples of 

mining companies provided, we note that the actual exposure is substantially higher than would be expected in the absence 

of space and time correlation of risk as is tacitly assumed usually. We also find evidence for the increasing exposure to 25 

climate induced risk, and for decadal variability in exposure. The relative vulnerability of different portfolios to multiple 

extreme events in a given year is also demonstrated. 
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1 Introduction 

Long term investors, such as Sovereign Wealth Funds, need to account for risks that may manifest themselves over several 

decades, and hence they may have a very different perspective on risk than short term investors. In particular, they have a 

growing interest in understanding how climate and environmental risks may impact the companies comprising their 

investment portfolios. Scientific projections that climate change may increase the frequency and intensity of extreme rainfall 5 

and droughts amplify such concerns. Water-related risks dominate the pathways of exposure to climate variability and 

change. Consequently, many studies are being commissioned to “downscale” climate change projections to the level of cities 

or even individual assets as part of an environmental risk analysis. In  the process, metrics and pathways of climate and water 

risk exposure at the asset level are re-assessed, including, in some cases, past exposure and outcomes.  

However, site-specific data is often limited and regional climate may exh ibit significant quasi-periodic or cyclical variability, 10 

with periods ranging from inter-annual (e.g. 3 to 7 years in the case of the El Niño Southern Oscillation) to multi -decadal 

(e.g. 16-20 years for the Pacific Decadal Oscillation and 40-70 years for the Atlantic Mult i-decadal Oscillation cf. 

(Frankcombe, Von Der Heydt, & Dijkstra, 2010)  (McCabe & Palecki, 2006) (Biondi, 2001) (Knight, Fo lland, & Scaife, 

2006) (Gershunov & Barnett, 1998) (Grimm & Tedeschi, 2009) (Nicholson & Kim, 1997) (Cayan, Redmond, & Riddle, 

1999) (Risbey, Pook, McIntosh, Wheeler, & Hendon, 2009) (Verdon, Wyatt, Kiem, & Franks, 2004) (Kiem, Franks, & 15 

Kuczera, 2003)). Over the last century, facilities designed to deal with floods and droughts or to control pollut ion, as well as 

financial risk instruments such as insurance, have typically been designed with less than 30 years of at -site data. As 

illustrated in Fig. 1 and quantitatively demonstrated in (Jain & Lall, 2001), if the climate cycle shifts, an estimate of a 100-

year event based on a specific 30 years of data may  correspond to either a more frequent (e.g., 10-year) o r rarer (e.g., 1000-

year) event at the site in the succeeding 30 years when that instrument is actually used.  20 
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Figure 1: Time series of annual maximum 30 day precipitation for the Highland Valley open pit copper mine in British Columbia , 

at latitude 50.49°N, and longitude 121.05°W, as estimated from the NOAA-CIRES 20th century climate re-analysis. This mine is 

one of the largest in the region, operating since the early 20th Century. The highest precipitation for any consecutive 30 day period 

in each year is shown, together with a 30 year moving window regression to illustrate the trend 5 

From a financial perspective, such regime like behaviour is of interest. For a given asset, if the pre-design period 

corresponded to a wet regime, infrastructure could well be over designed, and the associated cap ital cost may negatively 

impact the project’s economics. Conversely, if th is period was lacking rainfall ext remes, and if the next 10 years are 

expected to correspond to the regime with a high frequency of ext reme rain fall, then production losses and recon struction 

costs, even using a modest discount rate, may have a much h igher than anticipated impact on the valuation of the mining 10 

asset. For an insurance contract, this would correspond to a clustering of payouts over that period. This may also translate 

into higher insurance rates, which may not be reduced as a transition to the regime where the frequency of extreme events 

goes down occurs.  Finally, in  this scenario the investor may  face a stranded asset, as the costs of reconstruction and 

liab ilit ies caused by catastrophic failu res may be p rohibitive. Long climate records are needed to identify  the temporal 

structure of the risk of extreme events, and to reflect it in subsequent risk analyses, so that appropriate estimates of the risk 15 

anticipated in the next decade or later can be made.  
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For the mining industry, depending on the duration and intensity of an extreme rainfall event, a cascade of direct and indirect 

financial impacts can result. These include: 

 Production losses resulting from flooding of mine operations, loss of roadways, tailing dams, electricity services, 

equipment and/or housing 

 Fines and clean up costs, due to release of pollutants from tailing dams and from the site into water bodies  5 

 Increased costs related to dewatering procedures and new capital expenditure, pollution clean-up, or even impacts 

on ecology, human health, and casualties  

 Increases in insurance premiums 

 Increased regulation, design standards and associated costs 

 Asset stranding if restarting operations may is financially , politically, or physically infeasible.   10 

Some specific loss events may be insured, while others may not. 

For example, in December 2010-January 2011, Queensland experienced heavy rainfall. This region has an active coal 

mining activity, with a complex system of mining assets and railways to bring coal to shipping ports. The event led to long 

dewatering processes, railway impairment, significant losses for min ing companies and even spikes in coal prices 

(Chambers, 2011) (Regan, 2011). Overall, Queensland coal production missed its target by 40 million tonnes in 2011 15 

(Heber, 2013), and Australian p roduction decreased for the first time since 1981 (BP, 2016). This contributed to a record 

price of $330/tonne for hard coking coal (IBIS World, 2011) (Bloomberg, 2011) (Bloomberg, 2015).  

In February 1994, a 31 m h igh tailings dam at the Harmony Gold mine in S. Africa failed due to overtopping following a 

heavy rainfall event (Van Niekerk & Viljoen, 2005). Nearly 300 houses were swept away or damaged, and 17 people were 

killed. The subsequent investigation of the disaster led to a reformulation of policies, design standards, and monitoring 20 

requirements for tailing dams. These have had an impact on the subsequent cost structure for managing such risks, but to our 

knowledge have not triggered a significant evaluation of the methods used to manage the residual risk from ext reme rainfall 

events in the industry, other than the purchase of limited liability property and casualty and business interruption insuranc e 

coverage.  

The potential impact of extreme climate events is present even for mines not being actively operated, and may still exist for 25 

mines that stopped producing many years ago. Estimating potential damages associated with different levels of extreme 

hydrologic events at each min ing site is difficult.  Some companies are more financially exposed to these risks than others 

based on geography, exposure, and mitigation strategies.   

Besides, for a portfolio that is composed of assets at many geospatial locations, one has to question whe ther the 

hydroclimatic risk factors are correlated across sites, such that many locations may experience floods or droughts in the same 30 

fiscal year, thus amplify ing the impact of water and climate risks assessed for each site. A significant amount of resea rch on 
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the geographical impacts of the quasi-periodic climate variations suggests that many regions in the world can experience 

persistent changes in risk, depending on the phase of a climate oscillation. These regions may  or may not be spatially 

contiguous. For instance, during an El Niño or a La Niña phase of the El Nino Southern Oscillation, large parts of the world 

experience floods or droughts (Dai & Trenberth, 1998). A portfolio risk analysis of exposure to climate and water risks 

consequently needs to integrate over both the space and time structures of climate to account for clustering in the exposure to 5 

these risks, rather than considering them to be independent in time and space. 

Many companies have started commissioning consultant reports as to their carbon and water footprints, and more recently to 

their risk projected for various IPCC climate change scenarios to the year 2050 or 2100 (Rajczak, Kotlarski, & Schär, 2016). 

Unfortunately, the current generation of models of the coupled ocean-atmosphere circulation, i.e. g lobal climate models, 

when applied to the conditions of the 20
th

 century, fails to reproduce the type of memory and oscillatory behaviour, as well 10 

as the spatial correlation structure that is noted in long observational records. Further, basic statistics (e.g., mean, standard 

deviation and skew) of hydroclimatic extremes tend to be strongly biased relative to the 20
th

 century observations in most 

locations in the world (Woldemeskel, Sharma, Sivakumar, & Mehrotra, 2012). An industry focused on bias corrections of 

these statistics and the use of these corrections for future projections has evolved. A popular and potentially effect ive 

approach for “correcting” such biases is quantile mapping (Rajczak, Kotlarski, & Schär, 2016), where the probability 15 

distribution of daily rainfall from an IPCC model for a historical period is scaled, quantile by quantile, to match the 

probability distribution of rainfall recorded as historical data at a part icular location. This mapping is then ext rapolated to the 

future period, a procedure whose reliability cannot be tested until the future occurs, since we don’t know the source of the 

bias in the models used, and how that would propagate under extrapolat ion to a higher greenhouse forcing. Such point by 

point bias correction methods are thus not able to address the biases in long term quasi-periodic evolution of climate, and do 20 

not constitute a reliable approach to future risk analysis since they represent a brute force attempt to correct and extrapolate 

selected output statistics, rather than addressing the deficiencies of the physics in the models. However, climate models are  

also applied to the 19
th

 and 20
th

 century conditions to build simulations called “re -analysis”. The re-analysis models are very 

similar conceptually to the IPCC models used for future extrapolations, with one important difference. These models use 

data assimilation of observed surface temperature and pressure records over the historical period. Th is means that the values 25 

of the climate variables computed by these models are updated to match as well as possible h istorical observations every 

single day. In effect, in this mode, the climate models are used to spatially interpolate the historical climate observations .  

Observed data is sparser as one goes back in time, and during the world wars or other insurgencies, and hence the 

uncertainty and bias associated with the “re-analysis” reconstruction of the climate data fields varies as a function of time 

and space. Nevertheless, the mult iple sources of “re-analysis” data that are available for daily rainfall, temperature and other 30 

variables, can be very useful for portfolio risk analysis, since: 
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1) they provide a common period of global data coverage of 100 or more years (depending on which climate model is 

used); 

2) as their temporal evolution is constrained by observations, they preserve the information on the phase of a climate 

oscillation across the world, thus providing information on the potential for spatial and temporal clustering of the 

frequency and intensity of hydroclimatic extremes; 5 

3) they give the ability to assess how the hydroclimatic risk has evolved in the past in the best  case scenario of an 

application of a climate model, thus providing a baseline against which future climate model based projections 

could be scored. 

Consequently, while the procedures we develop here could readily use future climate pro jections, in  this paper we choose to 

develop examples that use long historical data sets, so that we can reveal how potential changes in portfolio risk associated 10 

with rainfall extremes may have manifested over the past century or longer, thus providing a changing baseline fo r the risk 

that needs to be understood before undertaking an extrapolation to the future.  

This paper represents the first attempt to develop an index for the exposure of a geographically d iversified, global asset 

portfolio to the time-vary ing risk of climat ic ext remes using daily global rainfall data sets derived from climate re-analysis 

models.  For the example presented here, we consider the min ing sector, and ext reme rainfall of specified duration as the ris k 15 

factor. Once again, the analyses presented can be readily extended to consider the use of future climate project ions based on 

the IPCC climate change scenarios. In this paper our emphasis is on exposing the potential for portfolio risk associated with  

climate risk, rather than the potential change of this risk as per these scenarios. The limited ability of these future scenarios 

to accurately inform extreme rainfall at this point of time, and the need to consider globally applicab le uncertainty and bias 

correction methods to make these scenarios usable, leads us to consider that extension in a later paper. 20 

The approach to the development of the index is described, followed by applicat ions to selected sites and mining company 

portfolios. Extensions to other climate events, and to other applications, including simulation, value at risk analyses, and 

portfolio optimizat ion are finally discussed. The functioning of a web based application has been developed to allow a user 

to conduct all the analyses described and illustrated in this paper. This web applicat ion is availab le from request to the 

authors. 25 

2. Structuring a Risk Index for Climate Extremes  

The risk associated with an extreme rain fall event depends both on its probability of occurrence, and on the potential 

financial impact. This latter includes direct operational loss to the company, as well as potential liab ilit ies from harm caused 

to others. Yet, direct causality between climate events and issues at the mine site may be hard  to quantify, as parameters su ch 

as infrastructure design, mining methods, acid consumption, or water management policies all p lay a role regarding the ways 30 

the impact of climate events is manifest. For example, from a hydrological perspective, as exemplified by (Hailegeorgis & 

Alfredsen, 2016) in  the case of urban runoff, the relation between extreme precipitation events and extreme runoffs is 
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complex, and its knowledge and calibration depends at the minimum on a detailed description of the in frastructure of the 

catchment, its moisture state, infiltrat ion and exfiltration processes. Even when such information is known, lags in response 

can be hard to identify and uncertainties are important. Different approaches can be taken at a  site level to fu rther 

knowledge, for a g iven site including detailed numerical simulations or extensive data analyses of long time series of both 

precipitation, runoff and other site condition attributes (such as soil moisture). However, this requires data that is typically 5 

not available to people outside the min ing company, and even for the company it may be d ifficu lt to estimate the extent of a 

projected loss from an extreme event. 

Besides, especially for rare or catastrophic events, it is difficu lt to develop a priori estimates of impacts  in a g lobal study, 

asset by asset, as they depend on the details of several site specific attributes, such as local demography and development 

level, or details of actual construction and monitoring of in frastructure, information on which may not be easy to develop. A  10 

well-run company may conduct a risk profiling exercise that identifies possible impacts contingent on certain types of 

events. An investor may indeed ask for such disclosure, covering the events of concern and their estimated annual 

probabilit ies of occurrence. However, if such informat ion is not available, one needs a consistent approach for scoring 

potential impacts, such that a fair index of exposure can be derived for a particu lar portfo lio, whether it is composed of al l 

mines in a part icular geography, or a sector of mining, or belonging to a specific company. We develop such an approach 15 

here, and illustrate how the index derived can be used to: 

1) understand the potential clustering of impacts in a sequence of years;  

2) assess the impact of climate trends, production and price cycles on the exposure index; 

3) compare the portfolios held by two or more companies;  

In the examples considered in this paper, we define ext reme events in terms of the T -year return level (level exceeded by the 20 

annual maximum with a probability of 1/T in any given year) based on available reanalysis datasets with at least 100 years of 

data. Two candidate extreme events are considered: 

 A 1-day annual maximum extreme rainfall event with a 100 year return period, i.e., an average 0.01 probability of 

yearly occurrence (𝑝 = 0.01), and  

 A 30-day annual maximum rainfall event with a 10 year return period, i.e., an average 0.1 probability of yearly 25 

occurrence (𝑝 = 0.1).  

The one-day extreme event is used as an example for rap id onset events  that could induce spills and problems with tailings 

dams for a mine, while the 30-day event is used to consider events similar to ones that occurred in Queensland in 2010-2011, 

that are the consequence of persistent moderate to h igh intensity rain fall events over a long period. A  specific 30 day 
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extreme event may or may not include a 1 day extreme event, in a given year. A site can experience an event exceeding the 

target threshold several times during a given year as long as averaging windows (e.g., 30 days) do not overlap.  

The mot ivation for the above choices is based in part on engineering design and regulatory practice, and in part on a desire to 

standardize exposure metrics. Depending on the type of mine or industrial installation, design guidelines for protection from 

flooding or extreme rainfall events typically refer to an event duration and an annual exceedance frequency corresponding to 5 

that duration. Thus, a holding pond for potentially contaminated runoff from rainfall on a site may be designed to hold the 

volume generated by a 30 day rainfall event with a 10 year, return period, while the main  tailings dam may be designed to be 

able to capture the volume of water generated by a nominal 100 year, 1 day rainfall event. As previously stated, precipitation 

is only one aspect leading to leaks and infrastructure failures. The proposed benchmarking process could be modified, in 

various ways, for instance making use of the increased availability of h igh resolution remote sensing (in the absence of better 10 

informat ion), to derive more precise run-off and vulnerability informat ion. This approach might in particu lar be suitable in 

building tools and proxies for site case studies. This is beyond the scope of this paper, but considered as an extension of the 

research. Keeping in mind the goals stated in points 1-3, it is for example unclear that globally derived products regarding 

attributes such as soil moisture, evapotranspiration (e.g. (ESA, 2012) (Alemohammad, et al., 2016)), or even d irectly  run-off 

(e.g. (Hong, Adler, Hossain, Curtis, & Huffman, 2007) , (Fekete, Vörösmarty, & Grabs, 2002), (Princeton Land Surface 15 

Hydrology Group, 2017)) would help us highlight the fact  that tackling uncertainty stemming from using short-term records 

is all-important, or to derive a better index, g iven the complexity of the sites considered . As was indicated in the 

introduction, given the short records typically used, there is considerable uncertainty as to the magnitude of the estimated 10 

year or 100 year rainfall events at a site. Since climate statistics are not stationary, any given 30 year period of data use d for 

such inferences may  not be representative of the next  30 years when the business is operating. Since there is no easy way to 20 

know a priori which specific period of record  (e.g., 1940-1960 or 1960 to 1975) was used for the design of facilities at a  

particular mine or business site, it makes sense to refer the threshold to the longest period of record available to us, across all 

sites, and to then assess the space-time correlation and hence portfolio exposure to thresholds estimated across this entire 

period.  

At each site, the nominal values corresponding to the extreme events of interest are computed from the NOAA-CIRES 20th 25 

Century Reanalysis V2c (also called 20CR) or the ECMWF ERA 20C (also called ERA-20C) reanalysis, which, to our 

knowledge, are the best precipitation datasets according to our criteria (global coverage, relat ively high resolution, and a 

long record) (Smith, Compo, & Hooper, 2014) (Dee, et  al., 2014) (Irving, 2016). The 20CR provides reanalysis rainfall data 

from January 1
st

, 1851 to December 31
st

, 2014 (NOAA ESRL, 2016) with a spatial resolution of 2° x 2°. ERA-20C dataset 

provides daily precipitation data from January 1
st

, 1900 to January 1
st

, 2011, with a spatial resolution of approximately 125 30 

km by 125km (NCAR UCAR, 2016). The 20CR data was downloaded from the NOAA-ESRL website (NOAA ESRL, 

2016), while the ERA-20C data was downloaded from the NCAR-UCAR climate data website (NCAR UCAR, 2016).  
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As previously mentioned, since the spatial density of observations varies over time, the precision or accuracy of the 

estimates by these models also changes. Further, precipitation is highly variab le in space, and hence a model with  even a 

1.25 by 1.25 spatial resolution is too coarse to provide useful in formation as to ext reme rain fall. This is defin itely an issue, 

and motivates our approach to look at the number of exceedances of a specified quantile at each location, rather than at the 

absolute magnitude of the rainfall generated by the model.  5 

We expect that even the re-analysis models will be biased relative to at site observations. However, noting that quantile 

mapping for b ias correction of the IPCC models is seen as an effective strategy, we expect  that using the quantiles of the 

model p recip itation at a given location to define the threshold of exceedance for extreme rainfall may p rovide a reasonable 

internal self-consistency for the comparison of the relative exposure across different locations. Specifically, we assume that 

if the pth 
 quantile of model based annual maximum precip itation is exceeded by 𝑛 days in a year at location 𝑖, and the pth 

 10 

quantile of model based annual maximum precipitation at location 𝑗, is exceeded by 𝑚 days at that location in a given year, 

then the relative magnitude of 𝑛 to 𝑚 exceedances at those two locations using the model based data is a good measure on 

average of the relative exceedances of the corresponding pth 
 quantiles of observed annual maximum precipitation at the two  

sites. Recall that we are using model based rainfall, since long records of observed rainfall at most of the sites (mines) of 

interest do not exist. While these long model based records may not get the rainfall statistics at a given site exact ly right, the 15 

persistence of extreme wet or ext reme dry conditions across a region, or across a his torical period is likely to be connected to 

features of the large scale circu lation of the atmosphere, which the models are expected to resolve quite well. Thus, for our  

purpose of exploring the spatial and temporal correlat ion of the risk of extreme rainfall event exceedance across many sites 

in a portfolio, and the relative risk of exposure of portfolio A to portfolio B, the approach chosen may be satisfactory. 

Uncertainty due to the model structure and to the data assimilation strategies can be explored by using multiple re-analysis 20 

models, and the ones used in this paper are the ones that as of the date of publication, prov ide the longest re -analysis climate 

records.  

3. Approach 

Given the discussion in the previous section, we consider an event that triggers possible financial exposure of concern at a 

given site to be indexed to the exceedance of the pth quantile of annual maximum rainfall of a durat ion of 𝑑 days. Depending 25 

on the investigator’s interest, one can consider exposure relative to specified values of 𝑝 and 𝑑 at each site, the d irect and 

indirect financial exposure to each such event at each site, and aggregate the exposure across sites, for ea ch year of the 

historical record to provide a time series of the index of exposure for the portfolio of interest. Time series of the index can 

then be analysed for cyclical or secular trends, evidence of spatial clustering, and the relative value at  risk for portfolio A vs 

portfolio B. The entire exercise could be repeated for different combinations of 𝑝 and 𝑑 to assess the kinds of events that 30 
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may lead to the most differences in relative exposure. These ideas are developed formally below, and a web app that 

implements the analyses is available from the authors. 

3.1 Climate risk exposure 

We first choose a fixed level o f exposure for a g iven climate event (extreme rainfall or d rought) expressed in terms of its 

nominal annual probability of occurrence p over a year. To explore the space-time structure of exceedances of this threshold, 5 

we first identify the exposure frequency of the event at a given asset, for each year of the historical record.   

A first step is to identify the annual maximum of rainfall for duration 𝑑 at location 𝑖 from the climate data set, for each year 

of the record. Th is time series of annual maxima is denoted as 𝑃𝑟𝑒𝑐𝑖𝑝it
max .  The pth quantile 𝑃𝑟𝑒𝑐𝑖𝑝i

max ,p
 of 𝑃𝑟𝑒𝑐𝑖𝑝it

max   is 

then estimated as the empirical quantile o r after fitting a Generalized Extreme Value distribution (GEV) (Katza, Parlangeb, 

& Naveauc, 2002) to 𝑃𝑟𝑒𝑐𝑖𝑝it
max .  10 

Let’s call 𝑋j  the cumulative rainfall over 𝑑-days for a window starting on day 𝑗 ∈ ⟦1, 𝐽⟧ of the year (in practice, 𝐽 = 365 −

𝑑 + 1 for a regular year,  𝐽 = 366 − 𝑑 + 1 for a leap year). Then, under the assumption that the {𝑋j}  random variab les are 

independent and identically d istributed (i.i.d.), the Extreme Value Theorem (Coles, 2001)  tells us that calling 𝑀𝑛 =

max𝑛  (𝑋𝑗 ), if there exists sequences (𝑎𝑛)  > 0 and (𝑏𝑛) such that 𝑀𝑛
∗ =  

𝑀𝑛 −𝑏𝑛

𝑎𝑛
 converges to a non-degenerate cumulative 

distribution function (cdf) 𝐺, 𝐺 is of the GEV family i.e. 𝐺 can be written as: 15 

 𝐺(𝑧;  𝜇, 𝜎 , 𝜉) = exp  {− [1 +
𝜉 (𝑧−µ)

𝜎
]

−
1
𝜉
}                   (1) 

where: 

µ is the location parameter, 

𝜎 > 0 is the scale parameter,  

𝜉 is the scale parameter. 20 

This distribution family can be divided into three s ub-families: 

- for 𝜉 > 0, it is of the Fréchet type,  

- for 𝜉 = 0, (limit of (2) when 𝜉 → 0) it is  of the Gumbel type,  

- for 𝜉 < 0, it is of the Weibull type. 

This theorem is the counterpart of the extreme limit theorem for b lock maxima, and is in practice u sed in a similar way: to 25 

find an  approximate d istribution of 𝑀𝑛  for 𝑛  large enough (in  practice, 𝑛 is fixed). The existence of the  (𝑎𝑛)  and (𝑏𝑛) 

sequences is assumed, and while these numbers are unknown, as, for 𝑛 large enough, Pr(𝑀𝑛 < 𝑧) ≈ G (
𝑧−𝑏𝑛

𝑎𝑛

) = 𝐺0 (𝑧), 

where 𝐺0  is a distribution of the same family, then the cdf of 𝑀𝑛  can be approximated (Coles, 2001). Obviously, critical 

assessment of the model fit needs to be performed, as with any statistical inference.  

In practice, the cdf of 𝑀𝑛  is thus estimated by fitting a GEV to  the 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡
𝑚𝑎𝑥  time series obtained from data. While the i.i.d. 30 

assumption does not hold in our case (moving window precipitation totals are obviously not independent), adjustments to the 
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location and scale parameters can account for the time clustering (Katz, 2013); the process is still valid if the {𝑋𝑗 } are of the 

same family (which takes care of the fact that the distribution parameters might vary depending, for instance, on 

seasonality). 

The GEV model can account for non-stationarity by making µ, σ and/or ξ functions of time  𝑡, although allowing ξ to vary 

generally makes convergence difficult. Then, µ(𝑡) will describe trends and cycles of the center of the distribution, while σ(t) 5 

will describe evolutions of the “size” of the deviations about µ (Katz, 2013). At a mine, study of the time series 𝑃𝑟𝑒𝑐𝑖𝑝it
max  

through GEV can enable one to understand if and how exposure at different return periods has changed over time and what 

consequences this can have relat ive to the infrastructure design. Confidence intervals of such return levels can also be 

estimated. The parameters , µ(𝑡) and σ(t) can be estimated using maximum likelihood, and different forms of time variation 

(including constant for stationarity) of these parameters can be explored, and the best model selected using the BIC criterio n 10 

(Katz, 2013). 

Next  we can develop a t ime series of physical exposure at each mine 𝑖, by estimating 𝑛i,t
p,𝑑

 as the number of events of 

duration 𝑑, that exceed the stationary threshold 𝑃𝑟𝑒𝑐𝑖𝑝i
max ,p,𝑑

 at mine 𝑖 in year 𝑡, based on the long run data (or for a mine 

operator who has information on the original data used, the data period used for design). Then the statistic  

𝑁t(𝑝, 𝑑) = ∑ 𝑛i,t(𝑝, 𝑑)  i                          (1) 15 

can be used to get insight into risk exposure at the portfolio level. 

The degree of clustering of exposure across mines in the portfolio, and whether there are temporal trends or cycles in such 

exposure can then be investigated using 𝑁t
(𝑝). Clustering can be assessed by comparing the probability distribution of 𝑁t

(𝑝)  

against what would be expected under independence of occurrence of ext remes at each mine, and trends can be assessed via 

standard methods of trend and cyclical analysis. 20 

3.2 From climate exposure to financial risk 

In the financial industry, a common measure of risk is the Value-at-risk o r VaRq.  It is defined as the potential loss (incurred 

by a given risk factor) over a certain  time period that won’t  be exceeded with a given confidence level q  (Webby, et al., 

2007) (Yamout, Hatfield, & Romeijn, 2006) (Adriaens, Sun, & Gao, 2014). A Conditional Value at  Risk (CVaRq) is defined 

as the expected value of the loss in case the VaRq is exceeded. More precisely, using the definitions from (Sarykalin, et al., 25 

2008), the VaR of X with confidence level α is: VaRα(X) = min{z | FX(z) ≥ α}. The CVaR of X with confidence level α is 

defined through a generalized tail distribution, as the expected shortfall if the loss event of concern occurs: 

 𝐶𝑉𝑎𝑅𝛼 (𝑋)  =  ∫ 𝑧 𝑑𝐹𝑥
𝛼+∞

−∞ (𝑧),      

where   𝐹𝑥
𝛼(𝑧) = 0 when 𝑧 <  VaRα(X) , and 𝐹𝑥

𝛼 (𝑧) =
𝐹𝑋

(𝑧)− 𝛼

1− 𝛼
 if 𝑧 ≥  VaRα(X)  

We take an approach consistent with these ideas, while recognizing that it may not be easy to estimate the direct  loss 30 

associated with different levels of events at each mining site. 
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Our strategy is to use a weighting of the 𝑛i,t (𝑝) time series to be ab le to compare portfolios to each other, rather than 

estimating actual VaRs, based on mine by mine potential loss associated with the threshold event. For each  mine site 𝑖, a 

potential loss 𝐿i(𝑝, 𝑑) is associated with the event with return period p. We assume that 𝐿𝑖
(𝑝)  can be decomposed as: 

 𝐿i
(𝑝, 𝑑) = 𝐶(𝑝, 𝑑)𝑉i + 𝐷(𝑝, 𝑑)𝐹i                     (3) 

where: 5 

- 𝐶(𝑝, 𝑑) and 𝐷(𝑝, 𝑑) are constants associated with the rarity and duration of the event, that apply  to direct loss and external 

loss respectively 

- 𝑉i  is a measure of the financial value of the mine  

- 𝐹i  is a measure of the potential value of impacts on society external to the mine, that the mine owner is liable for.  

 𝑉i  can for instance be the production rate of the mine, some multip le 𝐶(𝑝, 𝑑) of which may be lost due to disruption, for an 10 

event with a probability of occurrence p in  a given year. Alternately, 𝑉𝑖  could be the estimated Net Asset Value (NAV) of 

the mine, which may be relevant as a measure of the scale of the asset at risk. Production loss could be used in the context of 

an event expected to incur mine flooding, difficulty of access, or cut in production due to drought. In such a case, 𝐿i
(𝑝, 𝑑) 

would represent the value of the potential loss of production due to disruption, and one would expect that as p decreases (the 

event is more extreme), 𝐶(𝑝, 𝑑) increases. Similarly, NAV could be used to reflect potential closure of the mine, or a long 15 

term suspension of operations due to a catastrophic event. The probability p consid ered for an index that uses this measure 

for defining 𝑉i  would logically be lower than the ones used for a production based index. 

Correspondingly, one can develop arguments for 𝐷(𝑝, 𝑑) and  𝐹i  considering the population or ecosystems that are likely to 

be affected as a consequence of the failure of systems at a mine in the event of ext reme rainfall. This could include 

environmental impacts, health impacts, loss of water services to a community, and/or the financial impact from mine closure. 20 

Available satellite remote sensing and geospatial data bases provide information on hydrologic networks, population density, 

GDP and eco logical attributes that could be identified downstream of each mine, and used to parameterize 𝐹i . In reality, it is 

difficult to develop estimates for 𝐷(𝑝, 𝑑), 𝐶(𝑝, 𝑑) and 𝐹i  without insider informat ion. Therefore, in the examples developed 

in this paper, we take 𝐶(𝑝, 𝑑) to be 1, and 𝐷(𝑝, 𝑑) to be 0. 

Effectively, we assume that there is a valuation associated with the mine as well as with the potential area of external impact, 25 

and that for an ext reme event of a specified rarity (probability o f occurrence), across sites, the loss is proportional to th at 

valuation. As an example, if a 100 year event (p =0.01) were to occur at two mines, with the market apportioning $10 

million to one asset and $100 million to another asset, in the absence of other informat ion, we are assuming that the financial 
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impact is d irectly proportional to the relative valuations attributed by the market to each asset. This implies that for a 100 

year event that results in permanent mine closure (for example), the resulting impact on the company’s valuation as a result 

of the event at the second mine would be 10 t imes greater than the same event at the first.  While this is unlikely to be an 

exact measure of financial impact, it represents a relative measure of exposure, and hence provides a basis for developing a 

comparable index across a portfolio. Where detailed information on  the potential asset level loss probability distribution and 5 

the direct resulting financial impact is available, it would obviously be better to use it directly. Vary ing 𝑝 allows for the 

development of a probabilistic risk profile across a portfolio. One can see that for a given 𝑝, the contribution to the expected 

value at risk can be readily evaluated, under assumptions of a stationary climate, as 𝑝𝐿i
(𝑝, 𝑑).  

We can then define portfolio level financial exposure as,  

𝑆t
(𝑝, 𝑑) =  ∑ 𝐿i(𝑝, 𝑑) 𝑛i ,t (𝑝, 𝑑)  i                     (4) 10 

which can be reframed as  

𝑆i
′(𝑝, 𝑑) =  ∑ 𝑉i  𝑛i,t (𝑝, 𝑑 )  i                                   (5) 

since 𝐶(𝑝)  is assumed to be a constant across all assets, and for now we as sume that we are only considering direct impacts 

to the mine. Normalizing by the portfolio valuation, we define: 

𝑅𝑡
(𝑝, 𝑑) = 

𝑆t
′ (𝑝,𝑑)

∑ 𝑉i  i
                      (6) 15 

which provides a metric for the relat ive volatility or risk exposure of different portfolios (companies or economic sectors), 

normalized  by their valuation. For instance, two different companies can be compared in terms of the quantiles and trends of 

their respective 𝑅𝑡
(𝑝, 𝑑). Varying 𝑝 also enables the exploration of the variations in tail risks of a given portfolio. 

For a specified annual probability of exceedance p, considered to be the design level for infrastructure at the mine, the q
th

 

quantile, 𝑆q
′ (𝑝,𝑑)   of 𝑆t

′(𝑝, 𝑑) can be considered to be a measure of the VaRq for a mining company, and the corresponding 20 

q
th

 quantile 𝑅q
(𝑝, 𝑑) of 𝑅t

(𝑝, 𝑑) provides a scaled measure that allows a comparison of the Va Rq exposure of each company 

as a fraction of their total production or total portfolio value. 

Finally, we can define a measure similar to CVaRq for the potential expected loss in case an event with a probability lower 

than p occurs with a probability (1-q) of the time as:  

𝐶𝑉𝑅q
(𝑝, 𝑑) =

1

1−𝑞
∫ 𝑅t

(𝑝, 𝑑)𝑓(
𝑅m(𝑝,𝑑)

𝑅q(𝑝,𝑑) 𝑅t
(𝑝, 𝑑))𝑑𝑅t

(𝑝, 𝑑)       (7) 25 
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This is numerically evaluated as: 

𝐶𝑉𝑅q
(𝑝, 𝑑) =

1

(1−𝑞)(𝑚+1)
 {

𝑅q(𝑝,𝑑)+𝑅m(𝑝,𝑑)

2
+ ∑ 𝑅k

(𝑝, 𝑑)m−1
k=q+1

}                       (8) 

Where 𝑚 is the number of years in the record, and 𝑅k
(𝑝, 𝑑) represents the k

th
 ranked value of the series 𝑅t

(𝑝, 𝑑), such that  

𝑅q
(𝑝, 𝑑) corresponds to the q

th
 quantile of 𝑅t

(𝑝, 𝑑). 

Similarly, one can define 5 

𝐶𝑉𝑆 ′
q

(𝑝, 𝑑) =
1

1−𝑞
∫ 𝑆 ′

t
(𝑝, 𝑑)𝑓(

𝑆′
m (𝑝,𝑑)

𝑆′ q(𝑝,𝑑) 𝑆 ′
t
(𝑝, 𝑑))𝑑𝑆 ′

t
(𝑝, 𝑑)                     (9) 

Further, such a procedure can be used to generate inputs for real option analysis models to inform the Value -At-Risk 

(Blanchet & Dolan, 2016). For different values of p, distributions of 𝑛i ,t
p

 ,𝑁t
(𝑝, 𝑑), 𝑆t

′(𝑝, 𝑑) or 𝑅t
(𝑝, 𝑑) , can be used to 

simulate extreme event impacts. 

4. Example applications – frequency of events at the mine level 10 

We start with an  example for the analysis of the 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡
𝑚𝑎𝑥 time series for a given site using GEV distribution for threshold 

selection. Consider again  the Highland Valley open pit  copper mine in Brit ish Columbia. Let’s consider a 30-day event with 

a return period of 10 years. Using the 20CR dataset, we develop the yearly maximum 30-day precip itation time series 

𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡
𝑚𝑎𝑥 .  The eXtremes package in R (Gilleland, 2015) was used to estimate an appropriate parametric model in the GEV 

framework associated with this annual maximum time series. For the stationary assumption, the 10 year event is estimated as 15 

126.2 mm consistent with  the empirical quantile of 126.2 m,  with a 95% confidence interval of [122.21 mm; 131.19 mm]. 

We considered polynomial models in  time of o rder 0 to 4 for both the location and scale parameters of the GEV d istribution, 

leading to 24 models to be tested, including the stationary model.  The best model based on the BIC criterion is the quadratic 

model for the location parameter and a constant for the scale: 

µ(𝑡) = 74+0.47 t -0.0039 t
2
 ;            σ  = 13.4 ;            𝜉=-0.26      20 

A likelihood-ratio test between the stationary model and this model leads to a p-value of 4.85e-05, thus enabling us reject the 

null-hypothesis of no trend. Standard diagnostic tests support the applicability of the non -stationary GEV model. The return-

level p lot on Fig. 2 shows the effective return-level p lot of a 10-year, 30 day rainfa ll event for the non-stationary model in 

blue under stationarity assumption, and for the model selected thanks to BIC in red . A nonparametric trend function, as 

illustrated in Fig. 1 could potentially reveal addit ional structure. If a  more detailed characterization of the decadal variat ions 25 

in the return level were of interest at this site, the use of a spline basis function for the trend in the location parameter  may be 
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appropriate, as shown by  (Bocci, Caporali, & Alessandra, 2012) (Padoan & Wand, 2008) (Nasri, El Adlouni, & Ouarda, 

2013) (Yousfi & El Adlouni, 2016).  

 

Figure 2: Effective 10-year return level according to the non-stationary GEV distribution for the Highland Valley Mine  

5. Example applications – portfolio level 5 

In this paragraph, we provide three examples at the portfolio level across a set of min ing companies for which we have 

information on asset locations and Vi.  

1) The purpose of the first example is to exp lore whether spatial and temporal correlation in the frequency of climate 

extremes leads to portfolio tail risk that may a) be substantially greater than expected from treating each asse t as an 

independent exposure, b) have systematic increasing or decreasing trends or persistence. For this case, we study the number 10 

of events affecting a given portfolios of mines via the corresponding Nt (𝑝, 𝑑). 

2) The second application highlights how different choices for Vi can be used to provide insight into financial exposure. Two 

weighting procedures are considered. One uses 2015 production and 2015 average commodity prices to attribute a value to 

each mine, and the other uses Net Asset Value from broker reports. In the first case, for mine i,  

Vi =  ∑ Pc Qi,cc                       (10) 15 



16 

 

where, 

Pc  is the average 2015 unit price of commodity c obtained from (Word Bank, 2016), and  

Qi,c is the quantity of this commodity produced by mine i in 2015. 

In the second case, for mine i,  

Vi =  NAVi                                     (11) 5 

where NAVi  is the Net Asset Value attributed to site i in the broker report chosen.  

3) The third example highlights how the Nt (𝑝,𝑑 ), 𝑆t
′(𝑝, 𝑑) and Rt (𝑝, 𝑑) time series can be used to compare the tail risk that 

results from clustering for two portfolio of mines, depending on how the assets are valued or grouped.  

 

Data on different mining companies was gathered for these applications. The details of this  data are provided in Appendix A.  10 

For the first application, we build  portfolios of producing mining assets for four companies (BHP Billiton, 2016) (Rio Tinto, 

2016) (Barrick Gold  Corporation, 2016) (Newmont Min ing Corporation, 2016) using their annual reports. Using BHP and 

Rio Tinto enables us to test our method on two large portfo lios, to measure whether or not their portfolios are d iversified 

with respect to the risk of rainfall extremes. Barrick Gold and Newmont Min ing, two of the main gold  miners, are chosen 

because they are similar in terms of size and business, and can be also used to illustrate applica tions 2) and 3). In  this case, a 15 

mining asset refers to a unique physical site. The data set includes mines that may be listed as “on care and maintenance” but 

excludes undeveloped projects. Generally speaking, min ing portfolios were disaggregated based on  public disclosure using 

our best judgement on what constitutes an individual asset, for each mining company, and the share of ownership in jointly 

owned assets by multiple companies.  

For the second application, the portfolios of mines defined for Barrick  Gold and Newmont Mining for the first application 20 

are used first. These two companies produce main ly gold  and copper, and the reported production of these two commodities 

is used to value each mine as indicated in equation (5). Then, we consider NAV weigh ting for Barrick Gold and Newmont, 

obtained from broker reports (TD Securit ies, 2016 a.) (TD Securities, 2016 b.). These portfolios of mining sites are d ifferent 

from the ones defined for the first applicat ion: they are composed of the assets valued in the broker reports used to obtain 

NAV valuations (whether they are undeveloped projects, producing assets, or even closed mines).  25 

In total, for the first two examples, 6 d ifferent portfolios of mines are considered (one for BHP and Rio Tinto, and two for 

Barrick and Newmont). For the second application, Barrick Gold  and Newmont Corporation are compared  using the 

different weighting methods proposed (Vi =  ∑ Pc Qi,cc  , Vi = NAVi). 

For the last application, portfolios of mine sites of 15 companies for which we have asset-level NAV valuations from TD 

Securities broker reports are used (including the ones for Barrick Gold and Newmont Corporation already introduced for the 30 

NAV weighing example in the second application) (TD Securities, 2016 a.) (TD Securit ies, 2016 b.) (TD Securit ies, 2016 c.) 

(TD Securit ies, 2016 d.) (TD Securities, 2016 e.) (TD Securities, 2016 f.) (TD Securit ies, 2016 g.) (TD Securit ies, 2016 h.) 

(TD Securit ies, 2016 i.) (TD Securit ies, 2016 j.) (TD Securities, 2016 k.) (TD Securities, 2016 l.) (TD Securit ies, 2016 m.) 

(TD Securities, 2016 n.) (TD Securities, 2016 o.). 
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5.1 Frequency of events across a portfolio, 𝑁t
(𝑝, 𝑑) 

We consider a 1-day rainfall event with a 100-year return level and a 30-day rainfall event with a 10-year return level. For 

each of the aforementioned companies, we compute the Nt (𝑝, 𝑑) corresponding to the portfolios of producing min ing assets, 

using both the 20CR and the ERA-20C climate datasets. 

5.1.1 Trends and clustering in time 5 

From studying the 𝑁t (𝑝, 𝑑) for the four mining companies we find that:  

 Statistically significant trends for increasing frequency are observed in most of the cases, in particular when using 

the longer 20CR climate dataset. 

 there is a cyclical behaviour regarding the number of exceedances of the thresholds defined. 

In nearly all cases analysed (independent of the climate dataset used), we observe a cyclical behavior in the number of 10 

exceedances.  Figure 3 show the location of the mining assets for Rio Tinto. Figure 4 provides the time series of the yearly 

number of 30-day ext reme events across this portfolio that exceed the 10 year return level at each site computed using the 

20CR climate dataset. For this case, we observe a high number of events for the periods 1940-1950, 1980-1990 and 1995-

2005, while the 1950-1980 period is relat ively quiet. Thus, infrastructure designed and constructed using the 1940-1950 

record as a basis might have given this company’s executives a sense of security during the 1950 -1980 period, while the 15 

following years might have appeared as a period of high exposure. People tend to weight recent history more  than the past, 

which would y ield  cyclical investment and attention to risk management for such a company. Similar results for other 

companies are shown in Appendix B. 
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Figure 3: Locations of productive Rio Tinto mining assets at the end of 2015 (some assets overlap on the map) 
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Figure 4: Time series 𝑁t(𝑝, 𝑑)  of the yearly number of 30-day extreme rainfall events  exceeding the 10 year return level for the 

Rio Tinto portfolio computed using the 20CR dataset, using 3 windows (11, 21, and 114 years) to illustrate different aspects of 

long term variability 5 

Significance of the trends for each  of the Nt (𝑝, 𝑑) time series estimated was assessed using the Mann-Kendall test (Helsel & 

Hirsch, 2002) for monotonic trend. Results are provided in Appendix B. For the 100 year 1 day rainfall event, the number of 

events exceeding the design level at the portfolio level demonstrates statistically significant (at the 5% level) trends for all 

companies using the 20CR data, and for Barrick Gold  and Newmont using the ERA-20C data. However, the trends 

computed are null, which is due to the fact that a Sen Slope is computed as the median of the slopes between all the points in 10 

a dataset, and most of the years then correspond to zero values. For the 10 year 30 day  event, the portfolio counts exhib it 

statistically significant upward trends for all mining companies when using the 164 year long 20CR data, and only for Rio-

Tinto when using the 111 year long ERA-20C data. Thus, there is evidence for an increasing frequency of portfolio level 

exposure for both the more catastrophic short duration event and the long duration, more moderate event that we hypothesize 

is related to persistent production disruption. 15 
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5.1.2 Clustering in space and time 

Our key finding is that for all cases, the number of exceedances for each mining portfolio in many years is substantially 

higher than what would be expected by chance. There is evidence of very fat tails for the portfolio risk. 

Representative results are discussed here, with all results presented in Appendix C. From Fig. 4, it is interesting to note that 

there were 36 exceedances of a 10 year 30 day rainfall event were experienced in  a portfo lio  of 40 Rio  Tinto assets in 1981. 5 

We emphasize that as a single asset can potentially have multip le, distinct 30 day periods that can experience an exceedance 

of the 10 year event at the site in a given year. Thus, in the worst years, the number of exceedances may  exceed  the number 

of sites in the portfolio. For example, in 1981, several Rio Tinto assets were hit twice. These include the iron ore mines of 

the portfolio located close to each other in the Pilbara reg ion of Australia . However, hits happened in various parts of the 

world, and 22 different sites were hit (their geographic distribution is showed on Fig. 5).  10 

Figure 5: Hits by location for the Rio Tinto portfolio in 1981 for a 30-day, 10-year rainfall event according to the 20CR dataset 

(dark red corresponds to two exceedances, light red to one) 
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Since on average one would expect 4 such exceedances (p=0.1 × 40) in a year, 36 hits is tru ly a remarkab le number, 

suggesting a very fat  tail exposure for the portfolio compared  to what  could be expected by chance. Pract ically, if each su ch 

event were to lead to even a 12.5% production loss (based on the 1 month duration of the event and 0.5 months to restore full  

production) at a mine on average, then the portfolio would suffer a production loss of 35/40 ×12.5 =11% for the year, 

compared to ~1.2% if there was no clustering across mines  and in  time. The financial impact fo r the min ing company would 5 

depend on the fixed costs that would need to be incurred irrespective of production (in the event of a production stoppage) a s 

well as the foregone revenue during the production stoppage. We note that there are other years in which very high counts 

are also recorded. Consequently, it is useful to formally test whether or not, the number of exceedances across sites could 

occur if the climate risk exposure across sites were random and independent.  

For this check, we compare the empirical cumulative d istribution function (cdf) o f the data, F(Nt (𝑝, 𝑑)) with the cdf that one 10 

may  expect if the underly ing process that generated Nt (𝑝, 𝑑) were an independent and identically d istributed (i.i.d.) process, 

across the sites in the portfolio. As we have defined extreme events in terms of an yearly probability of occurrence 𝑝, at each 

site, the theoretical p rocess can be assumed to be a Po isson process with λ = p. Therefore, for m sites, under the assumption 

of an i.i.d process, the theoretical distribution would be one of a Poisson process with λ = mp. For the Rio Tinto portfolio, 

the number of exceedances with λ = 4 would be (9,11,13) for probabilities of (0.01,0.001,0.0001) respectively.  Thus under 15 

the independence hypothesis there is a near 0 p robability of 36 exceedances in a year, and in  15 out of 164 years, the number 

of exceedances is greater than 13, suggesting a very high incidence of clustering indeed.  From Fig. 6, we note that for the 

100 year, 1 day rain fall event, depending on the climate data set used, the number of portfolio events of concern at the 99
th

 

quantile is 5 to 6 times what may be expected by chance for BHP Billiton, and 2 to 3 times what is expected by chance for 

other companies and quantiles. Similar results for the 10 year 30 day event are presented in Appendix C.   20 
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Figure 6: Ratio of actual number of events in excess of at site 100 year 1 day extreme rainfall for a portfolio relative to what is 

expected by chance based on the Poisson distribution, for 3 thresholds of the portfolio cdf 

To the extent the market tends to look at each mine as an independent profit centre, generating value as a standalone entity 

and with  a subset of risks that are  independent to the other mines that it owns (and others such as commodity risk which are 5 

present across the entire portfolio), our analysis demonstrates that the exposure to extreme rainfall events needs to be looked 

at across assets; clustering is a significant issue and high impact events at the portfolio level may have a much h igher 

probability of occurrence than anticipated under the usual analytical mindset.  
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5.2 Extreme events and indexing of potential financial loss at the portfolio level  

In this section, we explore how the financial exposure of mining companies may be manifest for the two types of rainfa ll 

events considered at the portfolio scale, by weighting the event occurrence with an appropriate financial variab le. We focus 

on Barrick Gold and Newmont Corporations, two major gold miners, because these two companies are similar in te rms of 

their core business, their diversity in geographic distribution of asset locations, and their revenues. We consider both a 1-day 5 

extreme rainfall event with a 100-year return level, and a 30-day extreme rainfall event with a 10-year return level. All the 

computations in this section were performed using time series built  with the 20CR dataset, as it has a longer record, with 164 

years of data.  

We use two weighting methods: 

- one that values each mine using an estimate of its recent annual production value, 10 

- one that values each mine according to a recent Net Asset Value indicated in a broker report. 

The method using production value is a measure of shorter-term impact of the events, while the NAV method may be used to 

measure more catastrophic losses. 

5.2.1 Weighting with production 

First, we develop an index using annual production data at the mine level reported in  (Barrick Gold Corporation, 2016) 15 

(Newmont Min ing Corporation, 2016). We focus on the two main  commodit ies reported by these two companies: copper 

and gold. We associate to each mine its production mult iplied by the average 2015 price of the corresponding commodity, 

therefore obtaining an estimate of the mine’s 2015 revenue. Co mmodity prices (in nominal dollars) were taken from (Word 

Bank, 2016). While the total sales revenue mentioned in the 2015 annual reports of Barrick Gold and Newmont amount to 

USDm 9,029 and USDm 7,729 respectively, the estimated values based on this indexing procedure are USDm 7,738 and 20 

USDm 6,240, which have approximately the same ratio. 

Using this weighting method, we then analyze the tail exposure through the weighted time series Rt
(𝑝, 𝑑). Figure 6 below 

shows the annual exceedance probability of exposure given by the Rt
(𝑝, 𝑑) obtained for the Barrick Gold and Newmont 

Corporation portfolios both  the 1-year,  1-day event and the 10 year, 30-day extreme event.  Note for instance that for the 

30-day event, for Barrick Gold, over 99% (46%) of the company’s total production value is exposed with a probability of 1% 25 

(5%) per year, while for Newmont the corresponding numbers are 90% and 58% (recall that the total can theoretically go 

beyond 100% has mult iple hits can concern one asset in a given year).  If we consider a 12.5% d isruption in p roduction due 

to each such event, then for Barrick and Newmont, the annual financial impact could be as much as $9×0.125×0.99 = $1.1 

Billion, and $7.7×0.125×0.9=$0.87 B with a 1% chance in a given year. 
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Figure 7: Fraction of company production value exposed, as a function of annual exceedance probability for 100 year, 1 day an d 

10 year, 30 day events for Barrick Gold and Newmont based on the 20CR data 

5.2.2 Weighting with Net Asset Values (NAVs) 5 

For this example, we chose two reports from TD Securities written a few days apart: (TD Securit ies, 2016 a.) (TD Securit ies, 

2016 b.). In the following, a mine or a pro ject is included as long as it appears in the report. This leads to 19 sites mentioned 

for Barrick Gold, and 12 for Newmont Corporation.  

In a similar analysis than in 4.2.1., note for instance that for a 1-day event, for Barrick Gold, over 29% (7%) of the 

company’s total production value is exposed with a probability of 1% (5%) per year, for the while for Newmont the 10 

corresponding numbers are 33% and 9%. If we consider a 10% destruction of value (which is likely a low number) due to 

each such event, then for Barrick and Newmont, the annual financial impact could  be as much as $9×0.10×0.29 = $0.26 Billion, 

and $7.7×0.10×0.33=$0.25B with a 1% chance in a given year. 
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Figure 8: Fraction of company value exposed, as a function of annual exceedance probability for 100 year, 1 day and 10 year, 30 

day events for Barrick Gold and Newmont based on the 20CR data 

5.3 Company comparison 5 

We obtained asset-level valuation for 15 companies from TD securities, performed around the same time (W inter-Spring 

2016) and present here the rankings ensuing from applying the method described using time series built using the 20CR 

climate data. We consider the 100 year, 1-day extreme rainfall with a 100-year return level, with NAV weighting and choose 

a portfolio tail-exposure level of q=0.95 to exemplify  how the 𝑆q
′ , Rq and corresponding CVq measures that are similar to 

VARq. or CVARq can be used to compare these companies exposure. A user may want to vary q, using our web app to 10 

develop customized results (in the following, a higher rank means a higher potent ial exposition). 

 

Table 1: Ranking of 15 companies based on  𝑆0.95
′ (0.01,1)  and 𝐶𝑉𝑆 ′

0.95
(0.01,1) measures for a 1-day rainfall event, 

obtained using the 20CR dataset and mine valuation obtained from broker reports from TD Securities 

Company 𝑆0.95
′ (0.01, 1) (USDm) Rank 𝑆0.95

′ (0.01, 1) 𝐶𝑉𝑆′
0.95(0.01, 1) (USDm) Rank 𝐶𝑉𝑆′

0.95(0.01, 1) 

Agnico Eagle 272 8 8.05E+02 8 

B2Gold 204.3 10 4.14E+02 13 
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Barrick Gold 974.15 2 2.63E+03 2 

Capstone Mining 0 14.5 1.10E+02 15 

Eldorado 374.66 7 7.25E+02 10 

First Quantum Mineral 136.595 12 3.65E+03 1 

Franco Nevada 452.015 6 7.66E+02 9 

Goldcorp 669.6 4 1.42E+03 4 

Hudbay 0 14.5 5.58E+02 11 

Iamgold 25.84 13 2.67E+02 14 

Kinross 578.5 5 1.38E+03 5 

Lundin Mining 233 9 1.24E+03 7 

New Gold 141.4 11 4.66E+02 12 

Newmont 1011 1 1.72E+03 3 

Teck Resources 832 3 1.25E+03 6 

 

Table 2: Ranking of 15 companies based on  𝑅0.95
(0.01,1)  and 𝐶𝑉𝑅0.95

(0.01,1) measures for a 1-day rainfall event, 

obtained using the 20CR dataset and mine valuation obtained from broker reports from TD Securities  

Company 𝑅0.95(0.01, 1) Rank  𝑅0.95(0.01,1) 𝐶𝑉𝑅0.95(0.01,1)  Rank 𝐶𝑉𝑅0.95(0.01,1) 

Agnico Eagle 5.67E-02 10 1.68E-01 12 

B2Gold 8.95E-02 3 1.81E-01 9 

Barrick Gold 6.43E-02 9 1.73E-01 11 

Capstone Mining 0.00E+00 14.5 1.84E-01 7 

Eldorado 8.95E-02 4 1.73E-01 10 

First Quantum Mineral 1.43E-02 13 3.81E-01 1 

Franco Nevada 7.54E-02 6 1.28E-01 15 

Goldcorp 6.91E-02 7 1.47E-01 13 

Hudbay 0.00E+00 14.5 2.09E-01 6 

Iamgold 2.22E-02 12 2.29E-01 4 

Kinross 9.41E-02 2 2.25E-01 5 

Lundin Mining 6.54E-02 8 3.48E-01 2 

New Gold 5.55E-02 11 1.83E-01 8 

Newmont 8.56E-02 5 1.45E-01 14 

Teck Resources 1.70E-02 1 2.55E-01 3 
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A first thing that can be noted is that in our examples, ranks vary significantly depending on the use of the 𝑆t
′(𝑝, 𝑑) or 

𝑅t
(𝑝, 𝑑). For instance, Barrick Gold and Newmont Corporation both appear amongst the most exposed companies (for both 

measures) when using St
′ (𝑝, 𝑑), but much less when using 𝑅t

(𝑝, 𝑑), which makes sense as these two companies are rather 

large, but have a relat ively diverse portfolio in terms of their geographical locations and climate exposure.  A second 

observation is that the two indexes (the one akin to  VaR and the one akin to CVaR)  do yield some d ifferences in ranking, in 5 

particular for First Quantum Mineral. Th is company has relatively few mines (9 assets are valued in  the broker report), with 

a relatively  important geographical variability; some of these assets are small, while a couple of projects are fairly  large and 

with very high valuation. This exp lains the discrepancy between the two indices. Finally, for cases in which the number of 

hits recorded is too low overall (e.g . Hudbay), our indexes (and in particu lar the quantile one), might not be usable wh en 

working with empirical data. 10 

6. Summary and Discussion 

Global water risk including scarcity, flooding, pollution and anthropogenic climate change is of increasing concern to 

investors, companies, regulators and governments worldwide. Despite the recognition that these factors e xist, an approach 

towards portfolio risk assessment that accounts for the geographical distribution of assets in a portfolio, and the associate d 

exposure to climate extremes has not emerged. Such an assessment is of growing interest in particu lar to long t erm investors 15 

who are the owners of these multi-national businesses and currently lack a concrete methodology to compare the relat ive 

risks associated with different companies comprising their investment portfolios. 

This paper represents perhaps the first effort to address this gap. A simple index that can obtained through weighting by 

appropriate financial measures of exposure was developed and illustrated. Our hypothesis was that businesses with 

agricultural supply chains, and the mining industry, were likely to have significant spatio-temporal correlation in their asset 20 

level exposure that could potentially lead to a fat tailed exposure at the portfolio level.  The mining industry presented an  

opportunity for exp loring such risks, given that the locations  of mines, and various attributes related to the mines can be 

readily ascertained from publicly available informat ion. Further, as engineered enterprises, it is common for mining 

companies to use risk based design criteria fo r structures intended to mitigate the impact of extreme rainfall related hazards 

at each mine.  25 

While the short climate records typically used to estimate the design parameters for such structures translate into 

considerable uncertainty as to the appropriate level of design, the fact th at a structure is being designed with a nominal 

annual probability  of failure p d irectly  translates into an estimate of the residual risk that the enterprise is exposed to. 

Consequently, if long climate records or project ions are available, then one can es timate how the residual risk or exposure at 

each site varies with time, and also if mult iple such events could happen in the same year across a portfolio of mines. This 30 

observation opens up the possibility of exploring the spatial and temporal clustering o f risk exposure and its manifestation at 

the portfolio level, whether the portfolio is composed of multip le companies, or a single company; is concentrated in a 
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particular sector of min ing, e.g., copper, or is diversified; and whether it is largely  based in one country or is geographically 

diversified. An investor or a company can then seek to understand and mitigate the portfolio risk through appropriate 

hedging mechanisms. 

Since at site climate records are usually short, and it is difficult to pull togeth er global coverage, we considered the use of 

global, gridded daily rainfall estimated by two d ifferent Climate re-analysis models, from NCAR with a 164 year record, and 5 

from the ERA-20C with a 111 year record. These models embody the same physics of ocean-atmosphere circulation that is 

used in the models used for seasonal climate forecasts, or fo r the pro jection of future climates. However, they are run over a 

long historical period and are “corrected” daily  over that period to best match the observed surface  temperature and pressure 

data for each historical day. Since the number of observations available varies over the historical period, and the models 

have different spatial resolution and correction schemes, their retrospective projections do not always agree. Rather, just as 10 

the IPCC models for future project ions represent an ensemble of possibilit ies, so do the retrospective or re -analysis 

simulations. We expect that the large scale features and teleconnections in these models will be similar, but the prec ise 

magnitudes of events at specific locations on specific days and years will not match. Consequently, our approach considers 

the yearly number of events that exceed a specified quantile computed internally for that location for each such model. In 

other work, this quantile based approach has been recognized as effective at  addressing the biases in each ind ividual model’s 15 

projections relative to observations.  

Our investigations of selected, representative mining portfolios demonstrate that there is significant spatial and temporal 

clustering in the exposure of mines to the 2 criteria we considered, a 100 year 1 day annual maximum rainfall event, and a 10 

year 30 day annual maximum rainfall event. In some cases, for the worst year in the 164 year record, th e total number of 

exceedances of a 10 year event, i.e., with a yearly  probability of occurrence of 0.1 of the residual risk at any g iven site, was 20 

very close to the total number o f mines under consideration. This happens because there are several independent events in 

that year at multip le sites that exceed the design threshold. The consequence is that the portfolio exposure in this setting is 

much, much greater than the nominal pm   (i.e. the probability of exceedance at each mine multip lied by the number of 

mines). There is also evidence that the frequency of exceedance of such events at the scale of the mine portfolio is increasing 

over time, and that pronounced decadal variations in this exposure risk are notable for all 4 companies analysed. 25 

In this paper, we considered two financial metrics for weighting the exposure to the residual risk at  each site. These were an 

estimation of the revenue generated by each mine (calculated as production mult iplied by the commodity price) for the most 

recent year, and the net asset value estimated for each mine in a recent valuation completed by mining  financial research 

analysts. The exposure of the portfolio rather than a single mine is of interest, in particular to indicate to an investor th e 

potential relative impact of a temporary or permanent production disruption as a result of the risks discussed above on a 30 

given company’s financial performance.  Since the likely loss at each mine if the design event is exceeded is hard to estimat e 

a priori, even by  the mining company, one needs an approach that allows an appropriate weighting of the potential portfolio 

losses. We intend for the index we developed to be used for sensitivity analysis, to explore how the total portfolio exposure 

may  scale depending on various levels of designed risk protection. Consequently, we assumed that the loss at a certain level 
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of design (average annual probability  of exceedance of the annual maximum rainfall) is proportional to either the revenue at 

each site, or to the net asset value at each  site, for each event that exceeds the design level. To estimate the potential impact 

of temporary production disruptions that a given mine may  experience relatively frequently (e.g., with a 10 year return 

period), we use an approximation of the revenue by mine as a proxy to weight the number of events of that magnitude 

experience at each site. For more catastrophic events, e.g., those related to the 100 year annual maximum rain fall that may 5 

result in permanent mine closure (or a full write-off of a g iven asset), we weight the frequency of such events in each year by 

the net asset value of each mine, providing a measure of the portfolio exposure. By applying these weights, we discovered 

that the portfolio financial exposure: 

- typically increases over time, with decadal variat ions, as expected given the space and time clustering of the frequency of 

exceedances 10 

- the tail of the probability distribution of portfolio risk for different companies may behave very differently;  

These observations reflect  geographical aspects of the structure of portfolio risk, and could  motivate a company to hedge 

such risks using parametric or index insurance mechanis ms or other financial risk management instruments. For an investor a 

characterizat ion of the geographical nature of  risk, as well as that of portfo lio  risk can permit  risk balancing strategies 

through an appropriate weighting of companies, sectors or geographies.  15 

Furthermore, this same methodology could be employed at the investor portfolio level rather than at the co mpany level.  

Investors often own a collection of companies, each with a subset of assets which are inherently exposed to their own subsets  

of risks.  Investor portfolios could be disaggregated into their individual components (asset by asset) and differen t portfolio 

constructs could be assigned different risks based on their e xposure to extreme rain events. Rebalancing exercises could 

consider effects over both space and time to the risks considered in this paper. 20 

A key question that emerges is whether these climate risk factors actually translate into significant financial risks relat ive to 

other financial risk factors associated with investments in mining or other multi-national enterprises. The answer to this 

question requires a disclosure from mining co mpanies of their design processes, the associated residual risk and estimate of 

the loss incurred if a  failure event occurs. A first part of this process is an internal assessment of these factors by minin g 

companies, and hence a first order impact of our paper could be a self-examinat ion of these issues by mining companies, and 25 

the use of the resulting informat ion to re -evaluate their risk management processes. We know that losses from some such 

events can be significant. Reported min ing related losses from the extreme rain fall event in the Atacama Desert in Chile in 

March 2015 were estimated to be of the order of $1 billion insured, and a like amount uninsured. This compares with the 

$1.6 billion in cap ital expenditures associated with the desalination and  pumping project for min ing in the same reg ion, 

which attracted significant attention as an example of water risk. In the absence of more detailed disclosure and internal 30 

assessment by mining companies, the best we can do is provide relative rankings of th e financial exposure of d ifferent 

companies having distinct portfolios. Logically we expect extreme rain fall events that result in catastrophic loss will impact 

a given company’s financial performance, however the analysis we perform in this paper is sole ly theoretical and on a 

relative basis. Getting more detailed information is therefore a prerequisite to investigate the matter fu rther, and in part icular  
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questions such as the salience of climate risk relative to price volatility  risk for mining companies, and the feedbacks 

between these aspects  (for instance a climate event leading to the stoppage of large clustered mines would impact 

commodity p rices). Price volatility has been considered in d iscounted cash flows analysis and real -option modelling of 

mining assets (see for instance (Garrido-Lagos & Zhang, 2012), (Baurens, 2010), and the inclusion of extreme events in such 

models is being explored by members of our team at Columbia; however linking actual events to losses in a direct way needs 5 

to be done to fill the gap. 

Social conflict  is often  cited as the most significant water related risk for mining companies. In our analysis here, we 

considered a term in Eq. 1 for impacts external to the mine, that the mine owner would be liable for (and hence would 

directly impact that company’s financial performance). However, in the examples in this paper we d id not develop estimates 

for the potential liabilities that would come from the ecological, environmental and social impacts downstream of the failure 10 

of mine infrastructure. This is an area where we plan to make further headway, in collabo ration with WWF Norway, who has 

developed a database that maps mines, ecosystems and human habitations that are in terconnected by the natural d rainage 

network, and hence are the potential for direct impact if mine systems are overcome by extreme rainfall.  

A second area of social conflict related to water emerges not from pollution or flooding, but from water scarcity . For an 

existing mine, this is manifest during a severe, sustained drought. In this setting, even existing senior water rights or wat er 15 

access arrangements can be strained. The basic idea of residual risk for climate extremes that we introduced in this pa per can 

also be extended to the drought case, with the proviso that a quantification of the competition for water under these 

conditions that would be faced by the min ing company, and an assessment of their p lans to deal with such contingencies 

would be required. While some generalized products (e.g.,  (W RI, 2015)) claim to provide estimates for such water risks, we 

believe that mining companies need to assess these risks internally relative to d ifferent severity and durations possible for 20 

droughts; integrate the analyses into their risk management processes and provide disclosure of these risks at a site by site 

level. Th is site level analysis could then be aggregated to determine the financial impact from the investor and regulator 

perspectives. 

We noted earlier that climate information is marked by uncertainty and structured space-time variability. We were able to tap 

a few realizations of such variability using two climate re-analysis products. However, many more such products are 25 

available from 1948 to now, 1979 to now, and 1997 to now. For drought there are also global reconstructions of paleo -

drought from tree rings and other proxies, which provide a window into climate variab ility over the last 5 centuries or more.  

The spatial resolution of climate information, as well as the fidelity to ground observations varies. Similarly, ground based 

observations of varying  duration are available. It is indeed possible to build  nonstationary, stochastic simulation models th at 

integrate across such sources of informat ion and provide simulat ions that can be used to reduce the uncertainty associated 30 

with the risk of climate ext remes that may vary across space and time. Our past work has addressed some of these issues, and 

we expect that the tools developed for those cases can also be applied here. However, a  bigger issue that needs to be 

addressed is the estimat ion of potential financial loss and the attendant uncertainty covering both impacts internal and 

external to the mine.  



31 

 

To facilitate climate informed portfo lio  risk analyses, we have developed a Web-based App, using the R statistical plat form, 

that can accept the location of mult iple sites – mines or other assets in a portfo lio; the specification of the duration and rarity 

of the rainfall extremes of interest; estimates of the financial exposure at each site; and other parameters from a user, and 

allow them to compute the portfolio risk measures presented here. A selection of the climate data that are available to use is 

also available. 5 

Data availability 

Climate data can be found at the following links: 

20CR daily precipitation data: http://www.esrl.noaa.gov/psd/cgi-bin/db_search/DBSearch.pl?Dataset=NOAA-

CIRES+20th+Century+Reanalysis+Version+2c&Variable=Precipitation+Rate  

ERA-20C: http://rda.ucar.edu/datasets/ds626.0/index.html#cgi-10 

bin/datasets/getSubset?dsnum=626.0&action=customizeGrML&_da=y&so=RgpNO&gindex=15  

Broker reports are available on the Thomson Reuters platform 

Appendices 

Appendix A: Portfolio description 

In this appendix, a description of each of the mine portfolio studied is presented. For each portfolio, asset locations are 15 

provided. Estimated revenues introduced in 4.2.1 are also shown here for Barrick Gold and Newmont Corporation. However, 

NAV values introduced in 4.2.2 are not provided, as they came from a non-public data source.  

BHP Billiton 2015 mining assets (BHP Billiton, 2016) 

Information on the BHP Billiton mining portfolio was obtained by cross -referencing the mining assets mentioned in (BHP 

Billiton, 2016) and the coordinates from an internet search. It comprised 38 mine sites. It is important to note groups of 20 

mines such as the Hammersley system in Pilbara were d isaggregated. The orebodies mines in particular were each 

considered as a g iven asset. However, due to the difficulty of finding information, they were all assigned the coordinates 

approximate coordinates corresponding to the Hammersley joint venture. 

Table A1: 2015 mining asset coordinates for BHP Billiton 

Asset Name Latitude Longitude Primary Commodity Year Ownership 

http://www.esrl.noaa.gov/psd/cgi-bin/db_search/DBSearch.pl?Dataset=NOAA-CIRES+20th+Century+Reanalysis+Version+2c&Variable=Precipitation+Rate
http://www.esrl.noaa.gov/psd/cgi-bin/db_search/DBSearch.pl?Dataset=NOAA-CIRES+20th+Century+Reanalysis+Version+2c&Variable=Precipitation+Rate
http://rda.ucar.edu/datasets/ds626.0/index.html#cgi-bin/datasets/getSubset?dsnum=626.0&action=customizeGrML&_da=y&so=RgpNO&gindex=15
http://rda.ucar.edu/datasets/ds626.0/index.html#cgi-bin/datasets/getSubset?dsnum=626.0&action=customizeGrML&_da=y&so=RgpNO&gindex=15
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Goonyella Riverside -21.80889 147.97861 Coal 2015 50% 

Broadmeadow -21.8049 147.9845 Coal 2015 50% 

Daunia -22.05892 148.29836 Coal 2015 50% 

Caval Ridge -22.14199 148.06098 Coal 2015 50% 

Peak Downs -22.254 148.196 Coal 2015 50% 

Saraji -22.36944 148.29111 Coal 2015 50% 

Blackwater -23.68556 148.8075 Coal 2015 50% 

Norwich Park -22.61583 148.42944 Coal 2015 50% 

Gregory -23.17222 148.35639 Coal 2015 50% 

Crinum -23.17222 148.35639 Coal 2015 50% 

South Walker Creek -21.78457 148.47162 Coal 2015 80% 

Poitrel -22.04111 148.23444 Coal 2015 80% 

Mt Arthur -32.34833 150.90556 Coal 2015 100% 

San Juan 36.80151 -108.43064 Coal 2015 100% 

Cerrejon 11.018 -72.714 Coal 2015 33% 

Antamina -9.53917 -77.05 Copper 2015 34% 

Escondida -24.26889 -69.07466 Copper 2015 58% 

Olympic Dam -30.44 136.88889 Copper 2015 100% 

Pampa Norte Cerro Colorado -24.26667 -69.06667 Copper 2015 100% 

Pampa Norte Spence -24.26667 -69.06667 Copper 2015 100% 

Cliffs -27.31306 120.55306 Nickel 2015 100% 

Leinster -27.81424 120.70243 Nickel 2015 100% 
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Mt Keith -27.23056 120.545 Nickel 2015 100% 

Mt Whaleback -23.36536 119.6754 Iron Ore 2015 85% 

Orebody 18 -23.386157 119.988638 Iron Ore 2015 85% 

Orebody 23 -23.386157 119.988638 Iron Ore 2015 85% 

Orebody 24 -23.386157 119.988638 Iron Ore 2015 85% 

Orebody 25 -23.386157 119.988638 Iron Ore 2015 85% 

Orebody 29 -23.386157 119.988638 Iron Ore 2015 85% 

Orebody 30 -23.386157 119.988638 Iron Ore 2015 85% 

Orebody 35 -23.386157 119.988638 Iron Ore 2015 85% 

Yandi -22.71889 119.06611 Iron Ore 2015 85% 

Jimblebar -23.38083 120.13806 Iron Ore 2015 85% 

Wheelarra -23.38145 120.13146 Iron Ore 2015 51% 

Area C -22.92362 118.97679 Iron Ore 2015 85% 

Yarrie -20.417278 120.0100995 Iron Ore 2015 85% 

Nimingarra -20.417278 120.0100995 Iron Ore 2015 85% 

Samarco -20.16149 -43.50515 Iron Ore 2015 50% 

 

As can be seen from the map below, there is a high clustering in two regions of Australia: Pilbara and North East 

Queensland which are important respectively iron and coal producing areas. 
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Fig. A1: Map of BHP Billiton 2015 mining assets 

Barrick Gold 2015 producing assets  (Barrick Gold Corporation, 2016) 

Information on the Barrick Gold min ing portfolio was obtained by cross -referencing the production information mentioned 

in (Barrick Gold Corporat ion, 2016) and the coordinates from an internet search. It  comprised 19 gold and copper mines. 5 

Commodity price information was retrieved from (Word Bank, 2016). 

Table A2: Mining asset coordinates and attributable revenue per mine for Barrick gold for 2015 

Asset Name Primary 

Commodity 

Commodity Latitude Longitude Ownership Attributable 

Production 

Unit  

Bald Mountain Gold Gold 39.94139 -115.543 100% 1.91E+05 ounces 

Bulyanhulu Gold Gold -3.22344 32.48616 64% 2.74E+05 ounces 

Buzwagi Gold Gold -3.861 32.67 64% 1.71E+05 ounces 

Cortez Gold Gold 40.16973 -116.608 100% 9.99E+05 ounces 

Cowal Gold Gold -33.6374 147.4053 100% 1.56E+05 ounces 
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Golden Sunlight  Gold Gold 45.90578 -112.022 100% 6.80E+04 ounces 

Goldstrike Gold Gold 40.98072 -116.381 100% 1.05E+06 ounces 

Hemlo Gold Gold 48.69755 -85.9252 100% 2.19E+05 ounces 

Jabal Sayid Copper Copper 23.85226 40.94042 100% 6.00E+06 pounds 

Kalgoorlie Gold Gold -30.553 121.45 50% 3.20E+05 ounces 

Lagunas Norte Gold Gold -7.94806 -78.2447 100% 5.60E+05 ounces 

Lumwana Copper Copper -12.2362 25.82228 100% 2.87E+08 pounds 

North Mara Gold Gold -1.47333 34.51639 64% 2.87E+05 ounces 

Pierina Gold Gold -9.44694 -77.5869 100% 5.40E+04 ounces 

Porgera Gold Gold -5.465 143.095 48% 4.36E+05 ounces 

Pueblo Viejo Gold Gold 18.93861 -70.1739 60% 5.72E+05 ounces 

Round Mountain Gold Gold 38.70389 -117.077 50% 1.92E+05 ounces 

Ruby Hill Gold Gold 39.52722 -115.987 100% 1.00E+04 ounces 

Turquoise Ridge Gold Gold 41.21639 -117.256 75% 2.17E+05 ounces 

Veladero Gold Gold -29.3714 -69.9528 100% 6.02E+05 ounces 

Zaldivar Copper Copper -24.2186 -69.0678 100% 2.18E+08 pounds 

 

 

Fig. A2: Map of Barrick Gold 2015 producing assets 

Newmont 2015 producing assets  (Newmont Mining Corporation, 2016) 
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Information on the Newmont Corporation min ing portfolio was ob tained by cross-referencing the production information 

mentioned in (Newmont Min ing Corporation, 2016) and the coordinates from an internet search. It comprised 16 gold and 

copper mines. Commodity price information was retrieved from (Word Bank, 2016). 

Table A3: Mining asset coordinates and attributable production per mine for Newmont Corporation for 2015 

Asset Name Primary Commodity Commodity Latitude Longitude Ownership Attributable Production Unit  

Ahafo Gold Gold 7.03076 -2.35953 100% 3.32E+05 ounces 

Akyem Gold Gold 6.35876 -1.02607 100% 4.73E+05 ounces 

Batu Hijau Gold Gold -8.96667 116.8667 48.50% 3.28E+05 ounces 

Batu Hijau Gold Copper -8.96667 116.8667 48.50% 2.40E+08 pounds 

Boddington Gold Gold -32.7417 116.3469 100% 7.94E+05 ounces 

Boddington Gold Copper -32.7417 116.3469 100% 7.90E+07 pounds 

Carlin Gold Gold 40.4651 -117.102 100% 8.86E+05 ounces 

CC & V Gold Gold 38.72387 -105.153 100% 8.10E+04 ounces 

Duketon Gold Gold -27.642 122.044 19.45% 5.70E+04 ounces 

Kalgoorlie Gold Gold -30.7781 121.505 50% 3.16E+05 ounces 

La Zanja Gold Gold -6.82902 -78.8941 47% 6.60E+04 ounces 

Phoenix Gold Gold 40.53917 -117.122 100% 2.05E+05 ounces 

Phoenix Gold Copper 40.53917 -117.122 100% 4.60E+07 pounds 

Tanami Gold Gold -19.9769 129.7139 100% 4.36E+05 ounces 

Turquoise 

Ridge 

Gold Gold 41.21639 -117.256 25% 6.80E+04 ounces 

Twin Creeks Gold Gold 41.25833 -117.169 100% 4.03E+05 ounces 

Waihi Gold Gold -37.393 175.838 100% 1.19E+05 ounces 

Yanacocha Gold Gold -6.99417 -78.5319 51.35% 4.71E+05 ounces 

 5 
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Fig. A3: Map of Newmont 2015 producing assets 

Rio Tinto 2015 mining assets  (Rio Tinto, 2016) 

Information on the Rio Tinto mining  portfolio was obtained by cross -referencing the min ing assets mentioned in  (Rio Tinto, 

2016) and the coordinates found through an internet search. It comprised 40 mine sites. 5 

Table A4: 2015 mining asset coordinates for Rio Tinto 

Asset Name Latitude Longitude Primary Commodity Year Ownership 

Gove -12.295 136.83 Bauxite 2015 100% 

Porto Trombetas -1.4717486 -56.3784885 Bauxite 2015 12% 

Sangaredi 11.1 -13.77 Bauxite 2015 23% 

Weipa -12.533 141.833 Bauxite 2015 100% 
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Boron 35.0331722 -117.668687 Borates 2015 100% 

Bengalla -32.26667 150.85 Coal 2015 32% 

Hail Creek -21.5 148.4 Coal 2015 82% 

Hunter Valley -32.525 150.98333 Coal 2015 80% 

Kestrel -23.23333 148.36667 Coal 2015 80% 

Mt Thorley -32.64726 151.07113 Coal 2015 64% 

Warkworth -32.60694 151.09028 Coal 2015 45% 

Zululand Anthracite Colliery -28.1598 31.6875 Coal 2015 74% 

Bingham Canyon 40.52056 -112.145 Copper 2015 100% 

Escondida -24.26889 -69.07466 Copper 2015 30% 

Grasberg -4.05667 137.11361 Copper 2015 40% 

Oyu Tolgoi 43.767127 107.4462891 Copper 2015 34% 

Argyle -16.73056 128.38389 Diamonds 2015 100% 

Diavik 64.49643 -110.27715 Diamonds 2015 60% 

Brockman 2 -22.59717 117.21776 Iron Ore 2015 100% 

Brockman 4 -22.59717 117.21776 Iron Ore 2015 100% 

Marandoo -22.63806 118.13889 Iron Ore 2015 100% 

Mt Tom Price -22.76821 117.76625 Iron Ore 2015 100% 

Nammuldi -22.41222 117.3375 Iron Ore 2015 100% 

Paraburdoo -23.22917 117.57889 Iron Ore 2015 100% 

Western Turner Syncline -22.66272 117.59022 Iron Ore 2015 100% 

Yandicoogina -22.76389 119.225 Iron Ore 2015 100% 
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Channar -23.30167 117.78889 Iron Ore 2015 60% 

Eastern Range -23.24389 117.65694 Iron Ore 2015 54% 

Hope Downs 1 -22.94667 119.12306 Iron Ore 2015 50% 

Hope Downs 4 -23.14583 119.57889 Iron Ore 2015 50% 

IOC 53.04112 -66.94422 Iron Ore 2015 59% 

Mesa A -21.68052 115.88057 Iron Ore 2015 53% 

Mesa J -21.75 116.24 Iron Ore 2015 53% 

West Angelas -23.19056 118.78806 Iron Ore 2015 53% 

Dampier -20.7064 116.7425 Salt  2015 68% 

QMM -25.0370535 46.9295919 Titanium 2015 80% 

RBM -28.6829452 32.1305466 Titanium 2015 74% 

RTFT 50.5457265 -63.3852768 Titanium 2015 100% 

Ranger -12.6851397 132.9092073 Uranium 2015 68% 

Rössing SJ -22.509068 15.0356483 Uranium 2015 69% 
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Fig. A4: Map of Rio Tinto 2015 mining assets 

Barrick Gold mining assets valued in (TD Securities, 2016 a.): 

Table A5: Mining assets valued in (TD Securities, 2016 a.) for Barrick Gold 

Asset Name Latitude Longitude Ownership 

Bulyanhulu -3.22344 32.48616 64% 

Buzwagi -3.861 32.67 64% 

Cerro Casale 40.16973 -116.608 75% 

Cortez -27.7906 -69.2994 100% 

Donlin Creek 62.045 -158.198 50% 

Goldstrike 40.98072 -116.381 100% 

Hemlo 48.69755 -85.9252 100% 
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Jabal Sayid 23.85226 40.94042 50% 

Kalgoorlie -30.553 121.45 50% 

Lagunas Norte -7.94806 -78.2447 100% 

Lumwana -12.2362 25.82228 100% 

North Mara -1.47333 34.51639 64% 

Pascua-Lama -29.3231 -70.0233 100% 

Porgera -5.465 143.095 48% 

Pueblo Viejo 18.93861 -70.1739 60% 

Turquoise Ridge 41.21639 -117.256 75% 

Veladero -29.3714 -69.9528 100% 

Zaldivar -24.2186 -69.0678 50% 

Other NA NA 100% 

On the following map, asset symbols are proportional to the share of the total NAV they represent: 
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Fig. A5: Map of Barrick Gold assets reported in (TD Securities, 2016 a.) 

Newmont Corporation mining assets  valued in (TD Securities, 2016 b.): 

Table A6: Mining assets valued in (TD Securities, 2016 b.) for Newmont Corporation 

Asset.Name Latitude Longitude Ownership 

Nevada 40.4651 -117.102 100.00% 

Cripple 

Creek & 

Victor 

38.72387 -105.153 100.00% 

Yanacocha -6.99417 -78.5319 51.40% 

Batu Haijau -8.96667 116.8667 44.60% 

Boddington -32.7417 116.3469 100.00% 
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Kalgoorlie -30.7781 121.505 50.00% 

Tanami -19.9769 129.7139 100.00% 

Ahafo 7.03076 -2.35953 100.00% 

Akyem 6.35876 -1.02607 100.00% 

Conga M&I -6.08424 -78.3616 51.40% 

Merian 5.125 -54.5467 75.00% 

Other NA NA 100% 

On the following map, asset symbols are proportional to the share of the total NAV they represent: 

 

Fig. A6: Map of Newmont Corporation assets reported in (TD Securities, 2016 b.) 

 



44 

 

The similarity between Barrick Gold and Newmont Corporation in terms of the localization of their assets and the value 

corresponding to given locations is here confirmed. 

Appendix B: Clustering in time and trend 

In this Appendix, we show the analysis of 𝑵𝒕
(𝒑) of all the portfolios mentioned in  5.1.1. We consider both a 1-day extreme 

rainfall event with a 100-year return level and a 30-day extreme rainfall event with a 10-year return level. We also use both 5 

the ECMWF and NOAA reanalysis datasets and therefore restrict  the time range to 1900-2010 for consistency. The p-values 

from Mann-Kendall tests performed  on the time series are indicated above each plot (computations performed for the period 

1900-2010). 
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Figure B1: Time series 𝑵𝒕 (𝒑)  of the yearly number of 1-day (left) and 30-day (right) extreme rainfall events hitting the four mine 
portfolios computed from two climate datasets: 20CR and ERA-20C 

Table B1: Mann-Kendall test results for the count of the number of extreme 30-day extreme rainfall event with a 10-year return 
level on four mine portfolios, using both the NOAA and ECMWF climate datasets (computations performed for the period 1851-5 

2014 for the 20CR data and 1900-2010 for ERA-20C) 

  20CR ERA-20C 

Company Slope sign Sen slope (p-value) Slope sign Sen slope (p-value) 

Barrick Gold + 0.017 (2.9e-10)   0 (0.14) 

BHP Billiton + 0.016 (2.9e-10)   0 (7.4e-2) 

Newmont Corporation + 0.011 (3.0e-9)   0 (0.18) 

Rio Tinto + 0.042 (2.7e-17) + 0.019 (9.9e-3) 

 

Table B1: Mann-Kendall test results for the count of the number of extreme 1-day extreme rainfall event with a 100-year return 

level on four mine portfolios, using both the NOAA and ECMWF climate datasets 

  20CR ERA-20C 

Company Slope sign Sen slope (p-value) Slope sign Sen slope (p-value) 

Barrick Gold   0 (1.2e-5)   0 (2.0e-2) 

BHP Billiton   0 (2.4e-3)   0 (0.65) 

Newmont Corporation   0 (4.4e-5)   0 (1.1e-2) 

Rio Tinto   0 (2.8e-9)   0 (0.18) 
 10 

The main conclusion to be drawn here is that while there seem to exist a positive trend in for the30 -day event many cases, in 

general, the significance level is lower when using the ERA-20C dataset; the p-values on the figure show that, at  the 5% 

level, significant positive trends were detected almost systematically using the 20CR dataset, but that it is only true for 

certain cases using the ERA-20C data. This emphasizes the need to take a crit ical approach towards those results, and the 

value of using multiple reanalysis models. 15 

Furthermore, all the sen slopes for the 100-year event are null, which is due to the fact that sen slopes are computed as the 

median of the slopes between the points of a given dataset. 
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Appendix C: Clustering in space 

In this appendix, we show the cdfs corresponding to the analysis of paragraph 4.1.2, considering both a 1-day ext reme event 

and a 30-day extreme event.  

 

 5 
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Figure C1: Comparison of the cdfs of the yearly number of 1-day (left) and 30-day (right) extreme rainfall events hitting the BHP, 

Barrick Gold, Newmont and Rio Tinto mine portfolios with the corresponding theoretical cdfs assuming independence of events in 

space and time (Poisson processes). Empirical distributions were derived from the 𝑵𝒕(𝒑) time series using the ecdf R function. The 
20CR dataset was used 

 5 

Figure C2: Comparison of the cdfs of the yearly number of 1-day (left) and 30-day (right) extreme rainfall events hitting the BHP, 

Barrick Gold, Newmont and Rio Tinto mine portfolios with the corresponding theoretical cdfs assuming independence of events in 

space and time (Poisson processes). Empirical distributions were derived from the 𝑵𝒕(𝒑) time series using the ecdf R function. The 
ERA-20C dataset was used. 
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As previously evoked, in each case, the empirical d istribution differs significantly from the theoretical Poisson process 

associated, with, in particular, a fatter tail. This is confirmed by the study of the 𝑟𝑘 ratios: 

 

Figure C3: ratio of the actual number of the number of 10 year 10 day extreme rainfall events fitting the four portfolio relative to 

what is expected by chance, for 3 thresholds of the portfolio cdf 5 
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Figure C4: ratio of the actual number of the number of 10 year 30 day extreme rainfall events fitting the four portfolio relative to 

what is expected by chance, for 3 thresholds of the portfolio cdf 

While BHP seems to be the portfolio with the most significant tail exposure in  terms of number of hits, one should note that 

the level of disaggregation of the BHP mine groups we decided on implied to consider each of the Orebodies mines (a group 5 

of mines close to each other in the Pilbara region) as an ind ividual asset; this may or may  not correspond to an investor’s 

perspective. In any case, from an investor perspective, what ultimately counts is the value exposed rather than the number of 

events across a portfolio. 

 

 10 
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