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Abstract 

Prevention and mitigation of floods require information on discharge and extent of 

inundation, commonly unavailable or uncertain, especially during extreme events. This study 15 

was initiated by the devastating flood in Tegucigalpa when Hurricane Mitch struck the city. In 

this study we hypothesised that it is possible to estimate, in a trustworthy way despite large 

data uncertainties, this extreme 1998 flood discharge and the extent of the inundations that 

followed, from a combination of models and post–event measured data. Post–event data 

collected in 2000 and 2001 were used to estimate discharge peaks, times of peaks and high 20 

water marks. These data were used in combination with rain data from two gauges to drive 

and constrain a combination of well–known models: TOPMODEL, Muskingum–Cunge–

Todini routing, and the LISFLOOD–FP hydraulic model. Simulations were performed within 

the GLUE uncertainty–analysis framework. The model combination predicted peak discharge, 

times of peaks and more than 90% of the observed high–water marks within the uncertainty 25 

bounds of the evaluation data. This allowed an inundation likelihood map to be produced. 

Observed high–water marks could not be reproduced at a few locations on the floodplain. 

These locations are useful to improve model set–up, model structure or post–event data–

estimation methods. Rainfall data were of central importance in simulating the times of peak 
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and results would be improved by a better spatial assessment of rainfall, e.g. from satellite 

data or a denser rain–gauge network. Our study demonstrated that it was possible, considering 

the uncertainty in the post–event data, to reasonable reproduce the extreme Mitch flood in 

Tegucigalpa in spite of no hydrometric gauging during the event.  

Keywords: post–event measured data, extreme floods, rainfall-runoff and hydraulic model 5 

combination, uncertainty analysis. 

 

1 Introduction 

The costs related to natural disasters have a significant impact on the world economy, floods 

account for around half of all disasters globally (UN/ISDR, 2016). Prevention and mitigation 10 

of floods require information on discharge and extent of inundation. Such information is 

commonly unavailable or uncertain, especially during extreme events when gauging 

equipment becomes insufficient or is lacking. Data scarcity is further aggravated in 

developing countries with weak infrastructure. 

Nearly 11 000 people were killed in Central America during Hurricane Mitch because of 15 

extreme flooding, about 2.7 million lost their homes and flood damages were estimated to 

more than 6 billion USD (McCown et al., 1999). This study was initiated by the flood in 

Tegucigalpa, the capital city of Honduras, on 30–31 October 1998 when Mitch struck the city. 

The estimated 500–year return period rainfall produced by Mitch (JICA, 2002) caused 

significant damage to Tegucigalpa, where one thousand casualties were reported and 20 

approximately 40% of its capital stock was damaged (Angel et al., 2004; JICA, 2002). In 

addition to these calamities, much of Honduras’ hydrological archives were swept away from 

their premises at SANAA (Servicio Autónomo Nacional de Acueductos y Alcantarillados) 

which was sited close to the main channel of the upper Choluteca River.  

Simulations of water–level dynamics caused by disastrous events are needed for preparedness, 25 

to produce flood–inundation maps useful for urban planning and to prioritise investments 

(Pappenberger et al., 2006; Schanze, 2006). Such simulations are also relevant to better 

comprehend the hydraulic mechanism of large flood events in order to improve model 

structure (Beven et al., 2011; Jarrett, 1990). However, given that simulations of extreme 

floods are generally associated with limited data availability and large uncertainties, the 30 
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question arises as to whether it is possible to achieve simulations that can be truly useful for 

contingency planning and prevention? 

When hydrometric measurements of discharge and water levels during an event are lacking or 

highly inaccurate, such information may be inferred from post–event surveys. These can be 

done through eye–witness accounts and field campaigns (Brandimarte and Di Baldassarre, 5 

2012; Gaume and Borga, 2008; Horritt et al., 2010; JICA, 2002; Smith et al., 2002), 

sometimes in combination with additional methods such as search into historical 

documentation and paleo–flood techniques (Mård Karlsson et al., 2009; Smith et al., 2012; 

Valyrakis et al., 2015). Such surveys have been useful to estimate hydrometric data of the 

floods. Pictures and movies can be used to identify locations, flow type, depth, flow velocity 10 

and discharge at the time they were taken (Le Boursicaud et al., 2016). Post–event 

information of channel topography and maximum water level can be used to estimate 

maximum peak discharge (Dalrymple and Benson, 1968; Matthai, 1968). 

Post–event–estimated maximum peak discharges can also be used to produce probabilistic 

regional envelope curves (PREC) (Castellarin, 2007; Gaume et al., 2009) and discharge series 15 

for flood–frequency analysis (FFA) (Cœur and Lang, 2008). PREC and FFA can provide 

design–flood estimates to be used for inundation mapping (Brandimarte and Di Baldassarre, 

2012). However, an assessment of flood development in time is required for early–warning 

systems (Schanze, 2006). The development of a flood in time can be obtained through a 

strategically planned post–event survey of peak discharge and the associated time of the peak 20 

(e.g. Delrieu et al., 2005). Detailed hydrographs can also be obtained from rainfall time series 

in conjunction with post–event hydrometric data, by the use of a rainfall–runoff model 

(RRM). A RRM in turn can be coupled with a hydraulic model to estimate the water–level 

development along a floodplain (Bonnifait et al., 2009; Montanari et al., 2009; Pappenberger 

et al., 2005a). Results from hydraulic models can be validated against post–event–estimated 25 

peak discharge, time of the peak, maximum water–level and flood extent data (Bonnifait et 

al., 2009; Brandimarte and Di Baldassarre, 2012; Horritt et al., 2010).  

Post–event data have been used to calibrate hydraulic models using deterministic calibration 

(e.g. Horritt et al., 2010; JICA, 2002). Borga et al. (2008) and Pappenberger et al. (2006) 

suggest that post–event data should be used  within an uncertainty–analysis set–up given their 30 

large uncertainties. The Generalised Likelihood Uncertainty Estimation (GLUE) framework 

(Beven and Binley, 1992) has been used to account for uncertainty in hydraulic models 
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(Aronica et al., 1998; Brandimarte and Di Baldassarre, 2012; Pappenberger et al., 2005a, 

2007) and for the coupling of a RRM with a hydraulic model (Montanari et al., 2009; 

Pappenberger et al., 2005a) using during–event measured data. Using post–event data, 

Bonnifait et al. (2009) present a multi–variable assessment to find a group of best parameter 

sets for the TOPMODEL RRM and a 1D hydraulic model. 5 

In this study we hypothesise that it is possible to reasonable estimate, despite the large 

uncertainties, the extreme 1998 flood discharge in Tegucigalpa and the extent of the 

inundations that followed, from a combination of models and post–event data. We are aware 

of works that use the combination of hydraulic models and RRMs to assess flood dynamics or 

others that use post–event data to calibrate RRMs and hydraulic models, both deterministic 10 

and through uncertainty analyses. We are not aware of any previous study combining a RRM, 

a hydraulic model, and post–event data within an uncertainty analysis framework to prove that 

reasonable estimation of an extreme flood is possible when hydrometric data are lacking. The 

methodology suggested in this paper integrates TOPMODEL (Beven and Kirkby, 1979; 

Kirkby, 1997), Muskingum–Cunge–Todini (MCT) (Todini, 2007) routing, and the 15 

LISFLOOD–FP (Neal et al., 2012) hydraulic model in a GLUE framework.  

 

2 Study area and data 

2.1 Area description 

The study area was the floodplain at Tegucigalpa City, approximately 13 km of river length 20 

located downstream of the upper part of the Choluteca River catchment. The area draining to 

the floodplain is around 811 km2 and is composed of five sub–catchments: Grande River (448 

km2), Guacerique River (243 km2), Chiquito River (71 km2), Salada creek (25 km2) and Las 

Lomas creek (12 km2) (Fig. 1). The catchment characteristics such as land use and geology 

are approximately uniform in all sub–catchments. The land use is mainly composed of sparse 25 

coniferous forest at higher elevation land; fallow, pastures and urbanised area in the low land 

(CIAT, 2007). The geology at the surface is mainly composed of tuff and limestone to a minor 

degree; the superficial aquifer is classified as poor to moderately productive (ING, 1996). The 

average basin slope in the Grande River, Guacerique River, Chiquito River, Salada creek and 

Las Lomas creek sub–catchments is 2.3, 2.8, 4.1, 6.0 and 5.2 % respectively. Two reservoirs 30 

operated by SANAA are established within the Tegucigalpa floodplain upstream sub–
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catchments: the Concepción reservoir, located at Grande River sub–catchment, and Los 

Laureles reservoir, located at Guacerique River sub–catchment.  

2.2 Data 

2.2.1 Topography 

An airborne light–detection and ranging (LIDAR) survey in Tegucigalpa was conducted in 5 

2000 by the University of Texas in cooperation with the U.S. Geological Survey (USGS) 

during their survey in Honduras in response to Hurricane Mitch (Mastin, 2002). They 

generated a 1.5 m cell–resolution digital–terrain model (DTM) with an estimated vertical 

accuracy of 0.14 m (Fig. 2). In 2001 JICA (2002) also conducted a topographic field survey as 

part of a flood/landslide–mitigation master plan and a total of 99 cross–sections along the 10 

rivers in the floodplain at Tegucigalpa surveyed at intervals of approximately 100 m were 

used in this study (Fig. 2). In addition, orthographic pictures were taken at Tegucigalpa city 

by JICA (2002). 

The topography of the Tegucigalpa floodplain upstream sub–catchments was available from 

the 90–m spatial resolution Shuttle Radar Topography Mission (SRTM) data described by 15 

Reuter et al. (2007) (Fig. 1).  

2.2.2 Precipitation 

Upstream the Tegucigalpa floodplain, two stations measured hourly rainfall during the Mitch 

event (Fig. 1 and 3). One of the stations is operated by Servicio Meteorológico Nacional 

(SMN, national weather service) and the other by the Universidad Nacional Autónoma de 20 

Honduras (UNAH). 

2.2.3 Discharge 

Peak discharge at different locations was estimated post–event by JICA (2002) and Smith et 

al. (2002) (Table 1). Discharge at three locations was estimated post–event by Smith et al. 

(2002) using the standard USGS techniques in Benson and Dalrymple (1967). The peaks at 25 

Chiquito River and Grande River (points 1 and 2 in Table 1) were estimated using the width–

contraction analysis that uses the continuity and energy equations between a cross–section 

approaching the contraction section under a bridge (Matthai, 1968). The peak at Choluteca 

(point 3) was estimated using the slope–area analysis, in which discharge is computed on the 
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basis of the uniform–flow equation involving channel geometry, high water marks, and 

roughness coefficients (Dalrymple and Benson, 1968). In JICA (2002), three additional 

discharge estimates (points 4, 5 and 7) were made by setting a rainfall–runoff analysis using 

the linear reservoir model with a design rainfall pattern constructed using hourly rainfall data 

from the SMN station. 5 

Controlled flow release through the spillway at the Concepción reservoir was conducted and 

recorded by SANAA during the Mitch event (Fig. 3). The outflow over Los Laureles dam was 

not recorded. However, SANAA reported that its gate was overtopped at 22:30 on 30 

October, reaching a maximum of approximately 1 200 m3s-1 (JICA, 2002; Smith et al., 2002). 

Peak times in Table 1, except at point 5, were obtained by interviewing witnesses. The time of 10 

the peak at point 5 was estimated by propagating the peak reported at los Laureles reservoir. 

2.2.4 Maximum water levels 

High water marks during the Mitch flood were surveyed post–event by JICA (2002); the data 

were obtained by interviewing residents who experienced the event. The survey was carried 

out at the same locations where the topographic cross–sections were made (Fig. 2). 15 

 

3 Method 

3.1 Modelling framework  

The dynamic of the water level along the river channel and floodplain was reproduced with 

the sub–grid channel formulation of the LISFLOOD–FP hydrodynamic model (Neal et al., 20 

2012). The model requires flow hydrograph as upstream boundary condition. Since discharge 

hydrographs were not measured, the RRM TOPMODEL (Beven and Kirkby, 1979; Kirkby, 

1997) as in Fuentes Andino et al. (2016) together with the Muskingum–Cunge–Todini (MCT) 

flood–routing approach (Todini, 2007) were used to generate the hydrographs at the outlets of 

the Chiquito River, Grande River, Guacerique River, Salada Creek and Las Lomas Creek 25 

sub–catchments (points 1, 2, 5, 8 and 9 in Fig. 1 and 2 and Table1).  

Model evaluation  

To quantify the propagation of uncertainty from input data, model parameters and model 

structure, the Generalised Likelihood Uncertainty Estimation (GLUE) method was used. 
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Within the GLUE methodology, parameter sets were generated using a Monte Carlo 

technique, assuming a prior distribution of the parameters. Behavioural parameter sets were 

selected by using a likelihood measure that reflected the performance of individual 

simulations with respect to one or more evaluation variables.  

Comparison of simulations and evaluation (𝑜i) was done by using a membership function of a 5 

fuzzy set to obtain a grade or degree of belief (𝑑𝑖). Here, a fuzzy membership function was 

chosen to account for uncertainties in the post–event estimated values, thus the degree of 

belief for a difference smaller than a between the simulated and post–event estimated values is 

equal to one and it declines linearly until a value of zero for differences larger than 𝑏 (Fig. 4).  

Behavioural parameter sets were those for which all evaluation variables (o) fell within the 10 

support of a fuzzy set defined by the uncertainty range associated with the post-event 

estimated evaluation data. Differences between prior and posterior parameter distributions 

were analysed as an indication of the sensitivity of the model parameters. 

For every parameter set, a global score (GS) was calculated based on a weighted average of 

the degrees of belief obtained for each evaluation. Subsequently, likelihood values were 15 

obtained by scaling the global scores by a constant C, so they will sum to unity over all 

behavioural sets (Beven, 2009).  

3.2 Rainfall–runoff modelling within an uncertainty analysis  

Hydrographs were reproduced by combining the rainfall–runoff TOPMODEL as in Fuentes 

Andino et al. (2016) with MCT routing. Topographic information is a fundament for our 20 

TOPMODEL set–up, which was one reason to select it for our mountainous catchment. The 

MCT routing was incorporated to consider the sudden release of water from the Concepción 

reservoir. The effect of Los Laureles dam on simulating the hydrograph of the Guacerique 

River sub–catchment was assumed to be negligible since the dam was overtopped much 

before the most intensive period of the storm.  25 

The length of the main channel for the MCT was estimated having a minimum drainage area 

equal to 65 km2. For each sub–catchment, the channel was sub–divided in reaches of 

approximately 2.5 km to execute the MCT routing. For the MCT routing at Grande River, the 

inflow for the most upstream reach was set equal to the outflow hydrograph from the 

reservoir, and for other sub–catchments, to be equal to the hydrograph draining to that reach 30 
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routed using TOPMODEL. For the subsequent reaches, this inflow was estimated as the sum 

of the outflow from the MCT routing at the immediate upstream reach and the hydrograph 

produced by TOPMODEL on the draining area to that reach (excluding the draining area to 

the upstream reaches). The modelling time step was equal to five minutes, smaller than the 

estimated travel time of the flood wave along the reach, as required by the MCT routing.  5 

For the TOPMODEL, a network width function for each reach was created using topography 

from the SRTM raster. Rainfall was assumed spatially uniform and estimated as the average 

of the rainfall registered at the two gauging stations. Uncertainty in rainfall input was taken 

into account by a multiplier (𝑅). In addition to the rainfall multiplier, uncertainty of six model 

parameters was considered: the rate of decline of transmissivity (𝑚), horizontal transmissivity 10 

(𝑇o), time constant (𝑡d), land use coefficient (𝑙u), flood wave celerity (𝑣c) and soil maximum 

infiltration rate (𝑖max). The MCT method required information about the river slope and the 

geometry of the cross–sections. The former was approximated from SRTM data, while the 

latter was inferred as a function of discharge using the Manning equation for a wide parabolic 

channel as in Tewolde and Smithers (2007), with channel roughness coefficient (𝑛cu) 15 

assumed uniform along all the reaches. 

All parameters were sampled from uniform distributions with ranges considered large but 

possible in the literature (Table 2) and each generated parameter set was used to simulate 

Chiquito, Grande and Guacerique River sub–catchments. A stopping criteria as in 

Pappenberger et al. (2005b) was used to decide the number of simulations required. For every 20 

500 behavioural simulations added, a cumulative distribution function (CDF) of the predicted 

peak discharge and one of the time of the peak were estimated. These estimated CDFs were 

compared with the previous one and the number of runs was considered sufficient when the 

addition of behavioural simulations did not change the CDF significantly (i.e. P < 0.05) using 

the Kuiper (1960) statistic test.  25 

Las Lomas creek and Salada creek did not have data to constrain the simulations and, by 

proximity, the behavioural parameters found at both Grande and Chiquito were used to 

simulate them. As the areas for Salada creek and Las Lomas creek were smaller than the 

threshold drainage area for applying MCT, only parameters from TOPMODEL were 

transferred to those sub–catchments. 30 
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Rainfall–runoff model evaluation 

To decide on behavioural hydrographs for Chiquito, Guacerique and Grande River sub–

catchments the simulated maximum peak and time of the peak post–event observations were 

used. The assumed uncertainty range for the peak discharge, assuming all predictions within 

the fuzzy set equally good, was 𝑏 = 𝑎 = ±50% of the peak flow and for the time of peak 𝑏 =5 

𝑎 = ±2.5 hours (Fig. 4). Considering the unavoidable fuzziness associated with this sort of 

data, a large uncertainty was allowed in post–event estimated maximum peaks and time of the 

peaks. For example, the uncertainty in post–event estimated discharge was assumed to be 

about 50%. This value is larger than the 25%, which is the minimum uncertainty expected in 

less than ideal conditions given steep slopes and large roughness (Benson and Dalrymple, 10 

1967; Cook, 1987), but smaller than 100% possible overestimation for slopes greater than 

0.002 (Jarrett, 1987). 

To reduce computational costs and avoid redundancy, 100 representative hydrographs (class 

hydrographs) were obtained for each sub–catchment by clustering the full behavioural 

ensemble. Clustering was done using a hierarchical divisive clustering technique with the K–15 

means flat algorithm (Madhulatha, 2012). The mean absolute error was used as a metric and 

the maximum distance as linkage criteria. 

3.3 Hydraulic model within an uncertainty analysis 

The LISFLOOD–FP was used to propagate the flood waves along the channels and across the 

flood plain. Here the sub–grid channel formulation after Neal et al. (2012) was used, where 20 

the floodplain and the channel have a 2D square grid representation and flood waves are 

propagated using the local inertia formulation (de Almeida et al., 2012). Thus, the convective 

acceleration term is assumed to be negligible making the model computationally more 

efficient than a full 2D dynamic model and therefore suitable for uncertainty analysis. The 

model outputs are the discharge and water–level time series at any grid along the channel or 25 

floodplain. 

The basic input data for the LISFLOOD–FP are topography, hydrographs at the upstream 

boundary conditions, a downstream boundary condition and Manning roughness coefficients. 

The LIDAR data aggregated to 21 meter cell resolution was used as topographic input to the 

model, the surveyed cross–sections and orthographic pictures from JICA (2002) were used to 30 

define channel depth and width respectively. Test simulations of this event were performed 
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within the HEC–RAS one-dimensional hydraulic model considering the topography of the 

bridges, results showed that bridges had a negligible effect on the overall flood profile. Thus, 

the geometry of bridges was neglected by assuming a limited and localised impact on flood 

levels as in e.g. Castellarin et al. (2009). 

From the results of a trial test, errors in the channel depth had only a small effect on the 5 

simulated water levels. However, uncertainty in the channel width was considered by 

multiplying the estimated channel width by a factor (𝑤f). By assuming normal flow, the 

overall downstream valley slope, 𝑏c, was used as downstream boundary condition. Besides 𝑏c, 

the channel roughness coefficient, assumed uniform along all the channel length, 𝑛c, and the 

floodplain roughness coefficient uniform along all the floodplain, 𝑛f, were also considered to 10 

be uncertain parameters. Uncertainty of the input hydrographs at each of the upstream 

boundary conditions was considered by sampling from 100 class hydrographs. 

For this model, a total of 130 000 parameter sets were sampled from a uniform distribution 

with ranges considered large but possible in the literature (Table 3) in the same way as for the 

RRM. 15 

Model evaluation for hydraulic model 

A grade or degree of belief (𝑑𝑖) (Fig. 4) was obtained for the values simulated for the 

following evaluation data:  

‒ One degree of belief value, 𝑑1, as performance in predicting the maximum peak discharge 

value of point 3 (Table 1). 20 

‒ Two degree of belief values, 𝑑2−3, as performance in predicting time of the maximum 

peak discharge of points 3 and 6 (Table 1). 

‒ Ninety-nine degree of belief values, 𝑑4−102, as performance in predicting maximum water 

levels along the main river and two tributaries (Fig. 2). 

 25 

The fuzzy set values of a and b for evaluating the simulated peak, time of the peak and water 

levels were set to 20 and 50% of observed peak discharge, 0.5 and 2.5 hours and 0.5 and 1.8 

metres respectively. A parameter set was considered behavioural if the degree of belief was 

larger than zero for each of the 102 evaluation points. For prediction, the likelihood of a 

parameter set was inferred by normalising the global score (GS) estimated by weighted 30 

average of the different degrees of belief.  

𝐺𝑆 = ∑ 𝑤i𝑑i
𝑖=102
𝑖=1          (1) 
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Where 𝑤i are the weights associated to degree of belief correspondent to the observations. The 

weight associated to the peak discharge and the two times of the peak data (𝑑1−3) were set 

equal to 0.1 each, thus 0.7 was the compounded weight correspondent to the degree of belief 

associated to all the observed maximum water level (𝑑4−102). Finally, the behavioural 

parameter sets were used to generate a fuzzy likelihood water level profile and map of the 5 

maximum flood extension during the Mitch event. 

 

4 Results 

4.1 Hydrographs for the upstream boundary condition  

Behavioural hydrographs to use as the upstream boundary conditions of the hydraulic model 10 

were obtained for the sub–catchments of the Grande, Guacerique and Chiquito Rivers. The 

TOPMODEL behavioural parameter sets at Grande and Chiquito River sub–catchments were 

used to simulate hydrographs at Salada creek and Las Lomas creek sub–catchments (Fig. 5). 

The cumulative distribution function (CDF) of the predicted peak discharge and of the time of 

the peak of 2 000, 8 000 and 9 000 behavioural simulation for sub–catchments of the 15 

Chiquito, Guacerique and Grande Rivers respectively did not change significantly by adding 

500 behavioural simulations more. Thus a total of 3 000, 9 000 and 10 000 behavioural 

simulations were considered enough to infer 100 class hydrographs for each sub–catchment 

respectively. When comparing the prior and posterior distribution of the rainfall–runoff model 

parameters, five out of eight parameters were sensitive (Fig. 6).  20 

4.2 Hydraulic model floodwave propagation 

There were no simulations for which all degrees of belief were larger than zero. Criteria 𝑑1−3 

were fulfilled by a total of 47 894 out of 130 000, but some observed water marks were 

constantly and largely under– or over–predicted. To allow for special cases, i.e. larger error in 

the observations or in the hydraulic simulations, the constraints were relaxed by allowing 10 25 

% of observed water marks (10 out of 99 observations) to be outside the fuzzy bounds i.e. the 

degree of belief was allowed to be equal to zero. By relaxing the constraints a total of 6 357 

parameter sets were found, the degree of belief for those parameters varied between 0.001–1, 
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0.04–0.96, 0.29–0.79 and 0.46–0.75 (for 𝑑1, 𝑑2, 𝑑3 and average of 𝑑4−102 respectively) and 

between 0.40–0.78 for the global score (GS). 

Change in the posterior distributions of the parameters showed that the channel roughness 

coefficient and floodplain roughness coefficient were more sensitive than the channel width 

factor and the slope for the downstream boundary condition (Fig. 7). Changes in the posterior 5 

distribution of the peak and time of the peak showed that the model was more sensitive to 

input hydrographs from large catchments than from small catchments (Fig. 8). Flood–wave 

propagation of different input hydrograph combinations led to prediction of two markedly 

different time of the peak at the floodplain resulting in under– (over–) prediction when the 

earliest (latest) peak of input hydrograph combinations prevailed (Fig. 9).  10 

Particularly, there were three observed high water marks in the Chiquito sub–catchment that 

were constantly under–predicted and outside the uncertainty bounds of the observations (Fig. 

10). Expectedly, propagation of the water level uncertainty in the flood extent was more 

evident at highly dense urban areas (Fig. 11). From behavioural simulations, the 90% 

confidence interval for prediction of the discharge at the floodplain outlet was 2 708 to 15 

4 619m3s-1 encompassing the 3 880 m3s-1 value estimated in JICA, (2002) (reference point 7). 

For reference point 4, at Chiquito River, the 90% confidence interval was 247 to 482 m3s-1 

also encompassing the 436 m3s-1 value estimated in JICA, (2002).  

 

5 Discussion 20 

A field campaign after a large flood event is a possibility to collect information useful for 

flood forecasting and subsequent contingency planning in places where hydrometric 

measurements are lacking because of non–existing or broken gauges.  

Our study demonstrated that it was possible, considering the uncertainties associated with the 

data, to reasonably reproduce an extreme flood event in a data–scarce situation. Our results 25 

support those of  Bonnifait et al. (2009) about the possibility to reproduce an extreme flood 

event by a suitable model combination when event–based data are lacking. Here we 

additionally incorporated the GLUE methodology to account for various sources of 

uncertainties and their interaction. This allowed us to obtain predictive ranges that accounted 

for expert knowledge of uncertainties in model parameters, rainfall input and evaluation data. 30 

We could drive and constrain a combination of RRM and hydraulic models with only event–
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based rainfall data and post–event hydrometric data while accounting for these uncertainties. 

Behavioural parameter sets were identified that could be used to obtain a realistic probabilistic 

reproduction of the flood water level (Fig. 10) and flood extension (fig. 11). 

Combining an RRM with a hydraulic model within an uncertainty framework as in Montanari 

et al. (2009) and Pappenberger et al. (2005a) was proven to be useful also in the case of only 5 

having post–event–estimated hydrometric data. If real–time discharge measurements are 

available to calculate the initial saturation of a catchment, behavioural parameter sets updated 

from a range of events can be used for forecasting as shown by Romanowicz and Beven 

(2003) and Montanari et al. (2009). In the absence of such measurements, a guess of the initial 

discharge may also work since it will not significantly affect the prediction for the intense 10 

period of the event. Furthermore, for that period, our methodology can give a better 

performance since calibration is done against discharge, time and water level at the peak. 

The combination of TOPMODEL and MCT allowed us to estimate behavioural hydrographs 

at Chiquito, Guacerique and Grande sub–catchments. The RRM simulations could be 

constrained (Fig. 5) in spite of the wide uncertainty ranges in the data. The mean rainfall 15 

multiplier of the posterior distribution varied across sub–catchments (0.93, 1.5 and 1.3 for 

Chiquito, Guacerique and Grande respectively) (Fig. 6), suggesting that spatial average 

rainfall estimated from gauges was overestimated at Chiquito and underestimated at 

Guacerique and Grande sub–catchments. The posterior distribution of the rainfall multiplier at 

Chiquito and Guacerique sub–catchments showed a RRM model sensitivity to this parameter 20 

in the same way as in Fuentes Andino et al. (2016). The sensitivity was different in the case of 

the Grande sub–catchment, which also showed a different posterior distribution shape for the 

rate of depletion and time constant. Different shapes of posterior parameter distributions at 

Grande River sub–catchment relative to Guacerique and Chiquito River sub–catchments could 

be caused by parameter adjustment to fit the observations or by different hydrological 25 

processes going on in the sub–catchment. The sudden release of water from the dam could 

also be a reason for these differences. The posterior distributions for the Grande River sub–

catchment suggest it has shallower effective soil depth (low m) and a faster channel response 

in the MCT routing (low ncu ) than the other two sub–catchments. 

The transfer of behavioural parameter sets from the Grande and Chiquito River sub–30 

catchments to the Salada creek and Las Lomas creek sub–catchments allowed us to simulate 

hydrographs for these as well. These catchments have a small contributing area relative to the 
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three sub–catchments where post–event data were available and thus did not affect the system 

very much (Fig. 8). It still allowed us to use hydrographs from a total of five sub–catchments 

(Fig. 5) as upstream boundary conditions for the hydraulic simulations. 

From the hydraulic simulations, behavioural simulations were selected for which the degree 

of belief for the peak discharge, time of the peak and at least 90% of predicted high–water 5 

marks (89 out of 99 observations) were above zero. The prediction of high–water marks was 

quite acceptable with average degrees of belief for the criteria 𝑑4−102 varying from 0.46 to 

0.75 for behavioural simulations even when the criterion was relaxed. Larger weights were 

given to predict the observed water marks in comparison to the peak discharge and times of 

the peaks because the focus was on predicting flood extent. The weights could be changed 10 

according to the purpose of the study which might also result in different ensembles being 

behavioural for different purposes (Pappenberger et al., 2007). 

The channel and floodplain roughness coefficients and the hydrograph input from Grande 

River and Guacerique River sub–catchments (Fig. 7 and 8) were the most important factors 

for the hydraulic model. Two peaks in the input rainfall (Fig. 3) led to two large peaks in the 15 

hydrographs as input boundary conditions (Fig. 5). The propagation of input hydrographs 

along the floodplain led to under– or over–prediction of the times of peak (Fig. 9). Since 

rainfall data played an important role in predicting the times of peak, this was an indication 

that an improved spatial characterisation of rainfall by using e.g. satellite data or a denser 

rain–gauge network would be beneficial for this methodology. 20 

The LISFLOOD–FP model predicted the observed high–water marks, peaks and times of 

peaks well. In comparison to the estimates made by JICA (2002), water levels produced here 

encompassed observations better because a range, instead of a value, was estimated. But some 

observed high–water marks were constantly under predicted in the estimates by JICA (2002) 

and outside the predicted bounds made herein even accounting for the uncertainty in the 25 

evaluation data (Fig. 10). The problem of predicting at some locations could be caused by 

large errors in the post–event data, or by the inability of the hydraulic model to simulate the 

system under complex conditions such as strong river bends (e.g. three constantly under–

predicted observations at Fig. 10), or special topographic details in a highly populated area 

with man–made structures, that could not be captured by the DEM. A general under–30 

prediction of the water level at the Chiquito River reach could be due to the under–estimation 

of the post–event–estimated peak discharge, as in comparison to the Grande and Guacerique 
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sub–catchments, most of the hydrograph simulations for Chiquito River sub–catchment were 

rejected because the simulated peaks were larger than the observations (even considering the 

uncertainty) (Fig. 5). A detailed inspection of model structure, model set–up and data at 

specific points where the model did not perform well even after considering possible 

uncertainties in the parameters, input and evaluation data, could reveal areas for improvement. 5 

In general, the simulated water levels were satisfactory, but post–event observations of flood 

extent might do better than water levels in constraining the LISFLOOD–FP (Horritt and 

Bates, 2002).  

This study was set up to demonstrate the use of post–event data and a combination of suitable 

RRM and hydraulic models within an uncertainty analysis to reproduce an extreme flood in a 10 

data–scarce area. The post–event data in this case came from airborne topographic surveys, 

field surveys of channel geometry and witnesses account of high–water marks and time of 

peaks. Post–event estimates in the future could likely also come from social–media 

information which is becoming gradually more available. It is also tempting to consider the 

possibility to use the model combination in this study as a starting point to develop a real–15 

time early–warning system fed both by an improved rain–gauge network and water–level 

information from social media. 

 

6 Conclusions 

In this study we tested the possibility to reproduce an extreme flood disaster in a data–scarce 20 

area, in this case the devastating flood in Tegucigalpa triggered by Hurricane Mitch in 1998. It 

was possible to realistically reproduce this large ungauged flood event by using post–event 

data, demonstrating the value of post–event field campaigns to estimate hydrometric data 

from the event for which such data were unavailable. A methodology has been proposed 

where post–event–estimated data are used to drive and constrain a combination of well–25 

established rainfall–runoff and hydraulic models to estimate floods within a GLUE 

uncertainty–analysis framework. The propagation of hydrographs, estimated by integrating 

TOPMODEL with the MCT routing scheme, through the hydraulic LISFLOOD–FP 2D model 

resulted in successful predictions of observed high–water marks, discharge peaks and times of 

peaks within the uncertainty bounds for most of the evaluation variables. A few critical 30 

locations in the floodplain were identified where the model set–up could not reproduce the 
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maximum water level. These locations can provide information useful to improve model 

structure or post–event data–estimation methods. Rainfall data were of central importance in 

simulating the times of peaks and results would be improved by a better spatial assessment of 

rainfall e.g. from satellite data or a denser rain–gauge network. In the future, the post–event 

part of the methodology could take advantage of pictures and videos as well as other soft 5 

information of floods that are becoming increasingly available in social media. 
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Table 1 Post–event estimated peak discharge and time of peaks. 

Location 
Discharge 

(m3s-1) 
Time of peak 
(day h:min) 

Source 

Reference 
number 

(Figures 1 
and 2) 

Chiquito River 167 31 Oct 00:00 (Smith et al., 2002) 1 

Grande River 2 340 
31 Oct 00:00–
02:00 

(Smith et al., 2002) 2 

Choluteca River 4 360 31 Oct 00:30 (Smith et al., 2002) 3 

Chiquito River 436 – (JICA, 2002) 4 

Guacerique River 1 177 30 Oct 23:00 (JICA, 2002) 5 

Choluteca River – 31 Oct 01:00 (JICA, 2002) 6 

Choluteca River 3 880 – (JICA, 2002) 7 
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Table 2 Sampling parameter ranges to run the rainfall–runoff model 

Parameter Abbreviation Unit Sampling range 

Rainfall multiplier R (–) 0.4–2.0 

Rate of decline of transmissivity m (m) 0.005–0.035 

Horizontal transmissivity To (m2 h-1) 0.001–20 

Time constant td (m h-1) 1–60 

Land–use coefficient lu (m s-1) 0.04–0.2 

Flood–wave celerity vc (m s-1) 1.0–3.5 

Maximum soil infiltration rate imax (m h-1) 0.005–0.03 

Main channel roughness 
coefficient 

ncu (s m-1/3) 0.001–0.08 
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Table 3 Sampling range of parameters to run the hydraulic model. 

Quantity Parameter Abbreviation Unit Sampling 
range 

1 Channel width factor  wf – 0.5–2.0 

1 Slope for downstream boundary 
condition 

bc % 0.005–0.03 

1 Channel roughness coefficient  nc s m-1/3 0.005–0.3 

1 Floodplain roughness coefficient nf s m-1/3 0.005–0.3 

5 Hydrograph for the upstream boundary 
condition (100 class hydrographs ) 

– units 1–100 
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Figure 1 Study area and data location, Topography data from the Shuttle Radar Topography 

Mission (SRTM).  
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Figure 2 Geometry set–up for hydraulic simulation at the Tegucigalpa floodplain. Lidar data 

from Mastin (2002) 
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Figure 3 Hourly rainfall on 30–31 October 1998 at SMN station (grey bars), UNAH station 

(black outlined bars), average of the two stations (asterisks), and measured outflow at 

Concepción reservoir (continuous line). 5 
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Figure 4 Fuzzy membership function for evaluation of model performance, a and b depend on 

the uncertainty associated with the evaluation (oi). 

 

 5 
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Figure 5 Precipitation (bars) and 100 class hydrographs chosen from the behavioural ones 

(black plots) for five floodplain–upstream sub–catchments. Predictive range of the 100% 

probability limits for all hydrographs simulations (grey shaded area) and rectangles 

representing the fuzzy set to allow for uncertainty for peak discharge and time of the peak for 5 

the sub–catchments of the Chiquito, Guacerique and Grande Rivers. 
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Figure 6 Prior (grey) and posterior (black outlined) relative frequency distribution for the 

most sensitive rainfall–runoff model parameters: rainfall multiplier (𝑅), rate of depletion (𝑚), 

time constant (𝑡𝑑), the main channel roughness coefficient (𝑛cu) and maximum soil 

infiltration rate (𝑖max) for the Chiquito, Guacerique and Grande catchments (first, second and 5 

third row respectively). 
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Figure 7 Prior and posterior relative frequency distribution (grey and black outlined bars 

respectively) of model parameters (width factor, slope for the downstream boundary 

condition, channel roughness coefficient and floodplain roughness coefficient, 𝑤f, 𝑏c, 𝑛c and 

𝑛f respectively). 5 
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Figure 8 Prior and posterior relative frequency distribution (grey and black outlined bars 

respectively) of model maximum peak and time of the peak of input hydrographs for 5 

boundary conditions.  
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Figure 9 Performance of the model in predicting high water marks, average (𝑑4−102),   against 

predicted maximum peak discharge and two times of peak at Choluteca River (reference 

points 3 and 6 at Table 1) for non–behavioural simulations (grey dots), behavioural ones 

(black dots). Observed values and their limits of acceptability are plotted in continues and 5 

dotted vertical lines respectively. 
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Figure 10 Likelihood of high–water–mark during the Mitch event, considering uncertainty in 

model parameters, model input and evaluation data to drive and constrain a combination of 

rainfall–runoff and hydraulic models 5 
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Figure 11 Likelihood of inundated area during the Mitch event on 30–31 October 1998, 

considering uncertainty in model parameters, model input and evaluation data to drive and 5 

constrain a combination of rainfall–runoff and hydraulic models. 
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