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Abstract 22 

Conventional models of pumping tests in unconfined aquifers often neglect the unsaturated flow 23 

process. This study concerns coupled unsaturated-saturated flow process induced by vertical, 24 

horizontal, and slant wells positioned in an unconfined aquifer.  A mathematical model is 25 

established with special consideration of the coupled unsaturated-saturated flow process and well 26 

orientation. Groundwater flow in the saturated zone is described by a three-dimensional 27 

governing equation, and a linearized three-dimensional Richards’ equation in the unsaturated 28 

zone. A solution in Laplace domain is derived by the Laplace-finite Fourier transform and the 29 

method of separation of variables, and the semi-analytical solutions are obtained using a 30 

numerical inverse Laplace method. The solution is verified by a finite-element numerical model. 31 

It is found that the effects of the unsaturated zone on the drawdown of pumping test exist in any 32 

angle of inclination of the pumping well, and this impact is more significant for the case of a 33 

horizontal well. The effects of unsaturated zone on the drawdown are independent of the length 34 

of the horizontal well screen. The vertical well leads to the largest water volume drained from the 35 

unsaturated zone (W) value during the early time, and the effects of the well orientation on W 36 

values become insignificant at the later time. The screen length of the horizontal well does not 37 

affect W for the whole pumping period. The proposed solutions are useful for parameter 38 

identification of pumping tests with a general well orientation (vertical, horizontal, and slant) in 39 

unconfined aquifers affected from above by the unsaturated flow process. 40 

Keywords: Horizontal well; Slant well; Coupled unsaturated-saturated flow; Drainage from the 41 

unsaturated zone. 42 
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1. Introduction 43 

In addition to conventional vertical wells, horizontal and slant pumping wells are broadly 44 

used in the petroleum industry, environmental and hydrological applications in recent decades. 45 

Horizontal and slant pumping wells are commonly installed in shallow aquifers to yield a large 46 

amount of groundwater (Bear, 1979) or to remove a large amount of contaminant (Sawyer and 47 

Lieuallen-Dulam, 1998). Horizontal and slant wells have some advantages over vertical wells 48 

(Yeh and Chang, 2013;Zhan and Zlotnik, 2002), e.g., horizontal and slant wells yield smaller 49 

drawdowns than the vertical wells with the same pumping rate per screen length. Horizontal and 50 

slant wells have long screen sections which can extract a great volume of water in shallow or low 51 

permeability aquifers without generating significant drawdowns.  52 

Hantush and Papadopulos (1962) firstly investigated the problem of fluid flow to a horizontal 53 

well in hydrologic sciences. Since then, this problem was not of great concern in the 54 

hydrological science community because of the limitation of directional drilling techniques and 55 

high drilling costs. With significant advances of the directional drilling technology over the last 56 

20 years, the interest on horizontal and/or slant wells was reignited. Until now flow to horizontal 57 

and/or slant wells have been investigated in various aspects, including flow in confined aquifers 58 

(Cleveland, 1994;Zhan, 1999;Zhan et al., 2001;Kompani-Zare et al., 2005), unconfined aquifers 59 

(Huang et al., 2016;Rushton and Brassington, 2013;Zhan and Zlotnik, 2002;Huang et al., 60 

2011;Mohamed and Rushton, 2006;Kawecki and Al-Subaikhy, 2005), leaky confined aquifers 61 

(Zhan and Park, 2003;Sun and Zhan, 2006;Hunt, 2005), and fractured aquifers (Nie et al., 62 

2012;Park and Zhan, 2003;Zhao et al., 2016). The readers can consult Yeh and Chang (2013) for 63 

a recent review of well hydraulics on various well types, including horizontal and slant wells. 64 
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As demonstrated in previous studies, horizontal and slant wells had significant advantages 65 

over vertical wells in unconfined aquifers, thus they were largely used in unconfined aquifers for 66 

pumping or drainage purposes. However, none of above-mentioned studies considered the effects 67 

of unsaturated processes on groundwater flow to horizontal and slant wells in unconfined 68 

aquifers. For the case of flow to vertical wells in saturated zones, the effects of above unsaturated 69 

processes were investigated by several researchers (Kroszynski and Dagan, 1975;Mathias and 70 

Butler, 2006;Tartakovsky and Neuman, 2007;Mishra and Neuman, 2010, 2011). For example, 71 

Tartakovsky and Neuman (2007) considered axisymmetric unsaturated-saturated flow for a 72 

pumping test in an unconfined aquifer and employed one parameter that characterized both the 73 

water content and the hydraulic conductivity as functions of pressure head, assuming an infinite 74 

thickness unsaturated zone.  Mishra and Neuman (2010, 2011) extended the solution of 75 

Tartakovsky and Neuman (2007) using four parameters to represent the unsaturated zone 76 

properties and considering a finite thickness for the unsaturated zone (Mishra and Neuman, 77 

2010), and considered the wellbore storage as well (Mishra and Neuman, 2011). The main results 78 

from the studies concerning vertical wells indicated that the unsaturated zone often had a major 79 

impact on the S-shaped drawdown type curves. 80 

A following question to ask is that are these conclusions drawn for vertical wells also 81 

applicable for horizontal and slant wells when coupled unsaturated-saturated flow is of concern? 82 

Specifically, how important is the wellbore orientation on groundwater flow to a horizontal or 83 

slant well considering the coupled unsaturated-saturated flow process? In order to answer these 84 

questions, we establish a mathematical model for groundwater flow to a general well orientation 85 

(vertical, horizontal, and slant wells) considering the coupled unsaturated-saturated flow process. 86 

We incorporate a three-dimensional linearized Richards’ equation into a governing equation of 87 
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groundwater flow in an unconfined aquifer. We employ the Laplace-finite Fourier transform and 88 

the method of separation of variables to solve the coupled unsaturated-saturated flow governing 89 

equations.  This paper is organized as follows, we first present the mathematical model and 90 

solution in sections 2 and 3, respectively, then describe the results and discussion in section 4, 91 

and summarize this study and draw conclusions in section 5.  92 

2. Mathematical Model 93 

The schematic diagrams of flow to horizontal and slant wells in an unsaturated-saturated 94 

system are represented in Fig. 1a. and 1b, respectively. Similar to the conceptual model used by 95 

Zhan and Zlotnik (2002), the origin of the Cartesian coordinate is located at the bottom of the 96 

saturated zone with the z axis along the upward vertical direction and the  x and y axes along the 97 

principal horizontal hydraulic conductivity directions. The horizontal and slant well screens are 98 

located in the saturated zone with a distance 𝑧𝑤 from the center point of the screen (0, 0,  𝑧𝑤) to 99 

the bottom of the saturated zone. The slant well has three inclined angles 𝛾𝑥, 𝛾𝑦, and 𝛾𝑧 with the 100 

x, y, and z axes, respectively, and such three angles satisfying cos2(𝛾𝑥) + cos
2(𝛾𝑦) + cos

2(𝛾𝑧) =101 

1. The horizontal well is a specific case of the slant well when  𝛾𝑧 = 𝜋/2. The saturated zone is 102 

assumed as an infinite lateral extent unconfined aquifer with a slight compressibility, and is 103 

spatially uniform and anisotropic (Tartakovsky and Neuman, 2007).  The saturated zone is below 104 

an initially horizontal water table at 𝑧 = 𝑑, and the unsaturated zone is above 𝑧 = 𝑑 with an 105 

initial thickness b.   106 

In order to solve the problem of groundwater flow to a horizontal or slant well, we first solve 107 

the governing equation of groundwater flow to a point sink. The mathematical model for 108 
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groundwater flow to a point sink (𝑥0, 𝑦0, 𝑧0) in a homogeneously anisotropic saturated zone is 109 

given by   110 

 𝐾𝑥
𝜕2𝑠

𝜕𝑥2
+ 𝐾𝑦

𝜕2𝑠

𝜕𝑦2
+ 𝐾𝑧

𝜕2𝑠

𝜕𝑧2
+ 𝑄𝛿(𝑥 − 𝑥0)𝛿(𝑦 − 𝑦0)𝛿(𝑧 − 𝑧0) = 𝑆𝑆

𝜕𝑠

𝜕𝑡
 ,     0 ≤ 𝑧 < 𝑑, (1a) 111 

 𝑠(𝑥, 𝑦, 𝑧, 0) = 0, (1b) 112 

 
𝜕𝑠

𝜕𝑧
(𝑥, 𝑦, 𝑧, 𝑡)|𝑧=0 = 0, (1c) 113 

 lim
𝑥→±∞

𝑠(𝑥, 𝑦, 𝑧, 𝑡)  = lim
𝑦→±∞

𝑠(𝑥, 𝑦, 𝑧, 𝑡) = 0, (1d) 114 

where 𝑠 is the drawdown (the change in hydraulic head from the initial level) in the saturated 115 

zone [L]; 𝐾𝑥, 𝐾𝑦 and 𝐾𝑧 are the saturated principal hydraulic conductivities in the x, y and z 116 

directions, respectively [LT-1]; 𝑄 is the pumping rate (positive for pumping and negative for 117 

injecting) [L3T-1];  𝛿(∙) is the Dirac delta function [L-1]; 𝑆𝑆 is the specific storage [L-1]; d is the 118 

saturated zone thickness [L]; t is time since start of pumping [T]. It is noteworthy that the aquifer 119 

is assumed to be homogenous and spatially uniform in this study. Despite the fact that a real-120 

world aquifer is likely to be heterogeneous and/or non-uniform, there are evidences that a 121 

moderately heterogeneous aquifer may sometimes behave as an averaged “homogeneous” 122 

system for pumping-induced groundwater flow problems. This interesting phenomena may be 123 

due to the diffusive nature of groundwater flow which can somewhat smooth out the effect of the 124 

heterogeneity to a certain degree (Pechstein et al., 2016;Zech and Attinger, 2016). 125 

Flow in the unsaturated zone induced by pumping in the unconfined aquifer is governed by 126 

the Richards’ equation. Due to the nonlinear nature of the Richards’ equation, it is difficult to 127 

analytically solve this equation except for some specific cases. Kroszynski and Dagan (1975) 128 

proposed a first-order linearized unsaturated flow equation by expanding the dependent variable 129 

in the Richards’ equation as a power-function series when the pumping rate was less than 𝐾𝑑2, 130 

where K is the saturated hydraulic conductivity of a homogeneous medium. The readers can find 131 

the details of the linearized equation derivation in previous studies (Kroszynski and Dagan, 132 
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1975;Tartakovsky and Neuman, 2007).  With such a linearized treatment, it becomes possible to 133 

analytically solve the equation of flow in the unsaturated zone. The linearized three-dimensional 134 

unsaturated flow equation is adopted in this study as follows, 135 

 𝑘0(𝑧)𝐾𝑥
𝜕2𝑢

𝜕𝑥2
+ 𝑘0(𝑧)𝐾𝑦

𝜕2𝑢

𝜕𝑦2
+ 𝐾𝑧

𝜕

𝜕𝑧
(𝑘0(𝑧)

𝜕𝑢

𝜕𝑧
) = 𝐶0(𝑧)

𝜕𝑢

𝜕𝑡
 ,     𝑑 ≤ 𝑧 < 𝑑 + 𝑏, (2a) 136 

 𝑢(𝑥, 𝑦, 𝑧, 0) = 0, (2b) 137 

 
𝜕𝑢

𝜕𝑧
(𝑥, 𝑦, 𝑡)|𝑧=𝑑+𝑏 = 0, (2c) 138 

 lim
𝑥→±∞

𝑢(𝑥, 𝑦, 𝑧, 𝑡)  = lim
𝑦→±∞

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 0, (2d) 139 

 𝑘0(𝑧) = 𝑘(𝜃0),     𝐶0(𝑧) = 𝐶(𝜃0) , (2e) 140 

where  𝑢 is the drawdown in the unsaturated zone [L]; the functions 𝑘0(𝑧) and 𝐶0(𝑧) are the 141 

zero-order approximation of the relative hydraulic conductivity [dimensionless] and the soil 142 

moisture capacity [L-1] at the initial water content of 𝜃0, respectively; k is the relative hydraulic 143 

conductivity and 0 ≤ 𝑘 ≤ 1; 𝐶(≥ 0) is the specific moisture capacity [L-1], and 𝐶 = 𝑑𝜃/𝑑𝜓, 𝜃 144 

is the volumetric water content [dimensionless], and 𝜓 is the pressure head [L]; b is the thickness 145 

of the unsaturated zone [L]. Similar to Tartakovsky and Neuman (2007), the unsaturated zone 146 

properties are described with the two-parameter Gardner (1958) exponential constitutive 147 

relationships, 148 

  𝑘0(𝑧) = 𝑒𝜅(𝑑−𝑧), (3a) 149 

 𝐶0(𝑧) = 𝑆𝑦𝜅𝑒
𝜅(𝑑−𝑧), (3b) 150 

where 𝜅 > 0 is the constitutive exponent [L-1], 𝑆𝑦 is the specific yield [dimensionless]. As 151 

mentioned in the introduction that this two-parameter model was extended to the four-parameter 152 

model by Mishra and Neuman (2010, 2011). The four-parameter model may be closer to the 153 

realistic situation. However, a model with more parameters has its disadvantage as well. Firstly, 154 

it is more difficult to determine the values of those parameters precisely from a practical 155 
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standpoint. Secondly, the predictive capability of a model with more parameters may not be 156 

better than that of a model with less parameters. For the discussion of this issue, one may consult 157 

the editorial messages of Voss (2011a, 2011b) and discussion by Bredehoeft (2005).  In this 158 

study, we focus on a question that how important is the wellbore orientation on groundwater flow 159 

to a horizontal or slant well considering the coupled unsaturated-saturated flow process. To focus 160 

on answering this question, we prefer to use a simpler model with the balance that keeping the 161 

most important physical processes in the model but at the same time ignoring the secondary 162 

effects. 163 

It shows in Eq. (3b) that at the water table (z=d) a smaller 𝜅 leads to a smaller 𝐶0(𝑧) and a 164 

larger retention capacity (Kroszynski and Dagan, 1975;Tartakovsky and Neuman, 2007), i.e., 165 

water in the unsaturated zone becomes more difficult to drain. In this study, we assume the upper 166 

boundary of the unsaturated zone as a no-flow boundary condition in Eq. (2c) by neglecting the 167 

effects of both infiltration and evaporation during the pumping. Because typical pumping tests 168 

usually last over much shorter periods of time relative to the durations of infiltration and 169 

evaporation processes, this assumption can hold for most field conditions, particularly for lands 170 

with sparse vegetation where the influence of plant transpiration is limited as well. 171 

The saturated and unsaturated flows are coupled at their interface by continuities of pressure 172 

and vertical flux across the water table which, following linearization, take the form 173 

 𝑠 − 𝑢 = 0,       𝑧 = 𝑏, (4a) 174 

 
𝜕𝑠

𝜕𝑧
−
𝜕𝑢

𝜕𝑧
= 0,     𝑧 = 𝑏. (4b) 175 

Above linearized equations of (4a) and (4b) assume that the variation of water table is minor 176 

in respect to the total saturated thickness. This assumption works better for horizontal wells and 177 

slant wells as for vertical wells, provided that the same pumping rate is used. This is because 178 
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horizontal wells and slant wells will generate much less drawdowns over laterally broader regions; 179 

while vertical wells tend to generate laterally more concentrated and much greater drawdown near 180 

the pumping wells (Zhan and Zlotnik, 2002).  181 

3. Solutions 182 

3.1 Solution for a point sink 183 

The solution to Eq. (1a) is obtained by the Laplace and finite cosine Fourier transform. The 184 

Laplace domain solution of Eq. (1a) subject to initial condition Eq. (1b) and boundary conditions 185 

Eqs. (1c) and (1d) is given as (Zhan and Zlotnik, 2002) 186 

 𝑠̅𝐷(𝐫𝐷, 𝑧𝐷 , 𝑝) = ∑
8cos(𝜔𝑛𝑧0𝐷)cos (𝜔𝑛𝑧𝐷)

𝑝Ψ(𝜔𝑛)
𝐾0(Ω𝑛|𝐫𝐷 − 𝐫0𝐷|) 

∞
𝑛=0 , (5) 187 

where  188 

 Ωn = √𝜔𝑛
2 + 𝑝, Ψ(ωn) = 2αz + sin(2𝜔𝑛𝛼𝑧)/𝜔𝑛,  (6) 189 

where the subscript D denotes the dimensionless terms, the definition of all dimensionless 190 

variables are presented in the supplementary material (S1); 𝑝 is the Laplace transform parameter 191 

with respect to the dimensionless time, and the overbar denotes a variable in the Laplace domain; 192 

𝜔𝑛 is the n-th eigenvalue of the Fourier transform, and it will be determined later; 𝐾0 is the 193 

modified second-kind Bessel function of zero-order; 𝐫𝐷 = (𝑥𝐷 , 𝑦𝐷) and 𝐫0𝐷 = (𝑥0𝐷 , 𝑦0𝐷) are the 194 

dimensionless radial vectors of the observation point and the sink point, respectively. 195 

The solution to Eq. (2a) is obtained by the Laplace transform and the method of separation of 196 

variables (supplementary material, S2) and is given as  197 

 𝑢̅𝐷(𝑟𝐷, 𝑧𝐷 , 𝑝) = ∑
8 cos(𝜔𝑛𝑧0𝐷)

𝑝Ψ(𝜔𝑛)
𝐾0(Ω𝑛|𝐫𝐷 − 𝐫0𝐷|) ℋ𝑛(𝑧𝐷, 𝑝) 

∞
𝑛=0 , (7) 198 

where 199 
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ℋ𝑛 =

{
 
 

 
 cos(𝜔𝑛𝛼𝑧)

(𝑀+𝑁) exp[2𝑁(𝛼𝑧+𝑏𝐷)+(𝑀−𝑁)𝑧𝐷]−(𝑀−𝑁) exp[(𝑀+𝑁)𝑧𝐷]

(𝑀+𝑁) exp[2𝑁(𝛼𝑧+𝑏𝐷)+(𝑀−𝑁)𝛼𝑧]−(𝑀−𝑁) exp[(𝑀+𝑁)𝛼𝑧]
,                                                      𝑖𝑓 Δ > 0

cos(𝜔𝑛𝛼𝑧) exp(𝑀𝑧𝐷 −𝑀𝛼𝑧)
[𝑁1 tan(𝑁1(𝛼𝑧+𝑏𝐷))−𝑀] sin(𝑁1𝑧𝐷)+[𝑀 tan(𝑁1(𝛼𝑧+𝑏𝐷))+𝑁1] cos(𝑁1𝑧𝐷)

[𝑁1 tan(𝑁1(𝛼𝑧+𝑏𝐷))−𝑀] sin(𝑁1𝛼𝑧)+[𝑀 tan(𝑁1(𝛼𝑧+𝑏𝐷))+𝑁1] cos(𝑁1𝛼𝑧)
, 𝑖𝑓 Δ < 0

cos(𝜔𝑛𝛼𝑧) exp(𝑀𝑧𝐷 −𝑀𝛼𝑧)
1+𝑀(𝛼𝑧+𝑏𝐷)−𝑀𝑧𝐷

1+𝑀(𝛼𝑧+𝑏𝐷)−𝑀𝛼𝑧
,                                                                                𝑖𝑓 Δ = 0

  (8) 200 

where 𝑀 = 𝜅𝐷/2; 𝑁 = √Δ if Δ ≥ 0; 𝑁1 = √−Δ if Δ < 0; Δ = 𝜅𝐷
2/4 + 𝛽𝑝 − Ω𝑛

2 . 201 

The eigenvalues of the finite cosine Fourier transform 𝜔𝑛 can be obtained by substituting 202 

Eqs. (5) and (7) into the continuities of normal (vertical) flux equation (Eq. (S6b)). The detail can 203 

be found in supplementary material (S3). On the basis of the method illustrated above, it is 204 

straightforward to obtain the Laplace domain solution𝑠 𝑠̅𝐷 for the case of the unconfined aquifer 205 

with a free water table boundary and without the unsaturated zone influence (Zhan and Zlotnik, 206 

2002) (abbreviated as the ZZ solution hereinafter), and the case of the groundwater flow to a 207 

horizontal well in an confined aquifer (Zhan et al., 2001) (abbreviated as the ZWP solution 208 

hereinafter). The solutions 𝑠̅𝐷 for these two special cases require different 𝜔𝑛 values. For the free 209 

water table condition the 𝜔𝑛 is the root of  𝜔𝑛 tan(𝜔𝑛) = 𝑝/𝜎 (Zhan and Zlotnik, 2002). For the 210 

confined aquifer case the 𝜔𝑛 = 𝑛𝜋/𝛼𝑧 , 𝑛 = 0,1,2, … (Zhan et al., 2001).  211 

3.2 Solution for a slant pumping well  212 

Due to the linearity of the mathematical models Eqs. (1) and (2), the principle of 213 

superposition can be employed to extend the basic solutions of Eqs. (5) and (7). Thus, on the 214 

basis of the principle of superposition, the drawdown induced by a line sink in the saturated zone 215 

can be obtained by integrating the solution Eqs. (5) and (7) along the well axis, provided that the 216 

pumping strength distribution along the well screen is known. Precise determination of the 217 

pumping strength distribution along a horizontal or slant well involves complex, coupled aquifer-218 

pipe flow (Chen et al., 2003) in which the flow inside the wellbore (pipe flow) can experience 219 

different stages of flow schemes from laminar, transitional turbulent, to fully developed turbulent 220 

flow. Such complex coupled well-aquifer flow is beyond the scope of this study and one may 221 
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consult some recent studies of Blumenthal and Zhan (2016) and Wang and Zhan (2016) for more 222 

details. However, often time one may adopt a first-order approximation of using a uniform flux 223 

distribution to treat the horizontal or slant wells, particularly when the well screen lengths are not 224 

extremely long (like kilometers). Such an approximation has been justified by Zhan and Zlotnik 225 

(2002). In this study, a uniform flux distribution will be utilized for horizontal or slant wells 226 

hereinafter to obtain the solutions. 227 

The drawdown in saturated and unsaturated zones due to a slant pumping well can be written 228 

as: 229 

 𝑠̅𝐼𝐷(𝑝) = ∑
8cos(𝜔𝑛𝑧𝐷)

𝐿𝐷𝑝Ψ(𝜔𝑛)
∫ cos [𝜔𝑛 (𝑧𝑤𝐷 + 𝑙

𝛼𝑧

𝛼𝑥
cos 𝛾𝑧)]

𝐿𝐷
2

−
𝐿𝐷
2

𝐾0[Ω𝑛𝐹(𝑙)]𝑑𝑙
∞
𝑛=0 , (9) 230 

and 231 

 𝑢̅𝐼𝐷(𝑝) = ∑
8ℋ𝑛(𝑧𝐷,𝑝)

𝐿𝐷𝑝Ψ(𝜔𝑛)
∫ cos [𝜔𝑛 (𝑧𝑤𝐷 + 𝑙

𝛼𝑧

𝛼𝑥
cos 𝛾𝑧)]

𝐿𝐷
2

−
𝐿𝐷
2

𝐾0[Ω𝑛𝐹(𝑙)]𝑑𝑙
∞
𝑛=0 , (10) 232 

respectively, where 𝑠̅𝐼𝐷 and 𝑢̅𝐼𝐷 are the Laplace transforms of 𝑠𝐼𝐷 and 𝑢𝐼𝐷, respectively, and they 233 

are defined in the same way as 𝑠𝐷 and 𝑢𝐷 in Eqs. (5) and (7), respectively; 𝐿𝐷 = 𝛼𝑥𝐿/𝑑 is the 234 

dimensionless length of the slant well screen (L); 𝑧𝑤𝐷 = 𝛼𝑧𝑧𝑤/𝑑 is the dimensionless elevation of 235 

the center of  the pumping well screen;  𝑙  is a dummy variable; 𝐹(𝑙) =236 

√(𝑥𝐷 − 𝑙 sin 𝛾𝑧 cos 𝛾𝑥)
2
+ (𝑦𝐷 − 𝑙

𝛼𝑦

𝛼𝑥
sin 𝛾

𝑧
cos 𝛾

𝑦
)
2

 . 𝑠̅𝐼𝐷  and 𝑢̅𝐼𝐷  will respectively reduce to 237 

drawdowns in the saturated and unsaturated zones due to a horizontal well when 𝛾𝑧 = 𝜋/2. It is 238 

noteworthy that these solutions can be straightforwardly extended to situations of location-239 

dependent pumping rates as long as the flux rate distribution along the wellbore is known a priori. 240 

To do so, one simply modifies Eqs. (9) and (10) using a location-dependent flux function inside 241 

the integration. 242 

The drawdown in an observation (vertical) well located in the saturated zone that is screened 243 
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from 𝑧𝑙 to 𝑧𝑢 (𝑧𝑢 > 𝑧𝑙) can be calculated using the average of the point drawdown Eq. (9) along 244 

the observation well screen (Zhan and Zlotnik, 2002): 245 

 𝑠̅𝑜𝐷(𝑝) = ∑
8[sin(𝜔𝑛𝑧𝑢𝐷)−sin(𝜔𝑛𝑧𝑙𝐷)]

𝐿𝐷(𝑧𝑢𝐷−𝑧𝑙𝐷)𝜔𝑛𝑝Ψ(𝜔𝑛)
∫ cos [𝜔𝑛 (𝑧𝑤𝐷 + 𝑙

𝛼𝑧

𝛼𝑥
cos 𝛾𝑧)]

𝐿𝐷
2

−
𝐿𝐷
2

𝐾0[Ω𝑛𝐹(𝑙)]𝑑𝑙
∞
𝑛=0 ,   (11) 246 

where 𝑠̅𝑜𝐷 is the Laplace transform of 𝑠𝑜𝐷, and 𝑠𝑜𝐷 is defined in the same way as 𝑠𝐷 in Eq. (5); 247 

𝑧𝑢𝐷 = 𝛼𝑧𝑧𝑢/𝑑, 𝑧𝑙𝐷 = 𝛼𝑧𝑧𝑙/𝑑.  248 

It should be noted that our solutions do not account for the wellbore effects of the pumping 249 

and observation wells. Indeed, the wellbore effects have introduced additional complexity to the 250 

solutions which are already substantially more complex than the solutions excluding the 251 

unsaturated flow process. To avoid the influence of wellbore storage effects, we make the 252 

following proposal that could be implemented in the future investigations of coupled saturated-253 

unsaturated flow process: using pack systems to insulate the screens of pumping and the 254 

observation wells, thus wellbore storages will not be a concern. 255 

3.3 Total volume drained from the unsaturated zone for a slant well  256 

The dimensionless total volume drained from the unsaturated zone to the saturated zone 257 

(water flux across the water table) can be obtained by  258 

 𝑊̅𝐷(𝑝) = −∫ ∫
𝜕𝑠̅𝐼𝐷

𝜕𝑧𝐷

+∞

−∞
|𝛼𝑧

+∞

−∞
𝑑𝑥𝐷𝑑𝑦𝐷 =∑

16𝜋 sin(𝜔𝑛𝛼𝑧) cos(𝜔𝑛𝑧𝑤𝐷) sin(𝜔𝑛𝜙)

𝑝Ψ(𝜔𝑛)Ω𝑛
2𝜙

 
∞

𝑛=0 ,   (12) 259 

where 𝑊̅𝐷 is the Laplace transform of 𝑊𝐷, and 𝑊𝐷 = 𝑊
4𝜋𝛼𝑧

3

𝑄
, W is the total volume drained from 260 

the unsaturated zone; 𝜙 = 𝐿𝐷𝛼𝑧 cos(𝛾𝑧) /(2𝛼𝑥).  261 

It is difficult to obtain closed-form solutions by analytically inverting the Laplace transforms 262 

of Eqs. (5), (7), (9), (10) and (12) and thus a numerical inverse Laplace method is employed in 263 

this study. There are several numerical inverse Laplace methods, such as Stehfest method 264 

(Stehfest, 1970), Zakian method (Zakian, 1969), Fourier series method (Dubner and Abate, 265 



13 
 

1968), Talbot algorithm (Talbot, 1979), Crump technique (Crump, 1976), and de Hoog algorithm 266 

(de Hoog et al., 1982), with each method best fitted for a particular type of problem 267 

(Hassanzadeh and Pooladi-Darvish, 2007). Chen (1985), Zhan et al. (2009a;2009b), and Wang 268 

and Zhan (2013) have successfully employed the Stehfest algorithm to obtain the solution in the 269 

time domain for similar problems to this study. For references to different inverse Laplace 270 

methods, one can consult the review of Kuhlman (2013) and Wang and Zhan (2015). In this 271 

study we use the Stehfest method to invert the Laplace solutions into the solutions in the time 272 

domain. In order to ensure the accuracy of the Stehfest method, several numerical exercises have 273 

been performed against the benchmark solutions for several special cases of the investigated 274 

problem. 275 

4. Results and Discussion 276 

4.1 Effect of unsaturated zone parameters 277 

The main difference between the ZZ solution and present solution is the upper boundary 278 

condition of the saturated zone. The ZZ solution considered linearized free surface (kinematic) 279 

equation as the water table boundary that employed one parameter, i.e., specific yield (𝑆𝑦) to 280 

account for the gravity drainage after water table declining. The present solution represents 281 

coupled water flow through both the unsaturated and saturated zones. The water table boundary 282 

is replaced by coupled interface conditions between the unsaturated and the saturated zones. 283 

Thus the behavior of the drawdown in the saturated zone induced by the pumping wells will be 284 

affected by the unsaturated zone. To investigate the manner how the dimensionless constitutive 285 

exponent 𝜅𝐷 and the dimensionless unsaturated thickness 𝑏𝐷 impact the drawdown in the 286 

saturated zone induced by a horizontal pumping well, we plot the log-log graph of 𝑠𝐼𝐷 versus 287 
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𝑡𝐷/𝑟𝐷
2 (the type curves) for different 𝜅𝐷 and 𝑏𝐷 in Figures 2a and 2b, respectively. We also 288 

compare our solution to the ZZ solution (unconfined aquifer) and the ZWP solution (confined 289 

aquifer). For convenience we assume the horizontal well screen to be situated along the x-290 

direction, i.e., 𝛾𝑥 = 0 and 𝛾𝑦 = 𝛾𝑧 = 𝜋/2. The other parameter values in Eq. (9) are 𝜎=1×10-3 , 291 

𝐿𝐷=1, 𝛾=0, 𝛼𝑧=1, 𝑥𝐷=0.5, 𝑦𝐷=0.05, 𝑧𝐷=0.8, and 𝑧𝑤𝐷=0.5.  292 

Figure 2a presents the drawdown curves in the saturated zone for different values of 𝜅𝐷 293 

(1×10-5, 1×10-3, 1×10-1, 1×101 and 1×103) with a fixed dimensionless thickness of the 294 

unsaturated zone 𝑏𝐷 of 0.5. The dimensionless constitutive exponent 𝜅𝐷 = 𝜅𝑑/𝛼𝑧  = 𝜅𝑑𝐾𝐷
1/3

, 295 

where 𝐾𝐷 is the anisotropic ratio between the vertical hydraulic conductivity and the horizontal 296 

hydraulic conductivity.  297 

The unsaturated flow has significant impact on drawdown curves in the saturated zone when 298 

𝜅𝐷 is less than 10 (the unsaturated-saturated system has a large retention capacity, a small initial 299 

saturated thickness, and/or a relatively small vertical hydraulic conductivity). The impact of 300 

unsaturated flow decreases as 𝜅𝐷 increases, becoming small or insignificant when 𝜅𝐷 close to 301 

1×103. Our curve is almost the same as the curve of the ZZ solution when 𝜅𝐷 = 1×103 (gray solid 302 

curve), and gradually deviates from the ZZ solution but approaches the ZWP solution as 𝜅𝐷 303 

decreases to 1×10-5 (black solid curve). For a fixed initial saturated thickness, when 𝜅𝐷 is 304 

smaller, i.e., the unsaturated zone has larger retention capacity and/or both the unsaturated and 305 

saturated zones have relatively smaller vertical hydraulic conductivity, water drainage from the 306 

unsaturated zone is impeded, forcing more water to be released from compressible storage of the 307 

saturated zone, leading to larger drawdown in the saturated zone. The opposite is true when 𝜅𝐷 is 308 
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larger. It is consistent with the findings in the vertical pumping well case (Tartakovsky and 309 

Neuman, 2007).  310 

It also shows in Figure 2a that the drawdown have typical “S” pattern curves while 𝜅𝐷 ≥ 0.1. 311 

At early times, all curves are approximately identical due to response of the confined storage and 312 

minor effects of the upper boundary of the saturated zone; at intermediate times, the drawdowns 313 

of the ZZ solution and our solutions increase slower than that of the ZWP solution due to 314 

response of additional storage of the upper boundary of the saturated zone; at later times, the 315 

drawdown increasing rates of the ZZ solution and our solutions are nearly the same as that of the 316 

ZWP solution due to the combined effects of both storage mechanisms.  317 

The unsaturated zone controls the effects of additional storage and upper boundary of the 318 

saturated zone on drawdown curves. There are physical differences between the ZZ solution and 319 

our solution. The ZZ solution uses the storage factor Sy (specific yield) at upper boundary of the 320 

saturated zone. Such a storage factor at the upper boundary is greater than the actual storage 321 

capacity of the unsaturated zone when the unsaturated parameter 𝜅𝐷 ≤10, leading to a slower 322 

water level decline for the ZZ solution, and such effect will become insignificant for a long 323 

pumping time. Similar to 𝜅𝐷, the dimensionless unsaturated thickness 𝑏𝐷 also affects the 324 

drawdown behavior of the saturated zone, as shown in Figure 2b for different values of 𝑏𝐷 325 

(0.001, 0.01, 1, 10 and 100) with a fixed 𝜅𝐷=0.1 and the same parameters used as Figure 2a. 326 

Figure 2b shows that the impact of unsaturated flow increases when 𝑏𝐷 decreases. The 327 

drawdown behavior approaches the ZWP solution when 𝑏𝐷=0.001. For large 𝑏𝐷 (=100), 328 

however, our solution is significantly different from the ZZ solution at intermediate times 329 

because the impact of unsaturated flow becomes significant at a fixed 𝜅𝐷 of 0.1. 330 
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In order to further investigate the effects of the unsaturated zone, Figure 2c displays the 331 

drawdown curves in the unsaturated zone (𝑢𝐼𝐷) for different values of 𝜅𝐷 (1×10-5, 1×10-3, 1×10-1, 332 

1×101 and 1×103) at 𝑧𝐷=1.5 where the other parameters are the same as in Figure 2a. As 𝜅𝐷 333 

increases, the retention capacity of the unsaturated zone decreases, thus more water is released 334 

from the unsaturated storage. It leads to smaller drawdown in both the unsaturated and saturated 335 

zones. Figure 2d depicts the drawdown curves in the unsaturated zone for different values of 𝑏𝐷 336 

(0.5, 1, 2, 10 and 100). As expected, the drawdown in the unsaturated zone decreases with  𝑏𝐷 337 

increasing due to the fact that more water is stored in the unsaturated zone for larger 𝑏𝐷. These 338 

results are consistent with the findings of Mishra and Neuman (2010, 2011). 339 

4.2 Effect of well orientation and well screen length 340 

In this section, we first investigate the effect of the inclined angle of the slant well on the type 341 

curves. Figure 3 shows the comparison between the ZZ solution and our solution with 𝜅𝐷 = 10 342 

for three different angles of a slant well (𝛾𝑧= 0, π/4, and π/2) at two observation points (𝑧𝐷 =343 

0.9 for Figure 3a and 𝑧𝐷 = 0.1 for Figure 3b) where the other parameters are the same as in 344 

Figure 2. Obviously the smaller angle creates the larger drawdown at both observation points. 345 

For the horizontal well (𝛾𝑧 = π/2) the discrepancy between the ZZ solution and our solution is 346 

larger than that for the vertical well (𝛾𝑧 = 0) at upper observation point (Figure 3a). Such a 347 

discrepancy diminishes at the lower observation point (Figure 3b). It reveals that the effects of 348 

the unsaturated zone on the drawdown exist in any angle of inclination of a slant well for the 349 

upper part of the aquifer, and this impact is more significant for the case of the horizontal well. 350 

The impact of the unsaturated zone decreases when the observation point moves downward, 351 

becoming further away from the unsaturated zone, as expected. 352 
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Here we investigate the effect of the horizontal well screen length on the drawdown.  Figure 353 

4 illustrates the comparison between the ZZ solution and our solution for three different lengths 354 

of well screen (𝐿𝐷= 0.1, 1, and 10) at two observation points where the other parameters are the 355 

same as in Figure 3. It indicates that the longer well screen leads to the smaller drawdown at both 356 

upper and lower observation points. The discrepancy between the ZZ solution and our solution is 357 

identical for different well screen lengths. It reveals that the effects of the unsaturated zone on 358 

the drawdown are insensitive to the length of the horizontal well screen.  359 

In order to clearly illustrate the drawdown pattern in the unsaturated-saturated system, the 360 

drawdown profiles in vertical cross-sections for three different angles of a slant well (𝛾𝑧= 0, π/4, 361 

and π/2) at different dimensionless times (𝑡𝐷= 1×103, 1×104, and 1×105 ) are presented in Figure 362 

5. The other parameter values in Eqs. (9) and (10) are 𝜎=1×10-5, 𝜅𝐷=1×103, 𝐿𝐷=0.5, 𝛼𝑧=1, 𝑏𝐷=1, 363 

𝑦𝐷=0.05, 𝑧𝑤𝐷=0.75, 𝛾𝑥 = 0, and 𝛾𝑦 = 𝜋/2.  As time increases, the effect of pumping gradually 364 

propagates into the unsaturated zone (𝑧𝐷>1). The vertical well leads to larger drawdown in the 365 

unsaturated zone than the slant and horizontal wells. The reason is that the vertical well screen is 366 

closer to the unsaturated zone. 367 

The water flux across the water table (Eq. (12)) is the volume drained from the unsaturated 368 

zone to the saturated zone. It is somewhat related to the concept of specific yield when the 369 

coupled unsaturated-saturated zone flow process is simplified into a saturated zone flow process 370 

with water table served as a free upper boundary. Thus, Eq. (12) reflects the impact of the 371 

unsaturated zone on the water flow in the saturated zone. Figure 6 shows the changes of the 372 

dimensionless water flux across water table, 𝑊𝐷, with 𝑡𝐷 of the ZZ solution and our solution at 373 

three angles of a slant well screen (𝛾𝑧= 0, π/4, and π/2) (Figure 6a), and at three screen lengths 374 
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of a horizontal well (𝐿𝐷= 0.1, 1.0, and 10) (Figure 6b), where the other parameters are the same 375 

as in Figure 3.  376 

For early times of pumping, 𝑊𝐷 increases with time, and at the later time 𝑊𝐷 approaches an 377 

asymptotic value that is dependent on the unsaturated parameter 𝜅𝐷. 𝑊𝐷 decreases with 𝜅𝐷 378 

decreasing. The small 𝜅𝐷 reflects the large retention capacity of  the unsaturated zone, and thus it 379 

impedes water draining from the unsaturated zone during pumping. This results in more water 380 

released from the saturated zone storage and the larger drawdown in the saturated zone (Figure 381 

2a). The ZZ solution overestimates 𝑊𝐷 due to the fact that it neglects the effects of above 382 

unsaturated flow (Figure 6a). The 𝑊𝐷~𝑡𝐷 curves deviate from each other considerably for 383 

different angles of a slant well, particularly at the early time. One can see from Figure 6a that 𝑊𝐷 384 

of the vertical well (𝛾𝑧= 0) is the largest at early time, and the 𝑊𝐷~𝑡𝐷 curves of three angles 385 

eventually approach the same asymptotic value at late time. It means that the vertical well leads 386 

to the greatest water drainage from the unsaturated zone at early time, and the effects of the well 387 

orientation are insignificant with time increasing. Very different from the angle of a slant well, 388 

the screen length of a horizontal well appears to have almost no impact on 𝑊𝐷 for the whole 389 

pumping period (Figure 6b). Similar with Figure 6a, the magnitude of 𝑊𝐷 in Figure 6b is only 390 

dependent on the unsaturated parameter 𝜅𝐷.  391 

4.3 Synthetic pumping test 392 

In order to further verify our solutions and to explore the capability of our solution for 393 

interpreting pumping test results in the unsaturated-saturated system, we have conducted a 394 

synthetic numerical simulation. The synthetic case considers a pumping test in an unconfined 395 

aquifer with a slant pumping well (𝛾𝑧=π/4, 𝛾𝑥=0, and 𝛾𝑦= π/2). The aquifer parameter values 396 

are as follows. The unconfined aquifer thickness d is10 m, the above unsaturated zone thickness 397 
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b is 5 m, the horizontal conductivity  𝐾𝑥 = 𝐾𝑦=0.06 m/min, the vertical conductivity 𝐾𝑧=0.5𝐾𝑥, 398 

the specific storage 𝑆𝑆=1×10-4 m-1, and the specific yield 𝑆𝑦=0.3. The unsaturated flow is 399 

described by Eqs. (2) and (3) with the constitutive exponent 𝜅= 0.1 m-1. The discharge rate of the 400 

pumping well Q=1 m3/min, the length of the pumping well screen L is 5 m, and the center of 401 

well screen locates at (x=0, y=0, z=5 m).  402 

The coupled equations (1) -(4) of the unsaturated-saturated system are numerically solved by 403 

COMSOL Multiphysics, a robust Galerkin finite-element software package that includes a partial 404 

differential equation (PDE) solver for modeling the type of governing equations of this study. 405 

Fig. 7a shows the spatial discretization of our COMSOL model, in which tetrahedrons are used 406 

as elements for the three-dimensional model, and the elements near both the pumping well and 407 

the unsaturated-saturated interface are refined. The number of tetrahedral elements is 328358. 408 

The time step increases exponentially, and the total number of time steps is 100, with a total 409 

simulation time of 220 min. Fig. 7b presents an example for the vertical profiles (the xz-plane) of 410 

the drawdown in the unsaturated-saturated system at t=210 min. Fig. 7b indicates that the 411 

COMSOL model well reproduces the drawdown in the unsaturated-saturated system induced by 412 

a slant pumping well. 413 

Firstly, we verify our solutions by comparing the drawdowns in both the saturated and 414 

unsaturated zones with the numerical solution for the same aquifer parameter values. Figs. 8a 415 

and 8b show the drawdown curves in the saturated zone at an observation point of (x=0, y=1 m, 416 

z=9 m) and the drawdown curves in the unsaturated zone at an observation point of (x=0, y=1 m, 417 

z=11 m), respectively, using the numerical solution (triangles) and our solution (solid curves). 418 

These figures indicate that in general our solution satisfactorily fits the numerical solution in 419 

both the saturated and unsaturated zones, although the agreement becomes less satisfactorily (but 420 
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acceptable) at late times. The sizes of the tetrahedral elements will affect the accuracy of the 421 

numerical solution, especially near the pumping well and the unsaturated-saturated interface. 422 

Although we refine the mesh at these places, the sizes of these elements may be insufficiently 423 

small to completely remove the numerical errors near those places. Our numerical exercises 424 

show that a finer element discretization for this model leads to substantially greater 425 

computational cost, probably due to the three-dimensional nature of the model. 426 

Secondly, we investigate the errors for using the ZWP and ZZ solutions to explain the 427 

drawdown curves in the unsaturated-saturated system induced by the slant pumping well. Fig. 8a 428 

shows a least squares fit of the ZWP (dashed curves) and ZZ (dotted curves) solutions to the 429 

numerical solution, yielding parameter estimates  𝐾𝑥 = 𝐾𝑦=0.13 m/min, 𝑆𝑆=1.1×10-2 m-1 (for 430 

the ZWP solution), and 𝐾𝑥 = 𝐾𝑦=0.03 m/min, 𝑆𝑆=2.3×10-4 m-1, and 𝑆𝑦=0.32 (for the ZZ 431 

solution), respectively. Obviously, the ZWP solution fails to fit the numerical solution entirely 432 

and significantly overestimates the horizontal hydraulic conductivity and the specific storage 433 

with one or two orders of magnitude due to the fact that it is a confined-aquifer solution. The ZZ 434 

solution dramatically deviates from the numerical solution at the early and intermediate times 435 

and it agrees with the numerical solution at late time. The ZZ solution underestimates the 436 

horizontal hydraulic conductivity and overestimates the specific storage and the specific yield. 437 

A major disadvantage of the two older models (the ZWP and ZZ models) is that they do not 438 

consider the unsaturated flow process, thus they cannot be used to characterize the parameters of 439 

the unsaturated zone. The newer model developed in this study, however, is capable of 440 

characterizing parameters of both the saturated and unsaturated zones. As far as we know, this 441 

represents a significant improvement over the older models. Furthermore, as the older models do 442 

not consider the unsaturated flow process proven to be important for producing the drawdown-443 
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time curves in the saturated zone, they often cannot satisfactorily reproduce the observed 444 

drawdown-time curves in the saturated zone in actual real-world aquifer pumping tests. The 445 

newer model has resolved this issue successfully because the used conceptual model is closer to 446 

the physical reality of flow in an unsaturated-saturated system.  447 

5. Summary and Conclusions 448 

The coupled unsaturated-saturated flow process induced by vertical, horizontal, and slant 449 

pumping wells is investigated in this study. A mathematical model for such a coupled 450 

unsaturated-saturated flow process is presented. The flow in the saturated zone is described by a 451 

three-dimensional governing equation, and the flow in the unsaturated zone is described by a 452 

three-dimensional Richards’ equation. The unsaturated zone properties are represented by the 453 

Gardner (1958) exponential relationships. The Laplace domain solutions are derived using 454 

Laplace transform and the method of separation of variables, and the time domain solutions are 455 

obtained using the Stehfest method (Stehfest, 1970). The solution is compared with the solutions 456 

proposed by Zhan et al. (2001) (confined aquifer, the ZWP solution) and Zhan and Zlotnik 457 

(2002) (unconfined aquifer, the ZZ solution) and is verified using the finite-element numerical 458 

solution. The conclusions of this study can be summarized as follows: 459 

1) The unsaturated flow has significant impact on drawdown in unconfined aquifers induced by 460 

the horizontal pumping well when dimensionless constitutive exponent 𝜅𝐷 is less than 10 (the 461 

large retention capacity of the unsaturated zone, the small initial saturated thickness, and/or the 462 

small vertical hydraulic conductivity). For the large 𝜅𝐷  (=1 × 103 ), the drawdown curves 463 

approach the solution of the unconfined aquifer with the linearized free water table boundary 464 

(the ZZ solution). For the small 𝜅𝐷(= 1 × 10
−5 ), the drawdown curves approach the solution 465 
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of the confined aquifer (the ZWP solution).  466 

2) For the small dimensionless unsaturated thickness 𝑏𝐷(= 0.001) , the drawdown curves 467 

approach the ZWP solution. For the large unsaturated thickness 𝑏𝐷(= 100), the drawdown 468 

curves do not approach the ZZ solution because the impact of the unsaturated flow becomes 469 

significant at a fixed 𝜅𝐷 of 0.1.  470 

3) The effects of the unsaturated zone on the drawdown exist in any angle of inclination of a slant 471 

well, and this impact is more significant for the case of the horizontal well. The effects of the 472 

unsaturated zone on the drawdown are insensitive to the length of the horizontal well screen.  473 

4) For the early time of pumping, the water volume drained from the unsaturated zone (W) to the 474 

saturated zone increases with time, and with time progressing, W approaches an asymptotic 475 

value that is dependent on the unsaturated parameter 𝜅𝐷.  The vertical well leads to the largest 476 

W value during the early time of pumping, and the effects of the well orientation become 477 

insignificant at the late time. The screen length of the horizontal well does not affect W for the 478 

whole pumping period. 479 

5) By comparison with synthetic pumping test data generated by the finite-element numerical 480 

model of COMSOL, one can see that our solution well reproduces the drawdown curves in 481 

both the saturated and unsaturated zones while both the ZWP and ZZ solutions fail to fit the 482 

drawdown curves and they either underestimate or overestimate the horizontal hydraulic 483 

conductivity, the specific storage, and the specific yield. 484 

  485 
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 606 

  607 

Figure 1 The schematic diagram of groundwater flow to a horizontal well (a) and a slant well (b) in an 608 
unsaturated-saturated system. 609 

  610 



28 
 

 611 

 612 
  613 
 614 

Figure 2 a) log-log plot of 𝑠𝐼𝐷 against 𝑡𝐷/𝑟𝐷
2 for different values of the dimensionless unsaturated 615 

parameter 𝜅𝐷, the ZWP solution (confined aquifer) and the ZZ solution (unconfined aquifer), b) log-log 616 
plot of 𝑠𝐼𝐷 against 𝑡𝐷/𝑟𝐷

2 for different values of the dimensionless unsaturated thickness 𝑏𝐷, the ZWP 617 
solution (confined aquifer) and the ZZ solution (unconfined aquifer), c) log-log plot of 𝑢𝐼𝐷 against 𝑡𝐷/𝑟𝐷

2 618 
for different values of the dimensionless unsaturated parameter 𝜅𝐷, and d) log-log plot of 𝑢𝐼𝐷 against 619 
𝑡𝐷/𝑟𝐷

2 for different values of the dimensionless unsaturated thickness 𝑏𝐷.  620 
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 622 

 623 

Figure 3 log-log plot of  𝑠𝐼𝐷 against 𝑡𝐷/𝑟𝐷
2 for different angles of well screen and comparison with the ZZ 624 

solution for a) dimensionless piezometer location (0, 0.05, 0.9), and b) dimensionless piezometer location 625 
(0, 0.05, 0.1).  626 
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 628 

 629 

Figure 4 log-log plot of  𝑠𝐼𝐷 against 𝑡𝐷/𝑟𝐷
2 for different dimensionless lengths of horizontal well screen 630 

and comparison with the ZZ solution for a) dimensionless piezometer location (0, 0.05, 0.9), and b) 631 
dimensionless piezometer location (0, 0.05, 0.1).  632 
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 635 

 636 

Figure 5 Vertical profiles of 𝑠𝐼𝐷 in saturated and 𝑢𝐼𝐷 in unsaturated zones for different angles of well 637 
screen corresponding to various dimensionless times. 638 
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 640 

Figure 6 log-log plot of  𝑊𝐷 against 𝑡𝐷 for different values of the dimensionless unsaturated parameter 641 
𝜅𝐷 and the ZZ solution with a) three angles of the slant well screen (𝛾𝑧 = 0, π/4, and π/2), and b) three 642 
dimensionless lengths of the horizontal well screen (𝐿𝐷 = 0.1, 1.0, and 10). 643 
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 645 

  646 

 647 

Figure 7 a) The grid mesh of the unsaturated-saturated system used in the Galerkin finite element 648 
COMSOL Multiphasic program, and b) the vertical profiles (xz-planes) of the drawdown in the 649 
unsaturated-saturated system on t=210 min for the synthetic case. 650 
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 652 

Figure 8 a) Comparison of synthetic drawdown in saturated zone generating from numerical solution 653 
with fitted analytical solutions using ZZ solution, ZWP solution and our solution, and b) Comparison of 654 
synthetic drawdown in unsaturated zone generating from numerical solution with our solution. 655 
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