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Abstract 

Studies for the prevention and mitigation of floods require information on discharge and 

extent of inundation, commonly unavailable or uncertain, especially during extreme events. 15 

This study was initiated by the devastating flood in Tegucigalpa, the capital of Honduras, 

when Hurricane Mitch struck the city. In this study we hypothesised that it is possible to 

estimate, in a trustworthy way considering large data uncertainties, this extreme 1998 flood 

discharge and the extent of the inundations that followed, from a combination of models and 

post-event measured data. Post-event data collected in 2000 and 2001 were used to estimate 20 

discharge peaks, times of peak and high-water marks. These data were used in combination 

with rain data from two gauges to drive and constrain a combination of well-known modelling 

tools: TOPMODEL, Muskingum-Cunge-Todini routing, and the LISFLOOD-FP hydraulic 

model. Simulations were performed within the GLUE uncertainty-analysis framework. The 

model combination predicted peak discharge, times of peaks and more than 90% of the 25 

observed high-water marks within the uncertainty bounds of the evaluation data. This allowed 

an inundation likelihood map to be produced. Observed high-water marks could not be 

reproduced at a few locations on the floodplain. Identification of these locations are useful to 

improve model set-up, model structure or post-event data-estimation methods. Rainfall data 
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were of central importance in simulating the times of peak and results would be improved by 

a better spatial assessment of rainfall, e.g. from radar data or a denser rain-gauge network. Our 

study demonstrated that it was possible, considering the uncertainty in the post-event data, to 

reasonably reproduce the extreme Mitch flood in Tegucigalpa in spite of no hydrometric 

gauging during the event. The method proposed here can be part of a Bayesian framework in 5 

which more events can be added into the analysis as they become available. 

Keywords: post-event measured data, extreme floods, rainfall-runoff and hydraulic model 

combination, uncertainty analysis, ungauged basins. 

 

1 Introduction 10 

Losses caused by natural hazards have a significant impact on the world economy, and floods 

account for around half of all disasters globally (UN/ISDR, 2016). Prevention and mitigation 

of floods require information on discharge and extent of inundation. Such information is 

commonly unavailable or uncertain, especially during extreme events when gauging 

equipment becomes insufficient or is lacking. Data scarcity is further aggravated in 15 

developing countries with weak infrastructure. 

Nearly 11 000 people were killed in Central America during Hurricane Mitch because of 

extreme flooding, an estimated 2.7 million lost their homes and flood damages were estimated 

to more than 6 billion USD (McCown et al., 1999). This study was initiated by the flood in 

Tegucigalpa, the capital city of Honduras, on 30–31 October 1998 when Mitch struck the city. 20 

The estimated 500–year return period rainfall produced by Mitch (JICA, 2002) caused 

significant damage to Tegucigalpa, where one thousand casualties were reported and 

approximately 40% of its capital stock was damaged (Angel et al., 2004; JICA, 2002). In 

addition to these calamities, much of Honduras’ hydrological archives were swept away from 

their premises at SANAA (Servicio Autónomo Nacional de Acueductos y Alcantarillados) 25 

which was located close to the main channel of the upper Choluteca River.  

Simulations of water-level dynamics caused by disastrous events are needed for preparedness, 

to produce flood-inundation maps useful for urban planning and to prioritise investments 

(Pappenberger et al., 2006; Schanze, 2006). Such simulations are also relevant to better 

comprehend the hydraulic mechanism of large flood events in order to improve model 30 

structure (Beven et al., 2011; Jarrett, 1990). However, given that simulations of extreme 
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floods are generally associated with limited data availability and large uncertainties, the 

question arises as to whether it is possible to achieve simulations that can be useful for 

contingency planning and prevention. 

When hydrometric measurements of discharge and water levels during an event are lacking or 

highly inaccurate, such information may be inferred from post-event surveys. These can be 5 

done through eye-witness accounts and field campaigns (Brandimarte and Di Baldassarre, 

2012; Ciervo et al., 2015; Gaume and Borga, 2008; Horritt et al., 2010; JICA, 2002; Smith et 

al., 2002), sometimes in combination with additional methods such as search into historical 

documentation and paleo-flood techniques (Mård Karlsson et al., 2009; Smith et al., 2012; 

Valyrakis et al., 2015). Such surveys have been useful to estimate hydrometric data of the 10 

floods. Pictures and movies can be used to identify locations, flow type, depth, flow velocity 

and discharge at the time they were taken (e.g. Ciervo et al., 2015; Le Boursicaud et al., 

2016). Post-event information of channel topography and maximum water level can be used 

to estimate maximum peak discharge (Dalrymple and Benson, 1968; Matthai, 1968). 

Post-event-estimated maximum peak discharge can be used to produce probabilistic regional 15 

envelope curves (Castellarin, 2007; Gaume et al., 2009) and discharge series for flood-

frequency analysis (Cœur and Lang, 2008). These provide design-flood estimates used for 

inundation mapping (e.g. Brandimarte and Di Baldassarre, 2012). However, an assessment of 

flood development in time is required for early-warning systems (Schanze, 2006). The 

development of a flood in time can be obtained through a strategically planned post-event 20 

survey of peak discharge and the associated time of the peak (e.g. Delrieu et al., 2005). 

Detailed hydrographs can also be obtained from rainfall time series in conjunction with post-

event hydrometric data, by the use of a rainfall-runoff model (RRM). A RRM in turn can be 

coupled with a hydraulic model to estimate the water-level development along a floodplain 

(Bonnifait et al., 2009; JICA, 2002; Montanari et al., 2009; Pappenberger et al., 2005a). 25 

Results from hydraulic models can be validated against post-event-estimated peak discharge, 

time of the peak, maximum water-level and flood-extent data (e.g. Bonnifait et al., 2009; 

Brandimarte and Di Baldassarre, 2012; Horritt et al., 2010).  

Post-event data have been used with deterministic calibration within hydraulic models (e.g. 

Horritt et al., 2010; JICA, 2002), and for coupling RRM with hydraulic models (e.g. Ciervo et 30 

al., 2015). Using post-event data, Bonnifait et al. (2009) present a multi-variable assessment 

to find a group of best parameter sets for the TOPMODEL RRM and a 1D hydraulic model. 
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Borga et al. (2008) and Pappenberger et al. (2006) suggest that post-event data should be used 

within an uncertainty-analysis framework given their large uncertainties. Di Baldassarre et al. 

(2010) discussed the advantages of distributed uncertainty mapping, as first proposed by 

Romanowicz and Beven (1998), in comparison with deterministic mapping. Uncertainty 

analysis techniques have been used to account for uncertainty in hydraulic models (Aronica et 5 

al., 1998; Bozzi et al., 2015; Brandimarte and Di Baldassarre, 2012; Pappenberger et al., 

2005a, 2007) and for the coupling of a RRM with a hydraulic model (Montanari et al., 2009; 

Pappenberger et al., 2005a) using  event-measured data.  

Uncertainty-analysis techniques account for possible errors involved in the modelling process, 

e.g. errors in model parameters and input data, due to lack of knowledge of their true values, 10 

spatio-temporal variability, or inaccurate estimation, and errors related to limited knowledge 

of the behaviour of the real system, i.e. epistemic uncertainty (Beven, 2016, 2009). Thus in 

uncertainty-analysis techniques, uncertainties can be associated with several sources that 

interact among them, in which each interaction is associated with a likelihood dependent on 

how well it fits the observations. The formal Bayesian approach is a widely used method for 15 

uncertainty analysis, with different setups available (e.g. Smith and Roberts, 1993). Bayesian 

techniques have been commonly applied in hydraulic and hydrological modelling (e.g. Hall et 

al., 2011; Renard et al., 2008) and can be used within a global sensitivity analysis (see 

summaries by Iooss and Lemaître (2015) and Sarrazin et al. (2016)) to assess the effect of 

each source of uncertainty on the output (e.g. Abily et al., 2016). An informal Bayesian 20 

approach is the Generalised Likelihood Uncertainty Estimation (GLUE) framework (Beven 

and Binley, 1992), which differs in the way likelihood is defined and in that it does not 

require a prior knowledge on the correlations or distributions of the parameter errors, yet with 

GLUE it is possible to get posterior information in the parameter combinations. In this study 

we hypothesise that it is possible to reasonably estimate, considering the large uncertainties in 25 

the observations, the extreme 1998 flood discharge in Tegucigalpa and the extent of the 

inundations that followed, from a combination of models and post-event data. We are aware 

of works that use the combination of hydraulic models and RRMs to assess flood dynamics or 

others that use post-event data to calibrate either RRMs or hydraulic models, both 

deterministic and through uncertainty analyses. We are not aware of any previous study 30 

combining a RRM, hydraulic modelling, and post-event data within an uncertainty analysis 

framework to prove that reasonable estimation of an extreme flood is possible when 

hydrometric data are lacking. The methodology suggested in this paper integrates 
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TOPMODEL (Beven and Kirkby, 1979; Kirkby, 1997), Muskingum-Cunge-Todini (MCT) 

(Todini, 2007) routing, and the LISFLOOD-FP (Neal et al., 2012a)et al hydraulic modelling 

tool in a GLUE framework.  

 

2 Study area and data 5 

2.1 Area description 

The study area was the floodplain at Tegucigalpa City, approximately 13 km of river length 

downstream of the upper part of the Choluteca River catchment. The area draining to the 

floodplain is around 811 km
2
 and is composed of five sub-catchments: Grande River (448 

km
2
), Guacerique River (243 km

2
), Chiquito River (71 km

2
), Salada Creek (25 km

2
) and Las 10 

Lomas Creek (12 km
2
) (Fig. 1). Rainfall in the region is affected by high hurricane recurrence 

(Alvarado and Alfaro, 2003; Strobl, 2009) and convective activity. These two features in 

combination with the mountainous nature of the terrain (Amador et al., 2006) might lead to a 

high spatial variation of rainfall. Westerberg et al. (2010) found that daily precipitation has a 

high spatial variability and that bias in the estimations are likely due to insufficient gauge 15 

stations to measure in space and at different elevations. The land use and geology are 

relatively uniform in all sub-catchments. The land use is mainly composed of sparse 

coniferous forest at higher elevation lands; fallow, pastures and urbanised areas in the low 

land (CIAT, 2007). The geology at the surface is mainly composed of tuff and limestone to a 

minor degree; the superficial aquifer is classified as poor to moderately productive (ING, 20 

1996). The average basin slope estimated in the Grande River, Guacerique River, Chiquito 

River, Salada Creek and Las Lomas Creek sub-catchments is 19.5, 18, 25, 17.5 and 11 % 

respectively. Two reservoirs operated by SANAA are established upstream the Tegucigalpa 

floodplain: the Concepción reservoir, located at Grande River sub-catchment, and Los 

Laureles reservoir, located at Guacerique River sub-catchment (Fig. 1).  25 
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2.2 Data 

2.2.1 Topography 

An airborne light-detection and ranging (LIDAR) survey in Tegucigalpa was conducted in 

2000 by the University of Texas in cooperation with the U.S. Geological Survey (USGS) 

during their survey in Honduras in response to Hurricane Mitch (Mastin, 2002). They 5 

generated a 1.5 m cell-resolution digital-terrain model (DTM) with an estimated vertical 

accuracy of 0.14 m (Fig. 2). These LIDAR data were used by Haile and Rientjes (2005) to 

investigate the effect of a Digital Elevation Model (DEM) resolution on simulated flood 

extension using the SOBEK modelling tool. In 2001, JICA (2002) also conducted a 

topographic field survey as part of a flood/landslide-mitigation master plan and a total of 99 10 

cross-sections along the rivers in the floodplain at Tegucigalpa, surveyed at intervals of 

approximately 100 m, were used in this study (Fig. 2). In addition, orthographic pictures were 

taken at Tegucigalpa city by JICA (2002). 

The topography of the Tegucigalpa floodplain upstream sub-catchments was available from 

the 90–m spatial resolution Shuttle Radar Topography Mission (SRTM) data described by 15 

Reuter et al. (2007) (Fig. 1).  

2.2.2 Precipitation 

Upstream the Tegucigalpa floodplain, two stations measured hourly rainfall during the Mitch 

event (Fig. 1 and 3). One of the stations is operated by Servicio Meteorológico Nacional 

(SMN, national weather service) and the other by the Universidad Nacional Autónoma de 20 

Honduras (UNAH). 

2.2.3 Discharge 

Discharge at three locations was estimated post-event by Smith et al. (2002) using the 

standard USGS techniques by Benson and Dalrymple (1967). The peaks at Chiquito River and 

Grande River (points 1 and 2 in Fig. 1 and Table 1) were estimated using the width-25 

contraction analysis that uses the continuity and energy equations between a cross-section 

approaching the contraction section under a bridge (Matthai, 1968). The peak at Choluteca 

(point 3) was estimated using the slope-area analysis, in which discharge is computed on the 

basis of the uniform-flow equation involving channel geometry, high water marks, and 

roughness coefficients (Dalrymple and Benson, 1968). The measurements of discharge using 30 
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the width-contraction analysis and the slope-area analysis can be associated with 25% error 

for unfavourable field-data conditions (Benson and Dalrymple, 1967), but up to 100% 

overestimation might be associated with the slope-area analysis for slopes greater than 0. 2% 

(Jarrett, 1987). 

A deterministic reproduction of the flood produced by hurricane Mitch was done by JICA 5 

(2002) by setting a rainfall-runoff analysis, a linear reservoir model driven with hourly rainfall 

data from the SMN station. The produced hydrograph was used as input for the 1D Mike 11 

modelling tool (DHI, 2000) for unsteady flow conditions. In addition to the flood extent (Fig. 

2), JICA (2002) reported the maximum peak discharge at the points 4, 5 and 7 in Figs. 1, 2 

and Table 1. 10 

Controlled flow release through the spillway at the Concepción reservoir was conducted and 

recorded by SANAA during the Mitch event (Fig. 3). The outflow over Los Laureles dam was 

not recorded. However, SANAA reported that its gate was overtopped at 22:30 on 30 

October, reaching a maximum of approximately 1 200 m
3
s

-1
 (JICA, 2002; Smith et al., 2002). 

Peak times in Table 1 except at point 5, were obtained by interviewing witnesses. The time of 15 

the peak at point 5 was estimated by propagating the peak reported at los Laureles reservoir.  

2.2.4 Maximum water levels 

High-water marks during the Mitch flood were surveyed post-event by JICA (2002); the data 

were obtained by interviewing residents who experienced the event. The survey was carried 

out at the same locations where the topographic cross-sections were made (Fig. 2). 20 

 

3 Method 

3.1 Consistency in the post-event measured data  

An inspection of the consistency of the data was done prior to the analysis. The inspection 

was done by plotting the maximum water-level profile to detect possible outlier. The 25 

consistency in timing and magnitude along the river network for the post-event maximum 

peak discharge was also checked. The flood-wave peak and time of the peak were expected to 

be larger and later downstream the river confluences, respectively. 
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3.2 Uncertainty and evaluation function  

To quantify the propagation of uncertainty, the GLUE method was used. The assumptions of 

more formal statistical approaches, can not be justified in data-scarce cases with high 

epistemic uncertainties. Within the GLUE methodology, parameter sets were generated using 

a Monte Carlo technique, assuming a uniform prior distribution of the parameters.  5 

Behavioural parameter sets, those that perform well in predicting the observations, were 

selected using a likelihood measure that reflected the performance of individual simulations 

with respect to one or several evaluation variables (𝑜i). Likelihoods were inferred by using the 

degree of belief (𝑑i) of a trapezoidal fuzzy membership function (Fig. 4), which shape was 

chosen to account for uncertainties in the post-event estimated values, which are not 10 

considered crisp estimations. Thus the degree of belief for a difference smaller than a between 

the simulated and post-event estimated values is equal to one and it declines linearly to zero 

for differences larger than 𝑏. 

3.3 Modelling framework  

The dynamic of the water level along the river channel and floodplain was reproduced with 15 

the sub-grid channel formulation of the LISFLOOD-FP hydrodynamic model (Neal et al., 

2012a)et al. The model requires flow hydrographs as upstream boundary condition, which 

were generated using the RRM TOPMODEL (Beven and Kirkby, 1979; Kirkby, 1997) as in 

Fuentes-Andino et al., (2017) (Appendix A) together with the Muskingum-Cunge-Todini 

(MCT) flood-routing approach (Todini, 2007) (Appendix B). A scheme of the modelling 20 

framework is shown in Fig. 5. 

 

3.4 Representative hydrographs for the upstream boundary condition  

Topographic information is a basis to set-up TOPMODEL, which was one reason to select it 

in our mountainous catchment. Additionally, the version used here (Fuentes-Andino et al., 25 

2017) has shown to improve model prediction by considering the uncertainty associated with 

the spatial averaged estimation of rainfall. The mass-conservative version of the Muskingun-

Cunge routing, the MCT, was incorporated to consider the sudden release of water from the 

Concepción reservoir, and it was chosen since a more complex routing could not be applied 
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given the lack of data at the upstream area of the floodplain. The effect of Los Laureles dam 

on simulating the hydrograph of the Guacerique River sub-catchment was assumed to be 

negligible since the dam was overtopped much before the most intensive period of the storm.  

The TOPMODEL and MCT combination assumes slope-dependent variable velocity at 

hillslope, constant velocity at normal channel and a variable velocity (according to the 5 

diffusive wave model of the MCT) at the main channel (which length was estimated having a 

minimum drainage area equal to 65 km
2
). For each sub-catchment, the main channel was sub-

divided in reaches of approximately 2.5 km to execute the MCT routing. For the MCT routing 

at Grande River, the inflow for the most upstream reach was set equal to the outflow 

hydrograph from the reservoir, and for other sub-catchments, to be equal to the hydrograph 10 

draining to that reach using TOPMODEL. For the subsequent reaches, this inflow was 

estimated as the sum of the outflow from the MCT routing at the immediate upstream reach 

and the hydrograph produced by TOPMODEL on the area draining to that reach (excluding 

the area draining to the upstream reaches). The modelling time step was equal to five minutes, 

smaller than the estimated travel time of the flood wave along the reach, as required by the 15 

MCT routing.  

For the TOPMODEL, a network width function for each reach was created using topography 

from the SRTM raster. Only two rain-gauge stations were available, which made it difficult to 

infer the spatial distribution of rainfall. However rainfall registered at the two stations was 

similar, thus rainfall was assumed spatially uniform and estimated as the average of the two 20 

time series. Given the large magnitude of the event, it was expected to be associated with little 

spatial variation.  

Uncertainty in rainfall input was taken into account by a multiplier (𝑅), in addition, 

uncertainty of six model parameters was considered: the rate of decline of transmissivity (𝑚), 

horizontal transmissivity (𝑇o), time constant (𝑡d), land-use coefficient (𝑙u), flood-wave celerity 25 

(𝑣c) and maximum soil infiltration rate (𝑖max) (Appendix A). The MCT method required 

information of the river slope and the geometry of the cross-sections (Appendix B). The 

former was approximated from SRTM data, while the latter was inferred here as a function of 

discharge using the Manning equation for a wide parabolic channel as in Tewolde and 

Smithers (2007), with channel roughness coefficient (𝑛cu) assumed uniform along all the 30 

reaches to make the modelling system simple and in view of the lack of data to constrain 

localised values.  
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All parameters were sampled from uniform distributions with ranges considered large but 

possible in the literature (Table 2) and each generated parameter set was used to simulate 

Chiquito, Grande and Guacerique River sub-catchments (outlets at points 1, 2 and 5 in Figs. 1 

and 2 and Table1). A stopping criterion as in Pappenberger et al. (2005b) was used to decide 

the number of simulations required. For every 500 behavioural simulations added, a 5 

cumulative distribution function (CDF) of the predicted peak discharge and one of the time of 

the peak were estimated (evaluation variables, see section 3.4.1). These estimated CDFs were 

compared with the previous one and the number of runs was considered sufficient when the 

addition of behavioural simulations did not change the CDF significantly (i.e. P < 0.05) using 

the Kuiper (1960) statistic test (Appendix C). This statistical test was considered suitable 10 

since it is sensitive to changes in the tail and to the median values of the distribution, therefore 

it makes sure that the distributions did not change along the whole range of values.  

Las Lomas Creek and Salada Creek (points 8 and 9 in Figs. 1 and 2) did not have data to 

constrain the simulations and, by proximity, the behavioural parameters found at both Grande 

and Chiquito were used to simulate them. This is expected to not largely affect the system as 15 

the contributing areas for Las Lomas and Salada Creek are relatively small in comparison to 

the three sub-catchments where post-event data were available (Fig. 1). In addition, these two 

areas were smaller than the threshold drainage area for applying MCT, therefore only 

parameters from TOPMODEL were transferred to those sub-catchments. 

3.4.1 Output evaluation 20 

To decide on behavioural hydrographs for Chiquito, Guacerique and Grande River sub-

catchments the maximum peak and time of peak post-event observations , together with their 

associated uncertainty, were used (refer to points 1, 2 and 5 in Table 1). The assumed 

uncertainty range was 𝑏 = 𝑎 = ±50% of the peak flow for the peak magnitude and 𝑏 = 𝑎 =

±2.5 hours for the time of peak (Fig. 4). For the evaluation of the hydrographs, 𝑎 was set 25 

equal to 𝑏, thus every hydrograph within the uncertainty bounds was considered behavioural 

and to have equal degree of belief. The uncertainty in peak discharge at points 1 and 2 was 

chosen considering, and assumed larger than the value suggested at Benson and Dalrymple 

(1967). The discharge at point 5, although it was estimated by running a RRM by JICA 

(2002), was considered reliable for calibration since its magnitude was similar to the 30 

maximum peak outflow measured at Los Laureles dam, located in the same river and with 

nearly equal contributing upstream areas as in point 5 (Fig.1). It was expected that 50% of the 
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flow uncertainty, as well as for points 1 and 2, was also reasonable at point 5. All times of 

peak came from the same source, i.e. witness accounts, and there was no additional 

information on their uncertainties, thus we allowed up to 2.5 hours uncertainty considering 

that the survey was carried two years after the event and because of the expected difficulties 

in witnesses identifying the exact times when the peak occurred. 5 

To reduce computational costs and avoid redundancy, 100 representative hydrographs (class 

hydrographs) were obtained for each sub-catchment by clustering the full behavioural 

ensemble. Clustering was done using the K-means flat algorithm also called Lloyd’s 

algorithm, originally developed by Lloyd (2006), described in Madhulatha (2012) with tool 

available for use at Mathworks (2011). Following the K-means algorithm, the number of 10 

groups (K) to cluster an ensemble of data (here the behavioural hydrographs) were defined 

(here equal to 100). Then, a number of K hydrographs were randomly chosen from the 

ensemble to represent the clusters centroids. Each of the hydrographs in the ensemble was 

assigned to one of the centroid hydrographs according to the smallest distance, here taken as 

the sum of the absolute differences between hydrographs. Subsequently the centroid for each 15 

of the cluster was replaced by the average hydrograph within each cluster and then each 

hydrograph in the ensemble was assigned to the new centroid found. The procedure of 

moving centroids and assigning hydrographs to new centroids is repeated until there is no 

change in the clusters. To consider the extreme cases, the hydrograph from each cluster with 

the largest sum of the distances to all other centroid hydrographs was chosen.  20 

3.5 Flood-wave propagation 

The LISFLOOD-FP was used to propagate the flood waves along the channels and across the 

flood plain. Here the sub-grid channel formulation after  Neal et al. (2012a)et al was used, 

where the floodplain and the channel have a 2D square grid representation and flow is 

conveyed using the local inertia formulation (de Almeida et al., 2012). Thus, the continuity 25 

equation (Eq. 1) and a simplified version of the momentum equation (where the convective-

acceleration term was assumed negligible) (Eq. 2) were used to keep the continuity of mass 

and momentum in each cell and between cells respectively.  

𝜕ℎ

𝜕𝑡
+

𝜕𝑄𝑥

𝜕𝑥
+

𝜕𝑄𝑦

𝜕𝑦
= 0,     (1) 

𝜕𝑄𝑥

𝜕𝑡
+ 𝑔𝐴 (𝑆𝑥 +

𝑛2𝑄𝑥|𝑄𝑥|

(𝑅4 3⁄ )𝐴2) = 0,     (2a) 30 
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𝜕𝑄𝑦

𝜕𝑡
+ 𝑔𝐴 (𝑆𝑦 +

𝑛2𝑄𝑦|𝑄𝑦|

(𝑅4 3⁄ )𝐴2
) = 0 ,    (2b) 

where 𝑄𝑥 and 𝑄𝑦, 𝑆𝑥 and 𝑆𝑦  are the volumetric flow rates and the slopes respectively in the x 

and y directions, h the water depth, t time, A the cross-sectional area of flow, 𝑔 gravity, n the 

Manning’s coefficient and R the hydraulic radius, taken as the cell cross-section area divided 

by the wetted perimeter.  5 

Equations 1 and 2 are solved using an explicit forward difference scheme on a staggered grid 

(Bates et al., 2010) which requires fewer numerical operations (about an order of magnitude ) 

than a full 2D dynamic model (Neal et al., 2012b). The former numerical procedure was 

computationally more efficient than the latter and therefore more suitable for uncertainty 

analysis. In addition, the model-grid representation made it possible to obtain the discharge 10 

and water-level time series output at any grid along the channel or floodplain. 

The basic input data for the LISFLOOD-FP are topography, hydrographs at the upstream 

boundary conditions, a downstream boundary condition and Manning roughness coefficients. 

To use as topographic input to the model, the LIDAR data were aggregated to 21 meter cell 

resolution, as a trade-off between high resolution and the speed of simulations. The surveyed 15 

cross-sections and orthographic pictures from JICA (2002) were used to define channel depth 

and width respectively. Test simulations of this event were performed within the HEC-RAS 

one-dimensional hydraulic model (Brunner, 2001) considering the topography of the bridges, 

and preliminary results showed that bridges had a negligible effect on the overall flood 

profile. Thus, the geometry of bridges in the LISFLOOD-FP implementation was neglected 20 

by assuming a limited and localised impact on flood levels as in e.g. Castellarin et al. (2009), 

especially since the calibration data are associated with large uncertainties so that the localised 

effect of structures is not possible to detect (Fewtrell et al., 2011). 

Uncertainty of the input hydrographs at each of the upstream boundary conditions was 

considered by sampling from the 100 class hydrographs. By assuming normal flow, the 25 

overall downstream valley slope, 𝑏c, was used as downstream boundary condition. This 

assumption was considered in view of the lack of hydrograph information at the downstream 

boundary, however water-level predictions at the most downstream cross-sections can be 

associated with larger uncertainties due to this assumption (Pappenberger et al., 2006). 

Besides 𝑏c, the channel-roughness coefficient, assumed uniform along all the channel length, 30 

𝑛c, and the floodplain-roughness coefficient uniform along all the floodplain, 𝑛f, were also 
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considered to be uncertain parameters. Ideally roughness coefficients would be allowed to 

vary spatially to reflect changes in channel and floodplain characteristics (e.g. one value per 

reach or per each side of the floodplain), but this would have led to an increased number of 

parameters in the hydraulic model when there was not enough information at each reach to 

constrain the local roughness.  5 

Using a One-At-a-Time (OAT) design for sensitivity analysis, the effect that uncertainty in 

the channel depth and channel width (through a multiplying factor) had on the outputs was 

explored, which led to the incorporation of the channel-width multiplier (𝑤f) in the 

uncertainty analysis. For the hydraulic simulations, a total of 130 000 parameter sets were 

sampled from a uniform distribution with ranges considered large but possible in the literature 10 

(Table 3) in the same way as for the RRM. 

3.5.1 Output evaluation 

Different degrees of belief (𝑑𝑖) (Fig. 4) were obtained by comparing the simulations with the 

following evaluation data:  

‒ One degree of belief value, 𝑑1, as performance in predicting the maximum peak discharge 15 

value of point 3 (Figs. 1, 2 and Table 1). 

‒ Two degrees of belief values, 𝑑2−3, as performance in predicting time of the maximum 

peak discharge of points 3 and 6 (Figs. 1, 2 and Table 1). 

‒ Ninety-nine degrees of belief values, 𝑑4−102, as performance in predicting maximum 

water levels along the main river and two tributaries (Fig. 2). 20 

 

The fuzzy set values of a and b for evaluating the simulated peak discharge were set to 20% 

and 50% of observed value respectively. Thus, for differences between observed and 

predicted peak discharge within 20% of the observation, the degree of belief was assumed to 

be equal to one and decreased to zero for differences larger than 50%. These values were 25 

chosen taking into account those values suggested by Benson and Dalrymple (1967) and 

(Jarrett, 1987). The fuzzy set values of a and b for evaluating the time of the peak were set 

equal to 0.5 and 2.5 hours respectively, thus the degree of belief for differences between 

observed and predicted time of the peak smaller than 0.5 hours was assumed to be equal to 

one and it decreased to zero to allow for up to 2.5 hours of difference, an error considered 30 

possible in the observations. And finally, the fuzzy set values of a and b for evaluating the 
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water levels were set equal to 0.5 and 1.8 metres respectively. Thus, 0.5 metres was chosen to 

account for error in topography representation (Neal et al., 2009), and 1.8 m was chosen 

considering the magnitude of the observed water level and that two years after the event 

witnesses’ memories might have been associated with large uncertainties. 

A parameter set was considered behavioural if the degree of belief was larger than zero for 5 

each of the 102 evaluation points. For every parameter set, a global score (GS) was calculated 

based on a weighted average of the degrees of belief obtained for each evaluation criterion.  

𝐺𝑆 = ∑ 𝑤𝑖𝑑𝑖
𝑖=102
𝑖=1 ,     (3) 

where 𝑤i are the weights associated to the degrees of belief correspondent to the observations. 

The weight associated to the peak discharge and the two times of the peak data (𝑑1−3) were 10 

set equal to 0.1 each, thus 0.7 was the weight corresponding to the sum of the degrees of 

belief associated to all the observed maximum water levels (𝑑4−102). A larger aggregated 

weight was given to predict the observed water marks in comparison to the peak discharge 

and times of the peaks to reflect the larger number of observed water marks (99) and because 

focus was on predicting flood extent. The weights could be changed according to the purpose 15 

of the study which might also result in different ensembles being behavioural for different 

purposes (Pappenberger et al., 2007). 

Subsequently, likelihood values were obtained by scaling the global scores by a constant C, so 

they will sum to unity over all behavioural sets (Beven, 2009). Finally, the behavioural 

parameter sets were used to generate a fuzzy likelihood water-level profile and map of the 20 

maximum flood extension during the Mitch event as in Di Baldassarre et al. (2010). 

 

4 Results 

4.1 Consistency in the post-event measured data  

From prior inspection of the data, it was found that information about the maximum peak 25 

discharge and time of the peak were consistent (i.e. in comparison to locations at the upstream 

reaches): discharge values and time of the peaks were larger and later at downstream locations 

after the confluences. A plot of the high-water marks showed sudden jumps at some 

observation points without any obvious physical explanation, but this is perhaps to be 
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expected given the origin of those observations (witness accounts from memory). Thus, we 

did not eliminate any of the observations but instead allowed an uncertainty range associated 

with all observation points.  

4.2 Representative hydrographs for the upstream boundary condition  

Behavioural hydrographs to use as the upstream boundary conditions of the hydraulic model 5 

were obtained for the sub-catchments of the Grande, Guacerique and Chiquito Rivers and, by 

using behavioural sets at Grande and Chiquito River sub-catchments, at Salada Creek and Las 

Lomas Creek sub-catchments (Fig. 5). The cumulative distribution function (CDF) of the 

predicted peak discharge and of the time of the peak of 2 000, 8 000 and 9 000 behavioural 

simulation for sub-catchments of the Chiquito, Guacerique and Grande Rivers respectively 10 

did not change significantly by adding 500 behavioural simulations more. Thus a total of 3 

000, 9 000 and 10 000 behavioural simulations, obtained from a total of 61 205, 60 237, 

60 833 samples respectively, were considered enough to infer 100 class hydrographs for the 

Chiquito, Guacerique and Grande Rivers sub-catchments respectively. When comparing the 

prior and posterior distribution of the rainfall-runoff model parameters, five out of eight 15 

parameters were sensitive, the rainfall multiplier (𝑅), rate of depletion (𝑚), time constant (𝑡𝑑), 

the main channel roughness coefficient (𝑛cu) and maximum soil infiltration rate (𝑖max) (Fig. 

7).  

4.3 Flood-wave propagation 

There were no simulations for which all degrees of belief were larger than zero. Criteria 𝑑1−3 20 

were fulfilled by 47 894 out of 130 000 total simulations, but some observed water marks 

(criteria 𝑑4−102) were constantly and largely under- or over-predicted. To allow for special 

cases, i.e. larger error in the observations or in the hydraulic simulations, the constraints were 

relaxed by allowing 10% of observed water marks (10 out of 99 observations) to be outside 

the fuzzy bounds, i.e. the degree of belief was allowed to be equal to zero. By relaxing the 25 

constraints a total of 6 357 parameter sets were found, the degrees of belief for those 

parameters varied between 0.001–1, 0.04–0.96, 0.29–0.79 and 0.46–0.75 (for 𝑑1, 𝑑2, 𝑑3 and 

average of 𝑑4−102 respectively), and the global score (GS) from 0.40–0.78. 

Change in the posterior distributions of the parameters showed that the channel roughness 

coefficient and floodplain roughness coefficient were more sensitive than the channel width 30 
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factor and the slope for the downstream boundary condition (Fig. 8). Changes in the posterior 

distribution of the peak and time of the peak showed that the model was unsurprisingly more 

sensitive to input-hydrographs from the larger sub-catchments than from small sub-

catchments (Fig. 9). Flood-wave propagation of different input-hydrograph combinations led 

to prediction of two markedly different times of the peak at the floodplain resulting in under- 5 

(over-) prediction when the earliest (latest) peak of input hydrograph combinations prevailed 

(Fig. 10).  

There were three observed high water marks in the Chiquito River reach that were constantly 

under-predicted and outside the uncertainty bounds of the observations (Fig. 11). The 

propagation from the water-level uncertainty to the flood extent was more evident in urban 10 

areas, where the flood extent varies more with changes in the water level due to the presence 

of structural features such as buildings (Fig. 12). From behavioural simulations, the 90% 

confidence interval for prediction of the discharge at the floodplain outlet was 2 708 to 4 619 

m
3
s

-1
 encompassing the 3 880 m

3
s

-1
 value estimated in JICA (2002) (reference point 7 in Fig. 

1 and Table 1). For reference point 4, at Chiquito River, the 90% confidence interval was 247 15 

to 482 m
3
s

-1
 also encompassing the 436 m

3
s

-1
 value estimated in JICA (2002).  

 

5 Discussion 

A field campaign after a large flood event is a possibility to collect information useful for 

flood forecasting and subsequent contingency planning in places where hydrometric 20 

measurements are lacking because of non-existing or broken gauges.  

Our study demonstrated that it was possible, in a data-scarce situation, to reproduce an 

extreme flood event that was within the bounds of the uncertainty in the evaluation data. Our 

results support those of Bonnifait et al. (2009) and Ciervo et al. (2015) about the possibility to 

reproduce an extreme flood event by a suitable combination of RRM and hydraulic modelling 25 

tools with only event-based rainfall data and post-event hydrometric data. Here we 

additionally incorporated the GLUE methodology to account for expert knowledge of 

uncertainties in model parameters, rainfall input and evaluation data. Thus, the combination  

of a RRM with a hydraulic modelling tools within an uncertainty framework as in Montanari 

et al. (2009) and Pappenberger et al. (2005a) proved to be useful also in the case with only 30 

post-event-estimated hydrometric data.  
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After considering the uncertainties and their interaction it was possible to identify behavioural 

parameter sets that were used to obtain a realistic probabilistic reproduction of the flood-water 

level (Fig. 11) and flood extension (Fig. 12). In comparison to the deterministic estimates 

made by JICA (2002) using different modelling tools, in this work it was possible to obtain 

predictive ranges of the water level that encompassed most of the observations. The flood 5 

extent here, associated with a likelihood at each flooded cell, generally extended beyond the 

extent of the JICA (2002) mapping. 

The combination of TOPMODEL and MCT allowed us to estimate behavioural hydrographs 

for the Chiquito, Guacerique and Grande sub-catchments. The simulations could be 

constrained (Fig. 6) in spite of the wide uncertainties in the data and the simplified assumption 10 

of the MCT routing for ungauged basins applied here. The rainfall multiplier (𝑅), rate of 

depletion (𝑚), time constant (𝑡𝑑), the main channel roughness coefficient (𝑛cu) and maximum 

soil infiltration rate (𝑖max) were more important in selecting the resulting hydrographs (Fig. 

7), whereas horizontal transmissivity (𝑇o), land-use coefficient (𝑙u), flood-wave celerity (𝑣c) 

were less sensitive. 15 

The rainfall multipliers were sensitive and the means of their posterior distributions varied 

across sub-catchments (0.93, 1.5 and 1.3 for Chiquito, Guacerique and Grande respectively) 

(Fig. 7), suggesting that the spatial average rainfall estimated from the two available gauges 

was overestimated at Chiquito and underestimated at Guacerique and Grande sub-catchments. 

The Guacerique and Grande sub-catchments are larger and have higher topographic elevation 20 

than the Chiquito sub-catchment. Underestimation of rainfall for these sub-catchments might 

be the results of lack of stations to represent the rainfall spatial pattern, highly variable in the 

area (Westerberg et al., 2010). Thus, a simplistic account of a spatial and time averaged 

rainfall multiplier as in Fuentes-Andino et al. (2017) was also useful here to account for bias 

estimation of the spatially-averaged rainfall. The posterior distribution of the rainfall 25 

multiplier at Chiquito and Guacerique sub-catchments clearly aggregated to different mean 

values. The sensitivity to the multiplier was different in the case of the Grande sub-catchment, 

which also showed a different posterior marginal distribution shape for the rate of depletion 

(𝑚) and time constant (𝑡𝑑) (Fig. 7).  

Different shapes of posterior marginal parameter distributions at Grande River sub-catchment 30 

relative to Guacerique and Chiquito River sub-catchments could be caused by parameter 

adjustment to fit the observations or by different hydrological processes going on in the 
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different sub-catchments. The sudden release of water from the dam could also be a reason for 

these differences. The posterior marginal parameter distributions for the Grande River sub-

catchment suggest that it has shallower effective soil depth (low 𝑚) and a faster channel 

response in the MCT routing (low 𝑛cu) than the other two sub-catchments. Hydrographs from 

a total of five sub-catchments (Fig. 6) from the TOPMODEL and MCT combination were 5 

used as upstream boundary conditions for the hydraulic simulations.  

Even if more detailed post-event observations of flood extent might do better than water 

levels in constraining the LISFLOOD-FP (Fewtrell et al., 2011; Horritt and Bates, 2002), the 

modelling tool predicted the observed high-water marks, peaks and times of peaks well. 

Behavioural simulations for which the degree of belief for the peak discharge, time of the 10 

peak and at least 90% of predicted high-water marks (89 out of 99 observations) were above 

zero were identified.  

The channel and floodplain roughness coefficients were the most important parameters for the 

hydraulic model (Fig. 8). As roughness coefficients directly affect the estimation of discharge 

and water level, the impact of their uncertainty has been shown previously in other studies 15 

(Dimitriadis et al., 2016; Pappenberger et al., 2005b; Warmink and Booij, 2015; Wohl, 1998). 

Here, uncertainty is expected to be particularly large as these coefficients interacted with 

uncertain post-event estimated discharge and high-water marks and also because they were 

assumed to be spatially-aggregated due to data limitations. For example, a more localised 

calibration of such coefficients could have helped to tackle the problem of localised channel 20 

erosion during flood events common in the area (Guerrero et al., 2012). Given the assumed 

spatial representation of the roughness coefficients and the uncertainty they are associated 

with, they interacted with all other sources of uncertainty in a complex way that is difficult to 

separate. Such complex interactions are contained implicitly in the resulting ensemble of 

behavioural simulations (Beven, 2016).  25 

The effect of the input hydrographs from Grande River and Guacerique River sub-catchments 

on the resulting outputs is evident in Fig. 9. Thus, as in Dimitriadis et al. (2016), here the 

roughness coefficients and input flow were the most important sources of uncertainties. Two 

peaks in the input rainfall (Fig. 3) led to two main large peaks in the hydrographs as input 

boundary conditions (Figures 6 and 9). The propagation of input hydrographs along the 30 

floodplain led to under- or over-prediction of the times of peak (Fig. 10). This suggests that 

the spatial pattern of rainfall was not well represented by the gauge average, as also suggested 
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by the posterior distribution of rainfall multipliers in the RRM. Since rainfall data played an 

important role in predicting the times of peak, investment to improve the rainfall measurement 

system, e.g. radar estimates or a denser rain-gauge network, should be prioritized in the study 

area, especially because these data are easier to collect relative to discharge in a high 

magnitude event. 5 

Some observed high-water marks were constantly largely under predicted in the estimates by 

JICA (2002) and outside the prediction bounds produced here, even when allowing for 

significant uncertainty in the evaluation data (Fig. 11). Inspection at the points that were 

constantly under-predicted showed that no man-made structure could have been the reason for 

such disagreement. Thus the problem of predicting at those locations could be caused by the 10 

inability of the hydraulic modelling tool to simulate the system under extreme conditions 

where effects such as sharp river bends might have an important local effect on the flow. 

However, a previous experiment using the one-dimensional HEC-RAS model on the same 

river also agreed with the results obtained here, and no localised effect in the under-predicted 

places was obtained. Another reason for the disagreement could be large errors in the post-15 

event data.  

In general, minor errors between prediction and observations in this work could be caused by 

a weak spatial representation of topography and roughness coefficient, i.e. special topographic 

details in a highly populated area with man-made structures that could not be captured by the 

DEM. However those local features might not affect the general flood extent (Haile and 20 

Rientjes, 2005). 

The peak discharge at point 3 (Figs. 1 and 2) was under-predicted by most of the simulations 

(Fig. 10). However, the high water-mark was over-estimated at that location (Fig. 11). 

Reasons for this could be due to an over-estimation of the post-event peak discharge, or due to 

an under-estimation in the observed high-water mark, or due to the simplistic representation 25 

of the downstream boundary condition assumed.  

A general under-prediction of the water level in the Chiquito River reach could be due to the 

low (perhaps under-estimated) post-event-estimated peak discharge, as in comparison to the 

Grande and Guacerique sub-catchments, most of the hydrograph simulations for the former 

were rejected because the simulated peaks were larger than the evaluations (even considering 30 
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the uncertainty) (Fig. 6). This could also be the reason for a lower rate of behavioural sets for 

the Chiquito River sub-catchment when comparing with the other two.  

A detailed inspection of model structure, model set-up and data at specific points where the 

modelling tools did not perform well even after considering possible uncertainties in the 

parameters, input and evaluation data, could reveal areas for improvement.  5 

This study was set up to demonstrate the use of post-event data and a combination of suitable 

RRM and hydraulic modelling tools with uncertainty analysis to reproduce an extreme flood 

in a data-scarce area. The behavioural ensemble found here depends on the uncertainties 

coming from the model structure (Dimitriadis et al., 2016), quality of the data (Pappenberger 

et al., 2006), topographic resolution (Haile and Rientjes, 2005), and spatial-aggregation of the 10 

parameters (Beven, 1995). Considering the dependency with those sources of uncertainties 

and their interaction, the post-event data proved to be useful in reproducing the Hurricane 

Mitch flood event. High-water marks obtained from personal memories of an event are a good 

source of information. To decrease uncertainty of such information, Institutions in charge of 

disaster prevention should be prepared to carry such surveys soon after flood events when 15 

memory is fresh. In fact soon after extreme events it is also possible to collect that 

information by surveying the marks left by the flood (e.g. Neal et al., 2009). Post-event-

estimated peak discharge, though it is known to be associated with large uncertainties (Benson 

and Dalrymple, 1967; Jarrett, 1987), were a valuable source of information in this work. A 

higher spatial availability of flood peak discharge and time of the peak estimates would 20 

greatly benefit this methodology as it will allow a better quality control of individual 

estimates, to leave some of the estimates out for validation, and to estimate more localised 

pattern of roughness coefficients. 

The use of this methodology can be done within a Bayesian framework in which the posterior 

distribution of the parameters is updated when more events become available. Data from more 25 

events could further reduce the predictive uncertainties and help us to learn from the flow 

behaviour at some localised areas where the errors were large. Post-event estimates in the 

future could likely also come from social-media information which is becoming gradually 

more available (Fraternali et al., 2012; Triglav-Čekada and Radovan, 2013). 

The flood-hazard map presented here can be used by the committee in charge of disasters 30 

contingency and management in the City of Tegucigalpa (CODEM-DC) as a complement to 
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the 5–, 10–, 25– and 50–years return period hazard produced in JICA (2002), the 50–flood 

hazard produced in Mastin (2002) and Mastin and Olsen (2002) for spatial planning and to 

prioritise investment. If real-time discharge measurements are available to calculate the initial 

saturation of a catchment, behavioural parameter sets updated from a range of events can be 

used for forecasting the flood extent as shown by Romanowicz and Beven (2003) and 5 

Montanari et al. (2009). In the absence of such measurements, a guess of the initial discharge 

may also work since it will not significantly affect the prediction for the intense period of the 

event. Furthermore, for that period, our methodology can give a better performance since 

calibration is done against discharge, time and water level at the peak. It is also tempting to 

consider this methodology for forecasting fed both by an improved rain-gauge network and 10 

water-level information coming from social media.  

6 Conclusions 

In this study we tested the possibility to reproduce an extreme flood disaster in a data-scarce 

area, the devastating flood in Tegucigalpa triggered by Hurricane Mitch in 1998. It was 

possible to realistically reproduce this large ungauged flood event by using post-event 15 

hydrometric data in combination with rainfall data and various modelling tools, demonstrating 

the value of post-event field campaigns to constrain the uncertainties in estimates of 

hydrometric data, model parameters and output. A methodology has been proposed where 

post-event-estimated data are used to drive and constrain a combination of rainfall-runoff and 

hydraulic modelling tools to reproduce floods within a GLUE uncertainty-analysis 20 

framework. Results of the flood extent proposed here were comparable to the deterministic 

mapping produced by JICA (2002) using different modelling tools. However here more 

information was embedded as likelihoods of inundation associated with each cell in the 

floodplain.  

Combining the TOPMODEL with the MCT routing to reproduce hydrograph in catchments 25 

with rapidly varied flow, e.g. release from a dam, resulted in hydrographs that were within the 

uncertain bounds of the observations. The predictive capability of the TOPMODEL and MCT 

combination warrants further exploration with more detailed and less uncertain event data. 

The rate and bias in the rejection of the hydrographs due to over-estimation, indicated under-

estimation of post-event estimated discharge at one location. The propagation of estimated 30 

hydrographs through the hydraulic LISFLOOD-FP 2D resulted in successful predictions of 

observed high-water marks, discharge peaks and times of peaks within the uncertainty bounds 
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for most of the evaluation variables. A few critical locations in the floodplain were identified 

where the model set-up could not reproduce the maximum water level. Locations of 

disagreement between simulations and evaluations, after considering all important sources of 

uncertainties can provide information useful to improve model structure or post-event data-

estimation methods. Results showed the importance that rainfall data have in simulating the 5 

times of peaks, thus results would be improved by a better spatial assessment of rainfall. 

Improvements of this methodology can be done by using it within a Bayesian framework of 

updating the parameters posterior distribution when more events become available. The 

methodology proposed here can be useful for planning, prioritise investments and for flood 

forecasting.  10 

Appendix  

Appendix A: Description of the TOPMODEL rainfall-runoff modelling tool 

The TOPMODEL scheme in Fuentes-Andino et al., (2017) used here assumes a grid-cell 

distributed catchment. For any n
th

 cell, the precipitation infiltrates first through the root zone 

storage, with capacity equal to the minimum value between a constant and the local initial 15 

deficit (𝐷𝑛) in units of length (L). The rate of infiltration is the minimum between the 

precipitation rate at that time or a specified maximum rate (𝑖𝑚𝑎𝑥), in units of length divided 

by time (LT
-1

), where the excess rainfall is routed as surface runoff. Once the maximum 

capacity of the root zone storage is reached water is leaked towards the unsaturated zone 

storage (𝑆2𝑛
) which has a maximum capacity equal to 𝐷𝑛 minus the root zone storage 20 

capacity. Once this capacity is exceeded, excess is again routed to the outlet as surface runoff. 

A rate 𝑞𝑣𝑛
= 𝑆2𝑛

(𝐷𝑛 × 𝑡𝑑)⁄  (LT
-1

) infiltrates from 𝑆2𝑛
 towards a lumped subsurface storage, 

where 𝑡𝑑 is a local residence factor in LT
-1

 units. Thus the catchment unsaturated zone 

recharge volume is estimated as the sum of all vertical flows: 

𝑄𝑣 = ∑ 𝑎𝑐𝑛 × 𝑞𝑣𝑛
,     (A1) 25 

for 𝑎𝑐𝑛 equal to area of the cell. 

Following the TOPMODEL concept (Beven, 1997, 2012; Kirkby, 1997), the following 

assumptions are done: (a) the saturated zone is in equilibrium with a steady recharge rate from 

an upslope contributing area (𝑎𝑛); (b) the effective hydraulic gradient is assumed to be equal 

to the local surface slope (tan 𝛽𝑛); (c) horizontal a transmissivity profile is described by an 30 
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exponential function: 𝑞𝑛 = 𝑇𝑜 tan 𝛽𝑛 e−𝐷𝑛 𝑚⁄  (L
2
T

-1
), which takes the value 𝑇𝑜 when the cell is 

saturated and has a rate of decline controlled by the parameter 𝑚. Following these 

assumptions, the downslope subsurface flow rate along the stream channel are summed to 

obtain the baseflow compounded volume in the catchment (𝑄𝑏): 

𝑄𝑏 = ∑ 𝑞𝑛 = 𝐴𝑒−𝛾𝑒−�̅� 𝑚⁄ ,    (A2) 5 

Where 𝛾 is the average soil topografic index, 𝛾𝑛 = ln(𝑎𝑛/(𝑇𝑜 tan 𝛽𝑛)), of all the cells within 

a catchment, and �̅� is the catchment mean storage deficit.  

Equation A2 can be inverted to obtain an initial estimation of �̅� by assuming an initial 

baseflow, then an estimation of the local deficit (𝐷𝑛) is done through equation A3. 

𝐷𝑛 = �̅� + 𝑚[𝛾 − 𝛾𝑛].     (A3) 10 

Update of the catchment average storage deficit is done at each time step by subtracting the 

unsaturated zone recharge (𝑄𝑣𝑡−1
) and adding the baseflow (𝑄𝑏𝑡−1

) from the previous time 

step: 

�̅�𝑡 = �̅�𝑡−1 +
[𝑄𝑏𝑡−1

−𝑄𝑣𝑡−1
]

𝐴
.    (A4) 

Excess rainfall and water excess after the unsaturated zone storage that has reached its 15 

maximum capacity are routed towards the outlet using the network width function concept 

(NWF) (Kirkby, 1976; Surkan, 1969) which takes into account the structure of the river 

network when estimating the travel time from the n
th

 cell to the outlet following the direction 

of flow. An adaptation by Grimaldi et al. (2010) was used here which assumes a varying 

hillslope velocity (𝑣ℎ𝑗
= l𝑢 ∗ √𝑠𝑗  ) dependent on the slope of the cell following the direction 20 

of the flow (𝑠𝑗) and the land use coefficient, l𝑢. And keeping a constant celerity (Beven et al. 

1979, McDonnell and Beven 2014). 

Thus, the time spent by a surface water particle to travel from the n
th

 cell to the outlet is 

estimated:  

𝜏𝑛 = ∑ [
𝑙ℎ

𝑣ℎ𝑗

]
𝑗=𝑁
𝑗=1 +

𝐿𝑐

𝑣𝑐
,       (A5) 25 

where, following the same path that the flow takes, there are a total of N cells with length 𝑙ℎ 

from the n
th

 cell at a hillslope towards the junction at the channel. And 𝐿c is the length from 



 24 

the junction towards the catchment outlet. Thus the final hydrograph at the outlet cell is equal 

to the sequence of compound runoff volume from cells arriving at the same time (estimated by 

Eq. A5) plus the groundwater contribution (A2) at those times. 

Appendix B: Description of the Muskingum-Cunge-Todini (MCT) routing 

 5 

The Muskingum-Cunge-Todini routing (MCT) (Todini, 2007) used in this work was carried 

out using guidelines at Tewolde and Smithers (2007) to overcome the lack of river cross-

sectional data. Thus to propagate a flood wave in a reach of length ∆𝑥, the following 

procedure was followed:  

 an initial guess for the outflow at the 𝑡 + ∆𝑡 step (𝑂𝑡+∆𝑡) in units 𝑚3𝑠−1 is made using Eq. 10 

B1 and assuming 𝑂𝑡 ≈ 𝐼𝑡 for initial time step: 

�̂�𝑡+∆𝑡 = 𝑂𝑡 + (𝐼𝑡+∆𝑡 − 𝐼𝑡).     (B1) 

The reference discharge for the times 𝜏 = 𝑡 and 𝜏 = 𝑡 + ∆𝑡, (𝑄𝜏) is given in Eq. B2: 

𝑄𝜏 =
𝐼𝜏+𝑂𝜏

2
,      

 (B2) 15 

 

and the reference water level, 𝑦𝜏, hydraulic radius 𝑅𝜏, average cross-sectional area velocity 𝑣𝜏, 

celerity 𝑐𝜏 and cross-sectional area 𝐴𝜏 in units of length, length, velocity, velocity and area 

respectively are estimated using the Manning’s equation and some empirical relationships as 

in Tewolde and Smithers (2007) (equations B3 to B7): 20 

𝑦𝜏 = (
𝑄𝜏×𝑛

0.508×𝑃𝜏√𝑆
)

3 5⁄

,     (B3) 

where 𝑃𝜏 = 4.75√𝑄𝜏 is the wetted perimeter estimated for stable river channels, 𝑆 is the reach 

slope and 𝑛 the Manning’s roughness coefficient. 

𝑅𝜏 =
2𝑦𝜏

3
,      

 (B4) 25 

where, Eq. B4 assumes a wide parabolic channel. 
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𝑣𝜏 =
1

𝑛
(𝑅𝜏)2 3⁄ √𝑆 ,      (B5) 

𝑐𝜏 = 1.4 × 𝑣𝜏,      

 (B6) 

where a coefficient equal to 1.4 was chosen as the average between a parabolic channel and 

wide rectangular channel (1.2 and 1.6 respectively). 5 

𝐴𝜏 = 𝑅𝜏 × 𝑊𝜏,      

 (B7) 

 where 𝑊𝜏 is the top flow width, assumed to be approximately equal to the wetted perimeter 

(𝑃𝜏). 

The specialisation factor for correction of the Courant and Reynolds number, 𝛽𝜏, after Todini 10 

(2007) is: 

𝛽𝜏 =
𝑐𝜏𝐴𝜏

𝑄𝜏
,      

  (B8) 

thus the corrected Courant number, 𝐶∗
𝜏, is estimated as : 

𝐶∗
𝜏 =

𝑐𝜏

𝛽𝜏
 

∆𝑡

∆𝑥
 ,      15 

 (B9) 

and the corrected Reynolds number, 𝐷∗
𝜏 as: 

𝐷∗
𝜏 =

𝑄𝜏

𝛽𝜏𝑊𝜏𝑆𝑐𝜏∆𝑥
,      

 (B10) 

which yields to the following MCT parameters: 20 

𝐶1 =
−1+𝐶𝑡

∗+𝐷𝑡
∗

1+𝐶𝑡+∆𝑡
∗ +𝐷𝑡+∆𝑡

∗ ; 𝐶2 =
−1+𝐶𝑡

∗−𝐷𝑡
∗

1+𝐶𝑡+∆𝑡
∗ +𝐷𝑡+∆𝑡

∗  
𝐶𝑡+∆𝑡

∗

𝐶𝑡
∗  and 𝐶3 =

1−𝐶𝑡
∗+𝐷𝑡

∗

1+𝐶𝑡+∆𝑡
∗ +𝐷𝑡+∆𝑡

∗  
𝐶𝑡+∆𝑡

∗

𝐶𝑡
∗ , (B11) 

 

and the outflow at a reach at time 𝑡 + ∆𝑡 is estimated by equation (B12): 

�̂�𝑡+∆𝑡 = 𝐶1𝐼𝑡+∆𝑡 + 𝐶2𝐼𝑡 + 𝐶3𝑂𝑡.     (B12) 
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All the estimations for the time 𝜏 = 𝑡 + ∆𝑡 are computed twice to eliminate the influence of 

the first guess �̂�𝑡+∆𝑡 in eq. B1. 

Appendix C: The Kuiper statistic test 

The Kuiper statistic (V) (Kuiper, 1960) is estimated as the sum of the maximum negative and 

maximum positive distances(𝐷− and 𝐷− respectively) between two cumulative distribution 5 

functions (𝑆𝑁1 and 𝑆𝑁2): 

V=𝐷− +  𝐷+ =max[𝑆𝑁1 − 𝑆𝑁2] + 𝑚𝑎𝑥[𝑆𝑁2 − 𝑆𝑁1]. (C1) 

The significance level (𝑝) is estimated by the following equation: 

𝑝 = 2 ∑ (4𝑗2 𝜆2 − 1)𝑒−2𝑗2 𝜆2
,

𝑗=∞
𝑗=1    (C2) 

where  10 

𝜆 = 𝑉 (√𝑁𝑒 + 0.155 +
0.24

√𝑁𝑒
),     (C3) 

where, 

𝑁𝑒 = 𝑁1𝑁2/𝑁1 + 𝑁2     (C4) 

For 𝑁1 and 𝑁2 equal to the number of data points for first and second distribution. 

 15 
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Table 1 Post–event estimated peak discharge and time of peaks. 

Location 
Discharge 

(m3s-1) 
Time of peak 
(day h:min) 

Source 

Reference 
number 

(Figures 1 
and 2) 

Chiquito River 167 31 Oct 00:00 (Smith et al., 2002) 1 

Grande River 2 340 
31 Oct 00:00–
02:00 

(Smith et al., 2002) 2 

Choluteca River 4 360 31 Oct 00:30 (Smith et al., 2002) 3 

Chiquito River 436 – (JICA, 2002) 4 

Guacerique River 1 177 30 Oct 23:00 (JICA, 2002) 5 

Choluteca River – 31 Oct 01:00 (JICA, 2002) 6 

Choluteca River 3 880 – (JICA, 2002) 7 

 

 

 

 5 
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Table 2 Sampling parameter ranges to run the rainfall-runoff model 

Parameter Abbreviation Unit Sampling range 

Rainfall multiplier R (–) 0.4–2.0 

Rate of decline of transmissivity m (m) 0.005–0.035 

Horizontal transmissivity To (m
2
 h

-1
) 0.001–20 

Time constant td (m h
-1

) 1–60 

Land-use coefficient lu (m s
-1

) 0.04–0.2 

Flood-wave celerity vc (m s
-1

) 1.0–3.5 

Maximum soil infiltration rate imax (m h
-1

) 0.005–0.03 

Main channel roughness 

coefficient 
ncu (s m

-1/3
) 0.001–0.08 

 

  5 
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Table 3 Sampling range of parameters to run the hydraulic model. 

Quantity Parameter Abbreviation Unit Sampling 

range 

1 Channel width factor  wf – 0.5–2.0 

1 Slope for downstream boundary condition bc % 0.005–0.03 

1 Channel roughness coefficient  nc s m
-1/3

 0.005–0.3 

1 Floodplain roughness coefficient nf s m
-1/3

 0.005–0.3 

5 Hydrograph for the upstream boundary 

condition (100 class hydrographs ) 

– units 1–100 
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Figure 1 Study area and data location, Topography data from the Shuttle Radar Topography 

Mission (SRTM).  
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Figure 2 Geometry set-up for hydraulic simulation at the Tegucigalpa floodplain. Lidar data 

from Mastin (2002) 
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Figure 3 Hourly rainfall on 30–31 October 1998 at SMN station (grey bars), UNAH station 

(black outlined bars), average of the two stations (asterisks), and measured outflow at 5 

Concepción reservoir (continuous line). 
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Figure 4 Fuzzy membership function for evaluation of model performance, a and b depend on 

the uncertainty associated with the evaluation (oi). 
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Figure 5 Scheme of the modelling framework used to reproduce an extreme flood event using 

post-event estimated data to drive and constrain a combination of modelling tools within an 

uncertainty analysis framework. 

 5 
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Figure 6 Precipitation (bars) and 100 class hydrographs chosen from the behavioural ones 

(black plots) for five sub-catchments upstream the floodplain. Predictive range of the 100% 

probability limits for all hydrographs simulations (grey shaded area) and rectangles 5 

representing the fuzzy set to allow for uncertainty for peak discharge and time of the peak for 

the sub-catchments of the Chiquito, Guacerique and Grande Rivers. 
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Figure 7 Prior (grey) and posterior (black outlined) relative frequency distribution for the for 

the most sensitive Rainfall-Runoff parameters: rainfall multiplier (R), rate of depletion (m), 5 

time factor (𝑡𝑑) and the main channel roughness coefficient  (𝑛cu) for the Chiquito, 

Guacerique and Grande catchments (first, second and third row respectively).  
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Figure 8 Prior and posterior relative frequency distribution (grey and black outlined bars 

respectively) of the LISFLOOD-FP parameters (width factor, slope for the downstream 

boundary condition, channel roughness coefficient and floodplain roughness coefficient, 𝑤f, 

𝑏c, 𝑛c and 𝑛f respectively). 5 

  



 46 

 
  

 

Figure 9 Prior and posterior relative frequency distribution (grey and black outlined bars 

respectively) of simulated maximum peak and time of the peak of input hydrographs for 5 

boundary conditions.  
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Figure 10 Performance of the model in predicting high-water marks, average (𝑑4−102), against 

predicted maximum peak discharge and two times of peak at Choluteca River (reference 

points 3 and 6 at Table 1) for non-behavioural simulations (grey dots), behavioural ones 

(black dots). Observed values and their limits of acceptability are plotted in continues and 5 

dotted vertical lines respectively. 
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 Figure 11 Likelihood of high-water marks during the Mitch event, considering uncertainty in 

model parameters, model input and evaluation data to drive and constrain a combination of 

rainfall-runoff and hydraulic modelling tools. 

 5 
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Figure 12 Likelihood of inundated area during the Mitch event on 30–31 October 1998, 

considering uncertainty in model parameters, model input and evaluation data to drive and 5 

constrain a combination of rainfall-runoff and hydraulic modelling tools. The deterministic 

flood extent was obtained by digitalisation of the flood extend in JICA (2002). 
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