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Review of ”Characterising hydrological response in urban watersheds based on inter- 

amount time distributions” by ten Veldhuis and Schleiss 

 

Referee #1 

RC: Generally the revised manuscript appear much more coherent and the depth of the 

methodological explanations much more accessible. The inclusion of the Richards-Baker flashiness 

index for comparison greatly enhance the discussion and help emphasize where this framework is 

better and where traditional flow based sampling is better. 

 

RC: The authors have responded well to almost all comments raised except for the concerns about 

scaling. In the conclusions it is stated that: (p11ll27-29) “Flows exhibited departures from 

multifractality for most basins, while IATs systematically scaled better than flows and showed 

departures from multifractality only for three basins subject to low flow regulation.”, but from the 

discussion part it is clear that the R^2s for both flows and AITs are all over 0.99 under all conditions 

which in my book is excellent for natural systems. Please discuss and document it if the AIT scaling is 

significantly better than the flow scaling or loosen the conclusions to state that the scaling is 

generally good for both conditions. 

AR: The reviewer is right in that both approaches exhibit relatively good scaling, in the sense of R2 

values, even the ones with R2 closer to 0.990. It’s good to note that goodness-of-fit usually reported 

for multifractal analyses are above 0.95 or 0.99. Still, the fit for IATs is better than for flows as shown 

by higher R2 values, especially for higher order moments. 

We have rephrased the conclusion as follows (page 22, ll 15-18): “Both approaches exhibited 

relatively good scaling, as indicated by R^2 values above 0.99. IATs systematically scaled better than 

flows and showed departures from multifractality only for three basins subject to low flow 

regulation, while flows exhibited departures from multifractality for most basins.” 

Further, it is unclear whether the R^2 reported in the left side of Figure 11 is with or without 

consideration of scale breaks and, if it is without scale breaks, the significance of the presence of 

scale breaks has to be discussed as well. 

AR: The R^2 values are without scale breaks, we have clarified this in the figure caption. 

Exact testing of the significance of "scale breaks" is difficult. We performed a Davies test (Davies, 

2002); results showed that for flows (q=2.4), two breakpoints were significant (p-value 0.001). For 

IATs (q=2.4), there was at least 1 significant breakpoint, but the test for 2 breakpoints returned a p-

value of 0.071. This shows that scaling is slightly better for IATs than for flows. We have added this 

clarification in the text (page 18, ll 27-29): “Based on an approximate Davies test (Davies, 1987), two 

breakpoints were significant for flows (p-value 0.001). For IATs, there was at least 1 significant 

breakpoint, but the test for 2 breakpoints returned a p-value of 0.071. This shows that scaling is 

slightly better for IATs than for flows.” 

 

Reference: 

Davies, R.B. (2002) Hypothesis testing when a nuisance parameter is present only under the 

alternative: linear model case. Biometrika 89, 484-489. 

 

Referee #2 

RC: The authors have made a comprehensive revision of the initial submission resulting in a much 

more readable manuscript. As such I think the manuscript is close to a stage where it can be 

published, but I still have a number of issues/questions/suggestions: 

 

RC: Page 2, line 25: There might be a strong practical reason why engineers prefer to focus on peak 

flow rather than time, as flow magnitude determines hydraulic design? 
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AR: As we show later in the results chapter, both statistical distributions of flows and IATs can be 

used to derive information on return periods of peak flow, typically of interest for design and 

engineering. The point we want to make is that in IAT analysis, statistical properties of low flows and 

peak flows can be analysed using the same statistical framework. We have added the following 

sentence for clarification (page 1, ll 21-22): 

“By doing so, both low flows and peak flows can be analysed using the same statistical framework.”    

 

RC: Page 7, top. Maybe spell out that the hard work of collecting and quality controlling the data was 

done by USGS staff 

AR: Thanks for pointing this out. We have added the following sentence (page 5, ll 13-15): 

“These curves were established based on protocols developed by USGS and include manual flow 

measurements during site visits performed by USGS staff. As part of this procedure, stage-discharge 

curves are checked and recalibrated during site visits several times per year.” 

 

RC: Eq. (2) I am not familiar with the 'inf' notation. Please explain 

AR: inf stands for infimum, also known as the greatest lower bound in a set. We have added this to 

the variable explanation for equation 2 (page 5, ll 30-31). 

 

RC: Page 9, line 16: Please explain what ' a rough indication of the left tail properties' really means. 

AR: This is explained in more detail in section 2.7. We have removed the term “rough” and added a 

reference to section 2.7 (page 7, l 22), where it is explicitly indicated what properties of the left tail 

can be inferred from the minimum observable scale.     

 

RC: Page 11, line 12: A method from can 2004 hardly be referred to as a classic 

AR: We agree that it is hard to define a historical reference as to when a method can be termed 

classic. We replaced the term “classical” by “frequently used” (page 9, l2). 

 

RC: Page 12, line 8: 'of the log-scale of ln(\lambda):' 

AR: thanks for pointing this out, we have added this. 

 

RC: Figure 2: I think the two graphs looks quite similar, i.e. full of black lines. Maybe chose, say, one 

year to better bring out the differences 

AR: We have reduced the time period for these graphs to 5 years for better visualisation. We 

preferred to use 5 years instead of one year, to visualise the effect of seasonal variation and wet 

versus dry years.   

 

RC: Section 3.5: In general, I think this section needs more grounding in previous studies to better 

emphasise which findings are novel and which once are already well-known and even expected. 

Every hydrological model I know scales flow magnitude with basin area - anything else would be very 

surprising. There are several studies linking flow variation to basin areas as well, notably CV of flood 

events (e.g. Blöschl and Sivapalan, 1997). Basin control on skewness is generally more difficult to 

identify due to sampling variability of skewness indicators. With regards to urbanization, most 

models assume increasing urbanisation result in increased runoff. Notably Kjeldsen (2010) reported 

that this is not always the case, and sometime flood magnitude is less than expected in an urban 

basin. Kjeldsen (2010) also investigated the effect of urbanization on higher order moments (CV and 

skewness) and also reported a decrease in skewness for more urban basins. 

AR: This comment seems to refer mainly to sections 3.2, where we discussed CV and skewness 

indicators for IATs and flows rather than section 3.5 where flashiness indicators are compared. The 

reviewer has a valid point that results should be related to findings in previous studies, thanks for 

pointing out a couple of relevant references. We have added this text to section 3.2, relating the 

results we found to previous findings in the literature (page 12-13, ll 31-10):  

“This confirms results previously reported in the literature on scaling between flows and basin area 



3 

 

(e.g. Goodrich et al. (1997), Smith (1992) and specifically between CV of flows and basin area (Bloschl 

and Sivapalan (1997). These authors also refer to complexities in hydrological response resulting in 

deviations from this general relationship. The same applies for the basins in our study, where basin 

area only explains part of the flow variability, especially for smaller basins.” 

“While Kjeldsen (2010) reported a decrease in CV and skewness associated with urbanization for 

basins in the UK, we did not find significant correlations based on CV and skewness indicators for 

flows. Skewness for IATs was significantly negatively correlated with imperviousness; as stated 

before, this is probably associated with IAT statistics being more sensitive to variability in high flows 

than conventional flow statistics.” 

 

RC: Page 24, 2. paragraph: The attribution of results to specific features of the urban environment 

(dams, detension ponds, etc) is speculative as this has not been investigated in the study 

AR: We have removed this interpretation from conclusion nr.2, as it is more elaborately discussed in 

conclusion nr. 3. We have rephrased this point in conclusion nr 3 as follows (page 20, ll 16-19): 

“Negative correlation between CV values of IATs and imperviousness probably indicates stronger 

influence of flow regulation by detention and capacity constraints of stormwater drains in more 

urbanised basins, resulting in more uniform runoff during rainy periods. IATs during these periods 

concentrate relatively more closely to the mean and show fewer extremes.” 

 

RC: Page 24, line 26-27: It would be more convincing if 'contrary to finding of many studies' could be 

made more factual with references to which findings and what studies. 

AR: The reviewer is right that this point needs more elaboration. We have added a brief discussion of 

findings in the literature, including references that found results similar to ours as well as others that 

reached different conclusions (page 20, ll 19-26): 

“This result is contrary to findings reported in the literature, where urbanisation tends to be 

associated with higher peak flows (e.g. Rose, 2001, Cheng, 2002, Du, 2012, Huang 2008). On the 

other hand, several studies have found mixed effects of urbanisation on flow peaks associated with a 

combination of imperviousness and flood mitigation measures, especially for basins in the US where 

urbanisation has predominantly taken place after implementation of stormwater legislation to lower 

peak discharges (e.g Smith, 2013, Hopkins, 2015, Miller, 2014). For the basins in Charlotte watershed, 

urbanisation has taken place before as well as after stormwater legislation and a combination of flow 

regulation by detention facilities and peak flow restrictions induced by capacity constraints results in 

an overall effect of peak flow reduction associated with urbanisation.” 
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Abstract. Urban catchments are typically characterised by a more flashy nature of the hydrological response compared to

natural catchments. Predicting flow changes associated with urbanisation is not straightforward, as they are influenced by

interactions between impervious cover, basin size, drainage connectivity and stormwater management infrastructure. In this

study, we present an alternative approach to statistical analysis of hydrological response variability and basin flashiness, based

on the distribution of inter-amount times. We analyse inter-amount time distributions of high-resolution streamflow time series5

for 17 (semi)urbanised basins in North Carolina, US, ranging from 13 km2 to 238 km2 in size. We show that in the inter-amount

times framework, sampling frequency is tuned to the local variability of the flow pattern, resulting in a different representation

and weighting of high and low flow periods in the statistatical distribution. This leads to important differences in the way the

distribution quantiles, mean, coefficient of variation and skewness vary across scales and results in lower mean intermittency

and improved scaling. Moreover, we show that inter-amount times distributions can be used to detect regulation effects on flow10

patterns, identify critical sampling scales and characterise flashiness of hydrological response. The possibility to use both the

classical approach and the inter-amount time framework to identify minimum observable scales and analyse flow data opens

up interesting areas for future research.

1 Introduction

Hydrological response in urban catchments tends to be more flashy compared to natural ones as a result of their higher degree15

of imperviousness. Increase in flashiness is typically characterised by shorter response times to rainfall, higher runoff ratios and

higher peak flows (Berne et al., 2004; Smith et al., 2005). On the other hand, high impervious degrees may reduce base flows

and lead to intermittent flow during dry periods. At the same time, urbanisation is usually tied to development of urban drainage

infrastructure, associated with artificial flow control as well as higher peak flows due to increased drainage connectivity.

Predicting the degree of flashiness or base flow reduction associated with urbanisation is not straightforward, as it depends on20

the interplay of impervious cover, basin size and shape, soil properties, basin slope, drainage connectivity and control structures

such as detention ponds, weirs and pumps (Emmanuel et al., 2012; Fletcher et al., 2013; Smith et al., 2013). Traditional

analyses of flow time series tend to focus on specific aspects and flow characteristics, aiming for example at predicting low

flow durations or peak flow magnitudes. For analysis of change in hydrological response, it may be beneficial to combine both
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peak flow and low flow statistics into a single framework. This applies in particular to the context of urban hydrology where

urbanisation and human intervention alter both high flow and low flow characteristics of the hydrological response. Combining

both aspects in a single analysis is difficult, as flow distributions are highly skewed and frequencies of low and high flow values

are very different. In this paper, we show how alternative sampling of flow time series based on inter-amount times leads to

more balanced statistical distributions, better representation of both high and low flows in a single framework and more robust5

behaviour of statistical distributions across scales.

1.1 Statistical analysis of hydrological response

Many authors have investigated methods for characterising hydrological response and changes therein, including univariate

analysis and multivariate statistics, combining several hydrograph properties such as flood peak, flood volume and flood dura-

tion (e.g., Salvadori and De Michele, 2004; Favre et al., 2004; Grimaldi and Serinaldi, 2006; Vittal et al., 2015). Traditional10

statistical analysis techniques tend to focus on either left or right tail properties of statistical distributions, but not necessarily

using the same statistical framework. Low flow analyses for example are primarily concerned with the total time the flow stays

below a critical threshold (see e.g. Smakhtin (2001) for an extensive review). By contrast, peak flow analysis puts more weight

on total accumulated flows at a given time scale using annual flow maxima or peak-over-threshold values to derive extreme

value statistics and establish flood frequency curves (e.g., Stedinger, 1983; Lang et al., 1999; Villarini et al., 2009; Smith and15

Smith, 2015). Both approaches are valid and solidly rooted in the context of extreme event analysis with numerous applications

in drought and flood risk analysis. However, the statistical frameworks they rely on are not necessarily the same. Low flow

analysis favours ’time’ as a random variable. Peak flow analysis on the other hand treats the ’flow amount’ over a fixed time

interval as the main random quantity. This might seem more intuitive to many but there is no strong compelling reason to prefer

one approach over the other a priori. For example, one might as well adopt an alternative framework in which the unknown20

random variable is the ’time’ necessary to cumulate a fixed, critical amount of flow. c1By doing so, both low flows and peak

flows can be analysed using the same statistical framework. This approach is known as the inter-amount time (IAT) method

(Schleiss and Smith, 2016) and has been previously proposed to analyse the properties of intermittent rainfall time series. An

important goal of this paper is to derive properties of statistical distributions obtained by applying the IAT formalism to flow

time series and to compare the results to the ones obtained using the classical fixed-time framework.25

1.2 Change in hydrological response, basin flashiness

An important characteristic that has been used to analyse change in hydrological response is basin flashiness, qualitatively

described by Poff (2002) as one of the indicators characterising change in natural flow regimes and how this affects the eco-

logical integrity of river ecosystems. Richter (1996) developed a set of 33 indices, the Indicators of Hydrological Alteration30

(IHA), including indicators for conditions associated with flashiness, such as frequency and duration of high and low pulses,

and rate and frequency of change in flow conditions. Smith and Smith (2015) quantified flashiness of 5436 catchments in
c1 Text added.
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the contiguous United States based on peak flows exceeding 1 m3s−1km−2 normalised flows (i.e., flows normalised by basin

area). A frequently used index in the literature is the Richards-Baker (R-B) Flashiness Index (Baker et al., 2004), based on the

Richards pathlength (Gustafson et al., 2004). The R-B index is defined as the sum of absolute values of changes in flow values

divided by the total cumulative flow, and is usually computed at the daily time scale. Similar to the coefficient of variation,

it measures the relative dispersion of the flow at a given scale. A downside of the R-B index is that it highly sensitive to the5

scale of analysis. Baker et al. (2004) argued that for smaller basins (< 50 km2) the use of hourly instead of daily flow data

should be considered to compute R-B flashiness index, but also found that R-B flashiness values computed at hourly scale are

highly sensitive to diurnal or other sub-daily low flow fluctuations. An important still unanswered question remains how to

overcome scale sensitivity of flashiness indicators in different hydrological basins. This is crucial for establishing how urbani-

sation impacts flashiness and how changes relate to basin characteristics such as size, slope, imperviousness degree and whether10

urbanisation thresholds can be identified above which basin response is characteristically urban (Praskievicz and Chang, 2009).

1.3 Scaling analysis of hydrological flows

Scaling behaviour of river flows has been investigated by various authors, aiming to identify characteristics length and time

scales and to detect scale dependence of hydrological response processes. Among the various statistical methods that have15

been proposed to investigate scaling, fractals and multifractals are among the most popular and powerful. Approaches for

fractal analysis include: spectral analysis based on 2nd order properties, and trace moments analysis based on a wider range of

statistical moments, typically between 0.1 and 4. The universal multifractal framework is based on the identification of scaling

exponents summarising the changes in flow distributions across a given range of scales, (see Schertzer and Lovejoy (1987) and

Schertzer and Lovejoy (2011) for a review).20

One important drawback of multifractal analyses is that scaling of hydrological flow time series only holds in approximation

and only over a limited range of scales. Many studies report the existence of “scale breaks” at which scaling parameters change

and significant departures from (multi)fractality can be observed. Table 1 summarises findings from selected scaling analyses

of flow time series in the literature. It shows that the number and location of the scale breaks as well as the values of the

multifractal parameters are sensitive to the method applied to estimate them and the resolution of the data used to conduct the25

analysis. For example, Labat et al. (2013) performed spectral analysis and trace moments analysis for 30-minute flow times

series and identified different flow regimes with scale breaks at 1 day for spectral and 16 hours for trace moments analysis. But

when they performed the same analysis at daily and at 3 minute resolution, they identified different scaling regimes, with scale

breaks at 16 days and 1 hour for daily and 3 minute resolution. Similarly, Sauquet et al. (2008) found different scaling regimes

in their scaling analysis of flows for 34 basins, with scale breaks at 12 days for daily resolution and scale breaks varying30

between 8.7 hours and 7 days across basins when using hourly data resolution, based on spectral analysis. When they applied

trace moments analysis for the same time series at hourly resolution, they found no scale breaks for the lower order moments

and scale breaks between 10 and 150 hours for higher order moments. This shows that while most flows exhibit some sort of

scaling behaviour, the identified scaling laws are not very robust nor consistent, as they are dependent on analysis methods and
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data resolution.

1.4 Statistical analysis of hydrological response based on adaptive sampling using inter-amount times

In this paper, the IAT formalism is applied to flow time series and statistical distributions and scaling properties are compared

to the ones obtained using the classical fixed-time framework. To do this, we use flow observations collected in 17 hydrological5

basins in Charlotte, North Carolina. We aim to investigate what effects an adaptive sampling strategy such as IAT sampling has

on statistical properties of the time series, in particular on the tails of the statistical distributions associated with peak flow and

low flow extremes. The main problem with a fixed sampling rate, as in traditional flow time series analysis, is that it can only

accurately represent frequencies of variations at time scales larger than a certain threshold. When frequencies higher than that

exist, errors are introduced as information about the higher frequency variability is lost (Dippe and Wold, 1985). Increasing10

the sampling resolutions solves this problem, but results in oversampling of base flow values with respect to peak flows. An

alternative consists in adopting an adaptive sampling strategy, i.e., one that adapts the sampling rate to the variability of the

signal itself (e.g., Feizi et al., 2011). This makes sense for processes that are very unevenly distributed in time (such as rainfall

and hydrological flows), and means taking more samples during periods of high activity (e.g., peak flows following storm

events) and fewer during lower activity (e.g., periods of base flow). A well designed adaptive sampling technique lowers the15

probability of missing an interesting feature like peak flow and avoids oversampling during periods of small flow variations.

We examine to what extent IATs influence the variance, skewness and shape of the sample distributions and how they can

be used to better characterise basin flashiness and derive more robust scaling laws. Our results show that because IATs give

more weight to rare peak flows compared to common base flows, they can provide different insights into flow properties and

complement traditional flow time series analyses and metrics. Advantages of IATs sampling compared to conventional time20

series analysis are that IAT time series contain more information about peak flows and evolve in a more predictable way across

ranges of smaller to larger scales. This makes them a more robust and reliable source of information to make predictions about

flow characteristics at small, unobserved scales, including crucial information about rapidly evolving peak flows.

This paper is organised as follows, in section 2 we present the flow datasets and methods used for analysis. We explain the

methodology for deriving normalised IATs and introduce metrics we used to compare properties of flows and IATs time series,25

to characterise hydrological response and compare response across basins. In section 3, results of the analyses are presented

and discussed, first based on results obtained using a daily sampling scale, followed by results obtained a range of sampling

scales, from hourly up to seasonal sampling scale. Conclusions and suggestions for future work are summarised in section 4.
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2 Data and Methods

2.1 Flow datasets

The data used in the study were collected at 17 USGS stream gauging stations in Charlotte-Mecklenburg county, North Car-

olina. Gauging stations are located at the outlet of hydrological basins that range from 13 km2 to 238 km2 in size. The area

is largely covered by low to high intensity urban development, covering 60% to 100% of basin areas. Percentage impervious5

cover varies from 8% in the least developed to 48% in the most urbanised basin covering the city centre of Charlotte. Figure 1

shows a map with the location of the area, boundaries of hydrological basins and location of stream gauges used in the analysis,

table 2 summarises the main characteristics of the 17 basins.

Stream gage data were collected at 5 to 15 minute intervals over the period 1986-2011. Table 2 summarises the characteristics

of the basins associated with each basin as well as the time period covered by the data. The temporal scale of observations10

changed from 15 to 5 minutes between 2010 and 2014, at different times for each gauge; overall 20-30% of the total observation

record was covered by 5 minute intervals. Gauges measure water depth using pressure transducers and flow is derived using

stage-discharge curves. c1These curves were established based on protocols developed by USGS and include manual flow

measurements during site visits performed by USGS staff. As part of this procedure, stage-discharge curves are checked

and recalibrated during site visits several times per year (https://waterdata.usgs.gov/nwis/measurements). The percentage of15

missing flow data was smaller than 5% for all gauges included in the analysis; missing data were treated like zeros. The effect

of missing data on IATs is difficult to predict as this depends on the pattern of missing values and whether or not they occur

during a period of low or peak flow. Sensitivity studies by Schleiss and Smith (2016) have shown that the general effect of

replacing missing values by zeros is that a few sample IATs will be overestimated. This mostly affects the right tail of the

distribution and tends to have limited impact on peak flow characteristics. Another strategy would be to replace missing values20

by mean or median flow value, which may slightly reduce the overestimation of IATs in case several missing values occur in

row. However, in this paper only the worst case scenario will be considered, i.e. missing values were replaced by zeros.

2.2 Definition of inter-amount times

In this paper we analyse hydrological flow variability, based on the distribution of inter-amount times. We use the following

definition of inter-amount time (IATs), based on Schleiss and Smith (2016): Let ∆q > 0 denote a fixed flow amount. We define25

the series of IATs τn(∆q) with respect to ∆q as follows:

τn(∆q) = tn(∆q)− tn−1(∆q) (1)

where tn(∆q) denotes the time at which the cumulative flow amount first exceeded n times (∆q):

tn(∆q) = inf{u :Q(u)≥ n ·∆q} (2)

c1 Text added.
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where Q(u) denotes the cumulated flow at time u, Q(0) = 0, c2inf stands for infimum, also known as the greatest lower bound

in a set.

A steady flow pattern with constant flow has equal IATs for all values of ∆q. A variable flow pattern, on the other hand, is

characterized by a more variable IAT distribution.

2.3 Normalized inter-amounts5

Flow magnitudes strongly vary from one gauge to another. To overcome this scale dependence and compare flow IATs across

basins with different sizes and flow amounts, one needs to normalize IATs with respect to a common timescale. A possible

way to do this is to fix an average IAT τ̄ (e.g., 24 h) and determine the inter-amount ∆qτ̄ at this timescale:

∆qτ̄ = τ̄
QN
T

(3)

where QN denotes the total cumulative flow amount at the considered location and T is the length of the studied time period.10

In other words, instead of comparing IATs for a fixed accumulation, we choose the mean IAT τ̄ and compute (∆q)τ̄ such that

the series of IATs {τn(∆qτ̄ ) : n= 1, . . . ,N} has mean τ̄ . Two locations with different cumulative flow amounts over a given

period of time, e.g. over a year, therefore have different normalized inter-amounts.

2.4 Sample estimates and minimum inter-amount scale

Inter-amount times can be estimated from a sample flow time series q1, .., qN with temporal observation scale ∆t that may15

vary in time. But for simplicity, only the case with fixed temporal resolution ∆t will be considered below. A key step in

this procedure is the determination of the first passage times t1, .., tn in equation (2). This is done by considering the sample

accumulated flow amounts Q1 < .. < QN at times tn = t0 +n∆t:

Qn =

n∑
i=1

qi n= 1, . . . ,N (4)

The exact first passage times t1, .., tn for a fixed flow amount ∆q > 0 are likely to be unknown due to the limited temporal20

resolution of the data. But we can approximate them based on linear interpolation:

t̂n(n∆q) = ∆t

(
in∆q −

Qin∆q −n∆q

qin∆q

)
n= 1, . . . ,N (5)

where t̂n are the estimated passage times and in∆q denotes the index (in the sample) at which the total cumulated flow first

exceeded n times (∆q):

in∆q =min{i ∈ N|Qi ≥ n∆q} n= 1, . . . ,N (6)25

c2 Text added.
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The sample IAT estimates are then given by:

τ̂n(∆q) = t̂(n∆q)− t̂(n∆q−∆q) (7)

Because of the linear interpolation in (5), each sample IAT estimate, regardless of its length and the scale of analysis, will be

affected by a small interpolation error εn(∆q)<∆t. This error is random and has little influence on key statistics as long as

IATs remain much larger than ∆t, as is usually the case for large enough values of ∆q and during periods of low to moderate5

flow. Most of the interpolation errors happen during peak flows, when large flow amounts are accumulated over small periods

of time. It is therefore important, for any given gauge, to identify the values of ∆q above which reliable IAT estimates can

be derived. To identify the range of scales over which IATs can be reliably estimated, we consider the worst case scenario in

which all interpolation errors are equal to +/- ∆t. In this case, the maximum relative error affecting IAT estimates is given by:

εn(∆q) =
∆t

τ̂n(∆q)
(8)10

The minimum value of ∆q for which IATs can be reliably estimated depends on how strictly we want to control the estimation

errors in (8). In our analysis, we set the mean of absolute relative errors to be smaller than 50%. This is a rather conservative

approach as the estimation errors in (8) represent the worst case scenario and actual errors are likely to be much smaller than

that. This leads to the following rule for determination of minimum inter-amounts ∆q that can be used for analysis:

∆qmin =min{∆q > 0 : ε∆q < 0.5} (9)15

where ε∆q represents the arithmetic mean of the maximum relative errors in 8.

In addition to the lower bound, we also impose an upper bound on the inter-amounts used in our analysis. This is necessary

to ensure IAT time series are long enough to compute relevant statistical moments. Typically, there should be at least 100

consecutive IATs, which yields the following upper bound for inter-amount ∆q:

∆qmax = bQN
100
c (10)20

where: bc denotes the lower integer part and QN is the total cumulative flow for the considered time series.

It is worth pointing out that the lower bound on the inter-amount in (9) also provides an c1 indication of the left-tail properties

of IATs, thus of the degree of flashiness of the hydrological response, i.e. the smallest scale at which flow variations can be

studied given a fixed temporal observational resolution. c2We will elaborate on this in section 2.7, c3where we discuss this

property in relation to basin flashiness. More generally, the left tail properties of IAT distributions provide a good indication25

of what observational resolution is necessary to adequately capture the most extreme flow variations. For more details on this

important point, the reader is referred to the results section.
c1 rough
c2 Text added.
c3 Text added.
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Note also that analyses of IATs were conducted for all gauges over the entire period of available data, without distinguishing

between year, season or hour of the day. This was necessary as time series would otherwise be too short to study IATs across

different scales. This means we mostly focus on average characteristics of IAT and flow distributions with respect to area

size and imperviousness degree and potential influence of flow regulation and stormwater detention facilities, as far as this

information is available for the 17 basins. We refrain from investigating long-term trends, as our time series are restricted to5

maximum 30 years and because a recent study by Villarini (2016) showed no signs of long-term trends at 7506 gauges in

the contiguous US in the last 30 years. Indeed, our own analyses revealed no significant long-term trend in mean IAT or flow

variability over the considered time period.

2.5 Distribution of inter-amount times versus flows

Sample histograms of IATs and flows were analysed to investigate what different insights they provide into characteristics of10

the flow regimes. We plotted sample histograms for all gauges; appropriate bin widths were determined based on Scott’s rule

(Scott, 1979). We computed the coefficient of variation (CV), defined as the standard deviation divided by the mean, as an

indicator for relative spread around the mean. Values of skewness and medcouple (Brys et al., 2004), a more robust skewness

metric based on ordered statistics instead of statistical moments, were computed to investigate asymmetry of the histograms and

influence of outliers. We compared coefficient of variation, skewness and medcouple values for IATs with those for traditional15

flow time series and investigated relationships of the three statistics with basin area and imperviousness degree.

2.6 Distribution of changes in inter-amount times

First-order differences of IATs and flows were computed to look into characteristics of the rising and falling limbs of hy-

drographs. Because IATs are measured on an inverted scale, positive differences are associated with the falling limb of the

hydrograph and negative differences with the rising limb of the hydrograph. Narrow ranges of histogram values for IAT dif-20

ferences indicate slowly varying flow; wide range histograms indicate more flashy behaviour. Positively skewed histograms

for IAT differences indicate that the distribution is dominated by values on the rising limb and short recession limbs, while

negatively skewed histograms indicate a larger part of the flow is associated with flow recession, i.e. long, slowly receding

hydrographs, for instance induced by a strong groundwater flow component. Differences were computed at the 24-hour time

scale, imposed by the minimum inter-amount scale rule. Similarly to the other histograms, bin widths was chosen based on25

Scott’s rule.

2.7 Flashiness indicator and minimum observable scale

As mentioned earlier, the lower bound on the inter-amount provides an c1 indication of left-tail properties of IAT distributions

(i.e., short waiting times) and can therefore be used to characterise the degree of flashiness of the hydrological response. In

flashier catchments, the flow can rise quicker, resulting in lower IATs during times of heavy rain. The minimum observable30

c1 rough
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inter-amount represents the smallest scale at which flow variations can be studied with acceptable interpolation errors, given a

fixed temporal observational resolution. By extension, the lower tail of the IAT distribution provides a good indication of what

observational resolution is necessary to adequately capture the most extreme flow variations. The IAT flashiness indicator used

in this paper is defined as the mean scale µ (expressed in hours) at which the 1% quantile of the IAT distribution equals the

observational scale ∆t (15 min in our case). That is, the IAT flashiness indicates the average time needed to accumulate the5

amount of flow that can be accumulated in 15 minutes or less, 1% of the time. The larger the flashiness, the more flow can be

accumulated over short amounts of time.

To better interpret results, we compared the IAT flashiness index with the c2c3frequently used R-B flashiness index defined in

Baker et al. (2004):

R−B index=

N∑
i=1

|qi− qi−1|

N∑
i=1

qi

(11)10

where: qi denotes the flow at time step i. The R-B flashiness index is dimensionless and can vary between 0 and 2. It is 0 for

constant flow and 2 for highly variable and continuously changing flow. Its value is independent of the units chosen to represent

flow (Baker et al., 2004). However, index values do depend on the time-scale at which they are computed, as will be discussed

later in the results section. In our analysis, we computed R-B flashiness indices on daily aggregated flow values.

2.8 Scaling of inter-amount times15

Multi-fractal analysis techniques were applied to investigate the scaling behaviour of IAT time series across different inter-

amount scales. Multi-fractal analyses are based on the assumption of generalised scale invariance, in which the statistical

moments or order q > 0 of a stochastic process Xλ at scale ratio λ are related by a power law:

〈Xq
λ〉= C(q)λK(q) (12)

where 〈Xq
λ〉 denote the moments of order q of X measured at a scale ratio λ, C(q) is a constant (for each q) and K(q) is called20

the moment scaling function. Within the universal multi-fractal framework, K(q) is characterised with the help of only three

parameters, α, C1 and H (Schertzer and Lovejoy, 1987, 2011):

K(q) =

 C1

α−1 (qα− q)− qH if α 6= 1

C1q ln(q)− qH if α= 1
(13)

The parameter C1 is referred to as the intermittency and characterises the clustering of the time series at smaller and smaller

scales. C1 = 0 for a homogeneous field that fills the embedded space and approaches 1 for an extremely concentrated field.25

The parameter α is called the multi-fractality index (0< α < 2) and it controls how the moments change when going from one

c2 classical
c3 Text added.
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scale to another. Finally, H =−K(1) is called the Hurst exponent. Note that in the case of IATs, the mean inter-amount time τ

and scaling ratio λ are inversely proportional to each other (i.e., ∆qτ ∼ λ−1). So either of them can be used here as a measure

of scale. The only difference will be the value of the constant C(q) and the sign of the exponent in (12).

The scaling quality is assessed by noting that if (12) is true, the log-moments for fixed values of q should be a linear function

of the log-scale of ln(λ):5

ln(〈Xq
λ〉) =K(q) ln(λ) + ln(C(q)) (14)

The extent to which this equality holds can be assessed by fitting a linear regression model and computing the R2 values,

i.e., the coefficient of determination of the log-moments versus the log-scale for each value of q. A R2 of 1 indicates perfect

scaling. The lower the coefficient of determination, the larger the deviations from scale-invariance. The approach was repeated

for different values of q and the mean or minimum value of R2 were chosen as a way to assess the overall quality of the10

scaling. Based on recommendations by Lombardo et al. (2014), we refrained from using too low or high order moments and

only considered values of q between 0.4 and 2.5, with an equal number of moments above and below 1 to avoid favoring one

tail of the distribution over the other. The range of IAT scales that was used for the analysis was constrained by the length of

the time series and the minimum and maximum inter-amounts defined in (9) and (10). The corresponding scales varied from

0.1 to 0.6 days up to 28 to 100 days for the longest time series.15

3 Results

In the following sections we compare statistical properties of flow and IAT time series and highlight differences that result

from the different sampling strategies. Analyses are first conducted at the 24 hour time-scale and associated mean inter-amount

sampling scale. In the second part of this section, we analyse how statistical properties of flow and IAT time series vary across

scales and quantify flashiness and scaling behaviour of both time series.20

3.1 Time series and variability analysis of inter-amount times and flow values

Figure 2 shows an example of times series for flows and for IATs for the gauge at Taggart Creek, a 13.6 km2 basin in the

Charlotte catchment, at 24 hour sampling scale. The two graphs bring out different aspects of flow variability: flow time series

have most of their data points concentrated in the low flow region, with intermittent peak flows characterising rain events. For

IATs, peak flows appear as minima, while periods of low flow show up as maxima in the time series. The graph illustrates25

how IAT samples are more evenly distributed across high and low values in the time series compared to flows. The mean

inter-amount for Taggart Creek at 24-hour sampling scale is 13,559 m3, equivalent to 0.998 mm when normalised by basin

area. Hence, in IAT analysis, the time series is sampled each time 0.998 mm of normalised flow has been accumulated, which

amounts to frequent samples during high flows and fewer samples during low flow periods. For instance, a high concentration

of IAT samples is clearly visible for the wet year 2003: this year is represented by 802 IAT samples compared to the 36530

samples per year we have on average.
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Figure 3 illustrates the adaptive sampling strategy based on flow amounts as the sampling unit, instead of fixed time steps.

Figure 3b shows cumulative flow over a week, where a storm event occurred on 7 August. In conventional flow time series

analysis, flow is sampled daily (in this example), resulting in one sample representing the peak period of the event (i.e., on 7

August). In IAT analysis, flow accumulation determines the sampling frequency, so periods of low flow are sparsely sampled,

while the storm event is represented by eight samples. This illustrates how, even for 24-hour mean inter-amounts, sampling5

frequency can be much higher during periods of peak flow.

Histograms of flow time series and IATs at daily time scale are plotted in figure 4, for two basins, Taggart Creek (13.6 km2)

and LSugarA (111 km2). The corresponding inter-amounts are 1 mm and 1.8 mm of normalised flow (for Taggart and LSug-

arA, respectively). Histograms for the other 15 basins are available in the supplement to this paper. Figure 4 shows that both10

histograms of flows and IATs are positively skewed. In both cases however, left and right tails represent very different flow

characteristics. The left tail of the flow’s histogram essentially features common base flow values while the right tail captures

rare peak flow events. By contrast, the left tail of IAT distributions, which makes up most of the values, predominantly features

short IAT values associated with periods of high flow. The rare samples that make up for the right tail represent long waiting

times associated with extended periods of low flow. The low density of the first bin in the flow histogram for LSugarA reflects15

the effect of low flow regulation for this basin. The same effect is reflected in the bi-modal shape of the IATs histogram. Note

that the low density 0-0.5 bin in the flow histogram for LSugarA corresponds to the >3.5 day bins in the IAT histogram.

Tables 2 (6th and 7th columns) and 3 summarise statistics of flow and IAT time series, at 24 hour sampling scale. The

results show that mean inter-amounts vary from 12,275 m3 for the smallest to 269,534 m3 for the largest basin in size. Mean20

normalised inter-amounts vary from 0.68 mm for Irvins Creek, the least urbanised basin (8.2% imperviousness) to 1.79 mm for

Little Sugar Creek at Archdale, one of the largest basins with a high degree of imperviousness (32%). Coefficients of variation

at the daily scale are consistently higher for flows than for IATs (e.g., 1.7 times higher on average), which highlights the more

balanced nature of IAT distributions. Skewness values at the daily time scale are 3.6 times higher for flows than for IATs, on

average, and even up to a factor of 15 higher for Stewart Creek. By contrast, medcouple values for flows are lower than for25

IATs by a factor 2.1 on average. This shows that statistical distributions of flows are strongly influenced by the presence of a

few very large outliers. Most of the weight, however, lies close to the median (low medcouple). The IAT sampling gives more

weight to rare peak flow values and less to common base flow, therefore producing distributions with lower skewness and more

information about peak flow values. The larger medcouple values mean that IATs above the median value tend to be much

further away from the median than values below the median. In other words, the right part of the distribution, which features30

long waiting times during low flow conditions can be very stretched.

These results show that adapative sampling based on inter-amounts leads to more balanced representation of high and low

flows, resulting in lower coefficients of variation reflecting stabler statistical variance compared to traditional flow time series

sampling. We like to point out that these results were obtained at the 24 h sampling scales. In section 3.4, behaviour of the

statistical distributions of flows and IATs, as well as associated CV, skewness and medcouple values will be analysed across a35
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range of subdaily to seasonal scales.

3.2 Statistical distribution properties comparison across different hydrological basins

Subsequently, we compared properties of IAT and flow distributions across the 17 basins in relation to basin characteristics.

Figure 5 shows scatter plots of mean normalised inter-amounts, CV, skewness and medcouple values for flows and IATs as a5

function of basin area and imperviousness degree. The results show a positive correlation of 24-hour mean normalised flows

or inter-amounts with basin size (Spearman correlation 0.55). This is mainly explained by a lower likelihood of low flows

that have a large influence at this scale (24 hours). Mean normalised flows correlate positively with imperviousness degree

(Spearman correlation 0.58), which is likely to be explained by a generally growing importance of flow regulation, resulting in

maintenance of higher mean base flows in urbanised basins.10

Looking at CV-values across all basins (figure 5. c, d), we found that CV-values for both flows and IATs generally decrease

with basin size and with imperviousness degree. CV-values are significantly negatively correlated with basin size for flows

(Spearman rank correlation -0.75). This can be explained by an increased smoothing effect on flow variation, in particular a

lower likelihood of low flow extremes during dry periods for larger basins. CV-values for IAT distributions c1do not show a

significant correlation with basin size, while they are significantly negatively correlated with imperviousness (Spearman rank15

correlation -0.57). Since IAT distributions put more weight on high flows compared to low flows as a result of their adaptive

sampling strategy, this probably indicates stronger influence of flow regulation in urbanised basins resulting in more uniform

runoff during rainy periods. IATs during these periods concentrate relatively more closely to the mean and show fewer ex-

tremes (this is clearly visible for the most urbanised basin, LSugarM, gauge 409). The effect of urbanisation as reflected by

imperviousness degree on IAT statistics appears to be more important than basin size.20

Scatter plots for skewness and medcouple values (figure 5. e, f, g, h) show generally weak correlation with basin area (Spear-

man correlations not significant at the 5% level). Skewness of IAT distributions is significantly negatively correlated with

imperviousness (Spearman rank correlation -0.63). Similar to CV-values, this probably indicates stronger influence of flow

regulation on flows in urbanised basins. Medcouple values for IATs clearly show three low value outliers: for Stewart Creek

(970), LSugarP (530) and LSugarA (507). In these basins, active low flow control is appliedc1 preventing occurrence of low25

flow extremes and high IAT extremes. The effect shows up more clearly for IAT medcouple values, as a result of the adaptive

sampling strategy that gives more weight to peak flows, leading to generally higher medcouple values, but also reflecting more

clearly the absence of low flow extremes. Some of the basins in this study are subbasins of each other, which implies that flows

can be correlated. Table 4 summarises CV, skewness and medcouple values for three sets of subbasins in the Charlotte catch-

ment. The results show that variability in skewness and medcouple values is unrelated to inter-basin connections. The same30

applies for flow CV-values, while CV-values for IATs seem to be clustered by group of subbasins, indicating that inter-basin

correlation plays a role in explaining IAT 2nd order variability. The fact that the effect is only visible for IAT, not for flows,

c1 Text added.
c1USGS, water year reports
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indicates that correlation is mainly associated with occurrence of peak flows, that receive more weight in IAT than in flow

statistics

In this section we discussed distributions of IATs and flows at the 24 hour scale. Results showed that larger basins are

generally characterised by stronger smoothing of flows, resulting in higher mean flow, lower CV and lower skewness of the5

flow histograms. Flow variability is clearly correlated with basin size, which is mainly a result of smoothing of low flows,

in the left tail of the flow histogram. c1This confirms results previously reported in the literature on scaling between flows

and basin area (e.g., Goodrich et al., 1997; Smith, 1992) c2and specifically between CV of flows and basin area (Bloeschl

and Sivapalan (1997)). c3These authors also refer to complexities in hydrological response resulting in deviations from this

general relationship. The same applies for the basins in our study, where basin area only explains part of the flow variability,10

especially for smaller basins. Results showed that larger imperviousness is associated with higher mean flows and significantly

lower CV-values for IATs, c4while there was not significant correlation between CV-values for flows and imperviousness. This

is probably explained by urbanisation being mainly associated with stronger flow regulation by c5 detention c6c7and capacity

constraints in the drainage system. Since IATs are relatively more sensitive to high flows, this effect showed up more clearly in

CV values for IATs than for flows. CV and skewness values are much higher for flows than for IATs, while medcouple values15

are lower for flows, indicating strong asymmetry of the flow distributions and low representation of high flow extremes in the

statistical distribution. c8While (Kjeldsen, 2010) c9reported a decrease in CV and skewness associated with urbanization for

basins in the UK, we did not find significant correlations based on CV and skewness indicators for flows. Skewness for IATs

was significantly negatively correlated with imperviousness; as stated before, this is probably associated with IAT statistics

being more sensitive to variability in high flows than conventional flow statistics.20

3.3 Distribution of changes in inter-amount times

Figure 6 shows histograms of first-order differences in IATs and flows at the 24 hour analysis scale, for Irvins Creek, the

least urbanised basin, LSugarM the most impervious basin, Stewart Creek, a basin with low flow regulation and McAlpine, the

largest of all studied basins. In the flow histograms, negative differences are associated with recession, positive differences with

flow rise. Conversely, negative differences in IATs occur during flow rise, positive differences during flow recession. Most flow25

differences are concentrated in the 0 to -0.5 mm bin, associated with slow flow recession of 0.5 mm/day. Most IAT differences

are concentrated in the 0 to 0.1 or 0.2 day bin, associated with steeper flow recession of approximately 5 to 10 mm per day. This

c1 Text added.
c2 Text added.
c3 Text added.
c4 Text added.
c5 dams and
c6 ponds in urbanised basins
c7 Text added.
c8 Text added.
c9 Text added.
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reflects the relatively higher sampling of rapid flow response for IATs compared to conventional flow sampling. Skewness and

medcouple values of the histograms provide indications of hydrograph shape, in particular of the steepness of the hydrograph

recession limb: higher skewness, thus more weight of the distribution concentrated in one of the tails, indicates slow flow

recession compared to relatively rapid flow rise. Figure 7 shows scatter plots for skewness and medcouple values versus basin

size and imperviousness, for all basins. The three basins with low flow regulation (970, 530, 507) can be recognised by their5

low medcouple values for IAT difference indicating near symmetrical histograms, i.e. flow rise and recession occur at similar

rates. Most IAT differences histograms are negatively skewed, with a longer left tail than right tail, i.e. IATs generally decrease

quicker (flow rise) than they increase (flow recession). Strongest negative skewness for IAT differences was found for the least

urbanised basin (Irvins Creek, gauge 975), indicative of steep flow rise occurring in this basin. Significant positive correlation

was found between skewness of IAT difference histograms and imperviousness (Spearman correlations 0.75), indicating lower10

probably of steep flow rise in higher urbanised basins. Negative correlation was found between medcouple and imperviousness

(Spearman correlation -0.55), thus relatively more symmetrical hydrographs with flow rise and recession at similar rates occur

for urbanised basins. Here, subbasin correlation appears to play role: medcouple values are higher overall in the McAlpine

subbasins than in Little Sugar Creek and Irwin subbasins (see table 4). Significant correlations of IAT differences skewness

and medcouple with imperviousness show that urbanisation is associated with more regulated flows, confirming findings in15

section 3.1.

3.4 Inter-amount times variability across scales, from sub-daily to seasonal sampling scale

In this section we analyse the variability of IATs and flows across a wide range of sampling scales. We investigate how the

statistical distributions and hydrological response characteristics change when moving from inter-event (multiple days) to

intra-event (sub-daily) scales. Figure 8 shows quantile plots for normalised flows and IATs at scales between 12 hours and 6420

days, for Taggart Creek. On the horizontal axis is the sampling scale, i.e. fixed sampling time for conventional flow statistics

or, equivalently, mean inter-amounts for IAT statistics. Note that for the IAT analysis, mean inter-amounts are normalised by

basin area size and reported in mm to allow easier interpretation of flow magnitudes and to allow easier comparison between

basins. For instance, the normalised inter-amount ∆q for Taggart Creek at the daily scale is 0.998 mm. The vertical axis shows

quantiles of normalised flows respectively IATs corresponding to the sampling scale in time or ∆q. Values on both x- and25

y-axes are plotted on log scales to allow easier visualisation of quantile values that vary by 2 to 4 orders of magnitude. The

bold black line denotes the mean, dotted black line shows median values. The central part of the quantile plots represents the

25-75 percentile range, upper and lower whiskers 10-90 percentiles and crosses the 1 and 99 percentiles.

We can see that mean values of normalised flows and IATs decrease log-linearly with sampling scale, as indicated by

a straight line in the log-log plot, i.e. the sampling mean follows power-law scaling. As histogram analysis at the 24 hour30

scale already showed, statistical distributions of both flows and IATs are highly skewed. Moreover, skeweness increases at

smaller scales as indicated by an increasing distance between mean and median values. Median values for flows follow close

to log-linear scaling (albeit steeper compared to the mean) but exhibit stronger departures from log-linear scaling for IATs. In

particular, the median of IATs shifts from close to log-linear scaling between 16-64 mm (associated with about 16 to 64 days)
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to non-log-linear scaling between 1-14 mm scales (1-14 days) and again to near-log-linear scaling below 1 mm. Coincidentally,

these transitions correspond to the range of scales over which IATs generally transition from being inter-event to intra-event

dominated. Indeed, IATs at coarser scales mostly combine the properties of multiple storms, resulting in a more symmetric

distribution. This effect is much stronger in IAT than in flow distributions, because it is mainly associated with changes in

sampling of peak flows which are more frequently sampled in the IAT framework than in the conventional fixed time approach.5

Comparing the 10-90 and 1-99 percentile ranges in figures 8a and 8b we see that the 10-90 percentile range of IATs gradu-

ally increases towards smaller scales. For flows, the 10-90 percentile range remains approximately constant, however, distance

between 90 and 99 percentile values rapidly increases towards smaller scales. This reflects the highly skewed nature of flow dis-

tributions caused by oversampling of low flows compared to high flows; an effect that increases progressively towards smaller

scales. By contrast, 10-90 and 1-99 percentile ranges for IATs increase more or less similarly with scale, for sampling scales10

ranging from 0.51 mm to approximately 10-16 mm. This indicates that the tails of IAT distributions are more or less equally

sampled, at least up to the 1 and 99 percentiles.

The upper 75, 90 and 99 IAT percentiles of IATs, associated with low flow periods, change approximately log-linearly with

scale, showing that upper tail percentiles of IAT values refer to the same low flow periods across all scales, up to 8-16 mm

scale. Associated low flows are approximately 0.1 mm/day. The 1-percentiles for flows are associated with approximately 0.0215

mm/day, for the 12 hour to 4 day scale, showing that the distribution tail associated with low flows captures lower flow extremes

in conventional sampling than in IAT sampling. This is a result of the relatively high frqeuency at which low flows are sampled.

Conversely, peak flows, associated with the right tail of the flow distribution are sampled less frequently in conventional flow

sampling: the 99 percentiles are associated with peak flows of 0.78 to 0.38 mm/h for 12 hour to 4 days scale. The 1-percentiles

of IATs are associated with peak flows of about 20 mm/h, at the 0.5 to 4 mm inter-amount scale, associated with mean IATs20

of 12 hours to 4 days. This shows that the IAT distribution captures more extreme peak flow values than conventional flow

sampling, at the same sampling scale.

Quantile plots of inter-amounts over range of scales were created for all 17 gauges included in our analysis (results are added

as a supplement to this paper). This allowed us to compare transition ranges between inter-event dominated and intra-event25

dominated IAT distributions for all basins. Results show that for 10% IAT quantiles, the lower end of the transition range,

where intra-event characteristics start to be mixed with inter-event phenomena, lies roughly between 10 mm and 25 mm mean

inter-amounts, being accumulated in about 1 hour in most of the basins. Lower values are found for basins with higher urban-

isation degree and for basins where low flow control is applied, reflecting the smoothing influence of flow control measures

on peak flows. Similarly, one can compare the amount of flow that is being generated in an hour, compared to the mean flow.30

This can be derived from the IAT quantile plots by looking at the scale at which a given IAT quantile, for instance 10% or 1%,

equals 1 hour. For Taggart Creek, the IAT 1-percentile equals 1 hour at sampling scale of 18 mm of mean normalised flow or

equivalently, 18 days of mean IAT. This means there is a 1% probability of exceeding 18mm of flow accumulation in 1 hour

or less. Or, in terms of time it implies that there is a 1% chance to accumulate the amount of flow measured on average over a

period of 18 days in 1 hour or less. Thus, higher values of 1 hour, 1-percentiles indicate stronger flashiness of basin response.35
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Comparing values across basins, we found that higher values of 1%, 1 hour accumulations were strongly correlated with basin

area, while no significant correlation with imperviousness was observed.

Subsequently, we investigated scaling behaviour from the perspective of statistical moments, by looking at coefficients of

variation for flows and IATs across scales. For the purpose of statistical analysis and downscaling applications, it is important5

to have a robust scaling model, that predicts how distributions change when going from one scale to another. Scale invariance

means that a distribution can be derived at any scale, especially small scales, by shifting and scaling the distributon at larger

scales. One way to assess the property of scale invariance is to check if the statistical moments of distributions follow a power-

law of scale. Figure 9 shows coefficients of variation, computed as the ratio of the 2nd over the 1st order moment, for four

gauges, across a range of sub-daily (3 to 12 hours) up to bi-monthly (60-68 days) scales. Results show that coefficients of10

variation for flows vary non-linearly with scale, while they approximately follow a power law with scale for IATs. For Irvins

Creek, the most natural basin in this study (8.2% imperviousness, figure 9a), CV-values of IATs and flows are similar over

a range of 10 to 50 days. At smaller scales, CV-values for flows increase more rapidly than for IATs, indicating that IAT

variance remains more stable at smaller scales, while variance rapidly increases at small scales for flows, as a result of growing

skewness of the statistical distribution, caused by relative oversampling of low flows, or conversely, undersampling of high15

flows. CV-values for Upper LSugar Creek, the most urbanised basin are lower than for Irvins Creek, especially at smaller

scales (figure 9b). This is explained by the influence of flow control measures in this basin, as flows are constrained by the

stormwater drainage system. The difference is more pronounced for IATs, because IAT variance is more sensitive to peak flows

as a result of the adaptive sampling strategy. Figure 9c shows that for LMcAlpine, the largest basin (238.4 km2), CV-values for

flow are more or less stable between 3 and 24 hour scale, due to strong smoothing of peak flows at this intra-event scale. In20

contrast, CV-values for IATs increase over this range, due to scale sensitivity of the upper tail of the IAT distribution, where

long IATs at this small scale (0.1 to 1.1 mm for 3 to 24 hours) are broken up more unevenly, creating increased CV and

skewness. This shows that for analysis of low flows, especially in basins characterised by strongly smoothed flow variability,

IAT analysis offers little advantage and conventional flow statistics are more suitable. CV-values for Stewart Creek in figure 9d

show very low CV-values for IATs that vary little with scale, while CV-values for flows are much higher and strongly sensitive25

to scale. Stewart Creek is a small, semi-urbanised basin (33% imperviousness) where active low flow control is applied. This

results in very low variability in IATs across the entire range of scales, while CV-values for flows are lower than those for

similar basins, but highly sensitive to scale, probably due to unbalanced sampling of peak flows compared to very stable low

flows.

In section 3.1 we analysed skewness and medcouple values of flow and IAT distributions at the 24-hour scale and found30

that skewness values were lower and medcouple higher for IATs than for flows. This was explained by the sensitivity of flow

distributions to rare peak flows compared to frequently sampled low flows. Initial analyses of skewness and medcouple values

across scales showed that results are highly sensitive to the sampling scale. While CV-values show a stable pattern across

scales, results for skewness and medcouple are much more variable, across scales and across basins. Explanation of this scale
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sensitivity of skewness metrics and what information can derived from this about the tails of the distributions requires deeper

analysis that will be part of future work.

3.5 Flashiness indicators and minimum observable scale

Two flashiness indicators were computed, as explained in section 2, the classical R-B flashiness index and an IAT flashiness

indicator based on characteristics of the IAT distribution. Table 3 summarises flashiness values for all gauges, as well as5

minimum and maximum observable inter-amounts, as defined in equations (9) and (10). IAT flashiness indicators vary between

12.5 and 165 hours; higher values are generally associated with smaller basins. -B flashiness values vary between 0.8 and 1.3,

indicative of moderately variable flows (R-B flashiness can vary between 0 and 2). Values are in the same range as those

reported by Baker et al. (2004) for smaller basins: they found R-B flashiness values larger than 1 for basins smaller than

50 km2). R-B flashiness is strongly correlated with CV-values (figure 10c, Spearman correlation 0.77); this confirms that10

R-B flashiness is essentially a metric of flow variability. Figure 10a shows that IAT-based flashiness and R-B flashiness are

moderately correlated (Spearman rank correlation 0.55), yet there are some striking differences. The three low-flow-regulated

basins have very low R-B flashiness values, while IAT flashiness values are in line with values for other basins. This is explained

by R-B flashiness being strongly sensitive to low flow variability, while IAT flashiness is more sensitive to occurrence of peak

flow values. For instance, McAlpine basin (gauge 255) has a very high IAT flashiness as a result of high occurrence of peak15

flows. On the other hand LSugarM (gauge 409), the most urbanised basin, has low IAT flashiness as a result of peak values

being capped by maximum capacity of pipes in the drainage network.

Figure 10b and 10d shows scatter plots of IAT flashiness (left y-axis) and R-B flashiness (right y-axis) versus basin area and

imperviousness, for all gauges. They show a clear relationship between flashiness and basin area (Spearman correlation -0.83

for IAT, -0.71 for R-B flashiness), with a large range of flashiness values for the smallest basins (< approx. 30 km2). Here,20

clearly other processes than basin size play a role in explaining flashiness. Correlations between R-B and IAT flashiness versus

imperviousness degree are not significant at the 5% level. For R-B flashiness, the most pervious and the most impervious basins

(gauges 975 and 409 respectively) are both in the high range of flashiness values, showing that other influences, such as basin

size and presence or absence of low flow regulation play a more important role than imperviousness degree. IAT flashiness

tends to decrease for a combination of higher imperviousness and larger basins, basin size playing a stronger role than urbani-25

sation. The most urbanised basin, LSugarM (gauge 409, 31.7 km2, 48% imperviousness) has a relatively low flashiness value

of 48.8 hours, while the least impervious basin, Irvins Creek (gauge 975, 21.8 km2, 8% imperviousness) has a high flashiness

value of 102.8 hours. As discussed in section 3.1, the effect of urbanisation on flow patterns for the basins in the study area

seems to be mainly determined by increased flow regulation associated with introduction of dams, stormwater detention basins

and stormwater drains with capacity limitations. While higher imperviousness leads to higher mean runoff flows (for instance,30

1.5 mm for LSugarM versus 0.68 mm for Irvins Creek, at 24 hour scale), c1c2rainfall tends to runoff relatively more uniformly

in impervious basins, without rapid flow rise or sharp flow peaks, depending on the degree of flow regulation. The leads to a

c1 rainfall in impervious basins tends to run off relatively more quickly and uniformly
c2 Text added.
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mixed effect of basin size, imperviousness and flow regulation on IAT flashiness and peak flows.

In this study, IAT flashiness values were defined as the time that is needed on average to accumulate the amount of flow that is

accumulated in 15 minutes or less, 1% of the time. R-B flashiness indices were computed at the daily scale, to allow compari-

son with results obtained by Baker et al. (2004). For a fair comparison, both flashiness indices should be computed at similar

scales, as far as possible, given that definitions used in the two approaches are different. We aimed to compute both indices at5

hourly scale, as this is an appropriate scale in relation to the size of most of the basins in our analysis and a reasonable compro-

mise between the 15 minute and 24 hour time scales used for IAT flashiness and R-B flashiness index respectively. Note that

Baker et al. (2004) stated that the hourly scale would be more suitable for smaller basins (<30 km2), but never computed R-B

flashiness values at this scale, only Richard’s pathlengths. When we computed R-B flashiness indices at the hourly scale, using

the same definition, we found lower flashiness than at the daily scale, which is rather counterintuitive, as one would expect10

higher flashiness at smaller scales due to the fact that Richard’s pathlengths increase from daily to hourly scales. However,

R-B flashiness is based on absolute differences of flow values, not gradients (i.e., differences per unit of time). And since flow

differences decrease when moving toward smaller scales, R-B index also decreases. Alternatively, one could use discharges

instead of flow amounts, but then values could grow much larger than 2. Regardless of the used approach, R-B flashiness index

appears to be rather sensitive to the scale of analysis. By contrast, the IAT flashiness index proposed in this paper tends to15

be much more robust. Additional sensitivity analyses (not shown) revealed almost no changes in IAT flashiness estimates for

15 minutes to 3-6 hours aggregation scales. Beyond that, significant underestimation started to occur as the resolution is not

sufficient anymore to correctly capture peak flow variability. For data aggregated at 24 h resolution (instead of the original

15 min), IAT flashiness values were underestimated by 20-80%, depending on the considered gauge.

20

Quantile plots of IAT distributions furthermore provide information about the minimum observable scale at a given obser-

vational resolution (15 minutes, in the data series used in our analysis), i.e. the degree of flow variability that occurs at scales

smaller than the observation scale. When moving towards smaller sampling scales, a growing percentage of flow accumulations

occurs in less than 15 minutes, hence cannot be analysed at the given observational resolution. This typically coincides with

peak flows and implies that during peak events, the observational resolution is too low to measure flow variability. IAT analysis25

can thus be used to identify a critical resolution for flow observations, if a given peak flow accumulation is of interest. This

could be associated with for instance the capacity of detention ponds or flooding caused by exceedance of stormwater drainage

capacity. For the example of Taggart Creek (figure 8b), the scale at which 1% of flow accumulations occurs in less than 15

minutes is associated with inter-amount sampling scale of 4.76 mm. This implies that flows that exceed 4.76 mm in 15 minutes,

i.e. peak flows above 19.0 mm/h, cannot be observed 1% of the time. If correct observation of peak flows of this magnitude30

or larger is important, flow data need to be collected at a higher than 15 minute resolution during times of peak flows. This is

typically the case of urban basins, where stormwater drainage systems are often designed for peak flows associated with 10 to

50 year return periods.
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3.6 Scaling of inter-amount times across scales: multifractal analysis

As explained in section 2, log-log plots of statistical moments versus sampling scale can be used to study scaling behaviour of

time series. In the following, we plotted the moments 〈Xq
λ〉 of order q of IATs as a function of mean inter-amount scale ∆q

(proportional to the inverse of the scaling ratio λ), on a log-log scale, for moments of order 0.6 to 2.4. We applied the same

procedure for flow time series over the same range of equivalent scales. Figure 11 shows examples of log-log plots for flow5

volumes and IATs for McAlpine Creek (gauge 750). They show that log-linear fits are better for IATs than for flows, especially

for higher order moments; minimum R2 values, that are associated with fits for higher order moments, are 0.9972 and 0.9993

for flows and IAT respectively.

Plots in figure 11 show stronger departures from linearity in the log-log plots for flows than for IATs, especially for higher10

order moments. Figures 11c and 11d illustrate this for log-log curves of moment q = 2.4, where a scale break was detected at

22 hours for flows. c1Based on a Davies test (Davies, 2002), c2two breakpoints were significant for flows (p-value 0.001). For

IATs, there was at least 1 significant breakpoint, but the test for 2 breakpoints returned a p-value of 0.071. This shows that scal-

ing is slightly better for IATs than for flows. Similar analyses were conducted for all gauges, table 5 summarises minimum R2

values for log-moments fits for flows and IATs. Log-moments for IATs show near perfect fits for all gauges, with minimum R215

values between 0.995 and 1.000. Quality of log-moments is consistently lower c3for flows,for all basins; minimum R2 values

are between 0.990 and 0.997, lower quality fits generally occuring for smaller basins. Investigation of departures from linearity

showed that for flows, most gauges exhibited a scale break between 8 and 20 days. Similar scale breaks, between time scales of

8 to 16 days, were found in scaling analyses of flow data by other authors based on flow data at daily resolution (Tessier et al.,

1996; Labat et al., 2002; Sauquet et al., 2008). Labat et al. (2013) and Sauquet et al. (2008) found scale breaks in the range of20

16 to 27 hours, for 30 minutes respectively hourly resolution. We did not detect any strong departures from linearity in the IAT

framework except for the 3 gauges where low flow regulation is applied (LSugarA, 507, LSugarP, 530, Stewart Creek, 750).

Using the empirical log-moments, we fitted the multifractal parameters C1 and α for IATs and flow amounts. Table 5

summarises C1 and α values for all basins, for flows and for IATs. Results show that C1- values, characterising intermittency

of the time series, are lower for IATs than for flows. This makes sense and can be explained by the adaptive sampling strategy25

of IATs, especially the fact that low flows are sampled less often than in the classical fixed-time framework. Values of the

multi-fractality index α are generally lower for IATs, with the exception of four basins. Two of these basins are characterised

by low flow regulation, one basin has anomalous land-use distribution with a high concentration of imperviousness in the upper

part of the basin. Time series of the 4th basin is short (8 years), which might influence outcomes of the scaling analysis. C1

and α values for flows are in the range of values found by other authors. Figure 12 shows scatter plots of values for C1 and α30

for flow and for IATs versus basin size and imperviousness. C1- values are clearly negatively correlated with basin area. Rank

correlations for IATs are -0.67 and -0.85 for flows. No significant correlation of C1 with imperviousness was found, but the

c1 Text added.
c2 Text added.
c3 Text added.
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three basins with low flow control stand out with lower than average C1 values. This shows up both in the IAT analyses and

in the classical approach based on flows. The α values for IATs are positively correlated with area (0.6) and negatively with

imperviousness (-0.56). No significant correlation with area nor imperviousness was detected. For IATs, negative correlation of

α with imperviousness comes from the fact that IATs in highly impervious basins are redistributed more evenly when moving

from large to small scales (due to high imperviousness).5

4 Summary and conclusions

In this study, we introduced an alternative approach for analysis of hydrological flow time series, using an adaptive sampling

framework based on inter-amount times (IATs). The main difference between flow time series and time series for IATs is the

rate at which low and high flows are sampled; the unit of analysis for inter-amount times is a fixed flow amount, instead of

a fixed time window. Thus, in IAT analysis, sampling rate is adapted according to the local variability in flow time series, as10

opposed to time series sampling using fixed time steps. We aimed to investigate the effect of adaptive IAT sampling on flow

statistics, especially on the tails of the statistical distributions associated with peak flow and low flow extremes. We analysed

and compared statistical distributions of flows and IATs across a wide range of sampling scales to investigate sensitivity of

statistical properties such as distribution quantiles, variance, scaling parameters and flashiness indicators to the sampling scale.

We did this based on streamflow time series for 17 (semi)urbanised basins in North Carolina, US. The following conclusions15

were drawn from the analyses:

1. Adaptive sampling of flow time series based on inter-amounts leads to higher sampling frequency during high flow

periods compared to conventional sampling based on fixed time windows. This results in a more balanced representation

of low flow and peak flow values in the statistical distribution. While conventional sampling gives a lot of weight to low

flows, as these are most ubiquitous in flow time series, IAT sampling gives relatively more weight to high flow periods,20

when given flow amounts are accumulated in shorter time. As a consequence, IAT sampling gives more information about

the tail of the distribution associated with high flows, while conventional sampling gives relatively more information

about low flow values.

2. Statistical analysis of IATs and flows at the 24 hour scale showed that coefficient of variation (CV) and skewness values

were much higher for flows than for IATs, while medcouple values were lower for flows, indicating strong asymmetry25

of the flow distributions and low representation of high flow extremes in the statistical distribution. Larger basins were

generally characterised by stronger smoothing of flows, resulting in higher mean flow, lower CV values and lower

skewness of the histograms. Flow Variability c1decreasedc2 with basin size c3 Larger imperviousness was associated with

higher mean flows and lower variability of IATs, while there was not a clear relation with variability of flows.

c1 Text added.
c2 was correlated
c3 that which is mainly a result of smoothing of low flows, in the left tail of the flow histogram.

20



3. Comparison of coeffients of variation (CV) across the 17 basins showed that CV values of flows were significantly

negatively correlated with basin size. CV values of IAT distributions were not significantly correlated with basin size.

This was explained by basin size having a stronger smoothing effect on low flow variability, strongly represented in

conventional flow time series, than on peak flows that are more frequently represented in IAT time series. By contrast,

CV values of IAT distributions were negatively correlated with imperviousness, while correlation between CV values5

for flows and imperviousness was not significant. Negative correlation between CV values of IATs and imperviousness

probably indicates stronger influence of flow regulation c4by detention and capacity constraints of stormwater drains in

more urbanised basins, resulting in more uniform runoff during rainy periods. IATs during these periods concentrate

relatively more closely to the mean and show fewer extremes. c5This result is contrary to findings reported in the liter-

ature, where urbanisation tends to be associated with higher peak flows (e.g., Rose and Peters, 2001; Cheng and Wang,10

2002; Du et al., 2012; Huang et al., 2008). c6On the other hand, several studies have found mixed effects of urbanisation

on flow peaks associated with a combination of imperviousness and flood mitigation measures, especially for basins in

the US where urbanisation has predominantly taken place after implementation of stormwater legislation to lower peak

discharges (e.g., Smith et al., 2013; Hopkins et al., 2015; Miller et al., 2014). c7For the basins in Charlotte watershed,

urbanisation has taken place before as well as after stormwater legislation and a combination of flow regulation by deten-15

tion facilities and peak flow restrictions induced by capacity constraints results in an overall effect of peak flow reduction

associated with urbanisation.

4. Histograms of first-order differences showed negative skewness for IATs and positive skewness for flows, for most of

the basins, indicating prevalence of slow flow recession compared to flow rise. The three basins with low flow regulation

could be recognised by their relatively low medcouple values (<0.4) for IAT differences, showing that hydrographs tend20

towards being symmetrical in these basins. Significant correlations were found between skewness and medcouple of IAT

differences and imperviousness (Spearman correlations 0.75 and -0.55), showing that urbanisation is associated with

more regulated flows, thus relatively more symmetrical hydrographs with flow rise and recession at similar rates and

lower frequencies of steep flow rise. Here, subbasin correlation appears to play a role: medcouple values were higher

overall in the McAlpine subbasins than in Little Sugar Creek and Irwin subbasins. No significant correlations were found25

for differences in flows.

5. Quantile plots of flows and IATs plotted over a range of subdaily to seasonal scales showed the influence of the different

sampling strategy for IATs compared to conventional flow sampling on median, 25-75, 10-90 and 1-99 percentile ranges

of the distributions. The 25-75 and 10-90 percentile ranges for flows remained approximately constant, but the distance

between 90 and 99 percentile values rapidly increased towards smaller scales. This reflects the highly skewed nature of30

flow distributions caused by oversampling of low flows compared to high flows; an effect that increased progressively

c4 Text added.
c5 Text added.
c6 Text added.
c7 Text added.
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towards smaller scales. By contrast, 10-90 and 1-99 percentile ranges for IATs increased more or less similarly with

scale, for sampling scales ranging from 0.51 mm to approximately 10-16 mm, largely associated with intra-event flow

variability. This indicates that the tails of IAT distributions are more or less equally sampled, at least up to the 1 and 99

percentiles.

6. Quantile plots for IATs showed different scaling at small scales (up to inter-amount scale 8-10mm) and large scales5

(roughly exceeding 20 mm inter-amounts), with a transition range in between. At smaller scales, IATs are mostly domi-

nated by intra-event variability, while at large-scales IATs span multiple events. Flows sampled over fixed time intervals

did not clearly exhibit this transition, probably because peak flow variability is being poorly sampled by fixed time win-

dow sampling. Because IATs adapt the sampling rate depending on the level of activity, they still capture a fair amount

of peak flow statistics and intra-event properties, even at coarser scales.10

7. Comparison of the tails of flows and IAT distributions showed that the distribution tail associated with low flows captures

lower flow extremes in conventional sampling than in IAT sampling (0.02 mm/day compared to 0.1 mm/day). Conversely,

IAT distributions capture more extreme peak flow values than conventional flow sampling, at the same sampling scale:

the 99 percentiles for flows are associated with peak flows of 0.38 to 0.78 mm/h (sampling scales 12 hours to 4 days),

while 1 percentiles of IATs are associated with peak flows of about 20 mm/h (sampling scales 0.5 to 4 mm inter-amounts,15

associated with IATs of 12 hours to 4 days).

8. Analysis of CV-values of flow and IAT distribution across scale showed that at smaller scales, CV-values for flows

increase more rapidly than for IATs, indicating that IAT variance remains more stable at smaller scales, while variance

rapidly increases at small scales for flows. This is as a result of growing skewness of the statistical distribution of flows,

caused by relative oversampling of low flows, or conversely, undersampling of high flows. This shows that for analysis20

of peak flows, IAT analysis offers advantages of the fixed-time sampling framework, as it samples peak flows more

frequently and results in stabler variance across scales. For analysis of low flows, especially in basins characterised by

strongly smoothed flow variability, IAT analysis offers little advantage and convential flow statistics are more suitable.

9. An IAT flashiness indicator was defined as the inter-amount scale at which 1% of flow accumulations occur in less than 15

minutes. Comparison between IAT-based flashiness and the commonly applied R-B flashiness index showed that indices25

were moderately correlated (Spearman rank correlation 0.55), yet there were some striking differences. R-B flashiness

was shown to be strongly sensitive to low flow variability, while IAT flashiness was more sensitive to occurrence of peak

values. Both flashiness indices showed strong correlation with basin area. R-B flashiness showed no clear relationship

with imperviousness. IAT flashiness tends to decrease for a combination of higher imperviousness and larger basin size,

basin size playing a stronger role than urbanisation. The effect of urbanisation on flow patterns for the basins in the study30

area is a mixture of faster runoff flows due to imperviousness and stronger flow regulation by dams and detention basins.

This leads to a mixed effect of basin size, imperviousness and flow regulation on IAT flashiness and peak flows.
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10. A minimum observable inter-amount scale was defined as the smallest scale at which flow variations can be studied

given a fixed temporal observational resolution. At higher sampling scales, a growing percentage of flow accumulations

occurs in less than the given observational resolution, 15 minutes in this study. This typically coincides with peak flows

and implies that during peak events, the observational resolution is too low to measure flow variability. IAT analysis

can thus be used to identify a critical resolution for flow observations, if a given peak flow accumulation is of interest.5

If correct observation of peak flows of a given magnitude is important, flow data need to be collected at a higher than

15 minute resolution during times of peak flows. This is typically the case of urban basins, where stormwater drainage

systems are often designed for peak flows associated with 10 to 50 year return periods.

11. Multifractal analysis of IATs and flows was applied over a range of sub-daily to seasonal scales. Both approaches

exhibited relatively good scaling, as indicated by R2 values above 0.99. IATs systematically scaled better than flows10

and showed departures from multifractality only for three basins subject to low flow regulation, while flows exhibited

departures from multifractality for most basins. This showed that IATs can help better predict peak flow characteristics

at small unobservable scales based on coarse resolution data. Additionally, they provide new interesting alternatives for

the stochastic modelling and downscaling of flow data.

This study showed that properties of statistical distributions of flow time series are very sensitive to the scale at which15

the statistics have been derived. This influences values of summary statistics that are used to characterise flow patterns of

hydrological basins, like peak flows at given recurrence intervals and flashiness indices. Adaptive sampling based on inter-

amount times helped to achieve stabler variance across scales, yet the behaviour of other statistical properties such as skewness,

medcouple is less clear. Further investigations are needed to interpret changes of statistics across scales. Future work will focus

on multi-scale analysis, on how to compare results at different scales and what can be learnt from behaviour at different scales20

about flow variability in hydrological basins in relation to basin characteristics.

Analyses in this study identified minimum observable scales below which flow variability cannot be captured at a given

measurement resolution. The combination of being able to identify these minimum observable scales and to downscale flow

data based on IATs is an interesting area for future investigation. Results showed that scaling parameters for IAT time series

were more reliable than those based on fixed-time sampling because of smaller departures from linearity in log-log plots.25

Future work will focus on possible ways to use IATs to downscale coarse resolution flow data with the help of multifractals and

multiplicative random cascades, to see if this leads to more robust and reliable results than downscaling based on conventional

flow time series.

Another aspect that remains to be investigated is how IATs computed on flow data compare to IATs computed on associated

rainfall time series. Because flow is linked to rainfall, the comparison of the two could help better distinguish which aspects of30

flow variability are due to rainfall and which relate to basin characteristics and stormwater management.
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Figure 1. Map with the location of the area, boundaries of hydrological basins and location of stream gauges used in the analysis
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Figure 2. Example of times series for flow (a) and for associated inter-amount times (b) for the flow gauge at Taggart Creek, a 13.6 km2

basin in the Charlotte catchment.
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Figure 3. Illustration of inter-amount data sampling for cumulative flow over a period of 7 days, for Taggart Creek. 3a Flow data series at

original 15 min observational resolution; 3b Cumulative graph for flows and IATs at the same mean sampling resolution, illustrating how

adaptive sampling based on IATs differs from classical fixed-time sampling.
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Figure 4. Histograms of flow time series (a) and time series of inter-amount times (b) for Taggart Creek and Little Sugar Creek at Archdale

(LSugarA), for 24 hour scale.

Table 1. Summary of results reported on the literature for (multi)fractal analysis of hydrological flows. MA: moments analysis, MFA:

multifractal analysis, SA: Spectral analysis, TMA: Trace Moment analysis

Reference Method Sampling Basins Time series Scale break Value Value

scale length break C1 alpha

Tessier et al. (1996) MFA day 30 basins in FR 11-30 yrs 16 days 1-16d: 0.2 +/- 0.1 1-16d: 1.45 +/-0.25

40-200 km2 16 days 30-4096d: 0.2 +/- 0.1 30-4096d: 1.45 +/- 0.2

Sauquet et al. (2008) SA Hour 34 basins in FR 16-37 yrs 8.7h-7 d - -

Sauquet et al. (2008) MA Hour 12.7-703 km2 16-37 yrs 10h-6.25d* - -

Sauquet et al. (2008) SA Day Idem Idem 12 days - -

Pandey et al. (1998) SA Day 19 basins USA 9-73 yrs 8 days 1-8d: 0.2 +/-0.1 1-8d: 1.65 +/0.12,

5 -1.8 106 km2 9-73 yrs 8 days 1-8d: 0.2 +/-0.1 1-8d: 1.65 +/0.12

Labat et al. (2013) SA 30 min 3 basins in FR - 1 day - -

Labat et al. (2013) TMA 30 min ca. 13 km2 - 16 hours 30min-16h: 0.22 30min-16h: 1.18

>16h: 0.35 >16h: 0.79

* only for higher order moments
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Figure 5. Scatter plots for mean normalised flows inter-amounts (a, b), coefficient of variation (c, d) and medcouple values (e, f) for flows and

inter-amount times versus basin area and imperviousness degree. Grey triangle symbols represent inter-amount times, black circles represent

flows.
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Figure 6. histograms of first-order differences in flows (a, b) and inter-amount times (c, d), at 24 hour analysis sampling scale, for Irvins

Creek and LSugarM Creek.

Figure 7. Scatter plots of skewness (a, b) and medcouple values (c, d) of histograms for differences in flows and inter-amount times, plotted

versus basin size and imperviousness degree. Grey triangle symbols represent inter-amount times, black circles represent flows.
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Figure 8. Quantile plots of flows (a) and inter-amount times (b) for Taggart Creek for a range of scales, from 12 hours to 60 days. The bold

black line denotes the mean values. The dotted black line shows median values. The central part of boxplots represents the 25-75 percentile

range, upper and lower whiskers 10-90 percentile range, crosses the 1-99 percentile range.
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Figure 9. Coefficients of variation for flows and inter-amount times scales across a range of sub-daily (3 to 12 hours) up to bi-monthly

(60-68 days) scale, for Irvins Creek, LSugarM, Stewart Creek and McAlpine. Grey triangle symbols represent inter-amount times, black

circles represent flows.

Figure 10. Scatter plots of flashiness versus basin area and imperviousness, for all gauges. Grey triangle symbols represent inter-amount

times, black circles represent flows.
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Figure 11. Example of log-log plots for flows and inter-amount times (a, b), for Mc Alpine Creek, illustrating departures from linearity at

high order moments. ReportedR2 values are for the entire range of results, without scale breaks. Log-log curve for moment q=2.4 illustrating

scale breaks for flows and inter-amount times (c, d).

Figure 12. Multifractal parameters C1 and alpha for scaling analysis of flows and inter-amount times, as a function of drainage area and

imperviousness degree. Grey triangle symbols represent inter-amount times, black circles represent flows.
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Table 2. Summary of hydrological basins in the Charlotte area: basin area [km2], imperviousness [%], average 24 h flow [m3], average 24 h

flow normalized by basin area [mm] and length of observation in years.

ID name area imperv dams mean flow mean norm. flow Nyears

825 UBriar 13.3 24.0 22 12275 0.92 17.4

315 Taggart 13.6 35.0 3 13559 1.00 17.2

562 Campbell 15.3 28.0 48 13567 0.89 16.2

175 Steele 17.9 32.0 21 17838 1.00 17.4

700 McMullen 18.3 21.0 15 20348 1.11 29.0

255 UMcAlpine 18.9 18.1 100 15061 0.80 16.3

975 Irvins 21.8 8.0 62 14821 0.68 16.3

970 Stewart 23.4 33.0 55 38800 1.66 15.3

348 Coffey 23.8 25.0 72 24104 1.01 17.0

409 LSugarM 31.7 48.0 2 46775 1.48 21.0

022 LBriar 48.5 25.0 17 53246 1.10 19.8

800 SixMile 52.6 15.0 -99 38914 0.74 8.0

300 UIrwin 78.1 34.0 39 107119 1.37 29.0

600 MMcAlpine 100.2 20.0 51 105640 1.05 29.0

507 LSugarA 111.1 32.0 24 199002 1.79 29.0

530 LSugarP 127.4 26.0 -99 205202 1.61 18.3

750 LMcAlpine 238.4 19.4 -99 269534 1.13 29.0
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Table 3. Summary statistics of time series for flows and inter-amount times, at 24 hour sampling scale: coefficient of variation (CV), skewness

(skew) and medcouple (mc).

name CV IAT CV flow skew IAT skew flow mc IAT mc flow skew dIAT skew dflow mc dIAT mc dflow

UBriar 1.95 3.69 4.91 14.79 0.84 0.41 0.39 -2.81 0.51 -0.30

Taggart 2.11 3.32 4.40 9.13 0.90 0.55 0.00 -0.16 0.57 -0.46

Campbell 2.02 3.25 4.26 10.40 0.84 0.51 -0.02 0.15 0.66 -0.41

Steele 2.24 3.65 4.39 10.21 0.86 0.58 -0.43 -0.41 0.74 -0.46

McMullen 2.22 3.37 5.35 10.10 0.90 0.56 -0.61 -0.40 0.61 -0.35

UMcAlpine 2.04 3.55 5.53 13.51 0.79 0.42 -2.48 2.17 0.63 -0.38

Irvins 2.52 4.32 8.37 11.74 0.89 0.42 -3.84 0.07 0.78 -0.41

Stewart 0.96 2.47 0.84 12.90 0.12 0.37 -0.23 -0.25 0.26 -0.02

Coffey 2.15 2.94 7.34 8.44 0.85 0.54 -1.05 0.21 0.64 -0.41

LSugarM 1.57 2.95 2.06 11.55 0.90 0.55 -0.43 0.73 0.37 -0.31

LBriar 1.74 3.30 3.13 13.77 0.87 0.51 -0.87 1.13 0.56 -0.32

SixMile 2.23 2.59 6.29 6.42 0.82 0.38 -1.34 1.23 0.69 -0.31

UIrwin 1.36 2.70 2.65 14.43 0.69 0.53 -0.32 1.77 0.45 -0.22

MMcAlpine 2.00 3.19 5.42 10.30 0.84 0.50 -1.51 0.66 0.68 -0.38

LSugarA 1.16 2.28 8.62 12.04 0.44 0.51 0.77 0.40 0.33 -0.26

LSugarP 1.04 2.10 1.52 9.20 0.49 0.58 -0.71 -1.04 0.33 -0.33

LMcAlpine 2.16 2.84 6.56 7.65 0.88 0.50 -1.63 0.27 0.50 -0.32

Table 4. Summary statistics of time series for flows and inter-amount times, at 24 hour sampling scale: coefficient of variation (CV), skewness

(skew) and medcouple (mc), for three sets of connected subbasins in the Charlotte catchments: Irwin, Little Sugar and McAlpine

ID name CV IAT CV flow skew IAT skew flow mc IAT mc flow skew dIAT skew dflow mc dIAT mc dflow

970 Stewart 0.96 2.47 0.84 12.90 0.12 0.37 -0.23 -0.25 0.26 -0.02

300 UIrwin 1.36 2.70 2.65 14.43 0.69 0.53 -0.32 1.77 0.45 -0.22

825 UBriar 1.95 3.69 4.91 14.79 0.84 0.41 0.39 -2.81 0.51 -0.30

022 LBriar 1.74 3.30 3.13 13.77 0.87 0.51 -0.87 1.13 0.56 -0.32

409 LSugarM 1.57 2.95 2.06 11.55 0.90 0.55 -0.43 0.73 0.37 -0.31

507 LSugarA 1.16 2.28 8.62 12.04 0.44 0.51 0.77 0.40 0.33 -0.26

530 LSugarP 1.04 2.10 1.52 9.20 0.49 0.58 -0.71 -1.04 0.33 -0.33

562 Campbell 2.02 3.25 4.26 10.40 0.84 0.51 -0.02 0.15 0.66 -0.41

255 UMcAlpine 2.04 3.55 5.53 13.51 0.79 0.42 -2.48 2.17 0.63 -0.38

975 Irvins 2.52 4.32 8.37 11.74 0.89 0.42 -3.84 0.07 0.78 -0.41

600 MMcAlpine 2.00 3.19 5.42 10.30 0.84 0.50 -1.51 0.66 0.68 -0.38

750 LMcAlpine 2.16 2.84 6.56 7.65 0.88 0.50 -1.63 0.27 0.50 -0.32
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Table 5. Minimum and maximum observable scales (in hours), flashiness index for 15 min observation time (in hours) and fitted multifractal

parameters α and C1 for inter-amount times respectively flows.

ID min scale max scale flash RB min R2 IAT min R2 flow alpha IAT alpha flow C1 IAT C1 flow

UBriar 13.75 1462 128.75 1.15 0.999 0.994 1.05 1.53 0.21 0.35

Taggart 12.50 1443 118.75 1.22 0.999 0.993 0.88 1.30 0.26 0.36

Campbell 9.25 1360 106.00 1.17 1.000 0.993 1.01 1.45 0.24 0.33

Steele 9.50 1457 57.25 1.21 1.000 0.991 0.86 1.30 0.25 0.36

McMullen 11.00 2420 92.25 1.25 0.999 0.992 0.94 1.32 0.26 0.32

UMcAlpine 10.00 1367 165.00 0.99 1.000 0.990 1.24 1.59 0.19 0.33

Irvins 13.75 1367 102.75 1.14 0.999 0.991 1.25 1.40 0.22 0.35

Stewart 6.25 1284 64.00 0.82 1.000 0.994 0.72 2.06 0.09 0.24

Coffey 4.75 1422 26.25 1.09 0.999 0.997 1.53 1.37 0.21 0.28

LSugarM 7.50 1752 48.75 1.16 1.000 0.996 0.66 1.48 0.20 0.33

LBriar 6.75 1658 61.50 1.12 1.000 0.996 0.88 1.51 0.20 0.31

SixMile 3.00 672 12.50 0.97 0.999 0.995 1.64 1.36 0.21 0.26

UIrwin 5.00 2420 55.25 0.97 1.000 0.995 1.14 1.81 0.14 0.25

MMcAlpine 5.50 2420 30.75 1.09 1.000 0.996 1.28 1.46 0.20 0.28

LSugarA 3.50 2420 30.75 0.85 0.995 0.996 2.89 1.89 0.07 0.22

LSugarP 2.75 1532 18.00 0.83 1.000 0.996 1.37 1.87 0.09 0.20

LMcAlpine 3.00 2420 15.75 0.98 0.999 0.997 1.64 1.32 0.19 0.24
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