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Abstract. Long lead time flood forecasting is very important for large watershed
flood mitigation as it provides more time for flood warning and emergency responses.
Latest numerical weather forecast model could provide 1-15 days quantitative
precipitation forecasting products at grid format, by coupling this product with
distributed hydrological model could produce long lead time watershed flood
forecasting products. This paper studied the feasibility of coupling the Liuxihe Model
with the WRF QPF for a large watershed flood forecasting in southern China. The
QPF of WRF products has three lead time, including 24 hour, 48 hour and 72 hour,
A

grid resolution 20kmx20km. The Liuxihe Model is set up with freely
downloaded terrain propertwe model parameters were previously optimized with
rain gauge observed precipitation, and re-optimized with WRF QPF. Results show
that the WRF QPF has bias with the rain gauge precipitation, and a post-processing
method is proposed to post process the WRF QPF products, which improves the flood
forecasting capability. With model parameter re-optimization, the model’s
performance improves als suggests that the model parameters be optimized with
QPF, not the rain gauge precipitation. With the increasing of lead time, the accuracy
of WRF QPF decreases, so does the flood forecasting capability. Flood forecasting

products produced by coupling Liuxihe Model with WRF QPF provides good
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reference for large watershed flood warning due to its long lead time and rational

results.
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1 Introduction

Watershed flood forecasting is one of the most important non-engineering measures
for flood mitigation(Tingsanchali, 2012, Li et al., 2002), significant progresses in
watershed flood forecasting been made in the past decades(Borga et al., 2011,
Moreno et al., 2013). Lead time is a key index for watershed flood forecasting,
especially for large watershed (Toth et al., 2000, Han et al., 2007). Only flood
forecasting products with long lead time seful as )uld provide enough time for
flood warning and flood emergency responses. In the long practice of flood
forecasting, ground based rain gauge measured precipitation is the main input for
flood forecasting model, but as this kind of precipitation is the rainfall falling to the
ground already, so it has no lead time. This makes the watershed flood forecasting
with very short lead time (Jasper et al., 2002), and could not satisfy the requirement of
flood warning (Shim et al., 2002) in lead time, particularly in large watershed, thus

reducing the value of the flood forecasting products in watershed flood mitigation.

The developed numerical weather prediction min the past decades could provide
longer lead time quantitative precipitation forecast(QPF) product at grid formhe

lead time for the latest weather prediction model could be as long as to 1~15 days
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(Buizza,1999, Ahlgrimm et al., 2016). By coupling the weather prediction model QPF
with flood forecasting model, the flood forecasting lead time thus could be extend
this providew way for large watershed flood forecasting (Jasper et al., 2002,
Zappa et al.,, 2010, Giard and Bazile, 2000). Many numerical weather prediction
models have been proposed and put into operational use, such as the European Centre
Medium-Range Weather Forecasts (ECMWEF) Ensemble Prediction System (EPS)
(Molteni et. al., 1996, Barnier et. al.,1995), the weather research and forecasting
(WRF) model (Skamarock, 2005, 2008, Maussion, 2011), the numerical weather
forecast model of Japan Meteorological Agency (Takenaka et al., 2011, Gao and Lian,
2006), the numerical forecast model of China Meteorological Agency (Li and Chen,

2002), and others.

Watershed flood forecasting relies Ofdrological model for computation tool, while
the precipitation is the model’s driving force. The earliest hydrological model is
regarded as the Sherman unit-graph (Sherman, 1932), which belongs to the category
of lumped hydrological model. Many lumped hydrological models have been
proposed, such as the Sacramento model (Burnash, 1995), the NAM model (DHI,
2004), the Xinanjiang model (Zhao, 1977), among others. The lumped hydrological
model regards the watershed as a whole hydrological unit, thus the model parameter is
the same over the watershed, but this is not true, particularly for a large watershed.
The precipitation the lumped hydrological model I Is averaged over the watershed
a|801is further increases the model’s uncertainty in large watershed flood
forecasting as it is well known that the precipitation distribution over the watershed is
highly uneven. The QPF produced by numerical weather prediction model forecasts

precipitation at grid format, which provides detailed precipitation distribution
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information over watershe is another advantage of QPF. The lumped hydrological

model could not take the advantage of gridded WPF products.

The latest development of watershed hydrological model is the distributed
hydrological model (Refsgaard et. al., 1996), which divides the watershed into grids,
and different grids could have their own precipitation, terrain property and model
parameter distributed hydrological model is the ideal model for coupling WRF
QPF for watershed flood forecasting. The first proposed distributed hydrological
model is SHE model (Abbott et. al.1986a, 1986b), and now many distributed
hydrological models have been proposed, and a few have been used for watershed
flood forecasting, such as the SHE model (Abbott et. al.1986a, 1986b), the
WATERFLOOD model (Kouwen, 1988), the VIC model (Liang et. al., 1994), the
WetSpa model (Wang et. al., 1997), the Vflo model (Vieux et. al., 2002), the WEHY
model(Kavvas et al., 2004), the Liuxihe model (Chen et. al., 2009, 2011), among

others.

As distributed hydrological model calculates the hydrological process at grid scale, so
the computation time needed for runing the distributed hydrological model is huge
even for a small watershed,ich limits the model’s application in watershed flood
forecating, particularly in large watershed. Model parameter uncertainty related to
distributed hydrological model also impacted its application. But with the
development of parallel computation algorithm for distributed hydr‘gical model
and its deployment on supercomputer (Chen et. al., 2013), the computation burden is

not a challenge of distributed hydrological modeling anymore. Also with the
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development of automatical parameter optimization of distributed hydrological model
in flood foring (Madsen et. al., 2003, Shafii et. al., 2009, Xu et. al., 2012, Chen et.
al., 2016), the model parameters could be optimized, and the model’s performance
could be improved largely. With these advances, now distributed hydrological model

could be used for large watershed flood forecasting.

In this paper, the WRF QPF is coupled with distributed hydrological model-the
Liuxihe model for a large watershed flood forecasting in southern China. The spatial
and temporal resolution of WRF QPF is at 20km*20km and 1 hour respectively with
three lead t, including 24 hour, 48 hour and 72 hour. The WRF QPF has a similar
ttern with that estimated by rain gauges, but overestimates the averaged watershed
precipitation, and the longer the WRF QPF lead time, the higher the precipitation
overestimationRF QPF has systematic bias compared with rain gauge precipitation,
a post-processing method is proposed to post process the WRF QPF products, which
improves the flood forecasting capability. The Liuxihe Model is set up with freely
downloaded terrain properte model parameters were previously optimized with
rain gauge observed precipitation, and re-optimized with WRF QPF. With model
parameter re-optimization, the model’s performance improve.odel parameters
should be optimized with QPF, not the rain gauge precipitation. Flood forecasting
products produced by coupling Liuxihe Model with WRF QPF pres good
reference for large watershed flood warning due to Iong lead time and rational

results.
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2 Studied area and data

2.1 Studied area

Liujiang River Basin(LRB) is selected as the studied area, which is the largest first
order tributary of the Pearl River with a drainage area of 58270 km?(Chen et. al.,
- - - - ‘ - -
2016). LRB is in the monsoon area with heavy storms that |nd3 severe flooding in
the watershed, and caused huge flood damages in the past centuries. Fig. 1 is a sketch

map of LRB.

Fig. 1 is here

2.2 Rain gauge precipitation and river flow discharge

Precipitation of 68 rain gauges within the watershed in 2011, 2012 and 2013 was
collected and used in this study to compare with the WRF QPF. Precipitation data t
one hour interval. River discharge near the watershed outlet is collected also for this
same period. As this study fo on watershed flood forecasting, so only the
precipitation and river discharge during the flood events are prepared. There is one
flood event in each yeae flood events are numbered as flood event 2011, flood

event 2012 and flood event 2013 respectively.

3WRF Qand;t-processing

3.1 WRF model

The WRF model (Skamarock et. al., 2005, 2008) is considered as the next

generation’s medium term weather forecasting model, and can simulate different
-6-
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weather processes from cloud scale to synoptic scale, especially in horizontal
resolution of 1 ~ 10 km. Also, it integrates the advanced numerical methods and data
assimilation techniques, a variety of phy\ly process schemes, and multiple nested
methods and the capability of being used in different geographical locations. The
development of WRF model satisfies the needs of scientific research and practical
application, and could be further improved and strengthened. Now WRF model has

replaced the previously used MM5 model.

Many studies have been carried out in quantitative precipitation forecasting by using
WRF mod)r example, Kumar et al. (2008) used WRF model to study a heavy rain
in 200|e result showed that WRF system could reproduce the storm event and its
dynamical and thermo-dynamical characteristics. Hong and Lee (2009) set up a triply
nested WRF model to simulate the initiation of a thunderstoronducted the
sensitivity test. Maussion et. al. (2011) compared the capability of WRF model in
retrieving monthly precipitation and snowfall at three different spatial resolution

including 30.0 and 2 kle result showed that WRF model had a good

performance in simulating monthly precipitation and snowfall in Tibet. Givati et al.
(2012) predicted the hiemal precipitation event of 2008 and 2009 based on WRF
model in upstream of the Jordan River, and coupled WRF model with hydrological
model-HYMKE to simulate the velocity and discharge of Jordan River. Pennelly et. al.

(2014) employed WRF model to predict three precipitation events of Alberta,

Canada, and compared the precipitation with 48 hour Ieg time predicted by WRF
modeld the precipitation observed by rain gauge1e result showed that

Kain-Fritsch scheme overestimated the value of precipitation inlbly. Zhang (2004)


http://youdao.com/w/practical%20application/#keyfrom=E2Ctranslation
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introduced the WRF version 2 and grapes 3d variation assimilatiOIe simulation
and real-time forecasting results of weather conditions showed that WRF model had a
good performance in forecasting all kinds of weather conditions and had the ability to

predict the air quality. Niu et. al. (2007 tested the sensitivity of microphysical sche

to a typical heavy rain based on WRF model, and analyzed the performance of

'ecipitation predicted from the precipitation region,nter position and rainfall

intensity. Xu et. al. (2007) compared the hiemal continuous precipitation process
predicted with the estival results by WRF modele results showed that the KF
scheme was better than BM scheme in summer. Hu et. al. (2008) found that the
parameterization scheme of WRF model was related to the model resolution, and the
parameterization scheme should be selected by the resolution of WRF model.
Huang et. al. (2011 ) found that variations in the microphysical process
parameterization schemes had much more influence on precipitation than that of
cumulus parameterization schemes, especially for a torrential rain attributed to
large-scale forcing that mainly resulted from stratus clouds. Wang and Ma (2011)
introduced the application of WRF model f the physics parameterization scheme,
real-time simulation study and the comparison with MM5 model in China in recent
decade. Pan et. al. (2012) used two WRF simulation groups between pre-process and
post-process in Heihe river basin, and compared and analyzed the mean bias error,

root mean square error and correlation coefficient of the two WRF groups.

3.2 WRF of LRB

The WRF model (version 3) was set up in LRB by Li et. al. (2014e model domain

is centered at 23.8N, 109.2W, and the projection is Lambert conformal projection. The

vertical structure includes 28 layers covering the whole troposphere. The WRF
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194  single-moment 3-class microphysics parameterization, 3 Kain-Fritsch (Kain,
195 2004) andcumulus parameterization (Hong and Lim, 2006) were adopted for
196  precipitation simulation. The parameterization sce of WRF lore than that of
197  other mesoscale numerical weather prediction (NWP/hich includes 5 kinds of
198  physical parameterization schemes: microphysical process, cumulus, land surface
199  processes, atmospheric radiation and planetary boundary layer. There are 13
200  microphysical process parameterization schemeerue Lin scheme was used in this
201  study as microphysical process. The parameterization scheme of precipitation was
202  improved based on the schemn et al. (1983) as well as Rutledge and Hobbs (1983),
203  which is more mature than other schemes and is suited to simulate the high resolution

204  real time data.
205

206  The spatial and temporal resolution of WRF is at 20km*20km and 1 hour respectivel
207  so there are 156 WRF grids in LRB. QPF products in 2011, 2012 and 2013 were
208  produced at 3 different lead tirespectively 24 hours, 48 hours and 72 hours. Fig. 2,
209 3 and 4 are WRF Qn three different years, while (a) is the rain gauge precipitation,
210  (b) is the WRF QPF with 24 hour lead time, (c) is the WRF QPF with 48 hour lead

211  time, and (d) is the WRF QPF with 72 hour lead time.

212

213 Fig. 2 is here
214 Fig. 3is here
215 Fig. 4 is here
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3.3 Comparison of WRF QPF and rain gauges precipitation

WRF QPF and rain gauge precipitation are compared in this study. From the results of
Fig. 2, 3 and 4, it could found that the temporal precipitation pattern of both
products are similaere are some kinds of differences, but the differenc not
significant. To make further comparison, the accumulated precipitation of the three

flood events averaged over the watershed are calculated and listed in Table 1.

Table 1 is here

From the results of Table 1, it could bemd that the WRF QPF accumulated
precipitation has obvious bias with rain gauge accumulated precipitation. For all the
three flood events, the WRF QPF accumulated precipitation are higher than those
estimated by rain gauge, i. e., the WRF QPF overestimates the precipitation. For flood
event 2011, the overestimated watershed averaged precipitation of WRF QPF with
lead time of 24 hour, 48 hour and 72 hour are 23%, 32% and 55% respectively, for
flood event 2012, they are 16%, 37% and 71% respectively, for flood event 201ey
are 50%, 73% and 95% respectivelﬂs also means that the longer the WRF QPF

lead time, the higher the overestimation.
3.4 WRF QPF post-processing

From the results of Fig. 2, 3 and 4, and Table 1, the WRF QPF has significant bias
with rain gauge precipitation. If the rain gauge precipitation is assumed correct, then
WRF QPF has error. So in this study the WRF QPF is post-processed based on the

rain gauge precipitation to correct the systematic error of WRF QPF. The principle of
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WRF QPF post-processing proposed in this study is to keep the areal averaged event
accumulated precipitation from both products are similar, i.e., to adjust the WRF QPF
precipitation to make its event accumulated precipitation equal to that of rain gauge.
Based on this principle, the WRF QPF post-processing procedure is summarized as

follows:

1) Calculate the areal average precipitation of the WRF QPF for each flood ev

over the watershed 3IIowing equation.

N
2R

P = 2— (1)
WRF N

Where, B, is the areal average precipitation of WRF QPF of one flood event, P, is

the precipitation on WRF grid i, F.

is the drainage area of WRF grid i, N is the total

number of WRF grids.

2) Calculate the areal average precipitation of the rain gauges with the following

equation.

Where, P, is the areal average precipitation of the rain gauges network, P, is the

precipitation observed by jth rain gauge, M is the total number of rain gauges.

3) The precipitation of every WRF QPF gthen could be revised with the
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following equation.

P=P=2 (3)

=
I:)WRF

o

Where, P is the revised precipitation of ith WRF grid.

With the above WRF QPF post-processing method, the WRF QPF of flood event 2011,
- ‘ - - -
2012 and 2013 were post-processed, and WIE used to couple with the Liuxihe

Model for flood simulation.
3 Hydrological model
3.1 Liuxihe Model

Liuxihe model is a physically based fully distributed hydrological model proposed
mainly for watershed flood forecasting (Chen, 2009, Chen et. al., 2011), and has been
used in a few watersheood forecasting(Chen, 2009, Chen et. al., 2011, 2013, 2016,
Liao et. al., 2012 a, b, Xu et. al., 2012 a, b). In Liuxihe Model, runoff components are
calculated at grid scale, runoff routes at both grid and watershed scale. Runoff routing
is divided into hilope routing and river channel routing by using different
computation algorithm. Liuxihe Model proposed an automatic parameter optimization
method using PSO algorithm (Chen et. al., 2016), which largely improves the model’s
performance in watershed flood forecasting. Now Liuxihe Model is deployed on a
supercomputer system with parallel computation techniques (Chen et. al., 2013) that

largely facilitates the model parameter optimization of Liuxihe Model.

Chen et. al. (2016) set up Liuxihe Model in LRB with freely downloaded terrain
property data from the website at a spatial resolution of 200m*200m, and optimized

model parameters with observed hydrological data. The model was validated by
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/]
281  observed flood events data, and the model performanceound rational and could be
282 used for real-time flood forecasting. The model only uses rain gauge precipitation, so
283 its flood forecasting lead time is limited. In this study, the Liuxihe Mode: up in

284 LRB and the optimized model parameters wila used in this study as the first

285 attempig. 5 le model structure.

286

287 Fig.5 is here
288

289 3.2 Liuxihe Model parameter optimization

290 the model parameters optied by Chen et. al. (2016) is done by using the rain
291  gauge precipitation, but this study uses the WRF QPF as the precipitation inp) the
292  parameters of Liuxihe Modet up in LRB may nopropriate for coupling the

293  WRF QPF. For this reason, considering Liuxihe Model is a physically based

294 distributed hydrological model, one—flood—event could—be—usedfor—parameter

205  optimization; the parameters were optimized again by using the WRF QPF in 201

296 a WRF QPF is the post-processed one, not the original one. Results of parameter
297  optimization are shown in Fig. nong them, (a) is the objective function evolution
208  result, (b) is the parameters evolution result, and (c) is the simulated flood process by
299  using the optimized model parameters. To compare, the simulated flood process of
300 flood event 2011 was also drawn in Fig. 6(c).

301

302 Fig. 6 is here

303

/]
304  From the result of Fig. 6(c), it coul% found that the optimized model parameters
13-
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with WRF QPF improve tha i in gauge precipitatiois

means parameter optimization with WRF QPF is necessary.
3.3 Coupling WRF QPF with Liuxihe Model for LRB flood forecasting

Liuxihe Model set up for LRB flood forecasting (Chen et. al., 2016) mployed
. . N V4

to couple with the WRF QPF, the model spatial resolution rels to be 200m*200m.

As the spatial resolution of WRF QPF is at 20km*20km, the WRF QPF was

downscaled to the resolution of 200m*200m by using the nearest downscaling

method, the same spatial resolution of the flood forecasting model.
4 Results and discussions

4.1 Effects of WRF post-processing

The original WRF QPF and the post-processed QPF used to couple with the

Liuxihe Modeu tsimulation, the original model parameters that )ptimized

with the rain gauge precipitation employed, not the re-optimized model

parametere simulated results are shown in Fig. 7, 8 and 9.

Fig. 7 is here
Fig. 8 is here

Fig. 9is here

From the above results, it could be seen that the simulated flood discharges with the
original WRF QPF nuch lower than the observed oneut with post-processed

WRF QPF used, the simulated flood discharge increased anuch more close to the

-14 -
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observatiOwis implies that the flood forecasting capability has been improved by
post-processing of WRF QPF. To further compare the three results, 5 evaluation
indices, including Nash-Sutcliffe coefficient(C), correlation coefficient(R), process
relative error(P), peak flow relative error(E) and water balance coefficient(W)

calculated and listed in Table 2.
Table 2 is here

From the results of Table 2, it has been found that all the 5 evaluation indices have
been improved by coupling the post-processed WRF QPF. For example, :Iood
event 2011 with 24 hour lead time, the Nash-Sutcliffe coefficient/C, correlation
coefficient/R, process relative error/P, peak flow relative error/E and coefficient of
water balance/W with original WRF QPF are 0.65, 0.88, 35%, 14% and 1.44
respectively, but those with the post-processed WRF QPF are 0.75, 0.93, 23%, 8%
and 1.15 respectively. flood event 2012 with 48 hour lead time, the above 5
evaluation indices with original WRF QPF are 0.63, 0.75, 48%, 12% and 1.43
respectively, and are 0.75, 0.84, 26%, 8% and 1.32 respectively with the
post-processed WRF QPF. =Iood event 2013 with 72 hour lead time, the above 5
evaluation indices with original WRF QPF are 0.44, 0.75, 129%, 45% and 1.66
respectively, and are 0.55, 0.82, 98%, 23%, 1.25 respectively with the post-processed
WRF QPF. It is obvious that with the post-processed WRF QPF, the evaluation
indices are improved mUC)re. These results show that WRF QPF post processing
could improve the flood forecasting capability because the WRF_)PF is more close
to the observed precipitation after post-processing it should be d for real-time

flood forecasting.
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4.2 Results comparison for different model parameters

The model parameters optimized with rain gauge precipitation and WRF QPF are

differen‘ different parar will h different model performance. To analyze

this effect, the flood events of 2012 and 2013 with two different sets of model
parametere simulated, and are shown in Fig. 10 and Fig. 11 respectivel1|y the

post-processed WRF QPF are coupled in this simulation.

Fig. 10 is here

Fig. 11 is here

that the simulated flood results with

/
From the above

re-optimized model parameters etter than tsimulated with the original model
/] /]
parameter1e simulated flood discharge with the re-optimized model parameter
more-fitting-the observation. To further compare the two results, 5 evaluation indices,
including Nash-Sutcliffe coefficient(C), correlation coefficient(R), process relative

error(P), peak flow relative error(E) and water balance coefficient(W) are calculated

and listed in Table 3.

Table 3 is here

From the results of Table 3, it haeen found that the results of flood simulation
based on the re-optimized model parameters have better evaluation indices. All
evaluation indices for tbased on re-optimized model parameter|proved. For
example, for flood event 2012 with 24 hour lead time, the Nash-Sutcliffe
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coefficient/C, correlation coefficient/R, process relative error/P, peak flow relative
error/E and coefficient of water balance/W with original model parameters are 0.58,
0.82, 35%, 12% and 1.08 respectively, but those with the re-optimized model
parameters are 0.74, 0.86, 28%, 8% and 0.95 respectively. For flood event 2013 with
48 hour lead time, the 5 indices with the original model parameters are 0.62, 0.86,
22%, 13% and 1.24 respectively, and are 0.68, 0.89, 18%, 9% and 1.06 respectively
for those with re-optimized model parameters. So it could be said that in coupling the
WRF QPF with distributed hydrological model, the model parameters n to be
re-optimized with the WRF QPF. This finding implies that the precipitation pattern
has obvious impact nodel parameters, should be considered, and model

parameter optimization is a rational way for considering this effect.

4.3 Flood simulation accuracy with different lead time

To compare the model performance with different lead time, the flood events with 3
different lead tim simulated and shown in Fig. 1|e model parameters are the

re-optimized ones, and the QPF is the post-processed QPF.

Fig. 12 is here

From the results of Fig. 12, it could be seen that the flood simulation results worse
as the lead time increases, i.e., the model performance with 24 hour lead time is better
than that with 48 hour lead time, and the model performance with 48 hour lead time is
better than that with 72 hour lead time. The simulated hydrological process with 24
hour lead time is very similar that simulated with rain gauge precipitation. To

further compare the results, 5 evaluation indices, including Nash-Sutcliffe
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coefficient(C), correlation coefficient(R), process relative error(P), peak flow relative

error(E) and water balance coefficient(W) :alculated and listed in Table 4.
Table 4 is here

From the results of Table 4, it haen found that the simulated flood events with 24
hour lead time aest evaluation indices, and ery close to simulated with
rain gauge precipitation. For flood event 2012, the Nash-Sutcliffe coefficient/C,
correlation coefficient/R, process relative error/P, peak flow relative error/E and
coefficient of water balance/W with rain gauge are 0.82, 0.89, 20%, 5% and 0.8
respectively,ase with 24 hour lead time are 0.74, 0.86, 28%, 8% and 0.95
respectively, those with 48 hour lead time are 0.63, 0.84, 48%, 12% and 1.32
respectively, and are 0.56, 0.56, 56%, 18% and 1.54 respectively for 72 hour lead time.
For flood event 2013, the Nash-Sutcliffe coefficient/C, correlation coefficient/R,
process relative error/P, peak flow relative error/E and coefficient of water balance/W
with rain gauge are 0.95, 0.92, 8%, 6% and 1.08 respectivel)se with 24 hour lead
time are 0.87, 0.87, 9%, 12% and 1.02 respectively, those with 48 hour lead time are
0.62, 0.86, 22%, 13% and 1.24 respectively, and are 0.61, 0.87, 75%, 17% and 1.66
respectively for 72 hour lead time. This finding means that the current WRF QPF
capability is lead-time dependent, and with the increasing of lead time, the practical

value of WRF QPF gets lower.
5 Conclusion

In this study, the WRF QPF oupled with a distributed hydrological model-the

- - ‘ - -
Liuxihe mode' large watershed flood forecasting, and three lead t|3f WRF QPF
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products, including 24 hours, 48 hours and 72 hours are tested. WRF QPF post
processing method is proposed and tested, model parameters are re-optimized by
. A /
using the post-processed WRF QPF, model perfonce are compared among v
conditions. Based on the results of this study, the following conclusions could be

drawn:

1) The quantitative precipitation forecasting produced by WRF model has a similar
pattern with that estimated by rain gauges temporally, but overestimated the averaged
- - - /] - - - A
watershed precipitation he event accumulated total preC|p|tat|ond the longer
the WRF QPF lead time, the higher the precipitation overestimation. For flood event

- - . - - /]
2011, the overestimated watershed averaged precipitation of WRF QPF with lead t
of 24 hour, 48 hour and 72 hour are 23%, 32% and 55% respectivelr flood event
2012, these are 16%, 37% and 71% respectively, while for flood event 2013, these are

50%, 73% and 95% respectively.

2. WRF QPF has systematic bias compared with rain gauge precipitation, and this
bias could be reduced via post-processing. Principle used in this study for WRF QPF
post processing is effective and could improve the flood forecasting capability. For
flood event 2011 with 24 hour lead time, the Nash-Sutcliffe coefficient/C, correlation
coefficient/R, process relative error/P, peak flow relative error/E and coefficient of
water balance/W with original WRF QPF are 0.65, 0.88, 35%, 14% and 1.44
respectively, but those with the post-processed WRF QPF are 0.75, 0.93, 23%, 8%
and 1.15 respectively. For flood event 2012 with 48 hour lead time, the above 5
evaluation indices with original WRF QPF are 0.63, 0.75, 48%, 12% and 1.43

respectively, and are 0.75, 0.84, 26%, 8% and 1.32 respectively with the
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post-processed WRF QPF. For flood event 2013 with 72 hour lead time, the above 5
evaluation indices with original WRF QPF are 0.44, 0.75, 129%, 45% and 1.66
respectively, and are 0.55, 0.82, 98%, 23%, 1.25 respectively with the post-processed

WRF QPF.

3. Hydrological model parameters optimized with the rain gauge precipitation ns
to be re-optimized using the post-processed WRF QPF, this improves the model
performance Iargele., in couplinstributed hydrological model with QPF for
flood forecasting, the model parameters should be optimized with the QPF produced
by WRF. For flood event 2012 with 24 hour lead time, the Nash-Sutcliffe
coefficient/C, correlation coefficient/R, process relative error/P, peak flow relative
error/E and coefficient of water balance/W with original model parameters are 0.58,
0.82, 35%, 12% and 1.08 respectively, but those with the re-optimized model
parameters are 0.74, 0.86, 28%, 8% and 0.95 respectively. For flood event 2013 with
48 hour lead time, the 5 indices with the original model parameters are 0.62, 0.86,
22%, 13% and 1.24 respectively, and are 0.68, 0.89, 18%, 9% and 1.06 respectively

for those with re-optimized model parameters.

4. The simulated floods by coupling WRF QPF with distributed hydrological model
rational and could benefit the flood management communities due to onger lead
t for flood warnin provides a good reference for large watershed flood warning.
But with the lead time getting longer, the flood forecasting accuracy is getting lower.
For flood event 2012, the Nash-Sutcliffe coefficient/C, correlation coefficient/R,
process relative error/P, peak flow relative error/E and coefficient of water balance/W

with rain gauge are 0.82, 0.89, 20%, 5% and 0.8 respectively,se with 24 hour lead
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time are 0.74, 0.86, 28%, 8% and 0.95 respectively, those with 48 hour lead time are
0.63, 0.84, 48%, 12% and 1.32 respectively, and are 0.56, 0.56, 56%, 18% and 1.54
respectively for 72 hour lead time. For flood event 2013, the Nash-Sutcliffe
coefficient/C, correlation coefficient/R, process relative error/P, peak flow relative
error/E and coefficient of water balance/W with rain gauge are 0.95, 0.92, 8%, 6%
and 1.08 respectively,»se with 24 hour lead time are 0.87, 0.87, 9%, 12% and 1.02
respectively, those with 48 hour lead time are 0.62, 0.86, 22%, 13% and 1.24
respectively, and are 0.61, 0.87, 75%, 17% and 1.66 respectively for 72 hour lead

time.
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504  Fig. 2 Precipitation pattern comparison of two precipitation products(2011), (a) is the
505 average precipitation of rain gauges, (b) is the average precipitation of WRF with 24
506  hour lead time, (c) is the average precipitation of WRF with 48 hour lead time, (d) is
507  the average precipitation of WRF with 72 hour lead time.
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519  hour lead time, (c) is the average precipitation of WRF with 48 hour lead time, (d) is
520  the average precipitation of WRF with 72 hour lead time.
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530  Fig. 4 Precipitation pattern comparison of two precipitation products(2013), (a) is the
531  average precipitation of rain gauges, (b) is the average precipitation of WRF with 24
532 hour lead time, (c) is the average precipitation of WRF with 48 hour lead time, (d) is
533  the average precipitation of WRF with 72 hour lead time.
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Fig. 6 Parameter optimization results of Liuxihe Model for LRB with WRF QPF
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Fig. 8 Coupled flood simulation results with original model parameters(2012)
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Fig. 9 Coupled flood simulation results with original model parameters (2013)
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Tables

Table 1 Precipitation comparison of two products

Flood o o relative
event no. Precipitation products average precipitation(mm) bias %
rain gauges 0.22
WRF/24h 0.27 23
2011
WRF/48h 0.29 32
WRF/72h 0.34 55
rain gauges 0.38
WRF/24h 0.44 16
2012
WRF/48h 0.52 37
WRF/72h 0.65 71
rain gauges 0.22
WRF/24h 0.33 50
2013
WRF/48h 0.38 73
WRF/72h 0.43 95

Table 2 Evaluation indices of simulated flood events with post-processed WRF QPF

Rain type statistical index 201101010 20120101 20130101
Nash-Sutcliffe
o 0.65 0.48 0.65
coefficient/C
Correlation
o 0.88 0.73 0.83
coefficient/R
WRF/24h Process relative error/P 0.35 0.57 0.19
Peak flow relative
0.14 0.18 0.25
error/E
The coefficient of
1.44 1.35 1.38

water balance/W
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Nash-Sutcliffe

0.75 0.58 0.75
coefficient/C
Correlation
o 0.93 0.82 0.85
coefficient/R
WREF/24h after Process relative error/P 0.23 0.35 0.11
revised
Peak flow relative
0.08 0.12 0.16
error/E
The coefficient of
1.15 1.08 1.12
water balance/W
Nash-Sutcliffe
o 0.58 0.63 0.5
coefficient/C
Correlation
o 0.78 0.75 0.8
coefficient/R
Process relative error/P 0.52 0.48 0.34
WRF/48h
Peak flow relative
0.41 0.12 0.24
error/E
The coefficient of
1.52 1.43 1.51
water balance/W
Nash-Sutcliffe
0.64 0.75 0.62
coefficient/C
Correlation
0.82 0.84 0.86
coefficient/R
WRF/48h after Process relative error/P 0.45 0.26 0.22
revised
Peak flow relative
0.34 0.08 0.13
error/E
The coefficient of
1.22 1.32 1.24
water balance/W
Nash-Sutcliffe
o 0.45 0.66 0.44
coefficient/C
Correlation
WRF/72h o 0.68 0.36 0.75
coefficient/R
Process relative error/P 0.64 0.62 1.29
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591

Peak flow relative

0.31 0.35 0.45
error/E
The coefficient of
1.67 1.54 1.66
water balance/W
Nash-Sutcliffe
N 0.52 0.75 0.55
coefficient/C
Correlation
o 0.75 0.45 0.82
coefficient/R
WRF/72h after | Process relative error/P 0.53 0.52 0.98
revised
Peak flow relative
0.11 0.22 0.23
error/E
The coefficient of
1.15 1.14 1.25

water balance/W

Table 3 Evaluation indices of simulated flood event with different model parameters

parameter type statistical index 201101010 20120101 20130101
Nash-Sutcliffe coefficient/C 0.75 0.58 0.75
Correlation coefficient/R 0.93 0.82 0.85
Coupling model
24h/originally Process relative error/P 0.23 0.35 0.11
optimized model
parameters
Peak flow relative error/E 0.08 0.12 0.16
The coefficient of water
1.15 1.08 1.12
balance/W
Nash-Sutcliffe coefficient/C 0.78 0.74 0.87
Coupling Correlation coefficient/R 0.95 0.86 0.87
model24h Process relative error/P 0.19 0.28 0.09
[re-optimized Peak flow relative error/E 0.06 0.08 0.12
model parameters The coefficient of water
1.03 0.95 1.02

balance/W
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Nash-Sutcliffe coefficient/C 0.64 0.75 0.62
Coupling model Correlation coefficient/R 0.82 0.84 0.86
48h/originally Process relative error/P 0.45 0.26 0.22
optimized model Peak flow relative error/E 0.34 0.08 0.13
parameters The coefficient of water
1.22 1.32 1.24
balance/W
Nash-Sutcliffe coefficient/C 0.72 0.75 0.68
Correlation coefficient/R 0.86 0.87 0.89
Coupling model -
o Process relative error/P 0.32 0.22 0.18
48h /re-optimized
Peak flow relative error/E 0.21 0.06 0.09
model parameters
The coefficient of water
1.05 1.12 1.06
balance/W
Nash-Sutcliffe coefficient/C 0.52 0.75 0.55
Coupling model Correlation coefficient/R 0.75 0.45 0.82
72h/originally Process relative error/P 0.53 0.52 0.98
optimized model Peak flow relative error/E 0.11 0.22 0.23
parameters The coefficient of water
1.15 1.14 1.25
balance/W
Nash-Sutcliffe coefficient/C 0.62 0.72 0.61
Correlation coefficient/R 0.78 0.56 0.87
Coupling model -
o Process relative error/P 0.38 0.32 0.75
72h /re-optimized
Peak flow relative error/E 0.09 0.18 0.17
model parameters
The coefficient of water
1.08 1.02 1.05
balance/W
592
593 Table 4 Evaluation indices of simulated flood event with different lead time
Rain type statistical index 20120101 20130101
Nash-Sutcliffe coefficient/C 0.82 0.95
Correlation coefficient/R 0.89 0.92
Rain gages Process relative error/P 0.2 0.08
Peak flow relative error/E 0.05 0.06
The coefficient of water
0.8 1.08
balance/W
Nash-Sutcliffe coefficient/C 0.74 0.87
WRF/24h Correlation coefficient/R 0.86 0.87
Process relative error/P 0.28 0.09
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594

595

Peak flow relative error/E 0.08 0.12
The coefficient of water
0.95 1.02
balance/W
Nash-Sutcliffe coefficient/C 0.63 0.62
Correlation coefficient/R 0.84 0.86
WREF/48h Process relative error/P 0.48 0.22
Peak flow relative error/E 0.12 0.13
The coefficient of water
1.32 1.24
balance/W
Nash-Sutcliffe coefficient/C 0.56 0.61
Correlation coefficient/R 0.56 0.87
WRF/72h Process relative error/P 0.56 0.75
Peak flow relative error/E 0.18 0.17
The coefficient of water
1.54 1.66

balance/W
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