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Abstract. Distributed hydrological model has been successfully used in small 10 

watershed flood forecasting, but there are still challenges for the application in large 11 

watershed, one of them is the model’s spatial resolution effect. To cope with this 12 

challenge, two efforts could be made, one is to improve the model’s computation 13 

efficiency in large watershed, another is implementing the model on high performance 14 

supercomputer. This study sets up a physically based distributed hydrological model 15 

for flood forecasting of Liujiang River Basin in south China. Terrain data DEM, soil 16 

and land use are downloaded from the website freely, and the model structure with a 17 

high resolution of 200m*200m grid cell is set up. The initial model parameters are 18 

derived from the terrain property data, and then optimized by using the PSO algorithm, 19 

the model is used to simulate 29 observed flood events. It has been found that by 20 

dividing the river channels into virtual channel sections and assuming the cross 21 

section shapes as trapezoid, the Liuxihe Model largely increases computation 22 

efficiency while keeping good model performance, thus making it applicable in larger 23 

watersheds. This study also finds that parameter uncertainty exists for physically 24 

deriving model parameters, and parameter optimization could reduce this uncertainty, 25 

and is highly recommended. Computation time needed for running a distributed 26 

hydrological model increases exponentially at a power of 2, not linearly with the 27 

increasing of model spatial resolution, and the 200m*200m model resolution is 28 

proposed for modeling Liujiang River Basin flood with Liuxihe Model in this study. 29 

To keep the model with an acceptable performance, minimum model spatial 30 

mailto:eescyb@mail.sysu.edu.cn


- 2 - 
 

resolution is needed. The suggested threshold model spatial resolution for modeling 31 

Liujiang River Basin flood is 500m*500m grid cell, but the model spatial resolution at 32 

200m*200m grid cell is recommended in this study to keep the model a better 33 

performance. 34 

Key words：watershed flood forecasting, distributed hydrological model, Liuxihe 35 

Model, parameter optimization, model spatial resolution 36 

 37 

1 Introduction 38 

Flooding is one of the most devastating natural disasters in the world, and huge 39 

damages has been caused (Krzmm, 1992, Kuniyoshi, 1992, Chen, 1995, EEA, 2010). 40 

Flood forecasting is one of the most widely used flood mitigation measurements, and 41 

watershed hydrological model is the major tool for flood forecasting. Currently the 42 

most popular hydrological model for watershed flood forecasting is still the so-called 43 

lumped model (Refsgaard et. al., 1996), which averages the terrain property and 44 

precipitation over the watershed, so do the model parameters. Hundreds of lumped 45 

models have been proposed and widely used, such as the Sacramento model proposed 46 

by Burnash et. al. (1995), the Tank model proposed by Sugawara et. al. (1995), the 47 

Xinanjiang model proposed by Zhao (1977), and the ARNO model proposed by 48 

Todini (1996), only naming a few among others. It is widely accepted that the 49 

precipitation for driving the watershed hydrological processes is usually unevenly 50 

distributed over the watershed, particularly for the large watershed, so the lumped 51 

model could not easily forecast the watershed flooding of large watersheds. 52 

Furthermore, due to the inhomogeneity of terrain property over the watershed, which 53 

is true even in very small watershed, so the watershed flood forecasting could not be 54 

forecasted accurately if the model parameters are averaged over the watershed. For 55 

this reasons, new models are needed to improve the watershed flood forecasting 56 

capability, particularly for large watershed flood forecasting.   57 

 58 
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Development of distributed hydrological model in the past decades provides the 59 

potential to improve watershed flood forecasting capability. One of the most 60 

important features of the distributed hydrological model is that it divides watershed 61 

terrain into grid cells, which are regarded to have the same meaning of a real 62 

watershed, i.e., the grid cells have their own terrain properties and precipitation. The 63 

hydrological processes are calculated at both the grid cell scale and the watershed 64 

scale, and the parameters used to calculate hydrological processes are also different at 65 

different grid cells. This feature makes it could describe the inhomogeneity of both 66 

the terrain property and precipitation over watershed. The distributed feature of the 67 

distributed hydrological model is a very important feature compared to lumped model, 68 

which makes it could better simulate the watershed hydrological processes at all scale, 69 

small or large. The inhomogeneity of precipitation over watershed could also be well 70 

described in the model, this is very helpful in modeling large watershed hydrological 71 

processes, particularly in the tropical and sub-tropical regions where the flooding is 72 

driven by heavy storm. For this reason, distributed hydrological model is usually 73 

regarded to have the potential to better simulate or forecast the watershed flood 74 

(Ambroise et. al., 1996, Chen et. al., 2016). Employing distributed hydrological 75 

model for watershed food forecasting has been a new trend(Vieux et. al., 2004, Chen 76 

et. al., 2012, Céline Cattoën et. al., 2016, Witold et. al., 2016, Kauffeldt et. al., 2016). 77 

 78 

The blueprint of distributed hydrological model is regarded to be proposed by Freeze 79 

and Harlan (1969), the first distributed hydrological model was the SHE model 80 

proposed by Abbott et. al. (1986a, 1986b). Distributed hydrological model requires 81 

different terrain property data for every grid cells to set up the model structure, so it is 82 

data driven model. In the early stage of distributed hydrological modeling, this posted 83 

great challenge for distributed hydrological model’s application as the data was not 84 

widely available and inexpensively accessible. With the development of remote 85 

sensing sensors and techniques, terrain data covering global range with high 86 

resolution has got readily available and could be acquired inexpensively. For example, 87 
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the DEM at 30m grid cell resolution with global coverage could be freely downloaded 88 

(Falorni et al., 2005, Sharma et. al., 2014), which largely pushes forward the 89 

development and application of the distributed hydrological models. After that, many 90 

distributed hydrological models have been proposed, such as the WATERFLOOD 91 

model (Kouwen, 1988), THALES model (Grayson et al., 1992), VIC model (Liang et. 92 

al., 1994), DHSVM model (Wigmosta et. al., 1994), CASC2D model (Julien et. al., 93 

1995), WetSpa model (Wang et. al., 1997), GBHM model (Yang et. al., 1997), WEP-L 94 

model (Jia et. al., 2001), Vflo model (Vieux et. al., 2002), tRIBS model(Vivoni et. al., 95 

2004), WEHY model (Kavvas et al., 2004), Liuxihe model (Chen et. al., 2011, 2016), 96 

and more. 97 

 98 

Distributed hydrological model derives model parameters physically from the terrain 99 

property data, and is regarded not need to calibrate model parameter, so it could be 100 

used in data poor or ungauged basins. This feature of distributed hydrological model 101 

made it applied widely in evaluating the impacts of climate changes and urbanization 102 

on hydrology(Li et. al., 2009, Seth et. al., 2001, Ott, et. al., 2004, Vanrheenen et. al., 103 

2005, Olivera et. al., 2007). But it also was found that this feature caused parameter 104 

uncertainty due to the lack of experiences and references in physically deriving model 105 

parameters from the terrain property, so could not be used in fields that require high 106 

flood simulated accuracy, including watershed flood forecasting. It was realized that 107 

parameter optimization for distributed hydrological model is also needed to improve 108 

the model’s performance, and a few methods for optimizing parameters of distributed 109 

hydrological model have been proposed. For example, Vieux et. al. (2003) tried a 110 

so-called scalar method to adjust the model parameters, and the model performance is 111 

found to be improved largely. Madsen et. al. (2003) proposed an automatic 112 

multi-objective parameter optimization method with SCE algorithm for SHE model, 113 

which improved the model performance also. Shafii et. al. (2009) proposed a 114 

multi-objective genetic algorithm for optimizing parameters of WetSpa model, the 115 

improved model result is regarded to be reasonable. Xu et. al. (2012) proposed an 116 
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automated parameter optimization method with SCE-UA algorithm for Liuxihe Model, 117 

which improved the model performance in a small watershed flood forecasting. Chen 118 

et. al. (2016) proposed an automated parameter optimization method based on PSO 119 

algorithm for Liuxihe Model watershed flood forecasting, and tested in two watershed, 120 

one is small, one is large. The results suggested that distributed hydrological model 121 

should optimize model parameters even if there is only little available hydrological 122 

data, while the derived model parameters physically from the terrain perperty could 123 

serve as an initial parameters. The above progresses in distributed hydrological 124 

model’s parameter optimization has matured, and will largely improve the 125 

performance of distributed hydrologcial model, thus pushing forward the application 126 

of distributed hydrologcial model in real-time watershed flood forecasting. 127 

 128 

Spatial resolution is a key factor in distributed hydrological modeling. Theoretically if 129 

the spatial resolution of a distributed hydrological model is higher, i.e., the grid cell 130 

size is smaller, the terrain property could be described finer, and the hydrological 131 

processes could be better simulated or forecasted, so the model spatial resolution 132 

should be as high as possible. But on the other hand, higher model spatial resolution 133 

requires higher resolution terrain property data for model setting up which may not be 134 

available in some watersheds. But the most important is that distributed hydrological 135 

model uses complex equations with physical meanings to calculate the hydrological 136 

processes, so it needs much more computation resources than that of lumped model, 137 

and the required computation resources increases exponentially with the increasing of 138 

the model spatial resolution. So in modeling flood processes of a large watershed, the 139 

computation time needed for running the distributed hydrological model will be huge 140 

if the model spatial resolution is kept high, which may make the model application 141 

impractical due to high running cost. So if distributed hydrological model is needed to 142 

be applied in large watershed, a coarser resolution is the only choose, and the model’s 143 

capability will be impacted with less satisfactory results. This is also called the scaling 144 

effect of distributed hydrological modeling. For this reason, current application for 145 
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watershed flood forecasting either limited to small watershed with higher resolution 146 

or coarser resolution in large watershed, i.e., a trade-off between the model 147 

performance and running cost. 148 

 149 

Nowadays forecasting large watershed flooding has been in great demands as it 150 

impacts peoples and their properties at large range, but due to the scale effect, current 151 

distributed hydrological models employed for large watershed are at coarser 152 

resolution, which lowers its capability for flood forecasting and warning. For example, 153 

past application of distributed hydrological model for large watershed flood forecating 154 

are at the resolution coarser than 1km grid cell (Lohmann et. al., 1998, Vieux et. al., 155 

2004, Stisen et. al., 2008, Rwetabula et. al., 2007), the models employed in the 156 

pan-European Flood Awareness System (EFAS; Bartholmes et. al., 2009, Thielen et. 157 

al., 2009, 2010, Sood et. al., 2015, Kauffeldt et. al., 2016) are at 1-10km grid cell, 158 

which makes the result only applicapble for flood warning.  159 

 160 

Challenge for distributed hydrological model application in large watershed flood 161 

forecasting is its need for huge computation resources, to cope with this challenge, 162 

two efforts could be made. One is to improve the computation efficiency of the 163 

distributed hydrological modeling in large watershed, another is implementing the 164 

model on high performance supercomputer so in the cases that the users are willing to 165 

pay a high computation cost, the flood forecasting of large watershed with high 166 

resolution could be done. In this study, the Liuxihe Model (Chen et. al., 2011, 2016), a 167 

physically based distributed hydrological model proposed for watershed flood 168 

forecasting, has been tried for flood forecasting of a large watershed in southern 169 

China to validate the feasibility of distributed hydrological model’s application for 170 

large watershed flood forecasting. 171 
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2 Method and data 172 

2.1 Liujiang River Basin 173 

The river basin studied in this paper is the Liujiang River Basin(herein after referred 174 

to as LRB) in south China, which is the first order tributary of the Pearl River. LRB 175 

originates from Village Lang in Guizhou Province, and drains though Guizhou 176 

Province, Guangxi Zhuang Autonomous Region and Hunan Province with 72% of its 177 

drainage area in Guangxi Zhuang Autonomous Region. The length of its main channel 178 

is 1121 km, the total drainage area is 58270 km2 that marks it a large river basin in 179 

China.  180 

Fig. 1 sketch map of Liujiang River Basin(LRB) 181 

LRB is a mountainous watershed. There are high mountains in the north and 182 

northwest of the watershed with high elevation, while in its south and southeast area, 183 

the elevations are relatively low. This topography helps forming severe flooding in the 184 

middle and downstream. The basin is in the sub-tropical monsoon climate zone with 185 

an average annual precipitation of 1800 mm, and the precipitation distribution is 186 

highly uneven both at spatial and temporal with 80% of its annual precipitation occurs 187 

in the summer. LRB is in the center of storm zone of Zhuang Autonomous Region, 188 

heavy storm was very frequent in the past. There are 59 disastrous flooding in the past 189 

400 years with recording since 1488, which makes LRB the tributary with most 190 

disastrous flooding among all the first order tributaries of the Pearl River. In the 191 

watershed, there is no significant reservoirs to store flood runoff, so flood forecasting 192 

is one of the most effective ways for the flood management.  193 

2.2 Liuxihe Model 194 

Liuxihe Model is a physically based distributed hydrological model proposed mainly 195 

for watershed flood forecasting (Chen, 2009, Chen et. al., 2011, 2016). Like other 196 

distributed hydrological models, Liuxihe Model divides the watershed into grid cell 197 

based on the DEM of the studied watershed. To keep a reasonable model performance, 198 

in the past experiences of Liuxihe Model research and application, the model 199 
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resolution is limited to 90m*90m or 100m*100m, but only used in small watersheds 200 

(Chen, 2009, Chen et. al., 2011, 2013, 2016, Liao et. al., 2012 a, b, Xu et. al., 2012 a, 201 

b). Precipitation, evaporation and runoff production are calculated at cell scale, runoff 202 

routes first on cell, then along the cell to river channel, and finally to the watershed 203 

outlet. As Liuxihe model is mainly used in the sub-tropical regions, so the runoff 204 

production is calculated based on the saturation-excess mechanism(Zhao, 1977). The 205 

runoff routing is classified as hill slope routing, river channel routing, subsurface 206 

routing and underground routing. The hill slope routing is regarded as the 207 

one-dimensional unsteady flow, and the kinematical wave approximation is employed 208 

to do the routing. The river channel routing is also regarded as the one-dimensional 209 

unsteady flow, but the diffusive wave approximation is employed to do the routing. 210 

The above methods are widely used in the dominated distributed hydrological models. 211 

 212 

What makes Liuxihe Model unique is that the river channel cross section shape is 213 

assumed to be trapezoid. With this assumption, the river channel size could be 214 

represented with 3 dimensions, including the bottom width, side slope and bottom 215 

slope. One of the advantages with this assumption is that the river channel cross 216 

section size could be estimated with remotely sensed data(Chen, et.al, 2011), so 217 

Liuxihe Model could do river channel runoff routing real physically, thus making 218 

Liuxihe Model a fully distributed hydrological model. As there are too many river 219 

channel cross sections, and many of them are in the upstream of the watershed where 220 

it is not easily accessed, so in real hydrological modeling, directly measuring the river 221 

channel cross section sizes are impractical considering the high cost. For this reason, 222 

most of the distributed hydrological model could not be applied in real applications, 223 

or simply route the runoff with lumped methods which makes the model not a fully 224 

distributed hydrological model, thus lowering the model’s capability in simulating or 225 

forecasting the watershed flood processes. Another advantage of this assumption is 226 

that it also simplifies the runoff routing, thus improves the model’s computation 227 

efficiency. For this reason, even Liuxihe Model has a very high resolution, it still 228 
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could be used in real-time flood forecasting. This feature of Liuxihe Model in 229 

estimating river channel cross section sizes makes it has the potential to be used in 230 

large watershed flood forecasting. 231 

 232 

Like other distributed hydrological model, when used in ungauged or data poor 233 

watershed flood forecasting, Liuxihe Model derives model parameters physically 234 

from the terrain property data. But if there is observed hydrological data, automatic 235 

parameter optimization methods could been tried. But as automatic parameter 236 

optimization needs thousands model runs, that makes it difficult to be used widely due 237 

to huge computing source requirement, which also make it taking long time in setting 238 

up the model. For this reason, a public computer cloud was set up for optimizing the 239 

parameters of Liuxihe Model which employs parallel computation techniques and was 240 

implemented on a supercomputer system(Chen et. al., 2013). With this development, 241 

Liuxihe Model could easily optimize its model parameters. 242 

 243 

Above advancements of Liuxihe Model in estimating river channel cross section sizes 244 

with remotely sensed data, automatic parameters optimization and supercomputing 245 

makes it has the potential to be used in large watershed flood forecasting, so in this 246 

study, the Liuxihe model is employed to study the LRB’s flood forecasting. 247 

2.3 Hydrological data 248 

There are 66 rain gauges installed in the watershed. In this study, hydrological data of 249 

30 flood events has been collected, including the precipitation of the rain gauges and 250 

the river discharge of Liuzhou river gauge that locates in the downstream of the 251 

watershed and closes to the outlet as shown in Fig. 1 with a hourly step, brief 252 

information of these flood events is listed in Table 1.  253 

Table1 Brief information of flood events with data collected in LRB 254 

2.4 Terrain property data 255 

Terrain property data includes DEM, land use/cover map and soil map, which are 256 
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used for setting up the distributed hydrological model for flood forecasting. In this 257 

study, the DEM was downloaded from the SRTM database (Falorni et al., 2005, 258 

Sharma et. al., 2014), the land use type was downloaded from the USGS land use type 259 

database (Loveland et. al., 1991, Loveland et. al., 2000), and the soil type was 260 

downloaded from FAO soil type database (http://www.isric.org). The downloaded 261 

DEM has a spatial resolution of 90m*90m, considering LRB is large, the running load 262 

for the model with a resolution of 90m*90m may be too heavy to run in this study, so 263 

the DEM is rescaled to the resolutions of 200m*200m, as shown in Fig. 2(a). The 264 

downloaded land use and soil type were at 1000m*1000m resolution, so there are 265 

rescaled to the same resolution of DEM, as shown in Fig. 2(b) and Fig. 2 (c) 266 

respectively. 267 

Fig. 2 Terrain properties of LRB 268 

The highest elevation and the lowest elevation of LRB are 2124 m and 42 m 269 

respectively. There are 9 land use types, including evergreen needle leaved 270 

forest(18.1%), evergreen broadleaved forest(31.0%), shrubbery(32.5%), mountain and 271 

alpine meadow(0.1%), slope grassland(13.7%), urban area(0.1%), river(0.2%), 272 

lakes(0.3%) and cultivated land(4%).  273 

 274 

There are 11 soil types, including Humicacrisol(0.8%), Haplic and high activitive 275 

acrisol(1.5%), Ferralic cambisol(5%), Haplicluvisols(3.5%), Dystric cambisol(2.8%), 276 

Calcaric regosol(45.5%), Dystric regosol(2.9%), Haplic and weak active acrisol(18%), 277 

Artificial accumulated soil(1.5%), Eutricregosols and Black limestone soil(3.5%), 278 

Dystric rankers(15%). 279 

3 Results 280 

3.1 Liuxihe Model set up 281 

Considering LRB is large, so the DEM with 200m×200m resolution is adopted to set 282 

up the model structure, not at the original 90m×90m resolution. The whole watershed 283 

is first divided into 1469900 cells by the DEM horizontally, which were further 284 
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categorized into hill slope cells and river cells. By using Strahler method (Strahler, 285 

1957), the river channel is divided into 3 order system as shown in Fig. 3, which 286 

divides the whole cells into 1463204 hill slope cells and 6696 river cells.  287 

Fig. 3 Liuxihe Model structure set up for LRB (200m×200m resolution) 288 

To estimate the river channel sizes, 178 virtual nodes were set on the river channel 289 

system, and 225 virtual channel sections were formed as shown in Figure 3. As in 290 

Liuxihe Model, the shape of the virtual channel sections is assumed to be trapezoid, 291 

so the cross section size is represented by three dimensions, including bottom width, 292 

side slope and bottom slope. As proposed in Liuxihe Model, the bottom width is 293 

estimated based on the satellite remote sensing imageries. For the side slope, it is a 294 

low sensitive data, so it could be estimated based on local experiences. For the bottom 295 

slope, it is calculated with the DEM along the virtual channel section.  296 

3.2 Parameter optimization 297 

In Liuxihe Model, an initial parameter set was derived first based on the terrain 298 

properties, including the DEM, soil type and land use/cover type, then the parameters 299 

will be optimized. In this study, for the insensitive parameter of the land use/cover 300 

related parameters, which is the evaporation coefficient, the initial value is set to be 301 

0.7 for all cells based on the experiences. The initial value of roughness, i.e., the 302 

Manning’s coefficient, which is the sensitive parameter of the land use/cover related 303 

parameters, is derived from the land use/cover type based on references (Chen et.al., 304 

1995, Zhang et.al., 2006, 2007, Shen et.al., 2007, Guo et.al., 2010, Li et.al., 2013, 305 

Zhang et.al., 2015), and listed in Table 2. 306 

Table 2 The initial values of land use/cover related parameters 307 

For the soil related parameters, including the water content at saturation condition, the 308 

water content at field condition, the water content at wilting condition, hydraulic 309 

conductivity at saturation condition, soil thickness and soil porosity characteristics 310 

coefficient b. Based on past modeling experiences and references (Zaradny, 1993, 311 

Anderson et al., 1996), a value of 2.5 is set to b for all soil type, and the water content 312 
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at wilting condition is set to be 30% of the water content at saturation condition. The 313 

soil thickness is estimated based on local experiences and listed in Table 3 for all soil 314 

types. The initial values of the water content at saturation condition, the water content 315 

at field condition and hydraulic conductivity at saturation condition are estimated by 316 

using the Soil Water Characteristics Hydraulic Properties Calculator (Arya et al., 1981) 317 

based on soil texture, organic matter, gravel content, salinity and compaction. The 318 

estimated initial values of soil-related parameters are listed in Table 3. 319 

Table 3 The initial values of soil related parameters 320 

In this study, PSO algorithm is employed to optimize the initial model parameters as 321 

PSO algorithm has been integrated into the Liuxihe Model Cloud (Chen et. al., 2013, 322 

Chen et. al., 2016). The number of particles of PSO algorithm is set to 20, while the 323 

value range of inertia weight ω is set to 0.1 to 0.9, the value range of acceleration 324 

coefficients C1 is set to 1.25 to 2.75, and C2 to 0.5 to 2.5, and the maximum iteration 325 

is set to 50. Flood event of 20080609 is selected to optimize the parameters of Liuxihe 326 

model, and Fig. 4 shows the result of the parameter optimization. Among them, Fig. 327 

4(a) is the parameters evolving process, Fig. 4(b) is the changing curve of objective 328 

function which is set to minimize the peak flow error, Fig.4(c) is the simulated 329 

hydrograph of flood event 20080609 with the optimized parameters.  330 

Fig. 4 Parameter optimization results of Liuxihe Model for LRB with PSO algorithm 331 

From the results in Fig. 4, it could be found that after 14 evolutions, the parameters 332 

optimization process converges to its optimal values, and the optimal parameters are 333 

achieved, the simulated hydrological process of flood event that is used for parameter 334 

optimization is quite good fitting the observed hydrological process, it could be said 335 

that the parameter has a good optimization effect. 336 

 337 

As mentioned above, the automatic parameter optimization of the distributed 338 

hydrological model is very time consuming. In this study, even supercomputer is 339 

employed with parallel computation techniques, the time used for this parameter 340 
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optimization is overwhelming, the total time used for achieving the above optimal 341 

parameters of Liuxihe model for LRB flood forecasting is 220 hours, more than 9 342 

days. Considering several runs are usually needed before achieving the final results, 343 

so the parameter optimization procedure may take a few months, this run time is 344 

really a good investment, but the validation results proves this is worth. 345 

3.3 Model validation 346 

The other 29 flood events were simulated by using the Liuxihe model with the above 347 

optimized parameters, and the simulated hydrographs of 8 flood events are shown in 348 

Fig. 5, the simulated hydrographs of 8 flood events with initial parameters are also 349 

shown in Fig. 5. 350 

Fig. 5 Simulated flood events by Liuxihe Model with optimized parameters 351 

From the result of Fig. 5, it has been found that the simulated flood processes fits the 352 

observation reasonably well, particularly the simulated peak flow is quite good, and 353 

the simulated hydrological processes with optimized model parameter improved the 354 

simulated hydrological processes largely. To further analyze the effect of parameter 355 

optimization on model performance improvement, five evaluation indices of the 356 

simulated flood events, including the Nash–Sutcliffe coefficient, the correlation 357 

coefficient, the process relative error, the peak flow error and water balance 358 

coefficient are calculated from the simulated results. Table 4 listed the 5 indices for 359 

both the simulated results with the initial parameters and the optimized parameters. 360 

Table 4 Evaluation indices of the simulated flood events 361 

From Table 4, it could be seen that the five evaluation indices are quite good for the 362 

simulated hydrological processes with the optimized model parameters. The average 363 

peak flow error is 5% with 14% the maximum. The average Nash–Sutcliffe 364 

coefficient, correlation coefficient, process relative error and water balance coefficient 365 

are 0.82, 0.83, 0.22 and 0.87 respectively, that are also quite good for large river basin 366 

flood simulation. Five evaluation indices of the simulated hydrological processes with 367 

the optimized model parameters are also good improvements to those simulated with 368 
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the initial parameters, those are 0.64, 0.62, 0.37, 0.29 and 0.78. There are excellent 369 

improving in all five indices, with the average increases of 0.18, 0.21 and 0.09 of the 370 

average Nash–Sutcliffe coefficient, correlation coefficient and water balance 371 

coefficient respectively, and the average decreases of the peak flow error and process 372 

relative error are 24% and 15% respectively. So it could be concluded that the Liuxihe 373 

Model set up in LRB with optimized parameters are reasonable and could be used for 374 

flood forecasting of LRB. This also implies that parameter optimization of distributed 375 

hydrological model could improve model performances, and it should be done when it 376 

is possible. 377 

4 Discussions 378 

4.1 Computation time vs model resolution 379 

To evaluate the spatial resolution scaling effect of distributed hydrological modeling 380 

in LRB, the DEM with 90m*90m resolution is rescaled to the resolutions of 381 

400m*400m, 500m*500m, 600m*600m and 1000m*1000m respectively, the land use 382 

and soil type at 1000m*1000m resolution are also rescaled to the same resolutions of 383 

the DEM used. Liuxihe models for LRB flood forecasting at the above resolutions are 384 

then set up with the above methods, and the model structures are shown in Fig. 6.  385 

Fig. 6 Liuxihe Model structure set up for LRB with different resolution 386 

With different spatial resolution, the numbers of grid cells, hill slope cells and river 387 

cells are different, but the river channel order are all set to 3, the numbers of virtual 388 

channel nodes for 400m*400m, 500m*500m, 600m*600m and 1000m*1000m 389 

resolution models are 100, 68, 46 and 33 respectively, numbers of grid cells, hill slope 390 

cells and river cells with different model resolution are listed in Table 5. , the sizes of 391 

every virtual cross sections are measured with the above method. 392 

Table 5 Grid cell numbers with different model spatial resolution 393 

From Table 5, it could be seen, number of grid cells of the model with 200m*200m 394 

resolution is 4 times of that with 400m*400m resolution, 6.25 times of that with 395 

500m*500m resolution, 9 times of that with 600m*600m resolution, and 25 times of 396 
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that with 1000m*1000m resolution, it increases at an approximate exponential of 397 

power 2, not linearly with the model resolution. 398 

 399 

Parameters of the models with 400m*400m, 500m*500m, 600m*600m and 400 

1000m*1000m resolutions are optimized with PSO algorithm by using the same flood 401 

event data, and listed in Table 6. From the results it could be seen that some 402 

parameters are significantly different with resolution variation, but some changes little, 403 

this implies that the model parameters are resolution-dependent.  404 

Table 6 Optimized parameters with different model spatial resolution 405 

Computation times required for parameter optimization are quite different. For the 406 

model with 200m*200m resolution, the time for parameter optimization is 220 hours, 407 

while that for models with 400m*400m, 500m*500m, 600m*600m and 408 

1000m*1000m resolutions are 80, 55, 35 and 12 hours respectively. The times needed 409 

for parameter optimization of the model at 200m*200m resolution is 2.75 times of 410 

that for 400m*400m resolution model, 4 times of that for 500m*500m resolution 411 

model, 6.3 times of that for 600m*600m resolution model, and 18.3 times of that for 412 

1000m*1000m resolution model respectively. Considering the time needed for model 413 

run, the 200m*200m model resolution is regarded as appropriate for LRB. 414 

5.2 Model performance vs model resolution 415 

The other 29 flood events are also simulated with the models at 400m*400m 416 

resolution, 500m*500m resolution, 600m*600m resolution, and 1000m*1000m 417 

resolution. Simulated hydrograph of 5 flood events, including 2 big, 2 medium and 418 

one small ones are shown in Fig. 7.  419 

Fig. 7 Simulated results with different model resolutions 420 

From the results it could be seen that the simulated hydrological processes with 5 421 

different spatial resolutions are quite different. The result simulated with 422 

1000m*1000m resolution is not so good, although the flood shapes are simulated well, 423 
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but the peak flow are much lower than that of the observation, so the result is not 424 

acceptable, and could not be recommended. The result simulated with 600m*600m 425 

resolution is better than that of 1000m*1000m resolution, but there is still big peak 426 

flow error, so the result with 600m*600m resolution is also not recommended. The 427 

result simulated with 500m*500m resolution model is a big improvement to those 428 

simulated with 600m*600m resolution and 1000m*1000m resolution model, the flood 429 

shapes are more similar to the observation, and the peak flow is also get closer to the 430 

observation, so it could be recommended for flood forecasting if the spatial resolution 431 

could not be much finer. The result simulated with 400m*400m resolution has some 432 

improvements to that of 500m*500m resolution, but it is not significant, so it is not 433 

recommended to replace that at 500m*500m resolution. The result simulated with 434 

200m*200m resolution model is a big improvement to those simulated with 435 

400m*400m resolution and 500m*500m resolution model, the flood shapes fits the 436 

observation much better, and the peak flows are much closer to the observation also, it 437 

is a good simulation result and could be recommended for flood forecasting of LRB. 438 

As the results are good enough so there is no need to further explore the finer model 439 

resolution. 440 

5 Conclusions 441 

By employing Liuxihe Model, a physically based distributed hydrological model, this 442 

study sets up a distributed hydrological model for the flood forecasting of Liujiang 443 

River Basin in southern China that could be regarded as a large watershed. Terrain 444 

data including DEM, soil type and land use type are downloaded from the website 445 

freely, and the model structure with a high resolution of 200m*200m grid cell is set 446 

up, which divides the whole watershed into 1469900 grid cells that is further divided 447 

into 1463204 hill slope cells and 6696 river cells. The initial model parameters are 448 

derived from the terrain property data, and then optimized by using the PSO algorithm 449 

with one observed flood event, which improves the model performance largely. 29 450 

observed flood events are simulated by using the model with optimized parameters, 451 

the results are analyzed, and the model scaling effects are studied. Based on these 452 
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studies, following conclusions are suggested. 453 

 454 

1. In Liuxihe Model, the river channels are divided into virtual channel sections, and 455 

the cross section shapes are assumed to be trapezoid and the size is the same within 456 

the virtual channel section. The size of the virtual channel section is simplified to 457 

three indices, including bottom width, side slope and bottom slope, those are 458 

estimated by using remote sensing imageries. This method not only makes the 459 

distributed model application practical, but also simplifies the river channel routing 460 

method. This significantly increases the model computation efficiency, and makes it 461 

could be used in larger watersheds. Results in this study shows the model setting up 462 

with this method has a reasonable performance, i.e., this simplification has not 463 

sacrificed the model’s flood simulation accuracy significantly, so this simplification 464 

could be used in large watershed distributed hydrological modelling, including 465 

Liuxihe model and other models.  466 

 467 

2. Uncertainty exists for physically derived model parameters. Parameter optimization 468 

could reduce parameter uncertainty, and is highly recommended to do so when there 469 

is some observed hydrological data. In this study, the simulated hydrograph with 470 

optimized model parameters is more fitting the observed hydrograph in shape than 471 

that simulated with initial model parameters, the 5 evaluation indices are improved 472 

also. The average increases of Nash–Sutcliffe coefficient, correlation coefficient and 473 

water balance coefficient are 0.18, 0.21 and 0.09 respectively, the average decreases 474 

of the peak flow error and process relative error are 24% and 15% respectively, this 475 

implies that the model performance is improved significantly with parameter 476 

optimization. 477 

 478 

3. Computation time needed for running a distributed hydrological model increases 479 

exponentially at an approximate power of 2, not linearly with the increasing of model 480 

spatial resolution. In this study, the computation time required for parameter 481 
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optimization for the model with 200m*200m resolution is 220 hours, that is 4 times of 482 

that of the model at 500m*500m and 18.3 times of that of the model at 1000m*1000m 483 

resolution respectively. Based on the Liuxihe Model cloud system implemented on the 484 

high performance supercomputer, the 200m*200m model resolution is the highest 485 

resolution that could be fulfilled in modeling Liujiang River Basin flooding with 486 

Liuxihe Model considering the computation cost. This also means that if the user 487 

could pay high computation cost, then larger watershed could also be modelled with 488 

Liuxihe Model by implemented the Liuxihe Model cloud system on a much more 489 

advanced high performance supercomputer, this could be easily done nowadays if the 490 

user thinks this investment is a worth doing. 491 

 492 

4. In forecasting watershed flood by using distributed hydrological model, minimum 493 

model spatial resolution needs to be maintained to keeping the model an acceptable 494 

performance. Usually if the model spatial resolution increases, i.e., the grid cell gets 495 

smaller, the model performance is better, but this will increase the run time 496 

significantly, so there is a threshold model spatial resolution to keep the model 497 

performance reasonable while keep the model run at the least time. In this study, the 498 

threshold model spatial resolution is at 500m*500m grid cell, but the resolution at 499 

200m*200m grid cell is recommended by trading-off between the computation cost 500 

and the model performance. This conclusion may be different in different watersheds 501 

for Liuxihe Model, or even different in the same watershed for different models. 502 

 503 

5. Terrain data downloaded freely from the website derived the river channel system 504 

that is very similar to the natural river channel system after it is rescaled from its 505 

original spatial resolution of 90m*90m to 200m*200m, 500m*500m and 506 

1000m*1000m, but the higher resolution DEM describes the river channel more in 507 

details. This means that the freely downloaded DEM could be used to set up the 508 

Liuxihe Model for Liujiang River Basin flood forecasting.  509 
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 516 

Figures 517 

 518 

Fig. 1 sketch map of Liujiang River Basin 519 

 520 

(a) DEM 521 
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 522 

(b) land use 523 

 524 

(c) soil type 525 

Fig. 2 Terrain properties of LRB 526 

 527 
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 528 

Fig. 3 Liuxihe Model structure set up for LRB (200m×200m resolution) 529 

 530 

 531 

(a) Parameter evolution process 532 

 533 

 534 

 535 
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 536 

(b) Changing curve of objective function 537 

 538 

 539 

 540 

(c) Simulated flood process 541 

Fig. 4 Parameter optimization results of Liuxihe Model for LRB with PSO algorithm 542 

 543 
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 544 

(a) flood event 1988051620 545 

 546 

(b) flood event 1982042116 547 

 548 

(c) flood event 1994060700 549 
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 550 

(d) flood event 2008060902 551 

 552 

(e) flood event 200906090800 553 

 554 

(f) flood event 201106010900 555 
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 556 

(g) flood event 201206022000 557 

 558 

(h) flood event 201306011400 559 

Fig. 5 Simulated flood events by Liuxihe Model with optimized parameters 560 

 561 

 562 

 563 

 564 
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 565 

 566 

(a) 400m*400m resolution 567 

 568 

 (b) 500m×500m resolution 569 
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 570 

(c) 600m*600m resolution 571 

 572 

(d) 1000m×1000m resolution 573 

Fig. 6 Liuxihe Model structure set up for LRB with different resolution 574 
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 575 

(a) flood event 2008060902 576 

 577 

(b) flood event 2009060908 578 

 579 
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 580 

(c) flood event 2011060109 581 

 582 

(d) flood event 2012060220 583 
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 584 

(e) flood event 2013060114 585 

Fig. 7 Simulated results with different model resolutions 586 

 587 

588 
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Tables 589 

 590 

Table1 Brief information of flood events in LRB 591 

No. Floods No. Start time

（yyyymmddhh） 

End time

（yyyymmddhh） 

length of 

time/h 

peak flow 

(m3/s) 

1 1982042116 1982042116 1982110216 4614 12600 

2 1983020308 1983020308 1983021722 350 7880 

3 1984021100 198402100 1984040105 1205 12900 

4 1985011900 1985011900 1985021114 544 11400 

5 1986022300 1986022300 1986042004 1334 12200 

6 1987050100 1987050100 1987071700 1848 10800 

7 1988070620 1988070620 1988100605 2915 27000 

8 1989042600 1989042600 1989081009 2499 7500 

9 1990050100 1990001000 1990072306 2006 11400 

10 1991053118 1991053118 1991062806 686 14300 

11 1992042900 1992042900 1992072107 1977 18100 

12 1993060900 1993060900 1993082408 1818 21200 

13 1994060700 1994060700 1994080706 1416 26500 

14 1995052100 1995052100 1995071506 1296 17300 

15 1996060600 1996060600 1996081808 1728 33700 

16 1997060400 1997060400 1997062406 476 13600 

17 1998051600 1998051600 1998090100 2520 19600 

18 1990050100 1999050100 1999080404 1134 17800 

19 2000052100 2000052100 2000061809 659 24100 

20 2001051500 2001051500 2001062300 910 14200 

21 2002042600 2002042600 2002081000 2520 17900 

22 2003060600 2003060600 2003072103 843 11600 

23 2004070300 200407000 2004081508 998 23700 

24 2005061400 2005061400 2005070702 552 16400 

25 2006060400 2006060400 2006071000 870 13200 

26 2008060900 2008060900 2008061908 238 18700 

27 2009060908 2009060908 2009071208 788 26800 

28 2011061090 2011061009 2011090104 2004 9153 

29 2012060220 2012060220 2012080101 1351 10500 

30 2013060114 2013060114 2013090114 2200 17100 

 592 

 593 

 594 

 595 
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 596 

 597 

Table 2 The initial values of land use/cover related parameters 598 

Land use/cover evaporation coefficient roughness coefficient 

Evergreen needle leaf forest 0.7 0.4 

Evergreen broadleaf forest 0.7 0.6 

Shrubbery 0.7 0.4 

Mountains and alpine meadow 0.7 0.2 

Slope grassland 0.7 0.3 

City 0.7 0.05 

Cultivated land 0.7 0.35 

 599 

 600 

 601 

 602 

 603 

 604 

Table 3 The initial values of soil related parameters 605 

Soil Type soil 

thickness 

(mm) 

water content 

at saturation 

condition 

water content 

at field 

condition 

hydraulic 

conductivity at 

saturation condition 

(mm/h) 

Humicacrisol 800 0.65 0.32 3.5 

 Haplic and high active acrisol 900 0.57 0.43 4.2 

Ferralic cambisol 850 0.63 0.38 20.5 

Haplicluvisols 980 0.46 0.15 2.6 

Dystric cambisol 950 0.55 0.41 14 

Calcaric regosol 1100 0.62 0.24 5.6 

Dystric regosol 840 0.45 0.27 12.5 

Haplic and weak active acrisol 1050 0.58 0.16 4.6 

Artificial accumulated soil 1000 0.63 0.34 5.5 

Eutricregosols and Black limestone 550 0.75 0.27 3.5 

Dystric rankers 380 0.78 0.36 8 

 606 

 607 

 608 

 609 

 610 
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 611 

Table 4 Evaluation indices of the simulated flood events 612 

ID floods parameters 
Nash–Sutcliffe 

coefficient/C 

Correlation 

coefficient/R 

Process 

relative 

error/P 

Peak flow 

relative 

error/E 

Water 

balance 

coefficient/W 

1 1982081219 
 initial  0.52  0.48  0.56  0.58  0.52  

optimized  0.84  0.75  0.30  0.01  0.83  

2 1983020308 
 initial  0.60  0.55  0.45  0.26  0.65  

optimized  0.82  0.84  0.21  0.04  0.89  

3 1984010100 
 initial  0.62  0.71  0.38  0.32  0.75  

optimized  0.75  0.89  0.26  0.14  0.96  

4 1985010100 
 initial  0.58  0.57  0.35  0.33  0.85  

optimized  0.73  0.87  0.17  0.01  1.05  

5 1986010100 
 initial  0.65  0.62  0.38  0.25  0.62  

optimized  0.83  0.85  0.23  0.04  0.94  

6 1987050100 
 initial  0.76  0.45  0.35  0.36  0.58  

optimized  0.93  0.76  0.10  0.05  1.01  

7 19880516200 
 initial  0.54  0.58  0.26  0.42  0.82  

optimized  0.84  0.80  0.15  0.04  0.90  

8 1989042600 
 initial  0.52  0.55  0.55  0.25  0.62  

optimized  0.64  0.74  0.39  0.02  0.88  

9 1990050100 
 initial  0.55  0.64  0.42  0.23  0.55  

optimized  0.85  0.87  0.14  0.03  0.85  

10 1991053118 
 initial  0.63  0.62  0.40  0.18  0.68  

optimized  0.80  0.76  0.25  0.04  0.95  

11 1992042900 
 initial  0.48  0.59  0.35  0.34  0.65  

optimized  0.66  0.84  0.20  0.11  0.89  

12 1993060900 
 initial  0.75  0.65  0.38  0.28  0.84  

optimized  0.91  0.89  0.24  0.09  1.05  

13 1994060700 
 initial  0.78  0.64  0.32  0.26  1.25  

optimized  0.93  0.85  0.14  0.04  0.85  

14 1995052100 
 initial  0.68  0.48  0.42  0.35  0.65  

optimized  0.82  0.70  0.20  0.01  0.81  

15 1996060600 
 initial  0.74  0.65  0.25  0.23  0.54  

optimized  0.90  0.93  0.18  0.02  0.86  

16 1997060400 
 initial  0.65  0.51  0.23  0.26  0.65  

optimized  0.84  0.87  0.13  0.06  0.95  

17 1998051600 
 initial  0.57  0.62  0.35  0.18  0.68  

optimized  0.83  0.85  0.30  0.01  1.05  

18 1999061700 
 initial  0.48  0.59  0.33  0.15  0.55  

optimized  0.60  0.83  0.15  0.05  0.80  

19 2000052100 
 initial  0.67  0.62  0.45  0.25  0.58  

optimized  0.79  0.89  0.26  0.06  0.83  



- 35 - 
 

20 2001051500 
 initial  0.62  0.56  0.32  0.22  0.68  

optimized  0.80  0.82  0.25  0.07  0.82  

21 2002042600 
 initial  0.68  0.65  0.38  0.18  0.57  

optimized  0.86  0.90  0.24  0.02  0.87  

22 2003060600 
 initial  0.75  0.55  0.25  0.26  0.55  

optimized  0.92  0.85  0.14  0.04  0.76  

23 2004070300 
 initial  0.58  0.68  0.38  0.27  0.68  

optimized  0.78  0.82  0.23  0.08  0.85  

24 2005061400 
 initial  0.65  0.62  0.52  0.32  0.65  

optimized  0.76  0.76  0.35  0.06  0.74  

25 2006060400 
 initial  0.68  0.72  0.62  0.35  0.53  

optimized  0.82  0.83  0.30  0.10  0.86  

26 2009060908 
 initial  0.75  0.78  0.25  0.23  1.22  

optimized  0.95  0.92  0.17  0.04  0.09  

27 2011010100 
 initial  0.66  0.75  0.35  0.55  1.66  

optimized  0.80  0.84  0.26  0.03  1.02  

28 2012010100 
 initial  0.63  0.68  0.34  0.22  1.42  

optimized  0.82  0.79  0.20  0.05  0.80  

29 2013010100 
 initial  0.78  0.65  0.31  0.32  1.35  

optimized  0.95  0.82  0.20  0.06  0.92  

 average  
 initial  0.64  0.62  0.37  0.29  0.78  

optimized  0.82  0.83  0.22  0.05  0.87  

 613 

 614 

 615 

Table 5 Grid cell numbers with different model spatial resolution 616 

Model resolution Number of grid cells Number of hill slope 

cells 

Number of river 

cells 

200m*200m 1469900 1463204 6696 

400m*400m 367475 365801 1674 

500m*500m 235184 234113 1071 

600m*600m 163322 162578 744 

1000m*1000m 58796 58528 268 

 617 

 618 

 619 
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 620 

Table 6 Optimized parameters with different model spatial resolution* 622 

Resolution 

Soil 

saturated 

hydraulic 

conductivi

ty/ks 

Slope 

roughnes

s 

Manning 

coefficient 

Soil layer 

thickness/Zs 
b 

The river 

bottom 

slope/Bs 

200m 

1.33 0.66 1.19 1.42 0.67 0.75 

The river 

bottom 

width/Bw 

Saturate

d water 

content/

Csat 

Field 

Capacity/Cf

c 

Evapotranspir

ation 

coefficient/v 

Wilting 

percenta

ge/Cw 

Side slope grad

e/Ss 

1.24 1.11 1.2 0.94 0.68 1.42 

400m 

Soil 

saturated 

hydraulic 

conductivi

ty/ks 

Slope 

roughnes

s 

Manning 

coefficient 

Soil layer 

thickness/Zs 
b 

The river 

bottom 

slope/Bs 

0.75 1.12 1.23 1.4 1.25 0.65 

The river 

bottom 

width/Bw 

Saturate

d water 

content/

Csat 

Field 

Capacity/Cf

c 

Evapotranspir

ation 

coefficient/v 

Wilting 

percenta

ge/Cw 

Side slope grad

e/Ss 

0.89 1.02 1.22 1.18 1.15 0.76 

500m 

Soil 

saturated 

hydraulic 

conductivi

ty/ks 

Slope 

roughnes

s 

Manning 

coefficient 

Soil layer 

thickness/Zs 
b 

The river 

bottom 

slope/Bs 

0.67 1.47 1.49 1.37 1.5 0.51 

The river 

bottom 

width/Bw 

Saturate

d water 

content/

Csat 

Field 

Capacity/Cf

c 

Evapotranspir

ation 

coefficient/v 

Wilting 

percenta

ge/Cw 

Side slope grad

e/Ss 

0.91 1.16 1.41 1.37 1.37 0.5 

600m 

Soil 

saturated 

hydraulic 

conductivi

ty/ks 

Slope 

roughnes

s 

Manning 

coefficient 

Soil layer 

thickness/Zs 
b 

The river 

bottom 

slope/Bs 

1.02 0.98 1.24 0.95 1.21 0.86 
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The river 

bottom 

width/Bw 

Saturate

d water 

content/

Csat 

Field 

Capacity/Cf

c 

Evapotranspir

ation 

coefficient/v 

Wilting 

percenta

ge/Cw 

Side slope grad

e/Ss 

1.12 0.87 1.28 1.08 1.16 0.95 

1000m 

Soil 

saturated 

hydraulic 

conductivi

ty/ks 

Slope 

roughnes

s 

Manning 

coefficient 

Soil layer 

thickness/Zs 
b 

The river 

bottom 

slope/Bs 

0.5 1.43 1.17 1.11 1.47 0.57 

The river 

bottom 

width/Bw 

Saturate

d water 

content/

Csat 

Field 

Capacity/Cf

c 

Evapotranspir

ation 

coefficient/v 

Wilting 

percenta

ge/Cw 

Side slope grad

e/Ss 

1.1 0.76 0.53 0.6 1.5 0.54 

*Values in the table are adjusting coefficient of the optimized parameters to the initial 623 

parameters, so values of the final optimized parameters are initial parameters time adjusting 624 

coefficient. 625 

626 
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