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S1. Dimensionless transform for Eqgs. (1)-(4)

For the purpose of mathematical convenience, we define the following dimensionless variables,

__4nKd _ K _ X _ y _ z _ X0 _ Yo _
Sp =~ S, tp = a2 LXp = Qx7,Yp = Qy7,Zp = Az 5, Xop = Ax»Yop = Xy "5 Zop =

1/2 1/3

azzd_o’ ax = (K/Ky )1/2’ay = (K/Ky ) , a; = (K/K, )I/Z,K = (KxKsz) yUp =

4tKd
Q

d KD Sed b
Uu,Kp ::;;Ka ﬁ :::;a o ::Syaz’ bD ::aZZ? (Sl)

where the subscript D denotes the dimensionless terms. Substituting above dimensionless variables
into Egs. (1)-(4), one obtains the following dimensionless forms of the governing equations for the

saturated zone,

aZSD aZSD aZSD

a
ox3 T oy3 + 272 + 418 (xp — x0p)6(Yp — Yop)8(zp — Zop) = %, 0 < zp < a,,(S2a)
sp(xp,¥p,2p,0) =0, (S2b)
%p ¢ tr) =0 S2
92p Xp,Yp,Zp,tp |zD=O =V, (S2¢)
lim sp(xp,yp,zp, tp) = lim sp(xp,Vyp, 2p, tp) =0, (S2d)
xp—too yp—too
and for the unsaturated zone,
0%up , %up ., 9%up _ dup _ ,0dup < < +p 3
ox3 " oyk | 0z  Pozp  Por,y Y270 % T Dbp (53a)
up(xp,¥p,2p,0) = 0, (S3b)
0
al:_z(foyD;ZD;tD)lzDzaz+bD =0, (S3¢)
liT up(Xp, ¥p,Zp, tp) = lirjp up (xp,¥p,2p, tp) = 0, (S3d)
x—+o0 y—too
and at the interface,
sp—up =0, Zp =, (S4a)
asp _ dup

= O, ZD = aZ' (S4b)

aZD aZD
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S2: Laplace domain solution of the unsaturated zone

The Laplace transformation of Egs. (S3) and (S4) are written as

d%up  9%up ., 9%up otup _
— 2 = <
ou
ﬁ(xD)yD)ZD) p)lZD=az+bD = O, (SSb)
lim #p(xp,yp,zp,p) = lim up(xp,yp,2zp,p) =0, (S5¢)
xp—>too yp—too
and
Sp—1up =0, Zp = Ay, (S6a)
d3p dup _ _
dzp dzp - 03 Zp = Uy, (S6b)

where p is the Laplace transform parameter and the overbar indicates a variable in the Laplace

domain. The Eq. (S5) in a cylindrical coordinate system can be written as following

1 dup 0%up d9%up dup _
1 dup — e 28D <
o + e + 272 Kp 378 Bpup, a, < zp < a,+ bp, (S7a)
diip
E(TD,ZD;p) =0, Zp = a, + bp, (S7b)
up(e,zp,p) = 0. (S7¢c)

Based on the methods of the separation variables and Eq. (5), the solution of Eq. (S7a) with

boundary condition Eq. (S7¢) will be (Rezaei et al., 2016):

j— [o'e) 8 ( n )
up(rp, zp,p) = ano%l(o(ﬂnlrn — Top DH, (Zp, D). (S8)

Substituting Eq. (S8) into Eq. (S7) yields:

923y, 0Hp
5.2 Kp5
aZD 6zD

- (.Bp - Q?’L)}[n = O, a, <zp<a,+ bD’ (S9a)

0H,
E(ZD,p) = 0, Zp = a, + bD' (S9b)
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The general solution of Eq. (S9a) is

eMzp[C,eN?p + C,e™N?D], if A>0,
H, =1 eM?p[C, sin(N;zp) + C, cos(N;zp)], if A<0, (S10)
eMZD [ClzD + Cz], lf A = 0,

where M = kp/2; N =+A; N, =vV—A; A=k3/4+ fp— Q2. C, and C, are determined on

the basis of Egs. (S6a) and (S9b), then substituting them into Eq. (S10) yields

(M+N) exp[2N(az+bp)+M—N)zp]—(M—N) exp[(M+N)zp] lf A>0

(Cos(a)naz) (M+N) exp[2N(az+bp)+M—N)az]—(M—N) exp[(M+N)az]’

[N1 tan(Nl(zxz+bD))—M] sin(leD)+[M tan(Nl(az+bD))+N1] cos(N1zp)
[N1 tan(Nl(zxz+bD))—M] sin(Nlaz)+[M tan(Nl(az+bD))+N1] cos(Nqaz)’

1+M(ag+bp)—M .
cos(wna,) exp(Mzp —Maﬁ%lm, if A=0.

if A<0, (S11)

H, =1 cos(w,a,) exp(Mzp — Ma,)

S3: Evaluation for eigenvalues w,,

Substituting Egs. (5) and (7) into Eq. (S6b) yields

1—-exp(—2Nbp)

(_ — ,

[ ~%n tan(w,a;) = 1/(M=N)—exp(-2Nbp)/(M+N)’ if A>0

4 _ _ [N1 tan(Nq(az+bp))—M|N1—[M tan(N1(az+bp))+N1|N1 tan(N1az) . S12
| wn tan(w,az) =M+ [N1 tan(Ny (az+bp))—-M]tan(Niaz)+[M tan(Ni(az+bp))+Ny] ' if A<0 ( )
\ @, = (3/4+ (8 — Dp)2. if A=0

The eigenvalues of the finite cosine Fourier transform w,, is the positive root of Eq. (S12).

For A > 0 the solution domain of w,, is separated into an infinite series of sub-domain intervals

i-Dr (2i+)m

)

with a period of m, i.e., ( ), i =0,1,2, ... Each solution of w, in an individual

2a, 2a,

sub-domain is obtained using the Newton-Raphson method. For A < 0 the solution domain of
wy, 1s separated into an infinite series of irregular sub-domains due to the complex formula on the

right side of the equation. These irregular sub-domains can be identified by seeking the singular

[Ny tan(N; (az+bp))—M]N; —[M tan(N; (az+bp))+N; [N, tan(N; a,)
[N; tan(N; (az+bp))—M] tan(N; az)+[M tan(Ny(a,+bp))+Nq]

points of function F(w)= M+ + wtan(wa,), Where w is a variable

of function Y = F(w) and the roots of F(w) =0 are eigenvalues w, . Specifically, the

eigenvalues w, are intersection points of curve Y = F(w) with Y = 0. These intersection
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points are separated into an infinite series of irregular sub-domains in which every sub-domain is
composed of two adjacent singular points (w = wg) of function Y = F(w). The w, in an
individual sub-domain is obtained using the Newton-Raphson method. It is shown in Egs. (5) and
(7) that the saturated zone solution involving the components of unsaturated zone is only
represented in the w, terms. Changes of the unsaturated zone parameters lead to different w,,

values, which affect groundwater flow in the saturated zone.
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