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Reply to Anonymous Referee #1 
We greatly appreciate the review and acknowledge that the comments and suggestions will lead to an 

improved paper. 10 

Regarding the general comments 
It is not assumed that extreme precipitation only occur in summer even though the majority of the events 

occur during this season. The summer season is particularly interesting because most extremes occur here 

and will increase further while in general the precipitation amounts are decreasing. In other seasons there 

is no such difference between average and extreme properties of the changes. 15 

Regarding a discussion of alternative approaches we will add further discussion of the possibilities beyond 

the presented approach (also facilitated by the comments from Referee #2) that could also include 

alternative approaches to reach the same endpoint. We will focus on using Markov models for precipitation 

and the two downscaling approaches Delta Change and Distribution Based Scaling, which has inspired us in 

defining the framework. 20 

Regarding specific comments 
In 1. a point is raised that the semi-Markov system used to frame the approach is “rather formal” given that 

essentially the approach is very simple. However, the use of a somewhat extravagant terminology has 

advantages if the model should be extended into a stochastic formulation. The application of a semi-

Markov system for setting up different numbers of classifications is straightforward and extending the 25 

system to a stochastic model on a more general level is possible. 

As pointed out in 2. the difficulties in assigning a single event state is central to the approach and the 

section (Section 3.3) will be extended with an elaboration of the mathematical considerations as well as the 

importance of these. 

Regarding 3. we thank the reviewer for pointing out the error in our manuscript and will correct it in the 30 

final version of the paper. 

As stated in 4. there could be other ways to determine the return level of the individual events. We will try 

to make this section clearer, especially since both reviewers point out that the current manuscript is 

unclear here. We will focus on the need to test the approach in relation to how it will be used and that 

users can and should define suitable metrics depending on the actual use of the constructed series. The 35 

defined metrics was chosen because it is a basic requirement that the series should be able to fulfil these 

criteria before they are used in Denmark (which other approaches have failed). 

The duration independence of the used change factors (as raised in 5.) is based on the official 

recommendations for Denmark. We agree that it is probably a bad assumption. One of the justifications for 

choosing this approach is that often climate change impacts are based on design storms which makes 40 

duration-specific change factors difficult to employ. It might be an option to identify duration specific 

change factors and use them within the presented framework. However, it would probably require some 

further analyses of the structure of events which goes beyond the current study. 
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The point raised in 6. about the A1B scenario’s relative place in relation to RCP2.6 and RCP8.5 is much 

appreciated and really help demonstrate the difficulties of working with derived data based on different 45 

generations of climate model scenarios. The idea has not been to indicate that the A1B scenario was the 

midpoint between the two RCP scenarios, but merely to state that it was somewhere in between. Also, as 

illustrated by the results in Figure 4, we use the notion of “low”, “middle” and “high” emission scenarios in 

an assessment effort towards documenting the sensitivity of the approach towards the absolute magnitude 

of the expectations to climate change. We will alter the relevant sections to make this clearer. 50 

Regarding technical corrections 
We will make the grammar corrections and ad explanation for || and z* as asked for. As for the reference 

“Madsen et al. (2009, submitted)” we will rewrite the sentence to highlight that what is referred to is 

Madsen et al. (2009) and Madsen et al. (submitted) where the last one is an update of the model described 

in the first one. 55 
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Reply to Anonymous Referee #2 
We very much appreciate the review and acknowledge that the comments and suggestions will lead to an 

improved paper. 

The first concern raised regards the fact that the approach is deterministic. We agree with this concern 60 

because there are features of climatic changes that will be difficult to implement in a deterministic 

framework. Our focus has been on making a proof-of-concept of the methodology by testing a method 

currently applied on daily rainfall (Delta Change, DC, and Distribution Based Scaling, DBS) to much higher 

resolution. We have formulated the framework as a semi-Markov process in order to be able to extend it 

into a stochastic framework. 65 

We are happy to extend the literature review . We would suggest to cover in more detail the use of Markov 

models in hydrological applications as well as a more in-depth presentation of the DC and DBS methods 

thereby setting a better foundation for the present approach. This could, indeed, be further supported by a 

flow diagram in the methodology section. 

The 2, 10 and 100-year return periods used for the Danish case study are included as these are the 70 

categories for which climate change predictions exist. These return periods correspond to the typical uses 

of extreme precipitation for pipe flow capacity, surcharging, and flood risk management, respectively. In 

principle we would prefer to use a smaller return period, e.g. 50 years, because of the relative short time 

series used in the study. However, we have chosen the return periods for which official recommendations 

exist and prefer to keep it that way. We note that because of the correlation introduced when ranking 75 

extreme series the 50 year event is implicitly covered by the chosen return periods and that the method 

can easily be adapted to other return periods. 

Regarding persistence of the time series, the presented approach retains the present day time series 

characteristics both when it comes to intra and inter events persistence. For the intra event persistence, 

this is believed to be the best available option and indeed a standard assumption in most down-scaling 80 

approaches to yield precipitation series with sub-hourly resolution. For the inter event persistence, this is 

not an ideal approach, as some RCMs predict changes for these statistics. This is, however, a highly debated 

topic as the regional climate models do not agree on these parameters for the case study location (Boberg, 

2010). In a future extension into a stochastic framework, we agree that this is one of the very important 

factors that have to be modelled specifically to further enhance the methodology. 85 

As the generated time series for future climate maintain the structure of the present day time series, the 

expectation metrics calculated and reported in Figure 3 and other places are really the best way to show 

that the future time series are realistic with respect to the perturbation we apply in the approach. 

With respect to the selection criteria reported in Section 3.3 and specifically in Table 5, we agree that the 

rationale behind the choices should be elaborated both with respect to mathematical description (as 90 

pointed out by Referee #1) as well with thorough explanations of the subjective choices made for option D 

(Table 5). 

With respect to the two references in Danish that are used as references for the expectations to climate 

change in Denmark, we will look into if there are international literature that has come out based on these 
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reports and, if that is not the case, add more detailed referencing (for instance the figures reported in Table 95 

3 are based on the results reported in Tabel 1 of Gregersen et al., 2014) along with a more general 

presentation of the reports. 

We will make changes to the paper that accommodate the more technical comments by the reviewer, 

including careful proofreading. 

Additional reference 100 

Boberg F (2010): Weighted scenario temperature and precipitation changes for Denmark using probability 

density functions for ENSEMBLES regional climate models. Danish Climate Centre Report 10-03. 

https://www.dmi.dk/fileadmin/Rapporter/DKC/dkc10-03.pdf.  

  

https://www.dmi.dk/fileadmin/Rapporter/DKC/dkc10-03.pdf
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List of changes 105 

p2ll10-18: paragraph added on use of Markov models in hydrological applications 

Pp2-3ll27-1: paragraph added explaining Delta Change and Distribution Based Scaling in more detail 

p3ll10-12: Flow diagram added 

p3l18: clarification of |𝐸| 

p3l21: clarification of the meaning of d1 and d2 110 

p6ll2-9: paragraph added elaborating on how to define events 

p8ll12-15: revision of sentence as suggested by reviewer 

p8ll26: correction of equation for calculating 𝚽 as pointed out by reviewer 

p9l20: clarification of difference between Madsen et al. (2009) and Madsen et al. (In Review) 

p10ll9-13: elaboration of the report by Gregersen et al. (2014) and the results used from this report 115 

p11ll1-7: elaboration of the report by Olesen et al. (2014) and the results used from this report 

p11ll10-11: clarification of the relationship between SRES and RCP scanarios 

p12ll3-26: elaboration and extension of the methodology used to determine the return period of individual 

events including mathematical expressions to level this section with the rest of the methodology section 

Furthermore, a lot of small textual corrections and updates of Figure and Table numbers have been done 120 

throughout the text. New references has been added to support the new paragraphs and direct links to the 

two Danish reports used has been added to the references. 
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Nielsen1,2 
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Abstract. Urban water infrastructure has very long planning horizons and planning is thus very dependent on reliable 10 

estimates on the impacts of climate change. Many urban water systems are designed using time series with a high temporal 

resolution. To assess the impact of climate change on these systems similarly high resolution precipitation time series for 

future climate are necessary. Climate models cannot at their current resolutions provide these time series at the relevant 

scales. Known methods for stochastic downscaling of climate change to urban hydrological scales have known shortcomings 

in constructing realistic climate changed precipitation time series at the sub-hourly scale. In the present study we present a 15 

deterministic methodology to perturb historical precipitation time series at minute scale to reflect non-linear expectations to 

climate change. The methodology shows good skill in meeting the expectations to climate change of extremes at event scale 

when evaluated at different timescales from the minute to the daily scale. The methodology also shows good skill with 

respect to representing expected changes to seasonal precipitation. The methodology is very robust to the actual magnitude 

of the expected changes as well as the direction of the changes (increase or /decrease) even for situations where the extremes 20 

are increasing for seasons that in general should have a decreasing trend in precipitation. The methodology can provide 

planners with valuable time series representing future climate that can be used as input to urban hydrological models and 

give better estimates of climate change impacts on these systems. 

1 Introduction 

Climate change impacts water management worldwide as the water cycle is an essential part of the climate system. The 25 

planning horizon for water infrastructure is often very long, making reliable predictions of future climate crucial (Arnbjerg-

Nielsen et al., 2015b). In design of water infrastructure precipitation data is needed. Especially for urban infrastructure the 

time resolution of precipitation data needed for design and planning is much finer than what is provided by climate models 

(Berndtsson  and  Niemczynowicz,  1988;  Schilling,  1991). Hence a lot of effort is put into giving reliable estimates of what 

the expected change in precipitation will be at these fine scales (Fowler et al., 2007; Kendon et al., 2014; Mayer et al., 2015). 30 

Expected changes in precipitation, however, does not translate directly into changes in floods or overflows from structures. 

To determine these changes, urban hydrological models have to be run, driven by the changed precipitation (Olsson et al., 
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2009; Willems et al., 2012). By definition, fine resolution precipitation time series for future climates are not observable and 

hence a multitude of statistical approaches have been developed to enable generation of time series with properties that for a 

large range of metrics have the same characteristics as the expected future precipitation (Willems, 1999; Olsson  and  

Burlando, 2002; Cowpertwait, 2006; Molnar  and Burlando, 2008; Burton et al., 2010; Willems et al., 2012; Sørup et al., 

2016a). 5 

Expectations to precipitation at event level under climate change are often non-linear with the anticipation that changes in 

occurrence and size of extreme events are higher than changes in seasonal or yearly precipitation (Boberg et al., 2010). This 

is a problem often sought solved by weather generators or other similar downscaling techniques (Fowler et al., 2007; Burton 

et al., 2010), but these often have difficulty in presenting realistic time series at the sub-hourly to hourly time scales, relevant 

for urban infrastructure (Segond et al., 2006; Verhoest et al., 2010; Sørup et al., 2016a). Several studies have tested the 10 

applicability of Markov models for simulation of high resolution precipitation series Different ways of implementing  

Markov models have been applied on In order to model high resolution precipitation, time series with realistic properties 

different implementations of Markov Chain models have been tested (Srikantan and McMahon, 1983; Thyregod et al., 1998; 

Ailliot et al., 2009; Gelati et al., 2010; Sørup et al., 2012). ItTheis approach has the advantage that realistic chronology is 

created in the output. However, for very high resolutions the sensing method of the gauge, but at the recording resolution of 15 

e.g. tipping bucket gauges  may have an impact on the signal, giving an upper bound on the temporal resolution of the 

model, as it have been shown for  e.g. tipping bucket gauges the process become very noisy and the implementation 

accordingly more difficult (Thyregod et al., 1998; Sørup et al., 2012). 

In the present study, we develop and demonstrate a novel non-linear methodology that perturbs existing precipitation time 

series to reflect complex expectations to precipitation in a changed future climate. The method incorporates regional 20 

historical knowledge about precipitation through the use of Intensity-Frequency-Duration (IDF) relationships (WMO, 2009) 

and knowledge about the expected changes of these due to climate change. Thus, the method generates time series for a 

changed climate which are chronologically identical to the observations used as input but perturbed to reflect climate change. 

These series can be used as input for hydraulic or hydrologic models where the climate change effect has to be assessed for 

all possible rain conditions. 25 

The presented methodology is based on the assumption that precipitation can be scaled according to identified expectations 

to climate changes. In its simplest form, this assumption is identified as the Delta Change (DC) method (Fowler et al., 2007). 

The basic assumption is that relative changes in output from climate models might represent expectations to climate change 

well even though the output itself could be wrongly scaled in absolute values. It is rather similar to A more elaborate use of 

this assumption is provided by Distribution Based Scaling (DBS) presented by Yang et al. (2010). In this approach 30 

parameters are derived from regional climate model data to estimate present and future distribution functions for rainfall 

intensities. The relative change in the distribution parameters is applied to a similar distribution function based on 

observational data. Thereby, perturbation of rainfall intensities due to climate change relies on the rarity of the individual 

events and change markedly from average to extreme events with high impact on hydrological responses of simulation 
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to describe extreme precipitation which may have different return periods or different hydro-climatic origin. In this study, we 

use a partition based on return periods with ܦଶ = ,ଶܦ} ,ଵ଴ܦ  ,ଵ଴଴}, referring to states that classifies the extremes as either 2ܦ

10 and 100-year events based on return level. 

By definition there is always a dry period between two events and we assume that the there is no dependence between 

consecutive events. We define the following processes that describe the evolution of a semi-Markov system (Barbu and 5 

Limnios, 2008): 

• ࣤ ≔ (ࣤ௡)௡∈ே is a Markov chain with state space E, where ࣤ௡ is the state of the system at the n-th event; 

• ܷ ≔ (ܷ௡)௡∈ே is the sequence of jump times between states with state space ℕ and ܷ଴ = 0;  

• ܼ ≔ (ܼ௞)௞∈ே is a discrete-time process with states on E, with ܼ௞ to be the state of the system at a time step k. 

The processes ࣤ and ܼ are related through the formula 10 ܼ௞ = ࣤே(௞), ݇ ∈ ܰ,            (Eq. 2) 

where ܰ(݇) is the discrete-time counting process of events in ሾ1, ݇ሿ ⊂ ܰ, i.e. ܰ(݇) ≔ ݊}ݔܽ݉ ∈ ܰ:ܷ௡ ≤ ݇}.           (Eq. 3) 

The corresponding transition matrix of the chain ࣤ is very simple to be written.  Figure 1b 2b illustrates the evolution of the 

stochastic system described above. 15 
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Figure 1 2 a) Illustration of the magnitude of perturbation of events for non-extreme summer and winter events as well as 2- and 
100-year extreme events, with summer events being perturbed with a factor below one and factors for the winter and the extremes 
being above one. Factors for extremes are higher than for the winter events, and factors for the very extreme is higher than for the 
more moderate extreme. b) Illustration of the states associated with the different events if they were to happen in the shown 5 
chronology, the dry state, Ddry, is present between all wet states. 
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2.2 Framework for determining state of individual events 

There is no unique way to assign a state to an extreme event. In the literature some studies apply Hhydro-climatic regimes 

can be used for this classification (Gelati et al., 2010; Svoboda et al., 2016), while other apply  or event statistics can be used 

(Madsen et al., 2009; Sørup et al., 2016). There is no unique correct way of doing this and fFor any given application, one 

will have tomay choose an appropriate and relevantthe most appropriate classification that make sense withdepends on the 5 

data available. In this paper, various methods based on the maximum mean intensities are used to define the event state. For 

all investigated methods the changes to extremes are evaluated by calculation of IDF curves based on return levels, zi’s, at 

event level for a selection of return periods, I (WMO, 2009). The return period (T) of individual events across all intensities 

is determined using the median plotting position (Rosbjerg, 1988): 

௠ܶ௘ௗ௜௔௡ = ்೟೚೟ೌ೗ା଴.ସ௥௔௡௞ି଴.ଷ  ,           (Eq. 4) 10 

where Ttotal is the length of the time series and rank is the rank number of the individual event. 

Using data with observations every minute and a minimum dry weather separation between events of 60 minutes, the mean 

maximum intensities over 5, 10, 30, 60, 180, 360 and 720 minutes are calculated for each event. At shorter timeframes, e.g. 

one minute, the variability of the observed extremes are expected to be very large due to the inherent sampling error 

(Fankhauser, 1998) and at very long timeframes, e.g. one day (i.e. 1440 minutes) the extremes are often consisting of several 15 

events following one another and a different event definition would be necessary to ensure that the real extremes is are 

identified (Madsen et al., 2009). A representative return period for the event is derived based on a mathematical comparison 

to regional IDF estimates (Figure 2Figure 3). This return period is then in turn used to define the state of the event. We test 

four different selection criteria which define the state of extreme events as either	ܦଶ,  ଵ଴଴. The selection criteria areܦ	or	ଵ଴ܦ

listed in Section 3.3. 20 

Formatted: Font: Italic

Formatted: Font: Bold

Formatted: Font: Italic
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Figure 2 3 The IDF curve for an extreme event in comparison to the regional IDF curves for 0.5, 2, 10 and 100 year return periods 
respectively (based on Madsen et al. (submitted)). 

 

2.3 Perturbation and change factor 5 

With each event of a time series classified according to a state, the time series can be perturbed using the following 

methodology linking the time series to the states of the individual events. 

Let ܴ௞, ݇ ∈ ܰ, be the precipitation intensity at time step k and ܴ ≔ (ܴ௞)௞∈ே	the corresponding process describing these 

intensities. The process of perturbed precipitation in each time step ݇ is denoted by ܴ∗ ≔ (ܴ௞∗)௞∈ே. 

Similarly to the state space	ܧ, we introduce the state space of the change factors, denoted by ܧ஼ி, |ܧ஼ி| =  We can then 10 .|ܧ|

write ܧ஼ி = ଴ܥ ∪ ଵܥ ∪  ଶ,           (Eq. 5)ܥ

with |ܥ଴| = |ଵܥ| ,1 = ݀ଵ and |ܥଶ| = ݀ଶ.  

We consider the process ܨܥ ≔ ܹ ௡ is the change factor at the n-th event. Letܨܥ ஼ி, whereܧ ௡∈ே with state space(௡ܨܥ) ≔( ௞ܹ)௞∈ே be the chain, with state space ܧ஼ி, of change factors in time steps ݇ ∈ ܰ, that is 15 

௞ܹ =  ே(௞),             (Eq. 6)ܨܥ

with ܰ(݇) to be the counting process defined in (Eq. 3). Under the above notation, the original and perturbed sequences of 

precipitation, ܴ௞ and ܴ௞∗ , are written as  ܴ௞∗ = ௞ܹ	ܴ௞.            (Eq. 7) 
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This means that, for a sequence of events, some events will be perturbed more than others and for extreme cases some might 

be reduced while others are increased depending on the local expectations to climate change. Figure 1a 2a shows an example 

where a non-extreme summer event is perturbed to a lesser volume than original while a winter non-extreme is increased 

marginally and both 2 and 100 year extremes are increased considerably more (both in absolute numbers as well as in 

relative percentages). Figure 1b 2b shows how the state space changes if these four events were to happen chronologically in 5 

time with the state jump times marked at the x-axis. 

 

2.4 Volume correction based on seasonal dependence of extremes 

The extreme part of precipitation is only expected to constitute a smaller fraction of the total precipitation volume on an 

annual basis (Sørup et al., 2016b) but as extreme precipitation is often associated with a particular season (see e.g. Sørup et 10 

al., 2012) the volumetric part of the extremes might be higher for sub-annual considerations. This implies that situations 

where the expectations to changes to the extremes are very different than the expectations to changes to seasonal 

precipitation like “increased global precipitation is likely to be experienced as heavier precipitation events, rather than an 

increase in the frequency of precipitation” (Fowler and Hennessy, 1995) have to be handled throughhas to be handled 

through volumetric corrections ;, thisin order to accommodate that both expectations to changes in extremes and overall 15 

seasonal changes are correct. How to do this best will be very much dependent on the local conditions. In our case this is 

described in Section 3.4. 

2.5 Evaluation of Perturbed Time Series 

The evaluation of the perturbed time series is done against the original time series and against the expected changes. 

The average percentwise difference between the perturbed return levels, ݖ௜,௝,௠∗ , of the modelled time series, ܴ௞∗ , perturbed 20 

with the time dependent change factors, ௞ܹ, against the same return levels, ݖ௜,௝,௠, of the original time series, ܴ௞, multiplied 

with the target change factor, ܨܥ௘௝, can be defined as: 

Φ୧,୨,୫ = ቆ1 − ௭೔,ೕ,೘∗௭೔,ೕ,೘஼ி೐ೕቇ 100% ,          (Eq. 8) 

across all IDF points, i, all extremity levels and seasonality, j, and all perturbed time series, m. A combined skill score, Φ, 

across all considered metrics that describe the average deviance from the expectations can then be defined as: 25 

Φ = ∑ ∑ ∑ หଵିΦ౟,ౠ,ౣห|ூ|	|௃|	|ெ|௠∈ெ௝∈௃௜∈ூ  ,          (Eq. 9) 

Wwith ||ܫ	|ܬ|	ܯ|| being the product of the total number of IDF points, I, the total number of extreme levels considered plus 

seasonality, J, and the total number of time series perturbed , M, as a normalization factor. 
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2.6 Sensitivity Analysis 

The robustness of the methodology is tested by evaluating its sensitivity to the actual magnitude of the target parameters for 

both extreme and seasonal changes. Low (L), mean (M) and high (H) scenarios are constructed and paired in all possible 

combinations to assess both the individual and combined influence of these (Table 1). As this increases the number of 

scenarios with which to perturb the precipitation time series substantially are perturbed, this is not done until after an initial 5 

evaluation of the state selection criteria. 

 

Table 1 Tested combinations of extreme and seasonal changes. 

Seasonality 
Extremes 

Low expected change Mean expected change High expected change 

Low expected change LL ML HL 

Mean expected change LM MM HM 

High expected change LH MH HH 

 

3 Case study: Denmark 10 

To showcase the methodology it is applied to Danish conditions where the situation is that complex non-linear changes are 

expected with respect to precipitation in a changed climate. 

3.1 Data 

3.1.1 Observational Data 

Precipitation data from the Danish SVK rain gauge network is used in this study (Mikkelsen et al., 1998; Madsen et al., 15 

2002). For this study 10 time series from different parts of Denmark with lengths of approximately 33 years between 1979 

and 2012 are used. To distinguish individual events a dry weather period between individual events of at least 60 minutes is 

applied. 

3.1.2 IDF Curves 

For present climate IDF curves are extracted from a regional model for extremes originally developed by Madsen et al. 20 

(1998) and updated by Madsen et al. (2009) and Madsen et al., (submittedIn Review). The IDF curves vary across Denmark 

but a single mean regional curve is chosen for this study independent of the location of the gauge considered. Table 1 2 

summarizes the IDF values used. 
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Table 2 IDF intensities (µm/s) values for various return periods for Denmark extracted from the model presented by Madsen et al. 
(submittedIn review). 

Intensities (µm/s) 

Return 

Period 

(years) 

Duration (min) 

5 10 30 60 180 360 720 

T=100 43.67 34.80 20.63 12.47 5.21 3.11 1.72 

T=10 28.62 21.43 11.37 6.95 3.09 1.86 1.09 

T=2 19.54 14.08 7.08 4.38 2.04 1.25 0.75 

T=0.5 12.40 8.73 4.33 2.75 1.33 0.84 0.51 

 5 

3.1.3 Expectations to Climate Change 

The official recommendations regarding climate change for urban infrastructure in Denmark was determined by Gregersen et 

al. (2014) on the basis of the ENSEMBLES data set (van der Linden and Mitchell, 2009), with the addition of a few 

simulations using high-end scenarios. The data set indicate that in generalgeneral expectations for Denmark is that 

precipitation amounts and intensities will increase and that extremes will increase more than the expected mean increases for 10 

Denmark. Furthermore, the results show that it is very likely that increases will be more drasticpronounced for the very rare 

extremes compared to the more frequent extremes and that this is significant enough to not be ignored. Table 2 3 sums up 

these official expectations for the three return periods that has to be assessed in Danish urban hydrological contexts. 

 

 15 

 

 

Table 3 Expected changes in extreme precipitation for Denmark. All values from Tabel 1 of Gregersen et al. (2014). 

Change factor for 

extreme precipitation (-) 

2 year  event 

[CF2] 

10 year event 

[CF10] 

100 year event 

[CF100] 

Low expected change 1.0 1.0 1.0 

Mean expected change 1.2 1.3 1.4 

High expected change 1.45 1.7 2.0 

Formatted: Centered
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In addition, the Danish Meteorological Institute has published expectations regarding the climate change in precipitation on a 

seasonal basis (Olesen et al., 2014). The analysis is performed for a range of climate variables and focus on utilizing the data 

available in the best possible way to create realistic uncertainty intervals for the expected changes.  (Table 4). Olesen et al. 

(2014) The estimated these change factors for precipitation is based on analysis of the RCP2.6 and the RCP8.5 scenarios 5 

(Moss et al., 2010), hence, a low-and end and a high-end emission scenario, respectively. Table 4 lists these expectations as 

well as a simple mean average of the two to represent the mean expected change. To match the change factors for extreme 

precipitation in Gregersen et al. (2014), which primarily is based on the more average emission A1B scenario (Nakicenovic 

et al., 2000), simple scaling of the seasonal expectations to a mid-point is applied, as scalability has been shown to be a valid 

assumption across most scales and most indices (Christensen et al., 2015). The A1B scenario does not lie exactly in the 10 

middle between the RCP2.6 and the RCP8.5 scenarios, but definitely somewhere between these and Tthe original estimates 

from Olesen et al. (2014) are kept as low and high expected changes for the sensitivity analysis. 

 

Table 4 Expected seasonal changes to precipitation in Denmark based on data from Tabel 5 of Olesen et al. (2014) and linear 
scaled midpoint values. 15 

Change factor for seasonal precipitation (-) Winter 

[CFwinter]

Spring 

[CFspring]

Summer 

[CFsummer]

Fall 

[CFfall] 

Low expected change (RCP2.6) 1.0 1.0 1.0 1.0 

Mean expected change 1.1 1.05 0.9 1.05 

High expected change (RCP8.5) 1.2 1.1 0.8 1.1 

 

3.2 Defining states 

For Denmark the state space (Eq. 1) is defined with a total of eight states based on the expectations to climate change listed 

in Tables 2 3 and 34 with four seasonal states defined for the non-extreme events and three states for the different extreme 

event levels: 20 ܧ = ∩,ௗ௥௬ܦ} ∩,௪௜௡௧௘௥ܦ ∩,௦௣௥௜௡௚ܦ ∩,௦௨௠௠௘௥ܦ ∩,௙௔௟௟ܦ ∩,ଶܦ ∩,ଵ଴ܦ      .{ଵ଴଴ܦ

  (Eq. 10) 

And cCorrespondingly the change factors used to perturb the time series are, as a starting point, determined based on the 

mean expectations listed in Tables 2 3 and 34. 
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3.3 Determining state of individual events 

For the determination of the state of the individual extreme events four different selection criteria are investigated, with the 

purpose of defining  a representative return period for each event. All points mentioned refer to the return periods of the 

events intensity points, ࢀ = { ହܶ, ଵܶ଴, ଷܶ଴, ଺ܶ଴, ଵ଼ܶ଴, ଷܶ଺଴, ଻ܶଶ଴}, shown in the a situation as depicted oin Figure 23: 

A. The maximum return period is used to define the return period of the whole event (based on one point); 5 

A. ௘ܶ௩௘௡௧ = ଵܶ∗ = maxࢀ.         

 (Eq. 11) 

B. The mean of the three largest return periods is used to define the events (based on three points); 

 ௘ܶ௩௘௡௧ = ଵଷ∑ ௜ܶ∗ଷ௜ୀଵ maxࢀ + max(ࢀ\maxࢀ) + max(ࢀ\max(ࢀ\maxࢀ))തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത,   

       (Eq. 12) 10 

B. where ଶܶ∗ and ଷܶ∗ are the second and third maxima respectively, i.e. ଶܶ∗ = max	{ࢀ\ ଵܶ∗}	and ଷܶ∗ =max	{ࢀ\( ଵܶ∗ ∪ ଶܶ∗)}.	 
C. The mean of all the return periods is used to define the events (based on all seven points); 

C. ௘ܶ௩௘௡௧ =           .ഥࢀ

 (Eq. 13) 15 

D. A customized step-wise threshold selection criterion is constructed where the calculated return periods event-

specific IDF curve are is compared to whether a predefined number of the above mentioned points are above certain 

regional IDF levels.  

D. Criterion D This criterion is important to test as this allows for construction of a criterion that is closely linked to 

specific knowledge on the place-specific precipitation dynamics,; i.e. for how many duration points at the IDF curve a given 20 

return period has to be exceeded for it to be important for the event as such.essential for the classification of the event.  

Following these selection criteria, four different systems, ௜ܵ , ݅ ∈ ,ܣ} ,ܤ ,ܥ    .are constructed and analysed ,{ܦ

Options ஺ܵto ܵ஼	are straight forward based on Equations (11)-(13) but option ܵ஽ is determined specifically for the case study. 

Table 4 5 summarizes the methodology used for option ܵ஽ used in this study; specifically it is reflected that for very extreme 

events less durations has to be extreme for the event as a whole to be considered extreme compared to the more moderate 2-25 

year return level.. 

 

Table 5 Selection criterion ࡰࡿ for choosing Tevents at event level. 

A Tevent is chosen of If Or 

2 year event At least 4 points from the event 

hashave a return period above 0.5 

At least 2 points from the event 

hashave a return period above 2 

Formatted: Indent: Left:  1.27 cm, 
No bullets or numbering
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No bullets or numbering

Formatted: Indent: Left:  1.27 cm, 
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years years 

10 year event At least 3 points from the event 

hashave a return period above 2 

years 

At least 2 point from the event 

hashave a return period above 10 

years 

100 year event At least 3 points from the event 

hashave a return period above 10 

years 

At least 2 point from the event 

hashave a return period above 100 

years 

Non-extreme event  None of the above criteria are met  

 

3.4 Volume correction based on seasonal dependence of extremes 

In previous studies using the SVK data set, it has been shown that:  

1. the extreme events account for at most 25% of the total rainwater volume on an annual basis (Sørup et al., 2016b), and 

2. the extreme events occur mostly in the summer season (Sørup et al., 2012) 5 

Furthermore, in the summer season the excepted seasonal change (-10%) differs mostly from the expected change in 

extremes (+20-40%), see Table 3 4 and Table 23, respectively.  Based on this information the seasonal change factor for 

non-extreme summer events has to be adjusted to reach overall changes factors reported in Table 34.We estimate a partition 

between non-extreme and extreme events of { ௡݂௢௡ି௘௫௧௥௘௠௘, ௘݂௫௧௥௘௠௘} = {0.8,0.2} and the change factor for 2-year events, 

CF2, is used to represent the extremes as the largest seasonal volume by far is for the more frequent extremes (Sørup et al., 10 

2016b). In this way the change factor for summer, CFsummer, can be adjusted from its value listed in Table 4 (0.9) as: ܨܥ௔ௗ௝௨௦௧௘ௗ௦௨௠௠௘௥ = ஼ிೞೠ೘೘೐ೝ	ି	஼ிమ	௙೐ೣ೟ೝ೐೘೐௙೙೚೙ష೐ೣ೟ೝ೐೘೐ = ଴.ଽିଵ.ଶ∗଴.ଶ଴.଼ = 0. ,825.       (Eq. 

1114) 

In other words the change factor for non-extreme summer events are modified from -10% to -17.5% in order to compensate 

for the positive change of +20-40% to the extremes occurring in the summer period. For the other seasons such an 15 

adjustment is not needed. 

4 Results 

4.1 4.1 Evaluation of Selection Criteria 

The 10 time series are perturbed using the four different state selection criteria ( ஺ܵ -ܵ஽ ) and the evaluation metric is 

calculated using Eq. (9) with the extreme events having return periods closest to 2, 10 and 100 years (Table 6). Overall, state 20 
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selection criterion ܵ஽ outperforms the other alternatives even though all selection criteria seem reasonable as all estimated 

deviances are below 13% of the expected changes. 

Table 6 Calculated skill scores, Φ, for the four selection criteria A-D calculated using Eq. (10). 

 ࡰࡿ ࡯ࡿ ࡮ࡿ ࡭ࡿ 

Φ 9.3% 8.5% 12% 6.4% 

 

In order to study the performance for each state, we construct the skill score variable of Eq. (8) and plot them against the 5 

duration for the individual extremes and against months for seasonal precipitation (Figure 34). Plotted this way 100% 

represent a perfect fit, 0% represent no change and everything positive represent a change in the right direction. For the 2-

year return levels both state selection criteria ܵ஻ and ܵ஽ perform similarly and with a relative change close to 100 %. State 

selection criterion ஺ܵ overestimates the 2-year return level with approximately 10 % on average and state selection criterion ܵ஼ likewise underestimates it, which still corresponds to a positive change for the events (Figure 3a4a). For the 10-year 10 

return level, all state selection criteria perform similarly very well (Figure 3b4b). When the 100 year return level is evaluated 

the reason for criterion ܵ஽’s better overall performance become clear; it is the only criterion that does not systematically  

underestimate this return level (Figure 3c4c). Even so, all criteria produce results where the direction of change is correct. 

Given the inherent uncertainty in estimating the actual levels of such events, obtaining close to 85% of the expected change 

is considered good. With respect to the seasonal behaviour all state selection criteria have approximately the same 15 

performance at a level close to 100% (Figure 3d4d). 
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Figure 3 4 Performance of the different selection criteria, ࡰࡿ-࡭ࡿ, in producing a) 2 year extremes, b) 10 year extremes, c) 100 year 
extremes and d) seasonal changes according to the perturbation schemes listed in Tables 2 3 and 34. 

 

The performance of all the state selection criteria drops when considering duration that are both shorter and longer than the 5 

durations used in the state selection methodology (5-720 minutes). At the minute scale, this is of minor importance but at 
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two days (2880 minutes) the tendency is very robust across different state selection criteria and extremity levels. This is most 

likely because these average extreme events are caused by several events with dry periods in between. Hence the individual 

events are each assessed to be non-extreme and they are adjusted towards lower volumes, even though they combined are 

rather extreme.  

4.2 Sensitivity Analysis with Selection Criterion D 5 

The sensitivity analysis is carried out for the best state selection criterion only, i.e. criterion ܵ஽. The resulting skill scores for 

the nine individual sensitivity scenarios are listed in Table 7. The highest sensitivity is found when changing between the 

different extreme precipitation scenarios; with a large increase of the metric when moving from low to mean and also a 

notable increase when moving from mean to high scenarios. As such the performance of the methodology drops with the 

magnitude of the expected changes to extremes, but even for the high extremes the performance is similar to the performance 10 

of state selection criteria ஺ܵ  to ܵ஽  in Table 6. The methodology, on the other hand, shows very little sensitivity to the 

variation in expectations to seasonal changes, not even for the combination where the difference between expectations to 

seasonal summer precipitation (-20%) and the extremes become very high (+45-100%). 

Table 7 Calculated skill scores, Φ, for selection criterion ࡰࡿ for the nine different sensitivity scenarios listed in Table 5 1 calculated 
using Eq. (9). 15 

Φ 
Extremes 

Low Mean High 

Seasonality 

Low 0.0% 6.0% 8.6% 

Mean 1.0% 6.4% 8.8% 

High 1.2% 6.3% 8.8% 

 

For all extreme indices (Figure 4a5a-c), the sensitivity of the expected change of extremes is notable and, especially for the 

100 year return level, it is clear that performance drops with increased magnitude of the expected changes to extremes 

(Figure 4c5c) but only to levels comparable to that of the state selection criteria ஺ܵ-ܵ஼ as shown in Figure 34. Again the 

performance for two day events (2880 minutes) is worse than average as also seen in Figure 34. For seasonality (Figure 20 

4d5d), the general picture is that the sensitivity of both expectations to seasonality and extremes are of less importance and at 

a similar level, which in general is a lower level than the one observed for the three extreme indices. 
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Figure 4 5 Performance of selection criterion ࡰࡿ for different parameter values as specified in Table 5 1 for a) 2 year extremes, b) 
10 year extremes, c) 100 year extremes and d) seasonal changes under climate change. 
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5 Discussion 

The proposed framework is very flexible and the separation of dry, non-extreme and extreme weather makes it possible to 

very effectively perturb time series to reflect different changes in different categories. The presented case study uses eight 

states to distinguish between different levels of extremes and different season and is able to produce time series that 

satisfactory represent the expected changes listed in Tables 2 3 and 34. For other places a different number of states could be 5 

relevant and the seasonal partition could be different depending on the local climate and expectation to climate change. The 

proposed modelling framework fully supports theseis spatial variations. 

Four different state selection criteria over specified event durations are tested in the present study, see Section 2.2, as these 

covered realistic possibilities for the data set used in this study and the focus on urban hydrology. As such, different state 

selection criteria for different event durations could be relevant in different contexts and could, as illustrated by state 10 

selection criterion ܵ஽, be specified as very subjective and case specific criteria. In this study, the subjective state selection 

criterion ܵ஽ outperforms the other criteria, see Table 6 and Figure 12, but the superiority is mainly due to its ability to 

produce the largest changes for the very large, and very uncertain, extreme events. If this part of the evaluation is 

disregarded, criteria ܵ஻  and ܵ஽  haves very similar performance pointing at criterion ܵ஻  as being a good onset for 

investigating data sets where no presumptions exist and no case specific criterion can be constructed.  15 

All state selection criteria showed a drop in performance for longer duration events than the ones used in the methodology; 

this is likely due to the used event definition with a minimum of 60 minutes of dry weather between individual events which 

will mean that very long lasting extremes likely are split into several events and therefore not identified as extremes. A 

different event definition with longer minimum dry period between events could probably partly solve this, but it would 

reduce the number of events markedly and increase the chance of small events close to extremes being seen as part of the 20 

extreme with a somewhat false classification as a consequence. 

The methodology is somewhatrelatively sensitive to the magnitude of the perturbation factors, see Section 4.2, but the 

sensitivity is not very dominant and is only at the same size as the sensitivity of the different state selection criteria. Also, the 

methodology does not address the possibilities of changes to dry spells or changes to the occurrence rate of extremes in 

general. A future research direction could be to study how the state selection criteria along with the semi-Markov system 25 

applied here can be used to generate fully stochastic time series where both the inter-event time and the occurrence 

probability of the extreme states will be included as criteria that can be changed to meet the expectations to climate change. 

6 Conclusions 

The proposed methodology is a promising way of creating artificial perturbed precipitation time series, which can represent a 

changed climate and be used as input in hydrologic and hydraulic models. The methodology perturbs existing time series 30 

based on a semi-Markov system where precipitation time series are split into events characterized as dry, extreme or non-

extreme. The wet events are divided into different states based on an Intensity-Duration-Frequency relationship based state 
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selection criterion. Of the four tested state selection criteria, the case specific show the best results, but also the more general 

criteria could be of use when less knowledge about the precipitation regime is available. The sensitivity of the methodology 

was tested against very different expectations to climate change both with respect to seasonal changes and changes to 

extremes and is generally very robust, also regarding seasons where the general change is negative while the expectations to 

extremes is positive. The produced time series satisfactory reproduce changes across all seasons and across all levels of 5 

extremes relevant for urban hydrology. 
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