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S1. Dimensionless transform for Eqs. (1)-(4) 14 

For the purpose of mathematical convenience, we define the following dimensionless variables, 15 

sD =
4𝜋𝐾𝑑

𝑄
𝑠, 𝑡𝐷 =

𝐾

𝑆𝑠𝑑2
𝑡, 𝑥𝐷 = 𝛼𝑥

𝑥

𝑑
, 𝑦𝐷 = 𝛼𝑦

𝑦

𝑑
, 𝑧𝐷 = 𝛼𝑧

𝑧

𝑑
, 𝑥0𝐷 = 𝛼𝑥

𝑥0

𝑑
, 𝑦0𝐷 = 𝛼𝑦

𝑦0

𝑑
, 𝑧0𝐷 =16 

𝛼𝑧
𝑧0

𝑑
, 𝛼𝑥 = (𝐾/𝐾𝑥 )

1/2, 𝛼𝑦 = (𝐾/𝐾𝑦 )
1/2
, 𝛼𝑧 = (𝐾/𝐾𝑧 )

1/2, 𝐾 = (𝐾𝑥𝐾𝑦𝐾𝑧)
1/3
, 𝑢D =17 

4𝜋𝐾𝑑

𝑄
𝑢, 𝜅𝐷 =

𝑑

𝛼𝑧
𝜅, 𝛽 =

𝜅𝐷

𝜎
, 𝜎 =

𝑆𝑠𝑑

𝑆𝑦𝛼𝑧
,  𝑏𝐷 = 𝛼𝑧

𝑏

𝑑
,                       (S1) 18 

where the subscript D denotes the dimensionless terms. Substituting above dimensionless variables 19 

into Eqs. (1)-(4), one obtains the following dimensionless forms of the governing equations for the 20 

saturated zone, 21 

 
𝜕2𝑠𝐷

𝜕𝑥𝐷
2 +

𝜕2𝑠𝐷

𝜕𝑦𝐷
2 +

𝜕2𝑠𝐷

𝜕𝑧𝐷
2 + 4𝜋𝛿(𝑥𝐷 − 𝑥0𝐷)𝛿(𝑦𝐷 − 𝑦0𝐷)𝛿(𝑧𝐷 − 𝑧0𝐷) =

𝜕𝑠𝐷

𝜕𝑡𝐷
, 0 ≤ 𝑧𝐷 < 𝛼𝑧,(S2a) 22 

 𝑠𝐷(𝑥𝐷 , 𝑦𝐷 , 𝑧𝐷 , 0) = 0, (S2b) 23 

 
𝜕𝑠𝐷

𝜕𝑧𝐷
(𝑥𝐷 , 𝑦𝐷 , 𝑧𝐷 , 𝑡𝐷)|𝑧𝐷=0 = 0, (S2c) 24 

 lim
𝑥𝐷→±∞

𝑠𝐷(𝑥𝐷 , 𝑦𝐷 , 𝑧𝐷 , 𝑡𝐷)  = lim
𝑦𝐷→±∞

𝑠𝐷(𝑥𝐷 , 𝑦𝐷 , 𝑧𝐷 , 𝑡𝐷) = 0, (S2d) 25 

and for the unsaturated zone, 26 

 
𝜕2𝑢𝐷

𝜕𝑥𝐷
2 +

𝜕2𝑢𝐷

𝜕𝑦𝐷
2 +

𝜕2𝑢𝐷

𝜕𝑧𝐷
2 − 𝜅𝐷

𝜕𝑢𝐷

𝜕𝑧𝐷
= 𝛽

𝜕𝑢𝐷

𝜕𝑡𝐷
,  𝛼𝑧 ≤ 𝑧𝐷 < 𝛼𝑧 + 𝑏𝐷, (S3a) 27 

 𝑢𝐷(𝑥𝐷 , 𝑦𝐷 , 𝑧𝐷 , 0) = 0, (S3b) 28 

 
𝜕𝑢𝐷

𝜕𝑧𝐷
(𝑥𝐷 , 𝑦𝐷 , 𝑧𝐷 , 𝑡𝐷)|𝑧𝐷=𝛼𝑧+𝑏𝐷 = 0, (S3c) 29 

 lim
𝑥→±∞

𝑢𝐷(𝑥𝐷 , 𝑦𝐷 , 𝑧𝐷 , 𝑡𝐷)  = lim
𝑦→±∞

𝑢𝐷(𝑥𝐷 , 𝑦𝐷 , 𝑧𝐷 , 𝑡𝐷) = 0, (S3d) 30 

and at the interface, 31 

 𝑠𝐷 − 𝑢𝐷 = 0,       𝑧𝐷 = 𝛼𝑧, (S4a) 32 

 
𝜕𝑠𝐷

𝜕𝑧𝐷
−
𝜕𝑢𝐷

𝜕𝑧𝐷
= 0,      𝑧𝐷 = 𝛼𝑧 . (S4b) 33 
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 34 

S2: Laplace domain solution of the unsaturated zone 35 

The Laplace transformation of Eqs. (S3) and (S4) are written as 36 

 
𝜕2𝑢𝐷

𝜕𝑥𝐷
2 +

𝜕2𝑢̅𝐷

𝜕𝑦𝐷
2 +

𝜕2𝑢𝐷

𝜕𝑧𝐷
2 − 𝜅𝐷

𝜕𝑢𝐷

𝜕𝑧𝐷
= 𝛽𝑝𝑢̅𝐷 ,      𝛼𝑧 ≤ 𝑧𝐷 < 𝛼𝑧 + 𝑏𝐷, (S5a) 37 

 
𝜕𝑢𝐷

𝜕𝑧𝐷
(𝑥𝐷 , 𝑦𝐷 , 𝑧𝐷 , 𝑝)|𝑧𝐷=𝛼𝑧+𝑏𝐷 = 0, (S5b) 38 

 lim
𝑥𝐷→±∞

𝑢̅𝐷(𝑥𝐷 , 𝑦𝐷 , 𝑧𝐷 , 𝑝)  = lim
𝑦𝐷→±∞

𝑢̅𝐷(𝑥𝐷 , 𝑦𝐷 , 𝑧𝐷 , 𝑝) = 0, (S5c) 39 

and 40 

 𝑠̅𝐷 − 𝑢̅𝐷 = 0,       𝑧𝐷 = 𝛼𝑧, (S6a) 41 

 
𝜕𝑠̅𝐷

𝜕𝑧𝐷
−
𝜕𝑢𝐷

𝜕𝑧𝐷
= 0,      𝑧𝐷 = 𝛼𝑧, (S6b) 42 

where 𝑝 is the Laplace transform parameter and the overbar indicates a variable in the Laplace 43 

domain. The Eq. (S5) in a cylindrical coordinate system can be written as following 44 

 
1

𝑟𝐷

𝜕𝑢𝐷

𝜕𝑟
+
𝜕2𝑢̅𝐷

𝜕𝑟2
+
𝜕2𝑢𝐷

𝜕𝑧𝐷
2 − 𝜅𝐷

𝜕𝑢𝐷

𝜕𝑧𝐷
= 𝛽𝑝𝑢̅𝐷,    𝛼𝑧 ≤ 𝑧𝐷 < 𝛼𝑧 + 𝑏𝐷, (S7a) 45 

 
𝜕𝑢𝐷

𝜕𝑧𝐷
(𝑟𝐷, 𝑧𝐷 , 𝑝) = 0,    𝑧𝐷 = 𝛼𝑧 + 𝑏𝐷, (S7b) 46 

 𝑢̅𝐷(∞, 𝑧𝐷 , 𝑝) = 0. (S7c) 47 

Based on the methods of the separation variables and Eq. (5), the solution of Eq. (S7a) with 48 

boundary condition Eq. (S7c) will be (Rezaei et al., 2016): 49 

 𝑢̅𝐷(𝑟𝐷, 𝑧𝐷 , 𝑝) = ∑
8 cos(𝜔𝑛𝑧0𝐷)

𝑝Ψ(𝜔𝑛)
𝐾0(Ω𝑛|𝑟𝐷 − 𝑟0𝐷|)ℋ𝑛(𝑧𝐷 , 𝑝)

∞
𝑛=0 . (S8) 50 

Substituting Eq. (S8) into Eq. (S7) yields: 51 

𝜕2ℋ𝑛

𝜕𝑧𝐷
2 − 𝜅𝐷

𝜕ℋ𝑛

𝜕𝑧𝐷
− (𝛽𝑝 − Ω𝑛

2)ℋ𝑛 = 0,    𝛼𝑧 ≤ 𝑧𝐷 < 𝛼𝑧 + 𝑏𝐷, (S9a) 52 

 
𝜕ℋ𝑛

𝜕𝑧𝐷
(𝑧𝐷 , 𝑝) = 0,    𝑧𝐷 = 𝛼𝑧 + 𝑏𝐷. (S9b) 53 
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The general solution of Eq. (S9a) is 54 

 ℋ𝑛 = {

𝑒𝑀𝑧𝐷[𝐶1𝑒
𝑁𝑧𝐷 + 𝐶2𝑒

−𝑁𝑧𝐷],                     𝑖𝑓 Δ > 0,

𝑒𝑀𝑧𝐷[𝐶1 sin(𝑁1𝑧𝐷) + 𝐶2 cos(𝑁1𝑧𝐷)],            𝑖𝑓 Δ < 0,

𝑒𝑀𝑧𝐷[𝐶1𝑧𝐷 + 𝐶2],                           𝑖𝑓 Δ = 0,

  (S10) 55 

where 𝑀 = 𝜅𝐷/2; 𝑁 = √Δ; 𝑁1 = √−Δ; Δ = 𝜅𝐷
2/4 + 𝛽𝑝 − Ω𝑛

2 . 𝐶1 and 𝐶2 are determined on 56 

the basis of Eqs. (S6a) and (S9b), then substituting them into Eq. (S10) yields 57 

ℋ𝑛 =

{
 
 

 
 cos(𝜔𝑛𝛼𝑧)

(𝑀+𝑁) exp[2𝑁(𝛼𝑧+𝑏𝐷)+(𝑀−𝑁)𝑧𝐷]−(𝑀−𝑁)exp[(𝑀+𝑁)𝑧𝐷]
(𝑀+𝑁) exp[2𝑁(𝛼𝑧+𝑏𝐷)+(𝑀−𝑁)𝛼𝑧]−(𝑀−𝑁)exp[(𝑀+𝑁)𝛼𝑧]

,                       𝑖𝑓 Δ > 0,

cos(𝜔𝑛𝛼𝑧)exp(𝑀𝑧𝐷−𝑀𝛼𝑧)
[𝑁1 tan(𝑁1(𝛼𝑧+𝑏𝐷))−𝑀] sin(𝑁1𝑧𝐷)+[𝑀tan(𝑁1(𝛼𝑧+𝑏𝐷))+𝑁1] cos(𝑁1𝑧𝐷)

[𝑁1 tan(𝑁1(𝛼𝑧+𝑏𝐷))−𝑀] sin(𝑁1𝛼𝑧)+[𝑀tan(𝑁1(𝛼𝑧+𝑏𝐷))+𝑁1] cos(𝑁1𝛼𝑧)
, 𝑖𝑓 Δ < 0,

cos(𝜔𝑛𝛼𝑧)exp(𝑀𝑧𝐷−𝑀𝛼𝑧)
1+𝑀(𝛼𝑧+𝑏𝐷)−𝑀𝑧𝐷
1+𝑀(𝛼𝑧+𝑏𝐷)−𝑀𝛼𝑧

,                                𝑖𝑓 Δ = 0.

  (S11) 58 

  59 

S3: Evaluation for eigenvalues 𝝎𝒏 60 

Substituting Eqs. (5) and (7) into Eq. (S6b) yields 61 

 

{
 
 

 
 −𝜔𝑛 tan(𝜔𝑛𝛼𝑧) =

1−exp(−2𝑁𝑏𝐷)

1/(M−N)−exp(−2𝑁𝑏𝐷)/(M+N)
,                            𝑖𝑓 Δ > 0

−𝜔𝑛 tan(𝜔𝑛𝛼𝑧) = 𝑀 +
[𝑁1 tan(𝑁1(𝛼𝑧+𝑏𝐷))−𝑀]𝑁1−[𝑀 tan(𝑁1(𝛼𝑧+𝑏𝐷))+𝑁1]𝑁1 tan(𝑁1𝛼𝑧)

[𝑁1 tan(𝑁1(𝛼𝑧+𝑏𝐷))−𝑀] tan(𝑁1𝛼𝑧)+[𝑀 tan(𝑁1(𝛼𝑧+𝑏𝐷))+𝑁1]
, 𝑖𝑓 Δ < 0

 𝜔𝑛 = (𝜅𝐷
2/4 + (𝛽 − 1)𝑝)1/2.                                         𝑖𝑓 Δ = 0

    (S12) 62 

The eigenvalues of the finite cosine Fourier transform 𝜔𝑛 is the positive root of Eq. (S12). 63 

For Δ > 0 the solution domain of 𝜔𝑛 is separated into an infinite series of sub-domain intervals 64 

with a period of 𝜋, i.e., (
(2𝑖−1)𝜋

2𝛼𝑧
,
(2𝑖+1)𝜋

2𝛼𝑧
), 𝑖 = 0,1,2, …. Each solution of 𝜔𝑛 in an individual 65 

sub-domain is obtained using the Newton-Raphson method. For Δ < 0 the solution domain of 66 

𝜔𝑛 is separated into an infinite series of irregular sub-domains due to the complex formula on the 67 

right side of the equation. These irregular sub-domains can be identified by seeking the singular 68 

points of function F(ω)= 𝑀 +
[𝑁1 tan(𝑁1(𝛼𝑧+𝑏𝐷))−𝑀]𝑁1−[𝑀tan(𝑁1(𝛼𝑧+𝑏𝐷))+𝑁1]𝑁1 tan(𝑁1𝛼𝑧)

[𝑁1 tan(𝑁1(𝛼𝑧+𝑏𝐷))−𝑀] tan(𝑁1𝛼𝑧)+[𝑀 tan(𝑁1(𝛼𝑧+𝑏𝐷))+𝑁1]
+ω tan(ω𝛼𝑧), where ω is a variable 69 

of function Y = F(ω)  and the roots of F(ω) = 0  are eigenvalues 𝜔𝑛 . Specifically, the 70 

eigenvalues 𝜔𝑛  are intersection points of curve Y = F(ω)  with Y = 0 . These intersection 71 
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points are separated into an infinite series of irregular sub-domains in which every sub-domain is 72 

composed of two adjacent singular points (ω = ωs ) of function Y = F(ω) . The 𝜔𝑛  in an 73 

individual sub-domain is obtained using the Newton-Raphson method. It is shown in Eqs. (5) and 74 

(7) that the saturated zone solution involving the components of unsaturated zone is only 75 

represented in the 𝜔𝑛 terms. Changes of the unsaturated zone parameters lead to different 𝜔𝑛 76 

values, which affect groundwater flow in the saturated zone.   77 

  78 
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