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Abstract. Long lead time flood forecasting is very important for large watershed 11 

flood mitigation as it provides more time for flood warning and emergency responses. 12 

Latest numerical weather forecast model could provide 1-15 days quantitative 13 

precipitation forecasting products at grid format, by coupling this product with 14 

distributed hydrological model could produce long lead time watershed flood 15 

forecasting products. This paper studied the feasibility of coupling the Liuxihe Model 16 

with the WRF QPF for a large watershed flood forecasting in southern China. The 17 

QPF of WRF products has three lead time, including 24 hour, 48 hour and 72 hour, 18 

the grid resolution is 20kmx20km. The Liuxihe Model is set up with freely 19 

downloaded terrain property, the model parameters were previously optimized with 20 

rain gauge observed precipitation, and re-optimized with WRF QPF. Results show 21 

that the WRF QPF has bias with the rain gauge precipitation, and a post-processing 22 

method is proposed to post process the WRF QPF products, which improves the flood 23 

forecasting capability. With model parameter re-optimization, the model’s 24 

performance improves also, it suggests that the model parameters be optimized with 25 

QPF, not the rain gauge precipitation. With the increasing of lead time, the accuracy 26 

of WRF QPF decreases, so does the flood forecasting capability. Flood forecasting 27 

products produced by coupling Liuxihe Model with WRF QPF provides good 28 
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reference for large watershed flood warning due to its long lead time and rational 29 

results.  30 

 31 

Key words ： WRF, Liuxihe Model, Flood forecasting, lead time, parameter 32 

optimization 33 

 34 

1 Introduction 35 

Watershed flood forecasting is one of the most important non-engineering measures 36 

for flood mitigation(Tingsanchali, 2012, Li et al., 2002), significant progresses in 37 

watershed flood forecasting has been made in the past decades(Borga et al., 2011, 38 

Moreno et al., 2013). Lead time is a key index for watershed flood forecasting, 39 

especially for large watershed (Toth et al., 2000, Han et al., 2007). Only flood 40 

forecasting products with long lead time is useful as it could provide enough time for 41 

flood warning and flood emergency responses. In the long practice of flood 42 

forecasting, ground based rain gauge measured precipitation is the main input for 43 

flood forecasting model, but as this kind of precipitation is the rainfall falling to the 44 

ground already, so it has no lead time. This makes the watershed flood forecasting 45 

with very short lead time (Jasper et al., 2002), and could not satisfy the requirement of 46 

flood warning (Shim et al., 2002) in lead time, particularly in large watershed, thus 47 

reducing the value of the flood forecasting products in watershed flood mitigation. 48 

 49 

The developed numerical weather prediction model in the past decades could provide 50 

longer lead time quantitative precipitation forecast(QPF) product at grid format, the 51 

lead time for the latest weather prediction model could be as long as to 1~15 days 52 
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(Buizza,1999, Ahlgrimm et al., 2016). By coupling the weather prediction model QPF 53 

with flood forecasting model, the flood forecasting lead time thus could be extended, 54 

this provides new way for large watershed flood forecasting (Jasper et al., 2002, 55 

Zappa et al., 2010, Giard and Bazile, 2000). Many numerical weather prediction 56 

models have been proposed and put into operational use, such as the European Centre 57 

Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS) 58 

(Molteni et. al., 1996, Barnier et. al.,1995), the weather research and forecasting 59 

(WRF) model (Skamarock, 2005, 2008, Maussion, 2011), the numerical weather 60 

forecast model of Japan Meteorological Agency (Takenaka et al., 2011, Gao and Lian, 61 

2006), the numerical forecast model of China Meteorological Agency (Li and Chen, 62 

2002), and others.  63 

 64 

Watershed flood forecasting relies on hydrological model for computation tool, while 65 

the precipitation is the model’s driving force. The earliest hydrological model is 66 

regarded as the Sherman unit-graph (Sherman, 1932), which belongs to the category 67 

of lumped hydrological model. Many lumped hydrological models have been 68 

proposed, such as the Sacramento model (Burnash, 1995), the NAM model (DHI, 69 

2004), the Xinanjiang model (Zhao, 1977), among others. The lumped hydrological 70 

model regards the watershed as a whole hydrological unit, thus the model parameter is 71 

the same over the watershed, but this is not true, particularly for a large watershed. 72 

The precipitation the lumped hydrological model used is averaged over the watershed 73 

also, this further increases the model’s uncertainty in large watershed flood 74 

forecasting as it is well known that the precipitation distribution over the watershed is 75 

highly uneven. The QPF produced by numerical weather prediction model forecasts 76 

precipitation at grid format, which provides detailed precipitation distribution 77 
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information over watershed, it is another advantage of QPF. The lumped hydrological 78 

model could not take the advantage of gridded WPF products.  79 

 80 

The latest development of watershed hydrological model is the distributed 81 

hydrological model (Refsgaard et. al., 1996), which divides the watershed into grids, 82 

and different grids could have their own precipitation, terrain property and model 83 

parameter, so distributed hydrological model is the ideal model for coupling WRF 84 

QPF for watershed flood forecasting. The first proposed distributed hydrological 85 

model is SHE model (Abbott et. al.1986a, 1986b), and now many distributed 86 

hydrological models have been proposed, and a few have been used for watershed 87 

flood forecasting, such as the SHE model (Abbott et. al.1986a, 1986b), the 88 

WATERFLOOD model (Kouwen, 1988), the VIC model (Liang et. al., 1994), the 89 

WetSpa model (Wang et. al., 1997), the Vflo model (Vieux et. al., 2002), the WEHY 90 

model(Kavvas et al., 2004), the Liuxihe model (Chen et. al., 2009, 2011), among 91 

others. 92 

 93 

As distributed hydrological model calculates the hydrological process at grid scale, so 94 

the computation time needed for runing the distributed hydrological model is huge 95 

even for a small watershed, which limits the model’s application in watershed flood 96 

forecating, particularly in large watershed. Model parameter uncertainty related to 97 

distributed hydrological model also impacted its application. But with the 98 

development of parallel computation algorithm for distributed hydrollogical model 99 

and its deployment on supercomputer (Chen et. al., 2013), the computation burden is 100 

not a challenge of distributed hydrological modeling anymore. Also with the 101 
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development of automatical parameter optimization of distributed hydrological model 102 

in flood forecating (Madsen et. al., 2003, Shafii et. al., 2009, Xu et. al., 2012, Chen et. 103 

al., 2016), the model parameters could be optimized, and the model’s performance 104 

could be improved largely. With these advances, now distributed hydrological model 105 

could be used for large watershed flood forecasting.  106 

 107 

In this paper, the WRF QPF is coupled with the distributed hydrological model-the 108 

Liuxihe model for a large watershed flood forecasting in southern China. The spatial 109 

and temporal resolution of WRF QPF is at 20km*20km and 1 hour respectively with 110 

three lead time, including 24 hour, 48 hour and 72 hour. The WRF QPF has a similar 111 

pattern with that estimated by rain gauges, but overestimates the averaged watershed 112 

precipitation, and the longer the WRF QPF lead time, the higher the precipitation 113 

overestimation. WRF QPF has systematic bias compared with rain gauge precipitation, 114 

a post-processing method is proposed to post process the WRF QPF products, which 115 

improves the flood forecasting capability. The Liuxihe Model is set up with freely 116 

downloaded terrain property, the model parameters were previously optimized with 117 

rain gauge observed precipitation, and re-optimized with WRF QPF. With model 118 

parameter re-optimization, the model’s performance improved, model parameters 119 

should be optimized with QPF, not the rain gauge precipitation. Flood forecasting 120 

products produced by coupling Liuxihe Model with WRF QPF provides good 121 

reference for large watershed flood warning due to its long lead time and rational 122 

results. 123 
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2 Studied area and data 124 

2.1 Studied area 125 

Liujiang River Basin(LRB) is selected as the studied area, which is the largest first 126 

order tributary of the Pearl River with a drainage area of 58270 km
2
(Chen et. al., 127 

2016). LRB is in the monsoon area with heavy storms that induces severe flooding in 128 

the watershed, and caused huge flood damages in the past centuries. Fig. 1 is a sketch 129 

map of LRB. 130 

 131 

Fig. 1 is here 132 

 133 

2.2 Rain gauge precipitation and river flow discharge 134 

Precipitation of 68 rain gauges within the watershed in 2011, 2012 and 2013 was 135 

collected and used in this study to compare with the WRF QPF. Precipitation data is at 136 

one hour interval. River discharge near the watershed outlet is collected also for this 137 

same period. As this study focus on watershed flood forecasting, so only the 138 

precipitation and river discharge during the flood events are prepared. There is one 139 

flood event in each year, the flood events are numbered as flood event 2011, flood 140 

event 2012 and flood event 2013 respectively. 141 

3 WRF QPF and post-processing 142 

3.1 WRF model 143 

The WRF model (Skamarock et. al., 2005, 2008) is considered as the next 144 

generation’s medium term weather forecasting model, and can simulate different 145 
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weather processes from cloud scale to synoptic scale, especially in horizontal 146 

resolution of 1 ~ 10 km. Also, it integrates the advanced numerical methods and data 147 

assimilation techniques, a variety of physically process schemes, and multiple nested 148 

methods and the capability of being used in different geographical locations. The 149 

development of WRF model satisfies the needs of scientific research and practical 150 

application, and could be further improved and strengthened. Now WRF model has 151 

replaced the previously used MM5 model. 152 

 153 

Many studies have been carried out in quantitative precipitation forecasting by using 154 

WRF model, for example, Kumar et al. (2008) used WRF model to study a heavy rain 155 

in 2005, the result showed that WRF system could reproduce the storm event and its 156 

dynamical and thermo-dynamical characteristics. Hong and Lee (2009) set up a triply 157 

nested WRF model to simulate the initiation of a thunderstorm, conducted the 158 

sensitivity test. Maussion et. al. (2011) compared the capability of WRF model in 159 

retrieving monthly precipitation and snowfall at three different spatial resolution 160 

including 30、10 and 2 km, the result showed that WRF model had a good 161 

performance in simulating monthly precipitation and snowfall in Tibet. Givati et al. 162 

(2012) predicted the hiemal precipitation event of 2008 and 2009 based on WRF 163 

model in upstream of the Jordan River, and coupled WRF model with hydrological 164 

model-HYMKE to simulate the velocity and discharge of Jordan River. Pennelly et. al.165 

（2014）employed WRF model to predict three precipitation events of Alberta, 166 

Canada, and compared the precipitation with 48 hour leading time predicted by WRF 167 

model and the precipitation observed by rain gauges, the result showed that 168 

Kain-Fritsch scheme overestimated the value of precipitation invariably. Zhang (2004) 169 
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introduced the WRF version 2 and grapes 3d variation assimilation, the simulation 170 

and real-time forecasting results of weather conditions showed that WRF model had a 171 

good performance in forecasting all kinds of weather conditions and had the ability to 172 

predict the air quality. Niu et. al.（2007）tested the sensitivity of microphysical scheme 173 

to a typical heavy rain based on WRF model, and analyzed the performance of 174 

precipitation predicted from the precipitation region, center position and rainfall 175 

intensity. Xu et. al.（2007）compared the hiemal continuous precipitation process 176 

predicted with the estival results by WRF model, the results showed that the KF 177 

scheme was better than BM scheme in summer. Hu et. al.（2008）found that the 178 

parameterization scheme of WRF model was related to the model resolution, and the 179 

parameterization scheme should be selected by the resolution of WRF model.  180 

Huang et. al. （ 2011 ） found that variations in the microphysical process 181 

parameterization schemes had much more influence on precipitation than that of 182 

cumulus parameterization schemes, especially for a torrential rain attributed to 183 

large-scale forcing that mainly resulted from stratus clouds. Wang and Ma (2011) 184 

introduced the application of WRF model from the physics parameterization scheme, 185 

real-time simulation study and the comparison with MM5 model in China in recent 186 

decade. Pan et. al.（2012）used two WRF simulation groups between pre-process and 187 

post-process in Heihe river basin, and compared and analyzed the mean bias error, 188 

root mean square error and correlation coefficient of the two WRF groups.  189 

3.2 WRF QPE of LRB 190 

The WRF model（version 3）was set up in LRB by Li et. al. (2014), the model domain 191 

is centered at 23.8N, 109.2W, and the projection is Lambert conformal projection. The 192 

vertical structure includes 28 layers covering the whole troposphere. The WRF 193 
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single-moment 3-class microphysics parameterization, i.e., the Kain-Fritsch (Kain, 194 

2004) andcumulus parameterization (Hong and Lim, 2006)  were adopted for 195 

precipitation simulation. The parameterization scheme of WRF is more than that of 196 

other mesoscale numerical weather prediction (NWP), which includes 5 kinds of 197 

physical parameterization schemes: microphysical process, cumulus, land surface 198 

processes, atmospheric radiation and planetary boundary layer. There are 13 199 

microphysical process parameterization schemes, Purdue Lin scheme was used in this 200 

study as microphysical process. The parameterization scheme of precipitation was 201 

improved based on the scheme Lin et al. (1983) as well as Rutledge and Hobbs (1983), 202 

which is more mature than other schemes and is suited to simulate the high resolution 203 

real time data. 204 

 205 

The spatial and temporal resolution of WRF is at 20km*20km and 1 hour respectively, 206 

so there are 156 WRF grids in LRB. QPF products in 2011, 2012 and 2013 were 207 

produced at 3 different lead time, respectively 24 hours, 48 hours and 72 hours. Fig. 2, 208 

3 and 4 are WRF QPF in three different years, while (a) is the rain gauge precipitation, 209 

(b) is the WRF QPF with 24 hour lead time, (c) is the WRF QPF with 48 hour lead 210 

time, and (d) is the WRF QPF with 72 hour lead time. 211 

 212 

Fig. 2 is here 213 

Fig. 3 is here 214 

Fig. 4 is here 215 

 216 
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3.3 Comparison of WRF QPF and rain gauges precipitation 217 

WRF QPF and rain gauge precipitation are compared in this study. From the results of 218 

Fig. 2, 3 and 4, it could be found that the temporal precipitation pattern of both 219 

products are similar, there are some kinds of differences, but the difference is not 220 

significant. To make further comparison, the accumulated precipitation of the three 221 

flood events averaged over the watershed are calculated and listed in Table 1. 222 

 223 

Table 1 is here 224 

 225 

From the results of Table 1, it could be found that the WRF QPF accumulated 226 

precipitation has obvious bias with rain gauge accumulated precipitation. For all the 227 

three flood events, the WRF QPF accumulated precipitation are higher than those 228 

estimated by rain gauge, i. e., the WRF QPF overestimates the precipitation. For flood 229 

event 2011, the overestimated watershed averaged precipitation of WRF QPF with 230 

lead time of 24 hour, 48 hour and 72 hour are 23%, 32% and 55% respectively, for 231 

flood event 2012, they are 16%, 37% and 71% respectively, for flood event 2013, they 232 

are 50%, 73% and 95% respectively. This also means that the longer the WRF QPF 233 

lead time, the higher the overestimation. 234 

3.4 WRF QPF post-processing 235 

From the results of Fig. 2, 3 and 4, and Table 1, the WRF QPF has significant bias 236 

with rain gauge precipitation. If the rain gauge precipitation is assumed correct, then 237 

WRF QPF has error. So in this study the WRF QPF is post-processed based on the 238 

rain gauge precipitation to correct the systematic error of WRF QPF. The principle of 239 
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WRF QPF post-processing proposed in this study is to keep the areal averaged event 240 

accumulated precipitation from both products are similar, i.e., to adjust the WRF QPF 241 

precipitation to make its event accumulated precipitation equal to that of rain gauge. 242 

Based on this principle, the WRF QPF post-processing procedure is summarized as 243 

follows: 244 

 245 

1) Calculate the areal average precipitation of the WRF QPF for each flood events 246 

over the watershed as following equation. 247 

1

N

i i

i
WRF

PF

P
N




（1） 248 

Where, WRFP  is the areal average precipitation of WRF QPF of one flood event, iP  is 249 

the precipitation on WRF grid i, iF  is the drainage area of WRF grid i, N is the total 250 

number of WRF grids. 251 

2) Calculate the areal average precipitation of the rain gauges with the following 252 

equation. 253 

1

2

M

j

j

P

P
M





（2） 254 

Where, 2P is the areal average precipitation of the rain gauges network, jP is the 255 

precipitation observed by jth rain gauge, M is the total number of rain gauges. 256 

3) The precipitation of every WRF QPF grids then could be revised with the 257 

M
Cross-out
are 

M
Note
events --> event

M
Note
as --> with the 

M
Note
grids --> grid



- 12 - 

 

following equation. 258 

' 2
i i

WRF

P
P P

P
 （3） 259 

Where, '

iP  is the revised precipitation of ith WRF grid. 260 

With the above WRF QPF post-processing method, the WRF QPF of flood event 2011, 261 

2012 and 2013 were post-processed, and will be used to couple with the Liuxihe 262 

Model for flood simulation. 263 

3 Hydrological model 264 

3.1 Liuxihe Model 265 

Liuxihe model is a physically based fully distributed hydrological model proposed 266 

mainly for watershed flood forecasting (Chen, 2009, Chen et. al., 2011), and has been 267 

used in a few watersheds flood forecasting(Chen, 2009, Chen et. al., 2011, 2013, 2016, 268 

Liao et. al., 2012 a, b, Xu et. al., 2012 a, b). In Liuxihe Model, runoff components are 269 

calculated at grid scale, runoff routes at both grid and watershed scale. Runoff routing 270 

is divided into hill slope routing and river channel routing by using different 271 

computation algorithm. Liuxihe Model proposed an automatic parameter optimization 272 

method using PSO algorithm (Chen et. al., 2016), which largely improves the model’s 273 

performance in watershed flood forecasting. Now Liuxihe Model is deployed on a 274 

supercomputer system with parallel computation techniques (Chen et. al., 2013) that 275 

largely facilitates the model parameter optimization of Liuxihe Model.  276 

 277 

Chen et. al. (2016) set up Liuxihe Model in LRB with freely downloaded terrain 278 

property data from the website at a spatial resolution of 200m*200m, and optimized 279 

model parameters with observed hydrological data. The model was validated by 280 
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observed flood events data, and the model performance is found rational and could be 281 

used for real-time flood forecasting. The model only uses rain gauge precipitation, so 282 

its flood forecasting lead time is limited. In this study, the Liuxihe Model set up in 283 

LRB and the optimized model parameters will be used in this study as the first 284 

attempt, Fig. 5 is the model structure.  285 

 286 

Fig.5 is here 287 

 288 

3.2 Liuxihe Model parameter optimization 289 

As the model parameters optimized by Chen et. al. (2016) is done by using the rain 290 

gauge precipitation, but this study uses the WRF QPF as the precipitation input, so the 291 

parameters of Liuxihe Model set up in LRB may not appropriate for coupling the 292 

WRF QPF. For this reason, considering Liuxihe Model is a physically based 293 

distributed hydrological model, one flood event could be used for parameter 294 

optimization, the parameters were optimized again by using the WRF QPF in 2011, 295 

the WRF QPF is the post-processed one, not the original one. Results of parameter 296 

optimization are shown in Fig. 6, among them, (a) is the objective function evolution 297 

result, (b) is the parameters evolution result, and (c) is the simulated flood process by 298 

using the optimized model parameters. To compare, the simulated flood process of 299 

flood event 2011 was also drawn in Fig. 6(c). 300 

 301 

Fig. 6 is here 302 

 303 

From the result of Fig. 6(c), it could be found that the optimized model parameters 304 
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with WRF QPF improved much than that simulated with rain gauge precipitation, this 305 

means parameter optimization with WRF QPF is necessary. 306 

3.3 Coupling WRF QPF with Liuxihe Model for LRB flood forecasting 307 

The Liuxihe Model set up for LRB flood forecasting (Chen et. al., 2016) is employed 308 

to couple with the WRF QPF, the model spatial resolution remains to be 200m*200m. 309 

As the spatial resolution of WRF QPF is at 20km*20km, the WRF QPF was 310 

downscaled to the resolution of 200m*200m by using the nearest downscaling 311 

method, the same spatial resolution of the flood forecasting model.  312 

4 Results and discussions 313 

4.1 Effects of WRF post-processing 314 

The original WRF QPF and the post-processed QPF are used to couple with the 315 

Liuxihe Model, in this simulation, the original model parameters that is optimized 316 

with the rain gauge precipitation are employed, not the re-optimized model 317 

parameters, the simulated results are shown in Fig. 7, 8 and 9. 318 

 319 

Fig. 7 is here 320 

Fig. 8 is here 321 

Fig. 9 is here 322 

 323 

From the above results, it could be seen that the simulated flood discharges with the 324 

original WRF QPF is much lower than the observed ones, but with post-processed 325 

WRF QPF used, the simulated flood discharge increased and much more close to the 326 
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observation, this implies that the flood forecasting capability has been improved by 327 

post-processing of WRF QPF. To further compare the three results, 5 evaluation 328 

indices, including Nash-Sutcliffe coefficient(C), correlation coefficient(R), process 329 

relative error(P), peak flow relative error(E) and water balance coefficient(W) are 330 

calculated and listed in Table 2.  331 

 332 

Table 2 is here 333 

 334 

From the results of Table 2, it has been found that all the 5 evaluation indices have 335 

been improved by coupling the post-processed WRF QPF. For example, to flood 336 

event 2011 with 24 hour lead time, the Nash-Sutcliffe coefficient/C, correlation 337 

coefficient/R, process relative error/P, peak flow relative error/E and coefficient of 338 

water balance/W with original WRF QPF are 0.65, 0.88, 35%, 14% and 1.44 339 

respectively, but those with the post-processed WRF QPF are 0.75, 0.93, 23%, 8% 340 

and 1.15 respectively. To flood event 2012 with 48 hour lead time, the above 5 341 

evaluation indices with original WRF QPF are 0.63, 0.75, 48%, 12% and 1.43 342 

respectively, and are 0.75, 0.84, 26%, 8% and 1.32 respectively with the 343 

post-processed WRF QPF. To flood event 2013 with 72 hour lead time, the above 5 344 

evaluation indices with original WRF QPF are 0.44, 0.75, 129%, 45% and 1.66 345 

respectively, and are 0.55, 0.82, 98%, 23%, 1.25 respectively with the post-processed 346 

WRF QPF. It is obvious that with the post-processed WRF QPF, the evaluation 347 

indices are improved much more. These results show that WRF QPF post processing 348 

could improve the flood forecasting capability because the WRF  QPF is more close 349 

to the observed precipitation after post-processing, so it should be done for real-time 350 

flood forecasting. 351 
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4.2 Results comparison for different model parameters 352 

The model parameters optimized with rain gauge precipitation and WRF QPF are 353 

different, so different parameter will have different model performance. To analyze 354 

this effect, the flood events of 2012 and 2013 with two different sets of model 355 

parameters are simulated, and are shown in Fig. 10 and Fig. 11 respectively, only the 356 

post-processed WRF QPF are coupled in this simulation.  357 

 358 

 Fig. 10 is here 359 

Fig. 11 is here 360 

 361 

From the above results it has been found that the simulated flood results with 362 

re-optimized model parameters is better than that simulated with the original model 363 

parameters, the simulated flood discharge with the re-optimized model parameters is 364 

more fitting the observation. To further compare the two results, 5 evaluation indices, 365 

including Nash-Sutcliffe coefficient(C), correlation coefficient(R), process relative 366 

error(P), peak flow relative error(E) and water balance coefficient(W) are calculated 367 

and listed in Table 3.  368 

 369 

Table 3 is here 370 

 371 

From the results of Table 3, it has been found that the results of flood simulation 372 

based on the re-optimized model parameters have better evaluation indices. All 373 

evaluation indices for that based on re-optimized model parameters improved. For 374 

example, for flood event 2012 with 24 hour lead time, the Nash-Sutcliffe 375 
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coefficient/C, correlation coefficient/R, process relative error/P, peak flow relative 376 

error/E and coefficient of water balance/W with original model parameters are 0.58, 377 

0.82, 35%, 12% and 1.08 respectively, but those with the re-optimized model 378 

parameters are 0.74, 0.86, 28%, 8% and 0.95 respectively. For flood event 2013 with 379 

48 hour lead time, the 5 indices with the original model parameters are 0.62, 0.86, 380 

22%, 13% and 1.24 respectively, and are 0.68, 0.89, 18%, 9% and 1.06 respectively 381 

for those with re-optimized model parameters. So it could be said that in coupling the 382 

WRF QPF with distributed hydrological model, the model parameters needs to be 383 

re-optimized with the WRF QPF. This finding implies that the precipitation pattern 384 

has obvious impact to model parameters, it should be considered, and model 385 

parameter optimization is a rational way for considering this effect. 386 

 387 

4.3 Flood simulation accuracy with different lead time 388 

To compare the model performance with different lead time, the flood events with 3 389 

different lead time is simulated and shown in Fig. 12, the model parameters are the 390 

re-optimized ones, and the QPF is the post-processed QPF. 391 

 392 

Fig. 12 is here 393 

 394 

From the results of Fig. 12, it could be seen that the flood simulation result gets worse 395 

as the lead time increases, i.e., the model performance with 24 hour lead time is better 396 

than that with 48 hour lead time, and the model performance with 48 hour lead time is 397 

better than that with 72 hour lead time. The simulated hydrological process with 24 398 

hour lead time is very similar with that simulated with rain gauge precipitation. To 399 

further compare the results, 5 evaluation indices, including Nash-Sutcliffe 400 
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coefficient(C), correlation coefficient(R), process relative error(P), peak flow relative 401 

error(E) and water balance coefficient(W) are calculated and listed in Table 4.  402 

 403 

Table 4 is here 404 

 405 

From the results of Table 4, it has been found that the simulated flood events with 24 406 

hour lead time has best evaluation indices, and is very close to that simulated with 407 

rain gauge precipitation. For flood event 2012, the Nash-Sutcliffe coefficient/C, 408 

correlation coefficient/R, process relative error/P, peak flow relative error/E and 409 

coefficient of water balance/W with rain gauge are 0.82, 0.89, 20%, 5% and 0.8 410 

respectively, those with 24 hour lead time are 0.74, 0.86, 28%, 8% and 0.95 411 

respectively, those with 48 hour lead time are 0.63, 0.84, 48%, 12% and 1.32 412 

respectively, and are 0.56, 0.56, 56%, 18% and 1.54 respectively for 72 hour lead time. 413 

For flood event 2013, the Nash-Sutcliffe coefficient/C, correlation coefficient/R, 414 

process relative error/P, peak flow relative error/E and coefficient of water balance/W 415 

with rain gauge are 0.95, 0.92, 8%, 6% and 1.08 respectively, those with 24 hour lead 416 

time are 0.87, 0.87, 9%, 12% and 1.02 respectively, those with 48 hour lead time are 417 

0.62, 0.86, 22%, 13% and 1.24 respectively, and are 0.61, 0.87, 75%, 17% and 1.66 418 

respectively for 72 hour lead time. This finding means that the current WRF QPF 419 

capability is lead-time dependent, and with the increasing of lead time, the practical 420 

value of WRF QPF gets lower. 421 

5 Conclusion 422 

In this study, the WRF QPF is coupled with a distributed hydrological model-the 423 

Liuxihe model for large watershed flood forecasting, and three lead time of WRF QPF 424 
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products, including 24 hours, 48 hours and 72 hours are tested. WRF QPF post 425 

processing method is proposed and tested, model parameters are re-optimized by 426 

using the post-processed WRF QPF, model performance are compared among very 427 

conditions. Based on the results of this study, the following conclusions could be 428 

drawn: 429 

 430 

1) The quantitative precipitation forecasting produced by WRF model has a similar 431 

pattern with that estimated by rain gauges temporally, but overestimated the averaged 432 

watershed precipitation on the event accumulated total precipitation, and the longer 433 

the WRF QPF lead time, the higher the precipitation overestimation. For flood event 434 

2011, the overestimated watershed averaged precipitation of WRF QPF with lead time 435 

of 24 hour, 48 hour and 72 hour are 23%, 32% and 55% respectively, for flood event 436 

2012, these are 16%, 37% and 71% respectively, while for flood event 2013, these are 437 

50%, 73% and 95% respectively.  438 

 439 

2. WRF QPF has systematic bias compared with rain gauge precipitation, and this 440 

bias could be reduced via post-processing. Principle used in this study for WRF QPF 441 

post processing is effective and could improve the flood forecasting capability. For 442 

flood event 2011 with 24 hour lead time, the Nash-Sutcliffe coefficient/C, correlation 443 

coefficient/R, process relative error/P, peak flow relative error/E and coefficient of 444 

water balance/W with original WRF QPF are 0.65, 0.88, 35%, 14% and 1.44 445 

respectively, but those with the post-processed WRF QPF are 0.75, 0.93, 23%, 8% 446 

and 1.15 respectively. For flood event 2012 with 48 hour lead time, the above 5 447 

evaluation indices with original WRF QPF are 0.63, 0.75, 48%, 12% and 1.43 448 

respectively, and are 0.75, 0.84, 26%, 8% and 1.32 respectively with the 449 
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post-processed WRF QPF. For flood event 2013 with 72 hour lead time, the above 5 450 

evaluation indices with original WRF QPF are 0.44, 0.75, 129%, 45% and 1.66 451 

respectively, and are 0.55, 0.82, 98%, 23%, 1.25 respectively with the post-processed 452 

WRF QPF. 453 

 454 

3. Hydrological model parameters optimized with the rain gauge precipitation needs 455 

to be re-optimized using the post-processed WRF QPF, this improves the model 456 

performance largely, i.e., in coupling distributed hydrological model with QPF for 457 

flood forecasting, the model parameters should be optimized with the QPF produced 458 

by WRF. For flood event 2012 with 24 hour lead time, the Nash-Sutcliffe 459 

coefficient/C, correlation coefficient/R, process relative error/P, peak flow relative 460 

error/E and coefficient of water balance/W with original model parameters are 0.58, 461 

0.82, 35%, 12% and 1.08 respectively, but those with the re-optimized model 462 

parameters are 0.74, 0.86, 28%, 8% and 0.95 respectively. For flood event 2013 with 463 

48 hour lead time, the 5 indices with the original model parameters are 0.62, 0.86, 464 

22%, 13% and 1.24 respectively, and are 0.68, 0.89, 18%, 9% and 1.06 respectively 465 

for those with re-optimized model parameters.  466 

 467 

4. The simulated floods by coupling WRF QPF with distributed hydrological model is 468 

rational and could benefit the flood management communities due to its longer lead 469 

time for flood warning, it provides a good reference for large watershed flood warning. 470 

But with the lead time getting longer, the flood forecasting accuracy is getting lower. 471 

For flood event 2012, the Nash-Sutcliffe coefficient/C, correlation coefficient/R, 472 

process relative error/P, peak flow relative error/E and coefficient of water balance/W 473 

with rain gauge are 0.82, 0.89, 20%, 5% and 0.8 respectively, those with 24 hour lead 474 

M
Note
needs --> need

M
Note
largely, i.e., in --> significantly. That is, 

M
Note
insert "the" here

M
Note
is --> are

M
Note
its --> their

M
Note
time --> times

M
Note
warning, it provides --> warning. They provide

M
Note
insert "while" here



- 21 - 

 

time are 0.74, 0.86, 28%, 8% and 0.95 respectively, those with 48 hour lead time are 475 

0.63, 0.84, 48%, 12% and 1.32 respectively, and are 0.56, 0.56, 56%, 18% and 1.54 476 

respectively for 72 hour lead time. For flood event 2013, the Nash-Sutcliffe 477 

coefficient/C, correlation coefficient/R, process relative error/P, peak flow relative 478 

error/E and coefficient of water balance/W with rain gauge are 0.95, 0.92, 8%, 6% 479 

and 1.08 respectively, those with 24 hour lead time are 0.87, 0.87, 9%, 12% and 1.02 480 

respectively, those with 48 hour lead time are 0.62, 0.86, 22%, 13% and 1.24 481 

respectively, and are 0.61, 0.87, 75%, 17% and 1.66 respectively for 72 hour lead 482 

time. 483 
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 490 

Figures 491 

 492 

Fig. 1 Sketch map of Liujiang River Basin( Chen et. al., 2016) 493 

 494 

 495 
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 496 

(a)  497 

 498 

(b)  499 
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 500 

(c)  501 

 502 

(d)  503 

Fig. 2 Precipitation pattern comparison of two precipitation products(2011), (a) is the 504 

average precipitation of rain gauges, (b) is the average precipitation of WRF with 24 505 

hour lead time, (c) is the average precipitation of WRF with 48 hour lead time, (d) is 506 

the average precipitation of WRF with 72 hour lead time. 507 

 508 
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 509 

(a)  510 

 511 

(b)  512 
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 513 

(c)  514 

 515 

(d)  516 

Fig. 3 Precipitation pattern comparison of two precipitation products(2012) , (a) is the 517 

average precipitation of rain gauges, (b) is the average precipitation of WRF with 24 518 

hour lead time, (c) is the average precipitation of WRF with 48 hour lead time, (d) is 519 

the average precipitation of WRF with 72 hour lead time. 520 

 521 
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 522 

(a)  523 

 524 

(b)  525 
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 526 

(c)  527 

 528 

(d)  529 

Fig. 4 Precipitation pattern comparison of two precipitation products(2013), (a) is the 530 

average precipitation of rain gauges, (b) is the average precipitation of WRF with 24 531 

hour lead time, (c) is the average precipitation of WRF with 48 hour lead time, (d) is 532 

the average precipitation of WRF with 72 hour lead time. 533 
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 534 

Fig.5 Liuxihe Model structure of LRB (200m×200m resolution, Chen et. al., 2016) 535 

 536 

 (a) Evolutionary process of objective function 537 
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 538 

(b) Parameter evolution process 539 

 540 

(c) Simulated flood process with optimized model parameters 541 

Fig. 6 Parameter optimization results of Liuxihe Model for LRB with WRF QPF 542 

 543 
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 544 

(a) 24 hour lead time 545 

 546 

(b) 48 hour lead time 547 

 548 

(c) 72 hour lead time 549 

Fig. 7 Coupled flood simulation results with original model parameters (2011) 550 
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 551 

(a) 24 hour lead time 552 

 553 

(b) 48 hour lead time 554 

 555 

(c) 72 hour lead time 556 

Fig. 8 Coupled flood simulation results with original model parameters(2012) 557 
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 558 

(a) 24 hour lead time 559 

 560 

(b) 48 hour lead time 561 

 562 

(c) 72 hour lead time 563 

Fig. 9 Coupled flood simulation results with original model parameters (2013) 564 
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 565 

(a) 24 hour lead time 566 

 567 

(b) 48 hour lead time 568 

 569 

(c) 72 hour lead time 570 

Fig. 10 Coupled flood simulation results with re-optimized model parameters (2012) 571 
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 572 

(a) 24 hour lead time 573 

 574 

(b) 48 hour lead time 575 

 576 

(c) 72 hour lead time 577 

Fig. 11 Coupled flood simulation results with re-optimized model parameters (2013) 578 
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 579 

(a) Flood event 2012 580 

 581 

(b) Flood event 2013 582 

Fig. 12 Simulated results with different lead time 583 

  584 
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Tables 585 

Table 1 Precipitation comparison of two products 586 

Flood 

event no. 
Precipitation products average precipitation(mm) 

relative 

bias % 

2011 

rain gauges 0.22   

WRF/24h 0.27 23  

WRF/48h 0.29 32  

WRF/72h 0.34 55  

2012 

rain gauges 0.38   

WRF/24h 0.44 16  

WRF/48h 0.52 37  

WRF/72h 0.65 71  

2013 

rain gauges 0.22   

WRF/24h 0.33 50  

WRF/48h 0.38 73  

WRF/72h 0.43 95  

 587 

 588 

Table 2 Evaluation indices of simulated flood events with post-processed WRF QPF 589 

Rain type statistical index 201101010 20120101 20130101 

WRF/24h 

Nash-Sutcliffe 

coefficient/C 
0.65 0.48 0.65 

Correlation 

coefficient/R 
0.88 0.73 0.83 

Process relative error/P 0.35 0.57 0.19 

Peak flow relative 

error/E 
0.14 0.18 0.25 

The coefficient of 

water balance/W 
1.44 1.35 1.38 
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WRF/24h after 

revised 

Nash-Sutcliffe 

coefficient/C 
0.75 0.58 0.75 

Correlation 

coefficient/R 
0.93 0.82 0.85 

Process relative error/P 0.23 0.35 0.11 

Peak flow relative 

error/E 
0.08 0.12 0.16 

The coefficient of 

water balance/W 
1.15 1.08 1.12 

WRF/48h 

Nash-Sutcliffe 

coefficient/C 
0.58 0.63 0.5 

Correlation 

coefficient/R 
0.78 0.75 0.8 

Process relative error/P 0.52 0.48 0.34 

Peak flow relative 

error/E 
0.41 0.12 0.24 

The coefficient of 

water balance/W 
1.52 1.43 1.51 

WRF/48h after 

revised 

Nash-Sutcliffe 

coefficient/C 
0.64 0.75 0.62 

Correlation 

coefficient/R 
0.82 0.84 0.86 

Process relative error/P 0.45 0.26 0.22 

Peak flow relative 

error/E 
0.34 0.08 0.13 

The coefficient of 

water balance/W 
1.22 1.32 1.24 

WRF/72h 

Nash-Sutcliffe 

coefficient/C 
0.45 0.66 0.44 

Correlation 

coefficient/R 
0.68 0.36 0.75 

Process relative error/P 0.64 0.62 1.29 
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Peak flow relative 

error/E 
0.31 0.35 0.45 

The coefficient of 

water balance/W 
1.67 1.54 1.66 

WRF/72h after 

revised 

Nash-Sutcliffe 

coefficient/C 
0.52 0.75 0.55 

Correlation 

coefficient/R 
0.75 0.45 0.82 

Process relative error/P 0.53 0.52 0.98 

Peak flow relative 

error/E 
0.11 0.22 0.23 

The coefficient of 

water balance/W 
1.15 1.14 1.25 

 590 

Table 3 Evaluation indices of simulated flood event with different model parameters 591 

parameter type statistical index 201101010 20120101 20130101 

Coupling model 

24h/originally 

optimized model 

parameters 

Nash-Sutcliffe coefficient/C 0.75 0.58 0.75 

Correlation coefficient/R 0.93 0.82 0.85 

Process relative error/P 0.23 0.35 0.11 

Peak flow relative error/E 0.08 0.12 0.16 

The coefficient of water 

balance/W 
1.15 1.08 1.12 

Coupling 

model24h 

/re-optimized 

model parameters 

Nash-Sutcliffe coefficient/C 0.78 0.74 0.87 

Correlation coefficient/R 0.95 0.86 0.87 

Process relative error/P 0.19 0.28 0.09 

Peak flow relative error/E 0.06 0.08 0.12 

The coefficient of water 

balance/W 
1.03 0.95 1.02 
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Coupling model 

48h/originally 

optimized model 

parameters 

Nash-Sutcliffe coefficient/C 0.64 0.75 0.62 

Correlation coefficient/R 0.82 0.84 0.86 

Process relative error/P 0.45 0.26 0.22 

Peak flow relative error/E 0.34 0.08 0.13 

The coefficient of water 

balance/W 
1.22 1.32 1.24 

Coupling model 

48h /re-optimized 

model parameters 

Nash-Sutcliffe coefficient/C 0.72 0.75 0.68 

Correlation coefficient/R 0.86 0.87 0.89 

Process relative error/P 0.32 0.22 0.18 

Peak flow relative error/E 0.21 0.06 0.09 

The coefficient of water 

balance/W 
1.05 1.12 1.06 

Coupling model 

72h/originally 

optimized model 

parameters 

Nash-Sutcliffe coefficient/C 0.52 0.75 0.55 

Correlation coefficient/R 0.75 0.45 0.82 

Process relative error/P 0.53 0.52 0.98 

Peak flow relative error/E 0.11 0.22 0.23 

The coefficient of water 

balance/W 
1.15 1.14 1.25 

Coupling model 

72h /re-optimized 

model parameters 

Nash-Sutcliffe coefficient/C 0.62 0.72 0.61 

Correlation coefficient/R 0.78 0.56 0.87 

Process relative error/P 0.38 0.32 0.75 

Peak flow relative error/E 0.09 0.18 0.17 

The coefficient of water 

balance/W 
1.08 1.02 1.05 

 592 

Table 4 Evaluation indices of simulated flood event with different lead time 593 

Rain type statistical index 20120101 20130101 

Rain gages 

Nash-Sutcliffe coefficient/C 0.82 0.95 

Correlation coefficient/R 0.89 0.92 

Process relative error/P 0.2 0.08 

Peak flow relative error/E 0.05 0.06 

The coefficient of water 

balance/W 
0.8 1.08 

WRF/24h 

Nash-Sutcliffe coefficient/C 0.74 0.87 

Correlation coefficient/R 0.86 0.87 

Process relative error/P 0.28 0.09 
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Peak flow relative error/E 0.08 0.12 

The coefficient of water 

balance/W 
0.95 1.02 

WRF/48h 

Nash-Sutcliffe coefficient/C 0.63 0.62 

Correlation coefficient/R 0.84 0.86 

Process relative error/P 0.48 0.22 

Peak flow relative error/E 0.12 0.13 

The coefficient of water 

balance/W 
1.32 1.24 

WRF/72h 

Nash-Sutcliffe coefficient/C 0.56 0.61 

Correlation coefficient/R 0.56 0.87 

Process relative error/P 0.56 0.75 

Peak flow relative error/E 0.18 0.17 

The coefficient of water 

balance/W 
1.54 1.66 

 594 

  595 
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