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Abstract. Streamflow prediction in ungauged catchments is essential for hydrological applications because most catchments 

in the world are ungauged. The flow duration curve (FDC) has received increasing attention as a criterion for calibration of 

runoff models in ungauged catchments; however, performance of the FDC-based model calibration was barely evaluated in 10 

comparison with parameter regionalization. In this study, we conducted a comparative assessment between the conventional 

proximity-based parameter regionalization and the model calibration with regional FDCs. Leave-one-out evaluations of the 

two methods showed that the proximity-based parameter regionalization outperformed the model calibration with 

regionalized FDCs in hydrograph prediction. No information of flow timing in FDCs seems to cause high uncertainty in flow 

predictions. The relative merits of the model calibration with regional FDCs were low bias in predicted flows and high 15 

reproducibility of the baseflow index. From the evaluation of flow signature reproducibility, it was indicated that the rising 

limb density is likely to be orthogonal to the FDCs, and thus additional conditioning with the rising limb density is expected 

to improve the model calibration with regional FDCs. 

1 Introduction 

Streamflow is essential information for hydrological applications such as calibration of rainfall-runoff models, water 20 

resources planning and management, disaster risk management, and environmental impact assessment (Westerberg et al., 

2014; Parajka et al., 2013); however, most catchments in the world are remained as ungauged. Even in regions with dense 

river gauging networks, streamflow observations are available only at river sections where water stages are monitored 

(Viglione et al., 2013). Most catchments of interest have no streamflow data for hydrologic applications, thus tools for 

prediction in ungauged catchments are inevitably required. 25 

A standard method for hydrograph prediction in ungauged catchment is the regionalization of model parameters. 

Hydrological models that simulate the time series of streamflow are typically calibrated with observed hydrographs (e.g., 

Oudin et al., 2006; Gupta et al., 2009). The parameter regionalization is to transfer the calibrated parameters from gauged to 

ungauged catchments based on geographical proximity, functional similarity, and regression with catchment characteristics 
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(e.g., Seibert and Beven, 2009; Yadav et al., 2007; Parajka et al., 2007; Wagener and Wheater, 2006; Dunn and Lilly, 2001). 

The parameter regionalization has provided convenience in prediction of hydrographs with a long tradition (Wagener et al., 

2004); nevertheless, previous studies have cast concerns about errors in input data and structural deficiency of models as 

well as over-reliance on calibration in gauged sites (Hrachowitz et al., 2013). In addition, it has been a particular concern that 

the calibrated parameters can have weak uniqueness for capturing functional behaviour of catchments (Bárdossy, 2007; 5 

Oudin et al., 2008) due to the equifinality, and eventually it leads to unreliable parameter regionalization. 

An alternative to the parameter regionalization is the use of measurable physical properties or regionalized flow signatures 

for direct estimation of model parameters for ungauged catchments. Fang et al. (2010), for instance, found that a priori 

parameters derived from remotely-sensed data could provide substantial predictive performance. The flow signatures, i.e., 

metrics or auxiliary data representing catchment behaviour, also have been frequently applied for model calibration. 10 

Examples includes the use of isotope concentrations (e.g., Son and Sivapalan, 2007), the baseflow index (Bulygina et al., 

2009), the spectral density of streamflow (Montanari and Toth, 2007; Winsemius et al., 2009), and among others. 

In particular, the flow duration curve (FDC) has received great attention as a single criterion for model calibration (e.g., 

Westerberg et al., 2011; 2014; Yu and Yang, 2000). An empirical FDC, i.e., the relationship between flow magnitude and its 

exceedance probability, represents the flow regime of a given catchments, and thus is regarded as a key signature of the 15 

catchment behaviour (Pugliese et al., 2014; Yokoo and Sivapalan, 2011). Many efforts have been made for transferring 

FDCs from gauged to ungauged catchments, and, in turn, FDC regionalization achieved high predictive performance (e.g., 

Mohamoud, 2008; Pugliese et al., 2014). Furthermore, recent in-depth studies shed light on physical controls of spatial 

patterns of empirical FDCs (Yaeger et al., 2012; Ye et al., 2012). Given the improved skills in FDC predictions, the use of 

regionalized FDCs for model calibration may provide better hydrograph predictions in ungauged catchments because it can 20 

circumvent the concerns in parameter regionalization. 

However, several questions arise when using regionalized FDCs for calibrating model parameters. Firstly, FDCs have 

information of flow magnitudes only; thereby the parameter sets fitted to FDCs may show deficiency in predicting flow 

timing (van Werkhoven et al., 2009). Indeed, regionalized FDCs also have uncertainty introduced by streamflow data and 

structural errors in the regionalization methods. It is uncertain if model parameters calibrated to a regionalized FDC would 25 

have less predictive errors than regionalized parameters. Comparative assessments are still uncommon on FDC-based 

calibrations while parameter regionalization has been comprehensively evaluated (e.g., Parajka et al., 2013; Oudin et al., 

2008). Secondly, there may be other flow signatures orthogonal to FDCs. If additional signatures condition the FDC-based 

calibration, the calibrated parameters will perform better because of alleviated equifinality; nevertheless, it is still an open 

question which flow signatures complement FDCs. 30 

The objective of this study, therefore, is to evaluate predictive performance of model calibration with regionalized FDCs in 

comparison with the conventional parameter regionalization. We compared a proximity-based parameter regionalization and 

the model calibration with regionalized FDCs. The two methods are evaluated in terms of hydrograph and FDC 
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predictability by leave-one-out cross-evaluations. We also assessed the two methods in terms of reproducibility of major 

flow signatures so as to find flow signatures orthogonal to regional FDCs. 

2 Description of the study area and data 

The study area is 45 gauged catchments located across South Korea with no or negligible human-made alteration (e.g., river 

diversion and dam operations) in flow regime (Fig. 1). South Korea is characterized as a temperate and humid climate with 5 

rainy summer seasons. The North Pacific high-pressure brings monsoon rainfall with high temperatures in summer seasons, 

while dry and cold weathers prevail in winter seasons due to the Siberian high-pressure. A typical range of annual 

precipitation is 1,000-1,900 mm, and approximately 70 percent of precipitation falls in summer seasons (from June to 

September). Streamflow usually peaks in the middle of a summer season because of heavy rainfall or typhoons, and hence 

information of catchment behaviour is largely concentrated in summer-season hydrographs. Snow accumulation and ablation 10 

are observed at high elevations, but their effects on flow regime are minor due to the limited amount of winter precipitation. 

The gauged catchments in Fig. 1 were selected based on availability of streamflow data. Although long streamflow data are 

available at a few river gauging stations, high-quality streamflow data across the entire South Korea have been produced 

since establishment of the Hydrological Survey Center in 2007. Hence, we collected streamflow data at 29 river gauging 

stations from 2007 to 2015 as well as inflow data operationally recorded at 16 multi-purpose dams from the Water Resources 15 

Management Information System operated by the Mistry of Land, Infrastructure, and Transport of the Korean government 

(available at http://www.wamis.go.kr/). Streamflow data from 2011 to 2015 were used for calibrating parameters of GR4J 

model and regionalizing empirical FDCs, while those from 2007 to 2010 were separately taken for checking validity of the 

estimated parameters and leave-one-out cross-evaluations. The catchment information is summarized in Table 1. 

As the climatic inputs for rainfall-runoff modelling, we used gridded daily precipitation, and maximum and minimum 20 

temperatures at 3-km grid resolution produced by spatial interpolation between 60 climatic stations of the Korean 

Meteorological Administration. Jung and Eum (2015) combined the Parameter-elevation Regression on Independent Slope 

Model (Daly et al., 2008) and the inverse distance method for the spatial interpolation, and found improved performance for 

producing gridded precipitation and temperatures in South Korea. The enhanced gridded climatic data from 1973 to 2015 are 

internally available at the APEC Climate Center (will be distributed via the APCC Data Service System at 25 

http://adss.apcc21.org/), and were used for modelling hydrographs at outlets of the catchments. Processing the climatic data 

for GR4J model will appear later in the methodology section. 
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3 Methodology 

3.1 Calibration of GR4J model using observed hydrographs 

A conceptual rainfall-runoff model, GR4J (Perrin et al., 2003), was selected for simulating hydrographs of the gauged 

catchments, and is schematized in Figure 2. GR4J conceptualizes catchment response to rainfall with four free parameters 

that regulate the water balance and water transfer functions. Since its parsimonious and efficient structure enables robust 5 

calibration and reliable regionalization of model parameters, GR4J has been frequently used for modelling daily hydrographs 

with various purposes (e.g., Nepal et al, 2016; Tian et al., 2013). It is classified as a soil moisture accounting model, and 

more details are found in Perrin et al. (2003). 

Before calibration of GR4J in the gauged catchments, we preliminarily processed the gridded climatic data to convert 

precipitation data to liquid water depths forcing catchments (i.e., rainfall and snowmelt depths) using a simple physics-based 10 

snowmelt model proposed by Walter et al. (2005). The snowmelt model has the same input requirement as GR4J, thus no 

additional data are necessary for the processing. It simulates point-scale snow accumulation and ablation processes based on 

the energy balance, and produces the liquid water depths and snow water equivalent as outputs. The preliminary processing 

makes it possible to consider natural water holding capacity of snowpack, which is not included in GR4J, with no additional 

parameters. Though combining a temperature index snowmelt model with GR4J can be an alternative approach, it increases 15 

the number of parameters and thus model uncertainty. Since contribution of snowmelt to the entire flow regime is 

insignificant in South Korea as described, maintaining the parsimonious structure of GR4J would be more important for 

parameter calibration and regionalization albeit the physical snowmelt model also has error sources. The preliminary 

processing was for reducing systematic errors from no snow component in GR4J. After the snowmelt modelling, we 

spatially averaged pixel values of the liquid water depths and maximum and minimum temperatures within the boundary of 20 

each catchment as lumped climatic inputs for GR4J. 

Besides, we checked consistency between the spatially-averaged liquid water depths and observed hydrographs using the 

current precipitation index (CPI; Smakhtin and Masse, 2000) defined as: 

It = It−1 ∙ K + Rt            (1) 

where It is the CPI (mm) at day t, K is a decay coefficient (0.85 d
-1

), and Rt is the liquid water depth (mm d
-1

) at day t that 25 

forces the catchment (i.e., rainfall or snowmelt). CPI mimics temporal variations in typical streamflow data by converting 

intermittent rainfall events to a continuous time series with an assumption of the linear reservoir. The correlation between 

CPI and observed flows can be conveniently used to check consistency between model input and output when calibrating 

parameters of runoff models (e.g., Westerberg et al., 2014). 

The correlation coefficients between CPI and observed flows in the 45 catchments had an average of 0.67 with a range of 30 

0.43-0.79. No outliers were found in the box plot of the correlation coefficients. Hence, we hypothesized that acceptable 

consistency existed between model inputs and observed flows. 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-487, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 20 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



5 

 

After the consistency check, we calibrated GR4J parameters using the shuffled complex evolution (SCE) algorithm (Duan et 

al., 1992) that has been frequently adopted (e.g., Cooper et al., 2007) due to its robustness and fast convergence. Based on 

convenience and normalized measure of model performance, we chose a traditional objective function to maximize the 

Nash-Sutcliffe efficiency (NSEQ) between observed flows (Qobs) and simulated flows (Qsim) as: 

NSEQ = 1 −
∑ (Qobs,t−Qsim,t)

2T
t=1

∑ (Qobs,t−Qobs̅̅ ̅̅ ̅̅ ̅)
2T

t=1

          (2) 5 

where t and T are the observed time and the length of Qobs respectively, and Qobs
̅̅ ̅̅ ̅̅  is the temporal average of Qobs. The 

optimal parameter set of each catchment was determined as one that maximizes NSEQ for the calibration period (2011-2015). 

The hydrograph simulated with the optimized set was compared to observed hydrograph during the validation period (2007-

2010). We had a two-year warm-up period for initializing all runoff simulations. 

3.2 Proximity-based regionalization of flow duration curves 10 

We adopted a state-of-the-art geostatistical method proposed by Pugliese et al. (2014) for regionalizing empirical FDCs of 

the gauged catchments. Pugliese et al. (2014) used the top-kriging method (Skøien et al., 2006) to spatially interpolate the 

total negative deviation (TND), which indicates an area between the mean annual flow and below-mean flows in a 

normalized FDC. The Top-kriging weights that interpolate TND values were used as weights to estimate flow quantiles of 

ungauged catchments from empirical FDCs of neighbouring gauged catchments. Since the top-kriging weights are obtained 15 

based on topological proximity between catchments, the geostatistical method is a proximity-based regionalization of FDCs. 

The FDC of an ungauged catchment is estimated from normalized FDCs of neighbouring gauged catchments as: 

Φ̂(w0, p) = ϕ̂(w0, p) ∙ Q̅(𝑤0)          (3a) 

ϕ̂(w0, p) = ∑ λi ∙ ϕi(wi, p)n
i=1 ,    pϵ(0,1)         (3b) 

where Φ̂(w0, p) is the estimated quantile flow (m
3
 s

-1
) at an exceedance probability p (unitless) for an ungauged catchment 20 

w0, ϕ̂(w0, p) is the estimated normalized quantile flow (unitless), Q̅(𝑤0) is the annual mean streamflow (m
3
 s

-1
) of the 

ungauged catchment, and ϕi(wi, p) and λi are normalized quantile flows (unitless) and corresponding top-kriging weights 

(unitless) of gauged catchment wi respectively. The unknown mean annual flow of a ungauged catchment, Q̅(𝑤0), can be 

estimated with a rescaled mean annual precipitation defined as: 

MAP∗ = 3.171 × 10−5 ∙ MAP ∙ A          (4) 25 

where MAP* is the rescaled mean annual precipitation (m
3
 s

-1
), MAP is mean annual precipitation (mm yr

-1
) and A is 

drainage area (km
2
) of the ungauged catchment. If MAP* is used for regionalizing FDCs, empirical FDCs of gauged 

catchments should be normalized by their MAP* values too. 
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A distinct advantage of the geostatistical method is that it can estimate the entire flow quantiles in a FDC with a single set of 

top-kriging weights. Since a parametric regional FDC (e.g., Yu et al., 2002; Mohamoud, 2008) is commonly obtained from 

independent models for estimating each flow quantile, e.g., multiple regressions between each quantile and catchment 

properties, fundamental characteristics in a FDC continuum can be entirely or partly lost. The geostatistical method, on the 

other hand, treats all flow quantiles as a single object; thereby, features in a FDC continuum are preserved. It showed 5 

improved performance to reproduce empirical FDCs only using topological proximity between catchments. Further details 

and discussion are available in Pugliese et al. (2014). 

For regionalization of FDCs, we first calculated TND values of each gauged catchment with observed flows during the 

calibration period (2011-2015). Then, we spatially interpolated the TND values using the rtop R-package (Skøien et al., 

2014), and applied the top-kriging weights to quantile flow estimation. Regionalized FDCs were estimated at 103 evaluation 10 

points of exceedance probabilities (p of 0.001, 0.005, 99 points between 0.01 and 0.99 at an interval of 0.01, 0.995, and 

0.999). 

3.3 Evaluation of runoff predictions in ungauged catchments 

We tested two methods for predicting hydrographs of ungauged catchments using GR4J model: (a) proximity-based 

parameter transfer; and (b) parameter calibration using the regionalized FDC. The former is a typical method that transfers 15 

estimated parameters of nearby gauged catchments to a target ungauged catchment whereas the latter fits model parameters 

to a regionalized flow signature of the target ungauged catchment. 

To evaluate hydrograph predictability of two methods, we used two performance indicators. One is NSEQ in Eq. (2), which 

indicates the proportion of the variance in the observed hydrograph that is predictable from the modelled hydrograph. The 

other is the volume error (VEQ) that indicates the relative absolute bias between the modelled and observed hydrographs as: 20 

VEQ =
∑ |Qsim,t−Qobs,t|T

t=1

∑ Qobs,t
T
t=1

           (5) 

To measure FDC predictability, we compared simulated FDCs with observed ones in terms of NSE between observed and 

simulated flow quantiles (NSEFDC) defined as: 

NSEFDC = 1 −
∑ (Qsim,p−Qobs,p)

2P
p=1

∑ (Qobs,p−Qobs,p̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
2P

p=1

          (6) 

where Qsim,p and Qobs,p are the estimated and observed flow quantiles at an exceedance probability p respectively, and Qobs,p
̅̅ ̅̅ ̅̅ ̅̅  25 

is the average of observed flow quantiles. The 103 points of the regional FDCs (i.e., P=103) were used for the cross-

evaluations.  

We additionally selected three flow signatures to evaluate flow signature predictability; the runoff ratio (RQP), the baseflow 

index (IBF), and the rising limb density (RLD) defined as: 
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RQP =
Q̅

P̅
             (7a) 

IBF = ∑
QB,t

Qobs,t

T
t=1              (7b) 

RLD =
NRL

TR
             (7c) 

where Q̅ and P̅ are the average flow and precipitation during a period, QB,t (m s
-1

) is the base flow at time t, NRL is the 

number of rising limb, and TR is the total amount of time the hydrograph is rising (days). QB,t is calculated by subtracting 5 

direct flow (QD,t) in m s
-1

 from Qobs,t as: 

QD,t = c ∙ QD,t + 0.5 ∙ (1 + c) ∙ (Qobs,t − Qobs,t−1)         (8a) 

QB,t = Qobs,t − QD,t            (8b) 

where parameter c is a value of 0.925 from a comprehensive case study by Eckhardt (2007). Reproducibility of RQP, IBF, and 

RLD are evaluated by the relative absolute bias between modelled and observed signatures as: 10 

DFS =
|FSsim−FSobs|

FSobs
            (9) 

where DFS is the relative absolute bias, FSsim is a flow signature of the modelled flows, and FSobs is that of the observed flows. 

Details of the two regionalization methods are following. 

3.3.1 Proximity-based parameter transfer from gauged to ungauged catchments 

Regionalization of model parameters is a common approach for estimating hydrographs of ungauged catchments. It has three 15 

typical categories: (a) proximity-based parameter transfer (e.g., Oudin et al., 2008); (b) similarity-based parameter transfer 

(e.g., McIntyre et al., 2005); and (c) regression between parameters and physical properties of gauged catchments (e.g., Kim 

and Kaluarachchi, 2008). Predictive performance of the parameter regionalization depends on climatic conditions, 

complexity of the hydrologic model, among other factors (Parajka et al., 2013). 

We chose the proximity-based parameter transfer for consistency with the proximity-based regionalization of empirical 20 

FDCs. The proximity-based parameter regionalization is often used because of its competitive performance and simplicity 

(Oudin et al., 2008; Parajka et al., 2013). We transferred calibrated parameter sets from five nearby catchments to a target 

catchment based on the findings in Oudin et al. (2008). The five simulations weighted by inverse distances between the 

target and donor catchments were averaged for representing the modelled hydrograph of a target ungauged catchment. 

3.3.2 Parameter calibration using the regionalized FDCs 25 

For comparison, the FDCs regionalized by the geostatistical method were directly used to calibrate GR4J model parameters 

for each catchment. Since flow signatures have been important constraints for parameter estimation in gauged catchments 
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(e.g., Pfannerstill et al., 2014; Westerberg et al., 2011), agreement between a regionalized FDC and one simulated by a 

rainfall-runoff model also can be the objective function for parameter calibration (e.g., Westerberg et al., 2014; Masih et al., 

2010; Yu and Yang, 2000). The objective function of parameter calibration was to maximize NSEFDC between regionalized 

and simulated flow quantiles at the 103 exceedance probability (p) selected as the evaluation points. 

A regionalized FDC is less informative than an observed hydrograph because of no information of flow timing and 5 

uncertainty in the geostatistical regionalization. A complete agreement between regionalized and modelled FDCs does not 

guarantee high predictive performance (van Werkhoven et al., 2009) in hydrograph prediction. Hence, the Monte Carlo 

simulations were used for maximization of NSEFDC instead of a complex optimization algorithm. We tested 10,000 

parameter sets randomly generated within the given ranges of GR4J parameters (Table 2), and selected five sets for runoff 

simulations by sorting corresponding NSEFDC values in descending order. The average flows of the five simulations 10 

weighted by corresponding NSEFDC values were taken as modelled flows of a target catchment. 

4 Results 

4.1 Calibration of GR4J parameters using observed hydrographs 

The GR4J model was calibrated with observed hydrographs of the 45 catchments using the SCE algorithm, and Fig. 3a 

shows NSEQ values for the calibration and validation periods. The averages of NSEQ values were 0.69 and 0.63 with ranges 15 

of 0.13-0.92 and 0.19-0.87 for the calibration and validation periods respectively. In spite of some losses of NSEQ from 

calibration to validation, GR4J was unlikely to be over-fitted and acceptably reproduced observed hydrographs in the case of 

relative high NSEQ values (>0.6). The predictive performance was highly dependent on consistency between the lumped 

input and streamflow as illustrated in Fig. 3b. The correlation coefficients CPI and observed flows have a clear positive 

relationship with NSEQ, and indicate that consistency between climatic inputs and observed flows is a prerequisite for high 20 

model performance. 

Fig. 4 illustrates example observed and modelled hydrographs of two selected catchments. As mentioned earlier, catchment 

response to precipitation is highly concentrated on summer-season hydrographs. Whereas peaks and falling limbs of 

observed hydrographs were well captured by GR4J in the case of high NSEQ (Fig. 4a), some discrepancy between observed 

and modelled hydrographs was found as NSEQ decreases (Fig. 4b). The less predictive performance can be attributed to 25 

lower consistency between model input and output, and/or structural deficiency of GR4J. The parsimonious structure of 

GR4J is good for conceptualizing general hydrological processes and regionalization for ungauged catchments, but can be an 

error source for catchments with uncommon features. The high NSEFDC values (> 0.95) in the both cases of Fig. 4 indicate 

that hydrograph reproducibility is a stricter measure for model calibration than predictability of flow frequency. 

We assumed that the catchments with low NSEQ (<0.6) for the calibration period have unacceptable uncertainty either in 30 

model inputs or observed hydrographs. 34 catchments were of NSEQ higher than 0.6, and selected for the proximity-based 
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parameter regionalization (see Table 1). NSEQ values of the selected catchments have averages of 0.76 and 0.73 with ranges 

of 0.62-0.92 and 0.52-0.87 for the calibration and validation periods respectively. 

4.2 Regionalization of FDCs using empirical FDCs 

An area between the mean annual flow and below-mean flows (i.e., TND) in a FDC represents the catchment behaviour 

(Pugliese et al., 2014) such that the top-kriging weights for interpolating TND values can regionalize empirical FDCs. We 5 

followed the same procedure of Pugliese et al. (2014) for regionalizing empirical FDCs of the 45 catchments. We cross-

validated TND values of the 45 catchments and obtained top-kriging weights (λi) using the rtop r-package. Then, the top-

kriging weights were used to regionalize flow quantiles. The number of neighbours for the spatial interpolation was 

iteratively decided as n=5 at which additional neighbouring TNDs are unlikely to increase agreement between estimated and 

empirical TNDs. 10 

Fig. 5a shows a 1:1 scatter plot between the empirical TND values and those spatially interpolated by the top-kriging method 

for the calibration period. The 45 catchments of this study recorded 0.56 of correlation coefficient between empirical and 

estimated TNDs (equivalent to 0.30 of NSE), while predicted TNDs of the 18 adjacent catchments of the original study 

(Pugliese et al., 2014) had a NSE of 0.6. The relatively low performance of top-kriging interpolation suggests that 

topological proximity is not the only factor explaining the spatial variation of TNDs. Some physical properties (e.g., 15 

catchment size, impervious area) can be significantly different even between two adjacent catchments; thereby large 

discrepancy can be caused between observed and estimated TNDs. Particularly, estimated TNDs of isolated catchments (e.g., 

catchments 3 and 5 in Fig. 1) can have errors from dissimilarity with the donor catchments. Spatial proximity is powerful for 

prediction in ungauged catchments (Merz and Blöshl, 2004), but imperfect to entail similarity in functional catchment 

behaviour (e.g., Ali et al., 2012).  20 

Despite the abovementioned limitation, we found usefulness of the top-kriging weights for estimating flow quantiles. The 

NSEFDC values between empirical and regionalized FDCs have an average of 0.81 with a standard deviation of 0.26. The top-

kriging weights could acceptably regionalize FDCs even in the case that overall agreement between empirical and 

interpolated TNDs is relatively low. However, if a target catchment is very isolated or has distinguishable physical 

differences from donor catchments, a caution is required because the proximity-based FDC transfer possibly yields biased 25 

flow quantiles. A further study is necessary to clarify predictive performance of the geostatistical FDC regionalization in 

relation to performance of the TND interpolation, though it is an outside scope of this study. 

For calibration of GR4J model with the regionalized FDCs, we selected 28 catchments that showed acceptable NSEQ (>0.6) 

in the GR4J calibration and NSEFDC (>0.8) in FDC regionalization. The NSEFDC values of the 28 catchments had an average 

of 0.93. The overall comparison between observed and regionalized quantile flows is illustrated as a 1:1 scatter plot in Fig. 30 

5b. The agreement between observed and estimated flow quantiles in Fig. 5b confirms that the geostatistical FDC 

regionalization is a practical and convenient method to bring powerful performance for estimating FDCs of ungauged 

catchments where topological proximity adequately explains spatial patterns in flow quantiles. 
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4.3 Calibration of GR4J with regionalized FDCs 

With the Monte Carlo simulations, we searched GR4J model parameters that reproduce the regionalized flow quantiles. 

NSEFDC values the between simulated and regional FDCs were greater than 0.90 with a range of 0.90-0.99 for the 28 selected 

catchments. Based on the high NSEFDC values, 10,000 simulations would be adequate to find parameter sets that acceptably 

regenerate FDCs in lieu of a sophisticated optimization algorithm such as the SCE. 5 

Fig. 6 compares observed hydrographs with those simulated with the parameter sets fitted to the regional FDCs for the same 

catchments in Fig. 4. We had an indication that the model calibration with a FDC could be competitive with the conventional 

calibration with observed flows (Fig. 6a) but of higher uncertainty. NSEQ of the catchment 15 (Fig. 6b) significantly 

decreased from 0.65 to 0.03 despite the relatively small change in NSEFDC. NSEQ values of the 28 catchments ranged 

between -0.173 and 0.852 with an average of 0.538 when calibrated with regional FDCs. This relatively wide range of NSEQ 10 

implies that parameter sets with high reproducibility of flow quantiles could be insufficient to predict both flow magnitude 

and timing although FDCs have worked well as a single criterion for model calibration in several case studies (e.g., 

Westerberg et al., 2011; 2014). It may be attributed to error sources in regionalized FDCs, but those were limited by 

selection of the catchments with high NSEFDC values. From this result, it is suggested that calibration of runoff model with a 

FDC can be good for regenerating frequency of observed flows, but likely to have higher uncertainty particularly in flow 15 

timing than hydrograph-based calibration. 

4.4 Evaluation of two proximity-based approaches for ungauged catchments 

We compared the two approaches: (a) transferring model parameters from neighbouring gauged catchments (referred to as 

PROX_reg hereafter); (b) calibrating model parameters with regionalized FDCs (referred to as RFDC_cal hereafter). The 28 

catchments selected for RFDC_cal were applied for leave-one-out cross-evaluations of the approaches. 20 

While we made the evaluations with the chosen 28 catchments, 34 catchments with NSEQ > 0.6 were used to transfer 

parameter sets to the 28 target catchments. 6 catchments were used for transferring parameters only, but not included in the 

evaluations. Likewise, despite all empirical FDCs of the 45 catchments were used for the geostatistical regionalization, 17 

catchments with low NSEFDC (< 0.8) were unselected for the cross-evaluations. A hypothesis behind the cross-evaluations, 

hence, is that neighbouring gauged catchments have acceptable predictive performance in runoff modelling and FDC 25 

regionalization. 

4.4.1 Evaluation of hydrograph predictability 

Performance of the two approaches for predicting flows is evaluated in terms of NSEQ and VEQ, as summarized in Fig. 7. It 

is clearly recognized that PROX_reg outperforms RFDC_cal in prediction of flow magnitude and timing from the NSEQ 

comparison (Fig. 7a), whereas RFDC_cal was slightly better for estimating runoff volume (Fig. 7b). The both methods had 30 

higher medians of NSEQ values for the calibration period than the validation period, and this may indicate that parameters 
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fitted to flow observations or signatures for a certain period is better to be regionalized for the same period. However, 

catchments with increasing NSEQ values from calibration to validation periods were found as many as those with decreasing 

NSEQ. It is thus difficult to conclude that model parameters calibrated to observed flows for a certain period would work 

better for the same period in ungauged catchments. Instead, more uncertainty would be involved in predicted flows if 

calibration and regionalization periods do not match. From the NSEQ comparison, it is recognized that PROX_reg has higher 5 

performance and less uncertainty than RFDC_cal in flow prediction. 

On the other hand, in VEQ comparison (Fig. 7b), RFDC_cal showed slightly smaller medians and shorter box heights than 

PROX_reg (Fig. 7b). NSEQ could be over-sensitive to peak flows, hence the entire flow regime might not be captured even 

with high NSEQ (Hrachowitz et al., 2013). The VEQ comparison indicates that reproducing regionalized FDCs could be 

better for minimizing long-term bias in flow prediction than parameter regionalization. The median of VEQ increased from 10 

calibration to validation periods in the both cases. As was the NSEQ comparison, less predictive and more uncertain runoff 

volumes could be generated if parameters are temporally transferred. From the NSEQ and VEQ comparison, we had an 

indication that PROX_reg would be better for prediction in flow magnitude and timing, while RFDC_cal is good to reduce 

long-term bias in predicted flows. 

4.4.2 Evaluation of FDC predictability 15 

FDC reproducibility of the two methods was evaluated in terms of NSEFDC, and is summarized in Fig. 8. Despite additional 

error sources introduced by input data and model structural deficiency (Hrachowitz et al., 2013), we realized that a parameter 

regionalization could have comparable performance for predicting FDCs to a direct regionalization of flow quantiles. In Fig. 

8a, 13 catchments showed higher NSEFDC values with PROX_reg than those with the geostatistical FDC regionalization 

albeit a less median of PROX_reg. It implies that the error sources in parameter regionalization could be less significant than 20 

those in direct regionalization of FDCs in some cases. The NSEFDC values of regionalized FDCs and RFDC_cal had similar 

medians, but the range of RFDC_cal was slightly wider (Fig. 8b) because parameter uncertainty and structural model 

deficiency are additionally introduced in RFDC_cal. From Fig. 8a and 8b, it is known that RFDC_cal could be somewhat 

better than PROX_reg for FDC prediction, but PROX_reg is also of strong predictive performance for FDCs. 

As was in the NSEQ and VEQ comparison, temporal transfer of parameters from one to another period would add uncertainty 25 

in FDC prediction (Fig. 8c and 8d). In addition, RFDC_cal seems to provide more stationary prediction of FDCs than 

PROX_reg based on the higher median and narrower range of NSEFDC values.  

Briefly, direct FDC regionalization or RFDC_cal would not guarantee higher performance in FDC prediction than parameter 

regionalization. PROX_reg in this study also had comparable performance in reproducing FDCs to direct regionalization of 

FDC and RFDC_cal. Hence, the two-step approach of RFDC_cal, i.e., regionalization of empirical FDCs and model 30 

calibration, would be less pragmatic than simple PROX_reg that requires transferring parameters only. 
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4.4.3 Evaluation of flow signature reproducibility 

Fig. 9 summarizes performance of PROX_reg and RFDC_cal for regenerating flow signatures in terms of RQP, IBF, and RLD. 

RFDC_cal outperformed PROX_reg in IBF prediction whereas PROX_reg showed better predictability in RLD. RFDC_cal 

was expected to perform for reproducing IBF based on its less bias in runoff volume because baseflow accounts for much 

longer period within annual hydrographs. The high RLD reproducibility of PROX_reg is also expected from the high NSEQ 5 

values in flow simulations, which indicates good prediction in timing of peak flows.  

In the case of RQP, RFDC_cal appears to be slightly better than PROX_reg as does in the VEQ comparison. The bias in 

simulated flows mainly affects RQP, and thus RQP comparison would be similar to the VEQ evaluation. This result is similar 

to the evaluation of FDC predictability, which indicated a slightly better performance of RFDC_cal. 

5 Discussion 10 

5.1 Predicting FDCs of ungauged catchments using parameter regionalization 

A direct regionalization of empirical FDCs has been generally preferred to predict FDCs in ungauged catchments because of 

unavoidable error sources in parameter regionalization, i.e., model deficiency and uncertainty in input data and parameters. 

The strong performance of PROX_reg in this study, however, needs to be underlined. Fig. 8a suggests that FDCs of 

generated hydrographs with transferred parameters can be comparable to direct regionalization of FDCs. The geostatistical 15 

FDC regionalization used in this study is a promising method with strong predictive performance (Pugliese et al., 2014; 

2016), and poorly predicted FDCs were unselected in the cross-evaluations. Indeed, PROX_reg was only based on spatial 

proximity between the catchments for transferring GR4J parameters. Under these conditions, PROX_reg performed 

substantially (NSEFDC
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ > 0.90). It implies that use of parameter regionalization may become the best option for predicting 

FDCs if an ungauged catchment is surrounded by well-modelled gauged catchments. Because hydrographs are more 20 

informative than FDCs, PROX_reg may be preferable in both hydrograph and FDC predictions. 

Since FDCs reflect collective influences of climate, vegetation, soil, and topography on streamflow, a small selection of 

physical properties or only topological proximity could inadequately explain spatial variation of observed flow quantiles. 

FDC regionalization could hence include substantial errors from unexpected spatial patterns such as land use changes. 

Although our comparative analysis may be an exceptional case, it is unlikely to be general that parameter regionalization 25 

will have more errors in FDC prediction than a direct FDC regionalization (Hrachowize et al., 2013). However, there exist 

preconditions for applying parameter regionalization. Runoff models employed for gauged catchment should have a 

minimized concern of over-parameterization because it leads to model equifinality and large prediction errors. The 

regionalization method chosen for ungauged catchments also should be suitable for regional characteristics. The proximity-

based parameter regionalization has performed well under humid climates while regression- or similarity-based methods 30 
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could be better under arid conditions (Parajka et al., 2013). It is also notable that direct FDC regionalization slightly 

outperformed PROX_reg on average. 

5.2 Use of regional FDCs as a single criterion for calibration 

Empirical or regionalized FDCs have been adopted as a single measure or additional constraints for model calibration (e.g., 

Westerberg et al., 2014; 2011; Kapangaziwiri et al., 2012; Yadav et al., 2007; Yu and Yang, 2000), and led to enhanced flow 5 

prediction in ungauged catchments. Despite the successful applications, regionalized FDCs possibly cause high prediction 

errors in flow timing when employed as a single criterion for calibration. The uncertainty in parameter regionalization would 

be less significant than that from no flow timing in regionalized FDCs. Since we only chose regional FDCs with high 

NSEFDC values for the cross-evaluations, errors in the FDC regionalization were unlikely to be concerns. 

The low RLD reproducibility of RFDC_cal in Fig. 9 also implies that use of regionalized FDCs as a single measure can yield 10 

substantial errors particularly in timing of peak flows. FDCs or metrics from FDCs such as slopes and TNDs of the FDCs 

could represent behavioural function of catchments, but could be less practical for predicting hydrographs than regionalized 

model parameters. A relative strength of RFDC_cal was low bias in runoff volume and baseflow predictions, and therefore 

RFDC_cal is recommended when modelled hydrographs are used for a low flow analysis or a long-term water resources 

management rather than a flood risk analysis. 15 

5.3 Suggestions for improving flow prediction in ungauged catchments 

The flow signature reproducibility depicted in Fig. 9 is insightful information for improving flow prediction in ungauged 

catchments. As evaluated, RFDC_cal has strength in runoff volume and baseflow prediction while flow magnitude and 

timing were well captured by PROX_reg. The gap in baseflow estimation of PROX_reg thus can be filled by incorporating 

FDCs into parameter calibration and regionalization (e.g., Pfannerstill et al., 2016). Unobservable conceptual parameters 20 

fitted to hydrographs may not be unique sets representing behaviour of gauged catchments, and eventually lead to the typical 

equifinality problem. If FDCs are used as orthogonal information conditioning the calibration process, the uniqueness of 

calibrated parameters will be enhanced and eventually lead to less uncertainty in the regionalization. If a regional calibration 

(e.g., Parajka et al., 2007; Kim and Kaluarachchi, 2008) included FDCs or IBF as additional constraints, the regional model 

would work better for capturing spatial patterns of parameters. 25 

RFDC_cal, on the other hand, can evolve through conditioning the FDC-based calibration with additional flow metrics. The 

regional FDCs would provide less unique parameter sets than regionalized parameters, and the gap is likely to be in timing 

of peak flows. Westerberg et al. (2014) pointed out that a regionalized FDC is useful as a basic flow signature; nevertheless, 

further conditioning with other flow signatures is required for reducing uncertainty in the prediction. Given high 

performance in baseflow of RFDC_cal, additional flow signatures would be orthogonal if they enable to improve 30 

predictability in flows timing. From the comparative analysis of this study, RLD can be a good candidate to enhance peak 

flow prediction of the FDC-based calibration. 
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6 Summary and conclusions 

Flow prediction in ungauged catchments has been comprehensively explored and continually improved by a plethora of case 

studies, but still has gaps that should be filled. In this study, we compared two methods for predicting daily streamflow in 

ungauged catchments through leave-one-out cross evaluations of 28 catchments in South Korea. We began with parameter 

calibration of GR4J model with streamflow observations in 45 gauged catchments. As a counterpart, we employed a 5 

proximity-based geostatistical method for FDC regionalization, and selected 28 catchments that showed high performance in 

the model calibration and the FDC regionalization. The two methods were evaluated in terms of hydrograph, FDC, and 

signature reproducibility. The key findings from the comparative analysis are summarized as follows: 

(1) The consistency between model input and output data is an important prerequisite for runoff modelling. The CPI was in a 

clear positive relationship with the performance criterion, NSEQ, when calibrating GR4J model for the 45 catchments. Data 10 

quality could significantly affect model performance in gauged catchments and thus parameter regionalization. A screening 

process excluding catchments with low consistency between the input and output would increase predictive performance of 

parameter regionalization. 

(2) The geostatistical FDC regionalization showed acceptable performance in FDC prediction despite its low TND 

reproducibility. The top-kriging weights interpolating TNDs had high potential for estimating FDCs; however, it is notable 15 

that considering topological proximity only can bring biased estimates of flow quantiles. For improvement, it would be 

necessary to take into consideration physical differences between neighbouring catchments. 

(3) The typical proximity-based parameter transfer was of strong performance to regenerate hydrographs and FDCs, and 

seems to outperform model calibration with regionalized FDCs. Although regionalized FDCs have potential for capturing 

functional behaviour of ungauged catchments, no information of flow timing in FDCs would cause great uncertainty in 20 

hydrograph simulations. The proximity-based parameter regionalization, on the other hand, had comparable performance in 

FDC prediction to the direct regionalization of empirical FDCs. 

(4) Relative merits of model calibration with regional FDCs were low bias in simulated hydrographs and strong performance 

in baseflow prediction. RFDC_cal showed greater reproducibility in low flows than PROX_reg without logarithmic 

transformation of flow quantiles. The parameters fitted to regional FDCs are likely to incline the model to capture long-term 25 

flow regimes rather than peak flows. 

(5) Adopting RLD as an additional constraint would improve model calibration with regionalized FDCs. A major weakness of 

RFDC_cal is low predictive performance in magnitude and timing of peak flows, and hence including the average time to 

peak in hydrographs would be an orthogonal condition to regionalized FDCs. Combination of RLD and regional FDCs for 

model calibration possibly improve signature-based hydrograph modelling in ungauged catchments. 30 

In conclusion, we suggest that classical parameter regionalization is pragmatic for predicting hydrographs and flow 

frequency of ungauged catchments in South Korea because of its simplicity and powerful performance. Preconditions for 

acceptable performance typically are: (a) adequate predictive performance of the runoff model in gauged catchments, and (b) 
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suitability of the regionalization method employed. A FDC is a representative flow signature presenting behavioural 

functions of catchments, and well-regionalized FDCs can be useful for model calibration; however, additional orthogonal 

information seems necessary to be comparable to traditional parameter regionalization. We found that RLD is a good 

candidate for improving signature-based model calibration, and believe that further studies on regionalization of relevant 

flow signatures will improve runoff modelling in ungauged catchments. 5 
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Table 1: List of the gauged catchments and corresponding physical properties 
ID Name Lat1 

(°) 

Area 

(km2) 

Elv2 

(m) 

NSEQ
3 

> 0.6? 

NFDC
4 

> 0.8? 

ID Name Lat 

(°) 

Area 

(km2) 

Elv 

(m) 

NSEQ
 

> 0.6? 

NFDC
 

> 0.8? 

1 Goesan Dam 36.64 676.7  363 Y Y 24 Chunyang 34.88 144.9  201 N Y 

2 Namgang Dam 35.41 2293.4  431 Y N 25 Osu 35.54 359.5  255 N Y 

3 Miryang Dam 35.50 103.5  512 N Y 26 Daecheon 35.88 816.3  198 Y Y 

4 Boryeong Dam 36.29 162.3  244 N N 27 Jeonju 35.76 275.9  176 Y Y 

5 Buan Dam 35.65 57.1  177 N N 28 Hari 35.95 527.6  197 Y Y 

6 Seomjingang Dam 35.63 763.4  357 Y Y 29 Bongdong 35.99 345.0  245 N N 

7 Soyanggang Dam 38.03 2783.3  634 Y Y 30 Hannaedari 36.75 283.9  126 Y Y 

8 Andong Dam 36.88 1628.7  543 Y Y 31 Suchon 36.61 224.0  94 Y Y 

9 Yongdam Dam 35.81 930.4  510 Y Y 32 Wolpo 36.84 1157.8  315 Y Y 

10 Imha Dam 36.49 1975.8  388 N N 33 Jeomchon 36.66 615.3  371 Y Y 

11 Hoengseong Dam 37.58 207.9  436 Y Y 34 Sancheong 35.51 1130.8  554 Y N 

12 Habcheon Dam 35.71 928.9  495 Y Y 35 Seonsan 36.10 988.4  298 Y N 

13 Chungju Dam 37.28 6705.1  608 Y Y 36 Nonsan 36.18 476.6  151 Y N 

14 Juam Dam 34.94 1029.4  269 Y N 37 Ugon 36.28 133.9  39 N N 

15 Jangheung Dam 34.79 192.3  198 Y Y 38 Seokdong 36.24 155.9  71 N Y 

16 Jungranggyo 37.70 208.6  131 Y Y 39 Cheongju 36.58 165.3  149 Y N 

17 Munmak 37.44 1137.7  303 Y Y 40 Heodeok 36.26 609.3  193 Y Y 

18 Yeongchun 37.38 4775.2  996 Y Y 41 Yuseong 36.25 246.0  193 Y Y 

19 Yeongwol-1 37.42 1613.5  625 Y Y 42 Boksu 36.19 161.6  216 N Y 

20 Pyeongchang 37.54 695.6  720 Y Y 43 Sangyeogyo 36.44 495.0  255 Y Y 

21 Naerincheon 37.88 1013.0  752 Y Y 44 Gidaegyo 36.47 361.2  250 N Y 

22 Wontong 38.17 299.7  707 Y Y 45 Indong 36.27 68.0  203 Y Y 

23 Hampyeong 35.13 105.2  87 Y Y        

1Latitude. 2Mean Elevation. 3NSEQ in calibration with observed hydrographs. 4NSEFDC of regionalized FDCs. The catchments in bold were 

used for the leave-one out cross-evaluations. 
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Table 2: Ranges of GR4J model parameters used for calibration 

Parameter 80% confidence interval 

(Perrin et al., 2003) 

Range for calibration 

X1 (mm) 100-1200 10-2000 

X2 (mm) -5-3 -8-6 

X3 (mm) 20-300 10-500 

X4 (days) 1.1-2.9 0.5-4.0 
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Figure 1: Locations of the gauged catchments for GR4J model and FDC regionalization. Catchment numbers are labelled at the 

centroid of each catchment. 
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Figure 2: The schematized structure of GR4J (X1-X4: model parameters, PE: potential evapotranspiration, P: precipitation, Q: 

runoff, other letters indicate variables conceptualizing internal catchment processes). 
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Figure 3: Distributions of NSEQ values achieved from GR4J calibrations with observed hydrographs (a), NSEQ versus correlation 

coefficients between CPI and Qobs (b). Straight lines in (a) connect two NSEQ values for the calibration and validation periods of 

each catchment. 
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Figure 4: Example hydrographs of two selected catchments that showed a high NSEQ (a) and a relatively low NSEQ (b) in model 

calibration using observed hydrographs. NSEQ values for the calibration period are 0.87 (a) and 0.64 (b) while NSEFDC values of 

the both cases are greater than 0.95. Line and scatter plots inside of the hydrographs depicts simulated (lines) and observed 

(circles) FDCs (quantile flows are in logarithmic scale). 5 
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Figure 5: 1:1 scatter plots of the observed and estimated TNDs (a), and the observed and estimated quantile flows of 28 catchments 

selected for RFDC_cal (b). The uncoloured symbols indicate unselected catchments for RFDC_cal. 
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Figure 6: Example hydrographs simulated by parameter sets calibrated with the regionalized FDCs. Line and scatter plots inside 

of the hydrographs depicts simulated (navy blue lines), regionalized (red lines) and observed (circles) FDCs (flow quantiles are in 

logarithmic scale). NSEQ values for the calibration period are 0.85 (a) and 0.03 (b), while NSEFDC between simulated and observed 

FDCs are 0.99 (a) and 0.76 (b). NSEFDC between simulated and regional FDCs are greater than 0.95 in the both cases. 5 
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Figure 7: Distributions of NSEQ (a) and VEQ (b) values for PROX_reg and RFDC_cal. The performance indicators for the 

calibration and validation periods of each catchment are linked with the straight lines. 
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Figure 8: NSEFDC comparison between PROX_reg and FDC regionalization (a), RFDC_cal and regionalized FDCs (b), the 

calibration and validation periods of PROX_reg (c), and the calibration and validation periods of RFDC_cal (d). RegFDC 

indicates values obtained from the geostatistical regionalization. The straight lines link the performance indicators for the 

calibration and validation periods of each catchment. 5 
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Figure 9: Distributions of relative absolute error between observed and simulated three flow signatures, RQP (a), IBF (b), and RLD 

(c), for PROX_reg and RFDC_cal respectively. The straight lines link the performance indicators for the calibration and 

validation periods of each catchment. 5 
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