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Abstract. The high density of built-up areas and resulting imperviousness of the land surface makes urban areas vulnerable
to extreme rainfall, which can lead to considerable damage. In order to design and manage cities to be able to deal with
the growing number of extreme rainfall events, rainfall data is required at higher temporal and spatial resolutions than those
needed for rural catchments. However, the density of operational rainfall monitoring networks managed by local or national
authorities is typically low in urban areas. A growing number of automatic personal weather stations (PWSs) link rainfall
measurements to online platforms. Here, we examine the potential of such crowdsourced datasets for obtaining the desired
resolution and quality of rainfall measurements for the capital of the Netherlands. Data from 63 stations in Amsterdam (~575
km?) that measure rainfall over at least 4 months in a 17-month period are evaluated. In addition, a detailed assessment is
made of three Netatmo stations, the largest contributor to this dataset, in an experimental set-up. The sensor performance in
the experimental set-up and the density of the PWS-network are promising. However, features in the online platforms, like
rounding and thresholds, cause changes from the original time series, resulting in considerable errors in the datasets obtained.
These errors are especially large during low intensity rainfall, although they can be reduced by accumulating rainfall over
longer intervals. Accumulation improves the correlation coefficient with gauge-adjusted radar data from 0.48 at 5 min intervals
to 0.60 at hourly intervals. Spatial rainfall correlation functions derived from PWS data show much more small-scale variability
than those based on gauge-adjusted radar data and those found in similar research using dedicated rain gauge networks. This
can largely be attributed to the noise in the PWS data resulting from both the measurement setup and the processes occurring in
the data transfer to the online PWS-platform. A double mass comparison with gauge-adjusted radar data shows that the median
of the stations resembles the rainfall reference better than the real-time (unadjusted) radar product. Averaging nearby raw PWS
measurements further improves the match with gauge-adjusted radar data in that area. These results confirm that the growing

number of internet-connected PWSs could successfully be used for urban rainfall monitoring.

1 Introduction

Urban catchments are characterized by a high proportion of impervious surfaces, leading to a large fraction of rainfall pro-

ducing direct runoff and a fast hydrological response. This makes cities especially vulnerable to flooding. The temporal and
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spatial resolutions of rainfall data required for urban applications exceed those needed for rural catchments (Schilling, 1991).
The rainfall information at spatial and temporal resolutions of typically 1 km by 1 km and 5 min generated by most opera-
tional weather radars is considered valuable for urban hydrological analysis and forecasting (Liguori et al., 2012). However,
radar has significant limitations; rainfall is determined indirectly, over an atmospheric volume with a size depending on the
distance from the radar station, which may not be representative for rainfall at ground-level (Einfalt et al., 2004; Peleg et al.,
2013). Errors in rainfall estimates from radar due to sampling uncertainties can be significant. In addition, there is an optimum
spatial resolution corresponding to a given temporal resolution (Fabry et al., 1994; Bell and Moore, 2000). Rain gauges, if well
maintained, provide accurate ground-based measurements, although they are limited in their spatial representation; Villarini
et al. (2008) showed that approximations of true spatial rainfall fields with rain gauges requires a dense network and/or large

temporal measurement intervals.

Hydrological models, designed to deal with high resolution input, provide the best simulation results not just when the
temporal resolution or the spatial resolution is high, but particularly when the combination thereof is optimal. The required
spatio-temporal resolutions for urban applications have been studied extensively. Berne et al. (2004) determined a relation
between the space-time resolution required for hydrological applications as a function of the catchment size for Mediterranean
conditions. It was found that for urban catchments in the order of 10 km?2, rainfall data is needed at a temporal resolution of 5
min and a spatial resolution of 3 km. For urban catchments of 1 km? these resolutions were 3 min and 2 km, respectively. The
space-time scales of four types of rainfall are evaluated by Emmanuel et al. (2012). With the use of variograms of 24 storm
events, the spatial resolutions required to capture these types of rainfall at urban scales range from 0.8 to 3 km for instantaneous

monitoring and from 2.5 to 8 km for 30 min intervals.

Gires et al. (2012) found an outflow uncertainty of up to 20% in an urban catchment of 9km? due to rainfall variability at
scales smaller than the typical C-band radar resolution of 1 km by 1 km and 5 min. Bruni et al. (2015) addressed the loss in ur-
ban hydrodynamic model accuracy due to smoothing and smearing. Radar data of 4 storm events in 1 min temporal resolution
were aggregated to various spatial and temporal resolutions (highest range resolution of 30 m) and used as precipitation input
in a 3.4 km? Dutch urban catchment. Smoothing occurs when the ratio of radar resolution over catchment size becomes larger
than 0.2 and storms that move near the catchment boundary are averaged partly out of the catchment. Smearing becomes sig-
nificant when the ratio of the spatial resolution of radar measurements over the rainfall correlation length exceeds 0.9, leading
to averaging of rainfall over the coarse spatial grid and resulting in underestimation of rainfall rates in areas within the storm
cells and overestimation in the surrounding areas. Also, a runoff peak time shift of up to 6 minutes was found due to temporal

aggregation (from 1 minute to 5 and 10 minutes) of rainfall input.

Ochoa-Rodriguez et al. (2015) evaluated the required spatial and temporal resolutions of rainfall in a simple spatio-temporal
scaling framework. A spatial resolution of 1 km, typically found in radar, was found to give good hydrodynamic model results,

although some extremes were missed. Temporal resolutions should ideally be below the 5 min intervals currently available in
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most operational weather radar-products. Nevertheless, the accuracy of 5 min radar data can be improved with the use of an
accumulation procedure that assumes constant velocity of the rainfall field and rainfall intensity to vary linearly in time (Fabry
et al., 1994). Coarsening temporal resolution has more impact on the accuracy than coarsening spatial resolution. Initial results
from an ongoing study by the authors indicate that this impact is reduced when temporal resolutions are coarsened through
aggregation (i.e. similar to rain gauges) instead of sampling. Lobligeois et al. (2014) evaluated the circumstances where hy-
drological model performance is enhanced by higher spatial resolution of rainfall. They did so by comparing lumped and
semidistributed models with subcatchment sizes of 64, 16 and 4 km?. From comparisons between the various model outputs
and observations in 181 catchments in France, it was found that model accuracy improvement depends on scale, catchment and

event characteristics, and that the spatial representation of rainfall can be a highly important factor in the model performance.

From these works it becomes evident that an increase of the number of measurements would yield a higher accuracy of
rainfall fields and would improve hydrological applications. Adding sensors (rain gauges or others) to a network is costly, al-
though there are alternatives. For instance, rain maps can be produced from received signal strength in cellular communication
networks, as the microwave signals propagating over the link paths are attenuated by rainfall (Overeem et al., 2016). Weather
data can also be provided directly by crowdsourcing measurements from amateurs in various ways (Muller et al., 2015). A
growing number of weather enthusiasts measure their local weather with automatic personal weather stations (PWSs). PWS
accuracy on measuring temperature, relative humidity, radiation, pressure, rainfall, wind speed and direction has been evalu-
ated for popular high-end expensive weather stations (Jenkins, 2014; Bell et al., 2015), as well as for the cheaper, user-friendly
Netatmo type (temperature only) (Meier et al., 2015), which have grown rapidly in number over the past years. So far, weather
stations have been used to obtain air temperature data to examine the Urban Heat Island effect (Steeneveld et al., 2011; Wolters

and Brandsma, 2012), although other meteorological variables, such as rainfall, are measured by some of these stations as well.

A large number of PWSs share data on online platforms, both on the owner’s own initiative (Gharesifard and Wehn, 2016) or
automatically as an intrinsic software feature of the product (i.e. for Netatmo). Netatmo has its own online platform collecting
and visualizing data from all operational Netatmo stations. The Wundermap of company Weather Underground is a similar
online platform. Data from Netatmo stations are automatically linked to the Wundermap. Owners of other PWS-types can
actively transmit their measurements to this platform as well. A growing number of automatic weather stations are linked to
these platforms; in May 2016 there were 258 personal weather stations linked to Wundermap in the Amsterdam metropolitan
area (~575 km?) alone (239 of type Netatmo), of which 83 stations measured rainfall (64 of type Netatmo). By contrast, the
official national automatic weather station network in the Netherlands (~35,000 km?) consists of 31 stations, and these are, as
a rule, always located outside urban areas. Figure 1 shows the relative resolutions in the Netherlands of networks discussed
in this paper. At many locations, the density of PWS-stations collecting rainfall data far exceeds that of any realistic opera-
tional network implemented by national weather services or local authorities beyond experimental campaigns. As the online

platforms collecting and sharing PWS weather data are not nation-bound, global rainfall measurements have become easily
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available, with especially high densities in Western-Europe, USA and Japan.

Although rainfall data availability with PWS-networks is cause for optimism for urban hydrological applications, errors are
expected to be larger than those in traditional measurements. PWSs come in many types, a large fraction of which are low-cost
with expected low sensor quality. In most cases there is no information available on the PWS type, the installation set-up,
maintenance of the sensor, or data post processing while transferring measurements to the online platform. Bell et al. (2013)
examine the potential improvement on the UK’s observational network with the real-time and local weather measurements
of air temperature, relative humidity and pressure collected from Wundermap. The most critical issue was found to be the
estimation of data quality. Validation procedures like range tests (i.e. a check whether the measurement is within predefined
extremes limits) and internal consistency tests should be applied to precipitation data from automatic weather stations (Estévez
et al., 2011). The integration of crowdsourced data with variable temporal resolutions in hydrological discharge modeling by

accounting for different uncertainties for data of various sources has been addressed in recent research (Mazzoleni et al., 2015).

It becomes clear that urban applications would benefit from high resolution rainfall measurements. The potential of crowd-
sourced PWS rainfall data for this purpose has not previously been explored. Using the existing PWS-network requires mini-
mal financial investment, and would therefore be an economically reasonable alternative to conventional techniques to increase
measurement resolutions. This study aims to determine the added value of crowdsourcing automatic weather stations for urban
rainfall monitoring. For this purpose the most common PWS is tested in an experimental set-up with a high quality rain gauge
reference. Additionally, a dataset of 63 crowdsourced PWS stations in Amsterdam is validated with a gridded dataset based
on radar data, a manual network and a WMO certified automatic rain gauge network. These combined results provide insight
in the rainfall measurement accuracy of the most commonly used PWS, as well as any issues that occur in operational crowd-
sourcing of PWS rain measurements. Following this Introduction is the Methods section, where Sect. 2.1 describes the data
and Sect. 2.2 gives an outline to determine the achieved measurement scales and quality of PWS, respectively. The results of
an experimental PWS set-up, a comparison of a larger dataset in Amsterdam with gauge-adjusted radar data, and an analysis
on inter-gauge spatial correlation of this dataset are given in Sect. 3. Finally, a Discussion on the state and future role of PWS

networks in (urban) hydrological applications and Conclusions are given in Sect. 4 and Sect. 5, respectively.
2 Methods
2.1 Data collection

2.1.1 Personal weather stations

From the Wundermap website, a dataset of 63 automatic weather stations located in the Amsterdam area (~575 km?) has
been retrieved. Stations were selected based on the availability of rainfall measurements, which should cover at least 4 months

between December 2014 and April 2016. Of these stations, 49 are of brand Netatmo, 7 are of brand Davis, and 7 are of other
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unspecified brands. No details on the devices are given. According to the product specifications provided by the manufacturer,
the Netatmo rain gauges have a measurement range of 0.2-150 mm h~! with an accuracy of 1 mm h~!. The plastic tipping
buckets have a volume of 0.1 mm and a collecting funnel with a diameter of 13 cm. The rain gauge module communicates
in a wireless manner to the Netatmo indoor module over distances up to 100 m. The number of tips in the previous interval
is communicated every ~5 minutes from the indoor module to the online dashboard via a WiFi-connection, where it can be
monitored by the weather station owner. Simultaneously, the measurement is linked to the Netatmo Weathermap from which
it is sent every ~10 minutes to the Wundermap. The Wundermap stations that contribute to the dataset are visualized in Fig. 2.
The Wundermap platform collects the rainfall measurements and rewrites them into rainfall over the past hour and cumulative
rainfall for that day. Daily rainfall only becomes non-zero once the 0.3 mm threshold is reached and subsequent rainfall is only

reported if the rounded daily rainfall increases by at least 0.2 mm.

While Netatmo hardware can store measurements for a period of time in case of bad connectivity with the server, only
real-time data is automatically transferred to the Wundermap. This causes gaps in the Wundermap datasets where there may
be none in the original Netatmo data, which are only accessible to the weather station owner. Wundermap time series are
characterized by (large) gaps in the dataset and irregular measurement frequencies, though often 5, 10 or 15 minutes. Also,
the locations of Netatmo weather stations on the Wundermap are obtained from the settings at the Netatmo platform without
notice to or confirmation from the PWS owner. Relocations of the station that are communicated to the Netatmo platform are

not simultaneously adjusted on the Wundermap, potentially leading to large errors in sensor location.

We process the data obtained via Wundermap by calculating the difference in cumulative daily rainfall compared with the
previous time step. Since these time steps are not fixed, this results in rainfall accumulations over time intervals of varying
lengths. In order to obtain compatible time series, the rainfall is interpolated on a fixed time-line with constant steps, where
constant rainfall within the original intervals is assumed. Original intervals longer than 20 min are discarded. Faulty values
in precipitation data from automatic weather stations can be identified with range tests and internal consistency tests (Estévez
etal., 2011). As a first quality check, values of the interpolated time series are compared with the median rainfall of all stations
for each time interval. Values exceeding this median by more than 50 mm h~! are excluded. Dry periods in the dataset are
identified as periods of at least 24 hours where the median of all PWS measurements indicate zero rainfall. If a PWS reports
continuous zero rainfall for at least 12 hours outside of this dry reference, the measurements in this dry period are considered as
faulty zero rainfall measurements and are discarded. Finally, inter-gauge correlations are determined. If a low correlation (i.e.
average and median < 0.21) is found between a station and all other stations the entire time series for that station is excluded.
Visual comparison with corresponding radar rainfall time series showed that a filter based on these criteria was suitable in
excluding obviously incorrect data from the datasets. This filter could be applied in real-time, although for operational uses

beyond this dataset, adjustments will be required.
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2.1.2 Radar

As rainfall reference we use gauge-adjusted radar data from a climatological rainfall dataset by the Royal Netherlands Me-
teorological Institute (KNMI) (Overeem et al., 2009a, b, 2011), freely available as "Radar precipitation climatology" via
http://climate4impact.eu. This dataset is based on data from two C-band Doppler weather radars in De Bilt and Den Helder, has
a temporal resolution of 5 min and a spatial resolution of 0.92 km?, covering the entire land surface of the Netherlands. This
radar makes volumetric scans in all directions, measuring instantaneous rainfall at a location every 5 minutes. In this product,
radar composite images have been adjusted with rainfall measurements from the KNMI rain gauge networks (31 automatic and
325 manual gauges). For details on the method of adjusting, we refer to Overeem et al. (2009a, b, 2011). It should be noted
that, due to their different representativeness, there can be significant differences between radar pixel areal rainfall and point
rainfall (Schilling, 1991; Einfalt et al., 2004; Villarini et al., 2008; Peleg et al., 2013). Using a radar product that is adjusted

with ground measurements, will likely reduce this difference.
2.1.3 Netatmo experimental set-up

As the majority of the weather stations linked to the Wundermap is of type Netatmo, we examine the quality of Netatmo rain
gauges in a dedicated experimental set-up, see Fig. 3, photo inset. As reference we use a high quality KNMI pit gauge at the
Cabauw Experimental Site for Atmospheric Research (CESAR) (Leijnse et al., 2010), that measures cumulative rainfall in
intervals of 12 seconds. This electronic rain gauge is placed in a so-called pit gauge configuration: a small hill of diameter
6.2 m with a circular pit with diameter 3 m and a depth of 40 cm in the middle. Precipitation is collected in the instrument
(collecting funnel with a diameter of 16 cm, i.e. 200 cm?) and in case of solid precipitation melted by a heating element in
the funnel. The amount of liquid water is measured by the position of a floating unit connected to a potentiometer. Rainfall is
measured every 12 seconds within the range of 0-0.7 mm with a resolution of 0.1 mm and an accuracy of 0.2 mm. The Netatmo
sensors are placed at ~40 cm around the electronic sensor in the center of the pit in such a way that the top of each sensor is
level with the rim of the pit. The period considered is from February 12" to May 25" 2016. The datasets as collected directly
from the Netatmo personal account in mm rainfall per interval of typically 5 minutes, as well as via the Wundermap platform,
are compared to the pit gauge reference. One of the stations was offline between April 20" and May 1° and one station could

not be accessed via Wunderground.
2.2 Analysis
2.2.1 Station measurement density

As mentioned previously, the original PWS data temporal resolution from Wundermap is quite irregular. The number of stations
containing rainfall measurements for time series per 5 and 10 minutes shows that the data availability is quite variable, see Fig.
4. Moreover, the fraction of the measurements over the period that is filtered out does not seem to vary significantly in time.

It is not straightforward how to attribute a certain measurement resolution to a network that has highly irregular measurement
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frequencies and station locations at irregular distances from one another. When the Amsterdam area is divided into grid cells,
or pixels, of a certain size, the number of pixels that contain at least one measurement is an indication of the network resolution.
The fraction of total pixels that contain at least one measurement has been calculated for all time steps over the entire period,
for various combinations of pixel sizes and time step lengths in the scale range relevant for urban applications. It is found that
for the Amsterdam dataset (before filter has been applied), the fraction of pixels containing at least one measurement is more
limited by the number of stations than the measurement frequency, see Fig. 5. Only when dividing the period in time steps
shorter than 10 minutes, an increase of measurement frequency will result in a higher fraction. This is unsurprising as most
stations in the dataset link their measurements to the Wunderground platform approximately every 10 minutes. Adding stations
will result into an increase in fraction at all time step sizes in this range. The PWS network consists of more stations than the
number examined in this dataset, and continues to grow, which will have a positive effect on the PWS network measurement

resolution.
2.2.2 Station measurement quality

With the Netatmo experimental set-up, the performance of this type of PWS and the consequences of transferring its data to the
online platform are examined. The measurements are compared to the high resolution pit gauge as well as to the radar rainfall
at the corresponding pixel. These two comparisons should give an indication of the differences due to sensor performance and

those due to differences in representativeness of radar and rain gauges.

Rainfall measurements of the PWS dataset in Amsterdam are compared with the radar rainfall measurement at their corre-
sponding radar pixels. When comparing station data with gauge-adjusted radar data, the coefficient of variation of the residuals
(C'V)is calculated. The standard deviation of the differences between the datasets is divided by the mean of the gauge-adjusted
radar data. A low value of C'V indicates a good match between the datasets. Additionally, spatial correlations between stations

are estimated with the use of Pearson’s product-moment correlation coefficient (r):

. E[XY] - E[X]E[Y] 0
V(EX? - EIX]?)- (E[Y?] - E[Y]?)

where E[-] is the expectation (estimated as the arithmetic mean) and (X,Y") are corresponding time series of rainfall measure-
ments. Because of the spatial and temporal variability of rainfall, the correlation of two point-locations decreases with distance
between these points. A three-parameter exponential function is suggested by Habib et al. (2001) to describe this spatial de-

pendency relation between inter-station correlation () and distance (d):

So
T =Toexp [— (;{)) ] @

where r( is the nugget parameter, X is the correlation distance and S is the shape factor. The nugget parameter 7 is a

measure of small scale variability and/or measurement error and is equal to 1 for perfect zero-distance correlation. Correlation
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distance X indicates the distance at which the rainfall decorrelates (i.e. the distance beyond which the correlation drops below

e~ 1), which should be interpreted with caution when it exceeds the investigated spatial extent.

The relationship in Eq. (2) is sensitive to rainfall extremes (Habib et al., 2001), climatic regimes (Krajewski et al., 2003)
and seasonality (Van de Beek et al., 2011; Tokay and Oztiirk, 2012) as well as strongly dependent on time interval (Krajewski
et al., 2003; Ciach and Krajewski, 2006; Van de Beek et al., 2011; Tokay and Oztiirk, 2012; Van de Beek et al., 2012; Peleg
et al., 2013). For the PWS-dataset in Amsterdam, correlograms are constructed and compared with spatial dependencies found
in literature. Special consideration is given to the correlations between Netatmo stations as compared to the other types of rain

gauges.

3 Results
3.1 Netatmo comparison with pit gauge

The original data of three Netatmo stations (measurement frequency of ~5 min) are compared with pit gauge data (measure-
ment frequency of 12 s) and gauge-adjusted radar data (measurement frequency of 5 min), over the period February-May
2016. Over this period, the cumulative rainfall of station 2 was lower than that of the others, see Fig. 3, left panel. This was
the result of station outage. In general, the Netatmo stations measure less rainfall than the pit gauge and radar reference over
this period. The scatter plots in Fig. 3, right panel, do not include the intervals where one or both of the time series contains
no measurements (in case of station outage), and show a good 72 of 0.94 between Netatmo measurements and the pit gauge
reference. Even though this 72 suggests a small measurement error in Netatmo, the comparison with radar shows significant
scatter away from the perfect fit. This is inherent to comparisons between point locations and pixel averages, and the scatter plot

resembles those reported in Peleg et al. (2013), though the radar value used there was an average value of 12 pixels instead of 1.

The correlation between Netatmo and the pit gauge is calculated for a multitude of accumulation intervals, see Fig. 6. This
correlation reflects small-scale rainfall variability and thus is closely related to the nugget parameter in Eq. (2). As expected,
an increase of correlation is found for larger accumulation intervals. However, the correlations of data from the same devices
obtained via Wundermap with the same pit gauge reference show far lower values, see Fig. 6. The original Netatmo data has
typical time steps of 5 min against 10 min for the Wundermap data. If this was the only difference between the time series, the
correlation graphs should overlap for accumulation intervals above 10 min. As they only approach one another for hourly ac-

cumulations, it can be concluded that besides this effect, additional information is lost in the transfer of data between platforms.

Besides the Netatmo dashboard (available to the station owner) and Wundermap, Netatmo data is also accessible from the
Netatmo Weathermap platform. In this research, real-time measurements from the three stations in the experimental set-up
were obtained with from this platform with an API. It was found that rainfall measurements from this dataset were attributed

with a time stamp of the moment the data was collected, instead of the time stamp of the measurement itself. In case of sensor
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outage, the last available measurement was collected repeatedly. These artifacts resulted in faulty interval attribution of rainfall
and negatively affected the correlations with the original dataset as well as with gauge-adjusted radar data. An API containing
such processing errors will result in datasets that contain considerable errors, though these errors are easily overlooked without
the original data. Fortunately, the original data can also be obtained from the Netatmo platform. These time series are identical

to the data from the Netatmo dashboard (N1, N2 and N3 from the experimental set-up) and can be obtained in real time.
3.2 Amsterdam weather station comparison with radar

Figure 7 shows the double mass plot of the filtered PWS dataset in Amsterdam, as well as the unadjusted (real-time) radar
with the gauge-adjusted radar reference at the same locations. The only intervals considered are those where both time series
contain measurements. Even though individual stations often do not follow the diagonal line representing a perfect match, the
median of all available stations only shows a slight underestimation as compared to the gauge-adjusted radar rainfall data.
This underestimation is far greater in the real-time radar product. Though large deviations occur, the median of the stations

resembles the reference quite well.

When comparing station rainfall against corresponding gauge-adjusted radar rainfall data over the entire period with the
condition that the radar measures non-zero rainfall, a better correspondence is found for longer time steps, see Fig. 8. A similar
scatter as in Fig. 8 is found by Peleg et al. (2013). At longer accumulation intervals, the averages resemble each other more,

the C'V decreases and the r increases, indicating a better resemblance between gauge adjusted radar and station datasets.

3.3 Amsterdam center average comparison

In order to investigate whether the generally poor quality of individual PWS measurements can (partly) be compensated by the
generally high quantity of measurements, averages of unfiltered PWS measurements are compared with radar pixel averages
over a small area in Amsterdam. The selected area is the region with highest parking rates; the densely populated and touristic
area of the city center and Museum square, as floods in this area will heavily impact residents, businesses and tourism alike.
This region of ~20 km? is shown in Fig. 9, where the cumulative rainfall of each station relative to the mean of the 12 stations
is shown. From Fig. 9 the variation between station measurements becomes evident. Some stations measure highly unlikely

values considering the measurements of their nearby stations, such as station 3, 9 and 12.

The means of all possible subsets of the 12 PWSs are compared with the average of the 20 radar pixels over the selected
Amsterdam center region. For each subset, the correlation, standard deviation and coefficient of variation of the residuals
(C'V) of rainfall intensity is calculated over all intervals where each station contains measurements. The resulting outcomes
of each subset are represented with boxplots in Fig. 10 per number of stations contributing to the PWS-mean. The correlation
increases and the standard deviation and C'V' decrease when averaging multiple stations, even when some of the station time

series consist of obviously faulty measurements, see Fig. 10. By averaging the unfiltered measurements of a dozen stations,
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crowdsourced measurements seem to be able to describe rainfall in the city center. As expected, the values based on 60 minute

rainfall intensities show a better correspondence with gauge-adjusted radar data than 5 minute rainfall intensities.
3.4 Amsterdam weather station spatial correlations

Rainfall variability is often described with correlograms, see Sect. 2.2.2, describing Pearson’s product-moment correlation
between station pairs as a function of distance. Correlograms of PWS-data at longer accumulation intervals show higher inter-
station correlations and the decrease with distance is not as steep, see Fig. 11. This is similar to the results reported by Villarini
et al. (2008), Peleg et al. (2013) and Tokay and Oztiirk (2012). Especially in winter, see upper panels of Fig. 11, and for short
accumulation intervals, the non-Netatmo pairs show higher correlation with one another. However, the goodness-of-fit of the

correlograms differs significantly than those found by Villarini et al. (2008), Peleg et al. (2013) and Tokay and Oztiirk (2012).

The correlations of all station pairs in the dataset are fitted with the relation in Eq. (2). Fitting was done by determining
the nonlinear (weighted) least-squares estimates of the parameters with the Gauss-Newton algorithm. The resulting parameters
for the total dataset, as well as winter and summer individually, are given in Fig. 12. The graphs for winter show the most
deviating response, suggesting irregularities in this subset in particular. The nugget parameter ry of the total dataset varies
between 0.50 and 0.67 for this accumulation interval range. Villarini et al. (2008) found a similar nugget parameter of 0.51
for 1 minute accumulations, though far larger values at higher accumulation intervals. The nuggets found by Krajewski et al.
(2003): 0.95-0.97 for 15 minutes and longer, Ciach and Krajewski (2006): 0.995 and higher for 1 minute and longer, Tokay and
Oztiirk (2012): 0.97 and higher for 5 minutes and longer and Peleg et al. (2013): 0.92 and higher for 1 minute and longer, are
all considerately higher than the nugget parameters found here. This is not surprising as the gauges in the networks evaluated

in those papers are carefully controlled and of higher sensor quality than typical PWSs.

The correlation distance of the total PWS dataset increases with interval size in a similar manner as in previous research, see
Fig. 12. The erratic response of the winter graphs suggests a poor fit resulting from other factors than rainfall variability. Likely
the correlation distance of stratiform winter rainfall is larger than the spatial scale examined here. The shape parameters do not
seem to follow an obvious dependence, similar to Peleg et al. (2013), though other research found this parameter to increase

with interval size (Krajewski et al., 2003; Ciach and Krajewski, 2006; Villarini et al., 2008; Tokay and Oztiirk, 2012).

4 Discussion

In the experimental set-up in Cabauw, the immediate overlying radar pixel that was first considered as reference turned out to
show a significant bias as compared to gauge-adjusted radar rainfall data in all neighboring pixels. The next nearest pixel to the
set-up was then used as reference instead. The distance between radar pixel center and experimental set-up thereby increased
slightly from 428.9 m to 473.5 m. Faulty measurements can occur in the gauge-adjusted radar dataset, which should be kept in

mind when it is used as a reference. When comparing the Amsterdam area radar pixels used in this research to their combined
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mean value over the 17-month period, individual time series showed up to 10% consistent higher or lower values. Biases in
gauge-adjusted radar could result in a larger spread in Fig. 8, although they have a far smaller influence on the results found in

Fig. 10 as in that case the values are averaged.

Each aspect of this research, i.e. the Netatmo experimental set-up, the analysis of the station data obtained with the Netatmo
API and the Amsterdam PWS dataset from Wundermap, concerned time series over a different, though partly overlapping,
time period. As the shorter time series were examined with the purpose of identifying artifacts in the data, those conclusions
can be carried over to the longer more robust analyses. The results on PWS data availability, see Fig. 1 and Fig. 5, do not take
measurement quality into account. Because of the faulty attribution of rainfall to measurement intervals due to rounding in the
data transfer, the measurements in the current form should be accumulated to larger intervals to reduce errors, although this
reduces the temporal resolution appreciably. More desirable would be to address the collection method of the PWS data in the

platforms in order to maintain the quality of the original PWS rainfall measurements before data transfer.

The filter applied on the PWS dataset in this paper was based on all stations in the dataset. For operational purposes, the
median value that is used as a selection criterion should be based on nearby stations only. Large rainfall values were excluded
based on a limit on maximum rainfall of 50 mm h~! above the median rainfall at all PWSs at that interval. This potentially ex-
cludes rainfall with plausible return times: we take the example of a 10 minute interval during which the median rain intensity
of the stations is 4 mm h~!. A measurement of 54 mm h~! and higher would then be excluded, though this corresponds to an
event that would occur statistically every 1.5 years (Buishand and Wijngaard, 2007). Because of the small spatial scales and
the lack of extremely heavy precipitation in this dataset, the current filter was applicable, as confirmed by visual comparison

with gauge-adjusted radar data.

Although a large fraction of the PWS-networks consists of Netatmo stations, this does not imply similar performance of these
datasets. Factors like placement and maintenance are unknown and not necessarily equally interfering with the measurements.
Even less meta-data is available on the other PWS-types in the dataset, since information on data transfer and the sensors used
are not provided for those PWSs. It is expected that there is a positive correlation between the purchase costs of the PWS and
the importance of maintenance and high quality measurements to its owner, although this assumption could not be examined
with our dataset. Furthermore, the location of the station is based on the setting provided by the PWS-owner, although these
may be faulty due to inaccurate localization, rounding of the longitude and latitude or relocation of the station at a later time.
Even when relocations of PWSs are accurately provided to the Netatmo platform, this is not automatically communicated to
Wundermap, resulting in inaccurate time series for that location. This issue is found to arise in the PWS-dataset, though the

filter criterion regarding minimum correlation with the other stations excludes time series of those stations entirely.

Different spatial correlation parameters between studies are to be expected due to different climates, rainfall types, gauge

network density and quality. However, the nugget-parameter 7o (1 for perfect correlation between time series) found here is
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significantly lower than in other studies. Additionally, the nugget values of the Amsterdam dataset are significantly lower than
the correlation found between the Netatmo datasets with the electronic rain gauge reference in the experimental set-up when
the data was obtained via the Wundermap platform, see also Fig. 6. This suggests the interference of additional factors besides
sensor measurement errors and data transfer rounding when rainfall measurements are gathered in a less controlled manner.

Such factors could be measurement errors due to station placement and poor maintenance.

It is important to note that, even though gauge-adjusted radar rainfall is used as a rainfall reference, differences with point
measurements are to be expected because of representativeness errors. Ideally, a high-density gauge network could be used to
improve this rainfall product in the future. A non-identical match should therefore not directly be interpreted as negative. How-
ever, as the nugget parameter from the station analyses was considerably lower than could be explained by rainfall variability
alone, differences with gauge-adjusted radar data here are likely mainly caused by errors in the PWS-dataset. Besides data
transfer errors that heavily influence the nugget parameter, the installation errors (e.g. due to shielding), that are minimized in
the experimental set-up, further decrease the nugget in the Amsterdam dataset. When comparing nuggets from the experimen-
tal set-up and the Amsterdam dataset in the left panel in Fig. 12, the correlations found in the former do indeed reach higher

values than those influenced by installation errors in the latter.

5 Conclusions

The resolution and quality of crowdsourced PWS rainfall measurements from the platform with the most dense PWS-network
were analyzed to establish whether this data source allows urban hydrological applications. Although the required resolutions
(as described by Schilling (1991), Berne et al. (2004), Emmanuel et al. (2012) and Ochoa-Rodriguez et al. (2015)) are not yet
achieved by the current PWS-networks, the density of these networks is expected to increase. As the resolution of the current
network in Amsterdam is more limited in the spatial resolution than the temporal resolution, the expected continued growth
of PWSs that share rainfall measurements via online platforms will yield a network approaching the desired resolutions. This
offers a vast contrast compared to KNMI’s automatic rain gauge network which, in the Amsterdam metropolitan area, only

measures rainfall at one location outside of the city (at Schiphol airport).

From comparisons between Netatmo rainfall time series in an experimental set-up that reduces the errors due to faulty
installation to a minimum, the measurements closely resemble those from the high resolution electronic rain gauge. Larger
differences are found with radar rainfall, likely due to differences in representativeness between pixels and point measure-
ments. Although the sensor performance of this largest contributor of data in the PWS-network considered in this research
looks promising, there is a significant loss in accuracy due to transfer of data to the online platform Wundermap. In this study,
the daily cumulative rainfall values as obtained from Wundermap are rewritten as the difference in rainfall as compared to the
previous time step. Wundermap cumulative daily rainfall can only become non-zero when at least 0.3 mm rainfall has been

collected, and later increases are only registered if they amount to at least 0.2 mm. Especially in case of light rain, rainfall could
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occur for a longer period than the interval length in which the daily cumulative rainfall increases. The rainfall is then attributed
to a single interval instead of all previous intervals in which it may have been raining as well. This causes significant errors at
small timescales. These errors result in inter-station correlations that were considerably poorer than those found in literature,

especially in winter and at short accumulation intervals.

The median rainfall of the Amsterdam PWS-dataset shows less systematic bias than the real-time available radar product.
Averaging PWS time series further improves correlation, standard deviation and coefficient of variation with the averaged
gauge-adjusted radar rainfall in a certain region (~20 km?). Provided that the degree and likelihood of overestimation of rain-
fall by PWSs is similar to the degree and likelihood of rainfall underestimation, as was the case in our Amsterdam city center
dataset, a dense subset of PWSs can provide good rainfall estimation over a small area, even for intervals of 5 min and without

applying a quality filter.

The largest obstacles for the use of crowdsourced PWS datasets are the errors resulting from data transfer, errors due to
poor maintenance and faulty installations (i.e. at shielded locations). The rounding of cumulative daily rainfall measurements
occurring in the Wundermap platform and the time stamp uncertainty of measurements obtained from platforms with faulty
API’s lead to considerable errors in the time series, which are only reduced at large accumulation intervals. For the purpose of
a high-quality rainfall measurement network with PWS-data, these issues need to be addressed first. Processing errors can be
avoided by obtaining raw data from the Netatmo Weathermap platform, though the station density is slightly lower than that
of the network linked to the Wundermap. When the processing of data is no longer interfering with the quality of the datasets,
the potential of PWS-platforms becomes significant. It provides rainfall measurements from all over the world that are easy to
collect, located in rural areas as well as in cities, with station densities and coverage exceeding those from national weather

services, and growing towards a level matching the reported resolutions that are required for urban hydrological applications.
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Figure 1. Temporal and spatial resolution of unfiltered rainfall measurements in the Netherlands with PWS network obtained via Netatmo
API, Wundermap API and the potential availability of Netatmo measurements, as well as the resolution of KNMI’s automatic and manual
rainfall measurement network and radar product. The curve represents a relation between the temporal and the spatial resolution of rainfall
measurement required for urban hydrology as determined by Berne et al. (2004) for Mediterranean climate, where the square represents the

value for an urban catchment with surface area of 0.1 km?.
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Figure 2. Locations and operational days (i.e. days with measurements) of Netatmo (squares) and other types (triangles) of PWSs, with

the radar pixel grid in the Amsterdam metropolitan area. Inter-station distances are represented in the histogram, colored green for nearest

neighbor distances.
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Figure 3. Left panel: Cumulative rainfall according to reference pit gauge, gauge-adjusted radar, Netatmo stations (N1, N2 and N3) and

Netatmo stations obtained via Wundermap (W2 and W3). N2 (and as a consequence W2) was offline between April 20" and May 1*". Photo

shows the experimental set-up of the rain gauges in the pit gauge configuration. Right panel: scatter plots of 10 minute rainfall and linear fits

of rainfall according to N1, N2 and N3 as compared to reference pit gauge (orange) and gauge-adjusted radar (blue).
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Figure 8. Scatter density plots of all station rainfall measurements against the gauge-adjusted radar rainfall data in the corresponding radar
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rainfall according to the gauge-adjusted radar data, the average rainfall according to the stations, the coefficient of variation of the residuals,

pixel when radar reported non-zero rainfall (> 0.1 mm). The R CV, r and n values in the panels represent the average
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the correlation and the number of intervals, respectively. Graphs are made for 5 min, 30 min and hourly accumulation intervals.
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Figure 9. Left panel: Locations of 12 stations and 20 radar pixels in the city center of Amsterdam, where symbol size represents the number
of unique days with measurements by the station (range 371-514 days). Right panel: Double mass plots of the station measurements as

compared to the mean of all 12 stations over the intervals where all stations contain measurements.
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Figure 10. Boxplots of correlation, standard deviation and coefficient of variation of residuals (C'V") of averaged rainfall intensity time series.
The boxplots contain the outcomes for all possible subsets within the 12 stations in Amsterdam city center, as compared to the gauge adjusted

radar rainfall intensity 20 pixel mean for interpolated 5 minute and hourly time series.
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Figure 11. Correlograms of all stations after filtering at various accumulation intervals for winter (top panels) and summer (bottom panels).
The red and blue areas represent the interquartile range of the Netatmo stations and non-Netatmo stations, respectively. The areas are
constructed with a moving window of width 5 km. The scatter plots are fitted with the exponential relation of Eq. (2), parameters of which

are given in the panels.
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Figure 12. Time scale dependency of nugget (left panel), correlation (middle panel) and shape (right panel) parameters from fit described in
Eq. (2), for total PWS dataset, as well as winter and summer only. Dotted lines represent values found in previous research by Peleg et al.
(2013) (violet), Villarini et al. (2008) (orange), Tokay and Oztiirk (2012) (brown) and Ciach and Krajewski (2006) (purple), where the dashed

line in the first panel shows the timescale dependency of the Netatmo station nugget found in the experimental set-up as previously shown in

Fig. 6.
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