- 1 As the editor and the referees all mentioned the spelling and grammar in our manuscript, a native
- 2 English-speaking expert have edited it to improve the English expressions of the whole manuscript.
- 3 Follows are some specific changes based on the editor and referees' comments.
- 4
- 5 Edit based on the editor's comments:
- 6 P1L14-17: Changed the sentence to "Archived Landsat images, historical land use maps and
- 7 hydrological records were introduced to derive the long term spatial distribution of natural and crop
- 8 vegetation and the corresponding biomass levels."
- 9 P1L22-24: Changed the last sentence of Abstract to "This ratio reflects the reaction of land and
- 10 water development to a changing climate and an altering social-economic conditions at the river
- 11 basin level, therefore, it could be used as an indicator for water and land management at river basins."
- 12 P2L10: Changed "water conditions" to "water availability conditions"
- 13 P2L14-16: Changed the sentence to "However, few studies have investigated how the vegetation
- 14 system evolved in response to the changes in water regimes at the basin scale."
- 15 P2L23: Changed "missed" to "lacking"
- 16 P2L28: Changed "provides" to "provide"
- 17 P2L32: Changed "to reflect the status of the vegetation and widely" to "which have been widely"
- 18 P2L35: Changed "enabled the possibilities of reconstructions of" to "been applied to reconstruct"
- 19 P3L2: Changed "the way of" to "use of"
- 20 P3L18: Changed "of" to "in"
- 21 P3L21: Changed "such as Gobi desert" to "such as the desert, Gobi..."
- 22 P3L22: Changed "is" to "are"
- 23 P4L8: Changed "could" to "can"
- 24 P4L9: Changed "fetch up" to "reach up"
- 25 P4L13: Changed the sentence to "River inflow from the North Qilian Mountain constituted the
- 26 primary water source for the river basin."
- 27 P5L3: Changed "elevated" to "increasing"
- 28 P7L20-21: Added the units of biomass to the equations
- 29 P7L32: Edited the paragraph to "The crop and natural vegetation areas in previous dynasties (Table
- 30 1) were derived from Lu (2015)'s results. In Lu's study, historical cropland was reconstructed based
- 31 on population, grain yield and ancient ruin distributions (Lu *et al.*, 2015). Natural vegetation
- 32 distributions were estimated based on the assumption that people tended to select natural oases
- 33 (grassland and forest) rather than desert for reclamation in historical periods because the former
- have better water and soil conditions in these arid regions, while the abandoned croplands desertified.
- 35 Thus, natural vegetation for previous dynasties could be evaluated based on the changes in cropland
- between the previous and current dynasties (Lu *et al.*, 2015)."
- 37
- 38 Edit based on referees' comments:
- **39** Referee 1
- 40 2) P2, Lines22, there were some references about the historical landscape changes about this
 41 research area, and please cite these literatures, for example, "Nian, Y. Y., X. Li, and J. Zhou.
 42 2017.' Landscape changes of the Ejin Delta in the Heihe River Basin in Northwest China from
 43 1930 to 2010.' International Journal of Remote Sensing 38 (2): 537-57. doi:

1 2	10.1080/01431161.2016.1268732".
3	We add "To a centurial scale, Nian (2017) found that the rapid expansion of cultivated land was the
4	primary force causing serious ecological deterioration in the HRB." to the Introduction Section.
5	
6	4) P3, Line20, the moving and semi moving dunes should be revised as the words of the mobile
7	dune and semi-mobile dune.
8	
9	We correct the "moving and semi moving dunes" to "mobile dunes and semi-mobile dunes" as
10	suggested.
11	(5) D2 Line 21.22 when did these measure homeon? places give more descriptions
12 13	5) P3, Line21-22, when did these percent happen? please give more descriptions.
15	We add "according to land cover map of 2011, data available at WestDC database
15	http://westdc.westgis.ac.cn/" to the sentence.
16	<u>Interna wester westers de la sentence.</u>
 17	6) P4, Figures1, please mark the name of the meteorological stations.
18	10) Yingluoxia Station is a key point to divide the upstream, midstream and downstream, but it is
19	hard to identify the position of this station. Please change the symbol and color in the Figrue 1.
20	Furthermore, Heihe River Basin is your study area, so I would suggest to draw out the upstream
21	area in figure 1 as well.
22	
23	We updated Figure 1 with: adding meteorological stations labelled with station names; adding
24	upstream area of the Heihe River Basin; changing the symbol and color of Yingluoxia Station.
25	
26	7) P5, Line8, the Juyan Lake started to retain water again in 2002, please make sure this is correct
27	or maybe you shall cite other reference about the lake restore.
28	
29	We added the references "(Nian et al., 2017)".
30	0) D5 Line 25 alored data the month of "the inclusion late and and a sub-contained and a state the
31 32	9) P5, Line25, please delete the words of "during late summer and early autumn", and retain the words of "from June to October".
32 33	words of from june to October .
33 34	We changed "during late summer and early autumn" to "from June to October"
35	we changed during face summer and early automine to nom suce to betober
36	11) Page 5, line 17. The study area has a long history and many human activities took place during
37	different periods. The ancient study periods given in this manuscript is incomplete. First, historical
38	documents support evidence that there are human activities in the Heihe River Basin in Sui Dynasty,
39	and this should be included. Also, you can combine those two dynasties in Sui and Tang Dynasties.
40	Second, there were prosperous human activities performed in the study area more than 150 years
41	during Xixia Dynasty. I think the history of the Heihe River Basin should include the Xixia Dynasty.
42	It is incomplete to ignore the above two important historical periods for HRB. Recommend to refer
43	to some papers to get the information about the human activities developed in the downstream of
44	the Heihe River Basin during the Xixia Dynasty. e.g., Hu and Li, 2014. Spatial distribution of ancient

|

- 1 agricultural oasis in Juyan, northwestern China).
- 2

We edited the "Tang dynasty" to "Sui-tang Dynasty" in the manuscript. And at the end of our manuscript, we add "Xixia Dynasty ruled the area for more than 150 years (AD 1038 - 1227) and prosperous human activities were recorded which might cause substantial changes to both crop and natural vegetation. Existing literature reported crop distribution in the lower reaches of HRB in Xixia using archaeological methods (Hu and Li, 2014), but data for crop and natural vegetation covering the entire basin is lacking in both literature and historical documents." to describe our limitation in Xixia dynasty.

10

11 13) P 6, Figures 2, the equation in the figure should be separated from the figure.

12

13 The equation in the figure was separated from the figure.

14

15 17) P10, from your results and Figure3, how to interpret (forcing mechanism) the vegetation
change in the west river of the lower reaches of the Heihe River from Yuan Dynasty to Ming Dynasty,
also how to interpret the vegetation change in the Gurina area from RC to 1987.

18

19 We add "The consistently increasing streamflow due to the warm climate (more notably for the past 20 two decades) and therefore increased precipitation and snow melting in upper reaches might have supported the expansion of crop vegetation. The increased streamflow might have supported the 21 22 rapid natural vegetation growth in the middle reaches as well, either through direct watering of the 23 river side vegetation system, or through water leakage from crop irrigation areas. However, 24 vegetation in the lower reaches did not show synchronous development. Obviously, overuse of water 25 in the middle reaches was the primary contributor which coheres with the existing literature (Nian et al., 2017; Zhao et al., 2016; Cheng 2002; Wang et al., 2007)." to the Discussion Section. 26

27

19) I think the discussion will be more convincing if the authors can further discuss the relationships between the climate change and human activities and the evolution of vegetation system. For example, how the climate influence the trend of vegetation changes can be analyzed according to the meteorological data or the previous studies. There is enough space to improve the discussion in the manuscript.

33

We add "Since 2000 (the post-development stage), crop vegetation distribution has slightly increased but natural vegetation has experienced a relatively faster increase. This could be attributed to two major reasons. The first is the elevated temperature and increased streamflow provided sufficient water for both crop and natural vegetation development, this could be evidenced by their significant relationship with both natural and crop vegetation areas (Figure7 c, d). The second is owing to the implementation of the water reallocation policy which aimed to "secure water supply to the lower course of the basin to avoid ecosystem degradation"." to the Discussion Section.

41

42 Referee 2

43 1) Page 3. Legends should be added to Figure 3.

- 1
- We updated Figure 3 with legends.
- 2 3

2) Page 7. Need more explanation for the data you quoted.

4 We rewrite P7L26-34 to "The crop and natural vegetation areas in previous dynasties (Table 1) were 5 derived from Lu (2015)'s results. In Lu's study, historical cropland was reconstructed based on 6 population, grain yield and ancient ruin distributions (Lu et al., 2015). Natural vegetation 7 distributions were estimated based on the assumption that people tended to select natural oases (grassland and forest) rather than desert for reclamation in historical periods because the former 8 9 have better water and soil conditions in these arid regions, while the abandoned croplands desertified. 10 Thus, natural vegetation for previous dynasties could be evaluated based on the changes in cropland 11 between the previous and current dynasties (Lu et al., 2015).".

12

13 3) Page 14. Figure 7 is not very clear to me.

- 14 We included more details in the caption to clearly provide information about the scatter 15 diagram and increased the font size and resolution of the figure.
- 17 4) In general view, natural vegetation and crops compete of water resources. Can you explain why
 18 in your results the natural vegetation and crops increase or decrease synchronously?
- 19

16

20 We add "The consistently increasing streamflow due to the warm climate (more notably for the past two decades) and therefore increased precipitation and snow melting in upper reaches might have 21 22 supported the expansion of crop vegetation. The increased streamflow might have supported the 23 rapid natural vegetation growth in the middle reaches as well, either through direct watering of the 24 river side vegetation system, or through water leakage from crop irrigation areas. However, 25 vegetation in the lower reaches did not show synchronous development. Obviously, overuse of water 26 in the middle reaches was the primary contributor which coheres with the existing literature (Nian 27 et al., 2017; Zhao et al., 2016; Cheng 2002; Wang et al., 2007)." to the Discussion Section. 28

- 29
- 30
- 50
- 31
- 32

33

- 34
- 35

36 A marked-up manuscript version on next page.

37

1 Evolution of Vegetation System in Heihe River Basin in the last 2000 years

- 2 Shoubo Li¹, Yan Zhao^{2,} *, Yongping Wei², Hang Zheng²
- 3 * Corresponding author

4 1 School of Geography and Remote Sensing, Nanjing University of Information Science &
5 Technology, Nanjing, China 210044

6 2 School of Earth and Environmental Sciences, the University of Queensland, Brisbane, Australia

7

4072

8

9 Abstract: The response of vegetation system to the long-term changes in climate, hydrology, and 10 social-economicy conditions in river basin is critical for sustainable river basin management. This 11 study aims to investigate the evolution of natural and crop vegetation systems in Heihe River Basin 12 (HRB) over the past 2000 years. Archived Landsat images -were applied to derive vegetation 13 spatial extent and biomass for 1987 to 2015. historical land use maps and hydrological records were 14 introduced to derive the long term spatial distribution of natureal and crop vegetation and the corresponding biomass levels. The area and biomass of the vegetation before 1987 were 15 reconstructed based on former research results the derived relationship between the vegetation 16 17 biomass and climatic and hydrological variables in the last 30 years with instrumental data. The key 18 major findings are: (1) both natural and crop vegetation have gone experienced three development 19 stages: Pre-development stage (before 1949Republic of China), rapid development stage 20 (1949Republic of China - 2000), and post-development stage (after 2000). Climate and hydrologvical conditions did not show significant impacts over crop vegetation while streamflow 21 22 presented synchronous changes with natural vegetation in the first stage. For the second stage, 23 warmer temperature and increasing streamflow were found to be important driven-factors for the 24 increase of both natural and crop vegetation increase in the middle reaches of HRB. For the third 25 stage, positive climate and hydrological conditions, together with policy interventions, supported the overall vegetation increase in both middle and lower HRB; (2) there was a much-significantly 26 27 faster increase of crop biomass than that of native vegetation since 1949 which could be exaplained 28 by the technologicaly development; and (3) the ratio of natural vegetation to crop vegetation 29 decreased from 16 at Yuan Dynasty to at about 2.2 since 2005. This ratio represents reflects the 30 relationshipresponse reaction of land and water development at river basin atreact to a changing 31 climate and an altering social-economic conditionsy atim the river basin level, therefore, it could be 32 used as an indicator for to plan the objective or examine the outcome of water and land management 33 at river basinsat river basin. 34

Key Words: Natural vegetation, crop vegetation, biomass, remote sensing, reconstruction, riverbasin

- 37
- 38

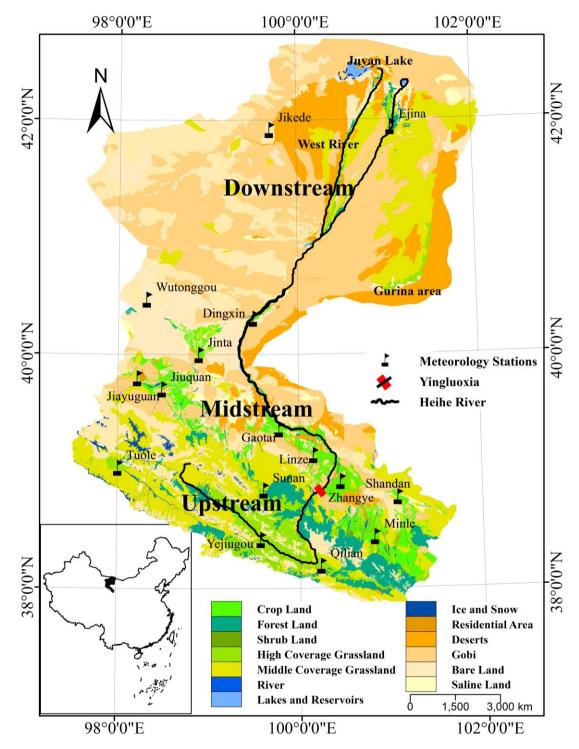
1 **1. Introduction**

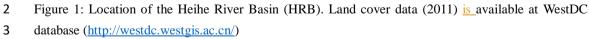
2 Natural vegetation plays a key role in maintaining functions of catchment ecosystems including 3 contributions to goods, services, and ecosystem biodiversity at arid and semiarid river basins 4 (Ahlström et al., 2015; Feng et al., 2013; Kefi et al., 2007). With the rapid growth of population 5 growth, an increasing amount of water worldwide has been allocated worldwide to support human 6 activities, particularly for agricultural irrigation, whereas water for natural vegetation, wetland, and 7 other catchment ecosystems might have been compromised. Consequently, natural vegetation 8 systems in water-limited regions have been degraded, and salinization and desertification have been 9 reported repeatedly (Huang et al., 2015; Li et al., 2007; Su et al., 2007; Xue et al., 2015). To 10 understand the An understanding of the development of natural vegetation under different water 11 availability conditions and its interactions with the human crop system, is vital for the sustainable 12 river basin management.

There are is an overwhelming amount of studies on the impact of land use and land cover changes, 13 14 driven by either human activities or climate changes, on the catchment hydrological regime and the water cycle (Esteban and Albiac, 2011; Ian and Reed, 2012; Leggett et al., 2003; Xue et al., 2015). 15 16 However, few studies have been found to investigated how the vegetation system evolved to 17 accommodate in response to the changes in water regimes at the basin scale. In the last decade, an 18 increasing number of studies have contributed to the knowledge of allocating the limited water 19 resources among different ecosystems in river basins to balance the economic development and 20 environmental sustainability (Wang et al., 2007). However, most of these studies were carried out 21 withinat a short time scalerange, either to identify the rationality of water allocation schemes reform 22 (Cheng, 2002; Yang et al., 2003) or to test the effectiveness of ecological restoration projects (Thevs 23 et al., 2015). Long-term changes study in vegetation systems in response to significant alternations 24 in climate, hydrology, and social-economyic conditions is missed-lacking in current literature 25 (Sivapalan et al., 2012).

26 The knowledge gap identified above happened partly due to the unavailability of long-term 27 instrumental data on vegetation and hydrological change at the basin scale. With the rapid 28 development of remote sensing technique, images acquired from multiple satellite platforms 29 provides an ideal method to track the landscape changes at river basins in the past five decades 30 (Nian, Y, et al., 2017; Beuchle et al., 2015). Among a mass of the remote sensing based metrics to 31 characterize vegetation system, spatial extent-or area, normalized differential vegetation index 32 (NDVI) and biomass are commonly recognized as the most effective indices-to reflect the status of 33 the vegetation and which have been widely applied in spatial analysis of landscape ecosystems 34 (Pettorellia et al., 2005; Pinsky and Fogarty, 2012). For the historical periods earlier than five 35 decades from now (previous years with no remotely sensed data), emerging approaches including dendrochronology, ice core analysis, and other empirical methods have enabled the possibilities of 36 reconstructions of been applied to reconstruct eco-hydrological elements and their long-term 37 38 variations (Turner et al., 2007; Lowry and Morrill, 2011). Several studies tried to reconstruct 39 historical cultivated vegetation systems, However, fewbut relativelylittle attentions has ve been paid 40 to historical landscapes and most of the limited existing reconstructions focused on the cultivated 41 areanatural vegetation distributions in historical records periods (Hu and Li, 2014; Xie et al., 2013; 42 Ramankutty and Foley, 1999). Moreover, factors and mechanisms driving vegetation evolutions

1 <u>were largely unsolved</u>have largely remained neglected.


The Heihe River Basin (HRB), located in arid North-western China, is an important part of the 2 3 ancient Silk Road established in the Han Dynasty (206 BC - AD 220). It was also a trade center 4 between China and western countries, which facilitated a cultural and economic exchange for 5 approximately 1500 years. HRB is a typical inland river ecosystem, which includes natural 6 vegetation, irrigated crop, desert and terminal lakes. The middle course of the basin has an 7 agricultural history over more than 2000 years while the lower reaches areis located at the alluvial 8 fan - supporting local human civilization and ecosystem development (Fu et al., 2014). Increasing 9 agricultural development and changing climate and hydrology over the past 2000 years have 10 significantly changed the way of use of land and water resources use and have modified the 11 catchment vegetation system (Lu et al., 2015, Yan et al., 2016). More specifically, several decadal 12 scale studies have provided quantitative descriptions of agricultural and natural vegetation changes responding to the water transfer project implemented since 2000, which effectively prevented 13 further ecosystem degradation (Zhao et al., 2016; Zhang et al., 2015). Within a centurial scale, Nian 14 15 (2017) found that the rapid expansion of cultivated land was the primary force causing serious 16 ecological deterioration in the HRB. However, information about long term vegetation changes 17 responding to the rise and fall of civilizations, as well as the changed climate and hydrology 18 conditions, is currently lacking. Such information is crucial for an understanding of the ecosystem's 19 health and for promoting sustainable management in the basin. Therefore, HRB is an ideal study 20 area for investigating the evolution of vegetation system at river basin for a long time frame.


21 This The paper present study aims to understand the evolution of vegetation system vegetation 22 evolution in HRB over the past 2000 years in which , for which bBoth natural vegetation and crop 23 vegetation were are considered. The specific objectives of the present study are: In addition, this 24 paperSpecifically, it includes three objectives: Specifically, it includes three objectives: (1) to 25 determine the area and biomass of vegetation using remote sensing imagery for recent years (since 26 1987); (2) to reconstruct vegetation distribution and biomass levels for previous periods (before 27 1987) and (3) to determine potential driving factors for vegetation developments evolution. It is 28 expected that the methods developed and the findings obtained from this study could assist in 29 achieving an understanding of to understanding how current ecosystem problems were 30 ereatedemerged in the past and what their implications can be forare their implications for future 31 river basin management.

32 **2.** Material and Methods

33 2.1. Study area

34 HRB is the second largest inland river basin of-in China, which stretches between 38°-43 N and 35 98°- 102 E (Figure 1). The middle and lower course of HRB are occupied contain with different 36 several types of landscapes including river delta plain, terminal lakes, mobile dune and semi-mobile 37 dunesmoving and semi-moving dunes, and low mountains and hills. The unused land such as the 38 desert, Gobi and bare land accounts for more than 75% of the river basin while cropland only takes 39 up 4% (according to land cover map of 2011, data available at -WestDC database 40 http://westdc.westgis.ac.cn/). The rest of the landscape are distributed with natural oasis in which t. 41 The main vegetation types in these regions are dry steppes and shelter forests.

The terrain in HRB is a gradually tilt from southwest to northeast. The altitude of the area rangesd from <u>about</u> 820 to 1100 m. The region is occupied with a typical continental arid climate characterized by frequent wind, scarce rainfall, abundant sunshine and intensive evaporation. <u>The</u> <u>average annualAnnual average</u> temperature in this area <u>over the last three decades</u> is 8.3 °C during the last three decades (with remarkable seasonal variations). Temperatures <u>could-can</u> decrease to -37.6 °C in winter months and reach up to 43.1 °C in summer months (<u>while the</u> highest temperature normally <u>occurshappened</u> <u>aroundin</u> July), which <u>can reach</u> <u>ould fetch up to 43.1 °C</u>. The annual
 average pan evaporation in the Ejina oasis is 3,749 to 4,132 mm/year, which is much higher than

3 the mean annual precipitation (ranged from 7 to 101 mm/year) with substantial interannual

4 variations over the past three decades.

5 Benefiting from the Heihe River originated in the North of Oilian Mountains of Tibetan 6 Plateau, River inflow from the North Qilian Mountain constitutes the primary water source for the 7 river basin. It makes HRB an important grain production base and the region-HRB- has experienced 8 intensive agricultural activities to meet the grain demands of military events since the Han Dynasty 9 (121 BC - 220 AD) (Xie et al., 2013). Nowadays, the midstream is still one of the most important 10 agricultural belts in Northwest China. However, the increasing water abstraction for irrigationne, along with elevated increasing usage for domestic purposes in middle reaches, has substantially 11 12 consumed the available water supplywater for downstream systems over the past several decades. 13 Consequently, the Juyan Lake shrank dramatically in the last 100 years, and dried-up in 1992 (east 14 Juyan lake). Since the late 1990s, the Chinese government has implemented a series of policies to ensure secure that water delivered to lower course of the basin was enough water to the required 15 16 amount of water for sustaining the ecosystems in lower river courses and to avoid any further 17 degradations. In 2002, the Juyan Lake (east) started to retain water again which was taken as an 18 important sign of ecosystem recovery and it is reported the degradation trend of the downstream of 19 Heihe River has been changed by water transfer project (Nian et al., 2017).-

20 2.2. Study period

We selected the past 2000 years as our study period, which started from the Han Dynasty (206 BC
AD 220) (Table 1). This timescale covered several ancient dynasties of China, the Republic of
China (RC), and the Peoples' Republic of China. The period has experienced dramatic changes in
climate, land use, runoff, management policy, population, social and ecological developments. All
these factors could contribute to changes in water cycles within the river basin and <u>can</u>, therefore,
influence vegetation distributions.

27 Table 1: major dynasties during the selected study period (Lu, *et al.*, 2015).

Dynasty	Period	Main production
Han Dynasty	206 BC - AD 220	Agriculture
Wei-Jin Era	AD 220 – AD 420	Animal husbandry
<u>Sui-</u> Tang Dynasty	AD 581 – AD 907	Agriculture
Yuan Dynasty	AD 1271 – AD 1368	Animal husbandry
Ming Dynasty	AD 1368 – AD1644	Agriculture
Qing Dynasty	AD 1644 – AD 1912	Agriculture
Republic of China (RC)	AD 1912 – AD 1949	Agriculture
The Peoples' Republic of China (PRC)	Since AD 1949	Agriculture

28 2.3. Determining vegetation distribution and estimating vegetation biomass

29 2.3.1. Landsat image preprocessing

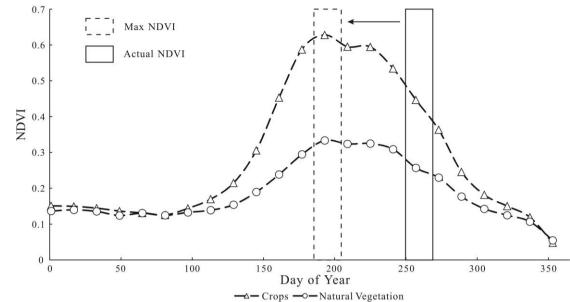
- 30 Landsat images were used to derive vegetation distribution and biomass since 1980s. We used all
- 31 available cloud-free Landsat images in HRB to derive vegetation dynamics for 1987 to 2015. Five
- 32 Landsat scenes (path/row 133/31, 133/32, 133/33, 134/31, 134/32) for each year were required to

cover the area. The collected images covered the timescale ranging from 1987 to 2015 except for
 1989 and 1996 when there were no high-quality images. Most of these images were acquired during
 late summer and early autumn (from June to October) to represent the growing season for crops and
 natural vegetation in the study area.

- 5
- 6
- 7

8

9 The data products Landsat datasets containing digital numbers (DN) were downloaded from the 10 United States Geological Survey (USGS) Earthexplorer website (http://earthexplorer.usgs.gov/). 11 The DN values were converted into top-of-atmosphere (TOA) reflectance using the radiometric gain 12 and offset values associated with each Landsat images. Then a Quick Atmosphere Correction 13 (OUAC) method was adopted to account for atmospheric scattering and to derive land surface 14 reflectance in order to ensure that the change detection analysis truly detected changes at the Earth's 15 surface rather than solar illumination differences or potential differences in atmospheric conditions. 16 The normalized Differential Vegetation Index NDVI was then calculated using the red and near-17 infrared bands for each year.


18 As demonstrated in-with MODIS NDVI series (Figure 2)-with phenology profile of, natural and 19 crop vegetation derived from Moderate Resolution Imaging Spectroradiometer. (MODIS), NDVI 20 presented significant seasonal variationsphenology cycles. Since the collected annual, Landsat 21 images were acquired at different dates (sometimes in different months) of a year, the above 22 calculated NDVI values would might have included this seasonal variations these seasonal variations 23 and not suitable for inter annual comparisons. To compensate this effect, we used the MODIS NDVI 24 profile in 2013 to calibrate the Landsat NDVIs to annual maximum NDVI, which could effectively 25 reflect the same growth stage of vegetation in multiple years, using a linear interpolation algorithm. 26 Specifically, with the knowledge of acquisition date of Landsat image for a specific year, the ratio 27 of MODIS NDVI for that date to the maximum MODIS NDVI was calculated and this ratio was 28 applied to Landsat derived NDVI to estimate calculate maximum NDVI for that year. The method 29 could be presented with the following equation:

30

$$NDVI_{L-max} = NDVI_{Li} \times \frac{NDVI_{M-max}}{NDVI_{Mi}}$$
(1)

where L stands for Landsat, M stands for MODIS, i stands for the date when Landsat NDVI need
 calibration. MODIS 250m NDVI product (i.e. MOD13Q1) was applied in this procedure. Only the
 data ofin 2013 was used with the consideration that annual vegetation growth would follow a similar
 phenology cycle. Thus, it is necessary to use the 2013 NDVI series to calibrate Landsat NDVI in

1 extra years without causing significant uncertainties in the final results.

2

3 Figure 2: *NDVI* profile for natural vegetation and crops in 2013. <u>The rectangles indicated the scheme of</u>

4 <u>calibrate actual Landsat NDVI (solid rectangle) to annual maximum NDVI (dash rectangle). The equation</u>
 5 in the figure indicated the scheme for calibrating the actual NDVI values (L stands for Landsat, M stands

6 for MODIS, i stands for the date when actual *NDVI* need calibration)

7 2.3.2 Determining vegetation areas and biomass since the 1980s with satellite images

8 Two rounds of threshold analysis were applied to determine natural and crop vegetation distributions 9 in HRB since the 1980s. Through analyzingan analysis of the NDVI histogram distribution 10 characteristics, 0.12 was selected as the first threshold value Non-vegetation landscapes, including 11 water surfaces, deserts, residential areas and other bare surfaces, were masked out through analyzing 12 the NDVI histogram distribution characteristics, to mask out non-vegetation landscapes, including 13 water surfaces, deserts, residential areas and other bare surfaces selecting 0.12 as the first threshold 14 value and making minor verify for each year. Then, the second round of threshold analysis was 15 introduced to separate crop vegetation from natural vegetation according to their phenology 16 differences (Figure 2). BrieflyIn short, we randomly sampled the vegetation maps and derived the 17 average NDVI levels for natural and crop vegetation, respectively. Then, 0.35 was set as the second 18 threshold to separate crop (≥ 0.35) and natural (< 0.35) vegetation. A most recent land cover map (i.e. 19 2011) created by the Cold and Arid Regions Environmental and Engineering Research Institute, 20 Chinese Academy of Sciences, was introduced to assist identifying vegetation types. The 21 preliminary results wasere first overlaid with each year's Landsat images to check the accuracy. The 22 threshold for the year was adjusted when it presented significant errors in the classification results. In addition, the results in 2000 and 2011 were verified with a set of land use maps (2000, 2011) 23 24 obtained from the WestDC database (http://westdc.westgis.ac.cn/). A detailed scheme of inter-25 comparison of land cover maps between this study and existing results were detailed in Zhao et al., 26 (2016). Overall, the two datasets presented substantial consistency where kappa coefficients (k)27 were 0.7206 and 0.6731 for 2000 and 2011. Areas of natural and crop vegetation for each year were 28 calculated by summing areas of every small patch of natural and crop vegetation respectively.

29 In order <u>T</u>to study the vegetation development and water usage, we calculated biomass for natural

1 2 3 4 5 6 7	and crop vegetation wasere calculated using-based on – NDVI. Regression models established by Zhao et al. (20062007, 2010) for HRB were adopted to quantify biomass for both natural and crop vegetation. In those Zhao's research, the herbaceous biomass was measured by means of dry biological weighing methods and the field measured biomass for natural and crop vegetation in this region showed high correlation with NDVI ($R > 85\%$ and $p < 0.01$)-in the same area and t Therefore, the following formula equations was were established for natural and crop vegetation respectively. Biomass (g/m^2) = 327.4 × NDVI + 102.29 for natural vegetation (Zhao et al. 2007) (± 2)		
8	Biomass $(g/m^2) = 1,789 \times NDVI + 559.68$ for crops (Zhao et al. 2010) (23)		
9 10	We used the equations above to calculate the biomass from 1980 pixel by pixel each year and use regional statistics method to acquire natural vegetation biomass and crops biomass of the study area.		
11 12	These two equations were applied to the NDVI _{L-max} series created in section 2.3.1 to obtain the crop and natural vegetation biomass since 1980s in HRB.		
13 14	2.3.3 Reconstructing <u>Historical</u> vegetation distributions and biomass levels <u>in historical</u> periods		
15	The crop and natural vegetation areas in previous dynasties (Table 1) were derived from Lu (2015)'s		
16	results. In Lu's study, historical cropland was reconstructed based on population, grain yield and		
17	ancient ruins distributions (Lu <i>et al.</i> , 2015). Natural vegetation distributions were estimated based		
18 19	on the assumption that people tended to select natural oases (grassland and forest) rather than desert		
20	for reclamation in historical periods because the former have better water and soil conditions in these arid regions, while the abandoned croplands desertified. Thus, natural vegetation for previous		
21 22	dynasties (Lu <i>et al.</i> , 2015).		
23	Lu (2015) reconstructed vegetation distribution in past 2000 year in our study area to analyze the		
24	evolution of human water relationships. In Lu's study, the historical cropland was reconstructed		
25	based on population, grain yield and ancient ruins distributions (Xie, 2013). The area of natural		
26	vegetation was estimated based on two assumptions: (1) people selected the regions with natural		
27	oases (grassland and forest) rather than desert for reclamation in the historical periods because the		
28	former have better water and soil conditions in these arid regions, and (2) once the reclaimed		
29 30	farmlands were abandoned and no vegetation was covered, they were subsequently decertified (Lu et al., 2015). The crop and natural vegetation area of each dynasty was calculated based on Lu's		
30 31	results.		
32	The vegetation biomass in the historical periods was not available in the literature. To estimate		
33	historical vegetation biomasses, we first established the relationship between biomass and Using		
34	the satellite-based results since the 1980s, we reconstructed the vegetation biomass based on its		
35	relationship with several variables which could have potential impact on the vegetation development.		
36	The <u>selected</u> <u>candidate</u> -variables <u>are-include</u> temperature (<i>T</i>), river flow from upstream (<i>Q</i>), river		
37	flow to Juyan Lake (Q_l) , groundwater recharge (Q_g) and precipitation (P) . T and P records were collected from the surrounding weather station (Figure 1). Piver flow to Juyan Lake was determined		
38 39	collected from the surrounding weather station (Figure 1). River flow to Juyan Lake was determined according to the records measured at Ejina station. Streamflow through Yingluoxia gauge station		
40	stands for the total upstream inflow to the study area (Q) . Groundwater reserves data were obtained		

I

- from the government statistics yearbook. The component of streamflow consumed for vegetation developments (ΔQ) was then determined by deducting Q_l and Q_g from Q. With this established database, a stepwise regression method was introduced to explore relationships between biomass (biomass for natural vegetation, biomass for crops and, the total biomass) and the selected hydrological and climatic metrics. The significant correlation among total biomass, ΔQ and T were found ($R^2 = 0.612$). As indicated by the regression model, the significant relationship between total
- 7 <u>biomass and both energy (T)</u> and water supply (ΔQ) present positive effects over vegetation 8 productivity was found as listed below ($R^2 = 0.612$).

9 Total Biomass = $39.246 * T + 9.312 * \Delta Q - 345.671$ (4)

$$10 \qquad \Delta Q = Q - Q_l - Q_g \qquad (5)$$

11 We then applied equation $\underline{4}$ to estimate historical total biomass levels using the corresponding (*T*, 12 ΔQ) settings. Specifically, historical *T* was derived from paleoclimate records reported by Yang 13 (2002). *Q* estimations by Sakai et al. (2012) based on glacier mass balance analysis were adopted. 14 Since the spatial extent of the lake did not change <u>much-considerably</u> in historical periods, Q_l was 15 assumed to be equal to evaporations from the lake surface which could be derived from public 16 articles (Xiao and Xiao, 2008):; Q_g was set to be 0 based on the assumption that groundwater level 17 did not change over the historic periods when agricultural activities were relatively small.

18 Unlike crop biomass which was largely influenced by technological development, the biomass of 19 natural vegetation was much-considerably less influenced by human activities. Therefore, we made 20 an assumptionassumed that biomass density for natural vegetation in the region over the study 21 period-did not change over the study period. According to the Landsat-based results for the past 30 22 years, the average biomass density for natural vegetation was stable at about 190 g/m² and this value was applied to historical vegetation maps to get the corresponding biomass estimations for natural 23 24 vegetation. Crop biomass was then estimated by deducting the component for natural vegetation 25 from the total biomass estimations. Biomasses for historical natural and crop vegetation were further 26 estimated.

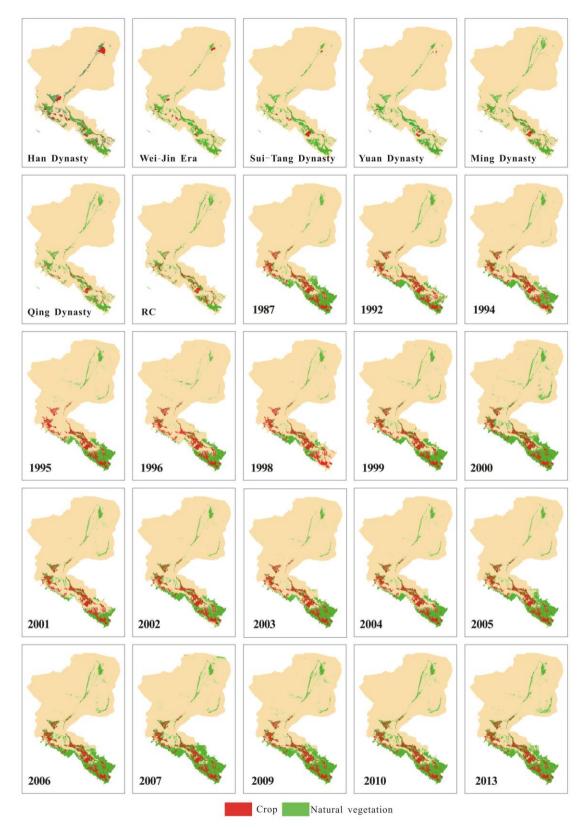
27 2.4 Determination of potential driving factors for vegetation developments

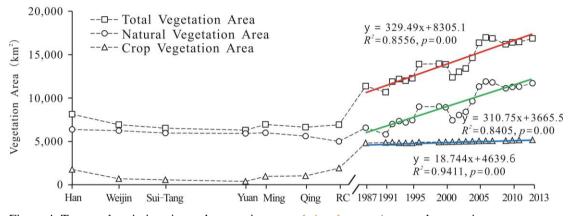
28 Multiple linear regression analysis was adopted to investigate the potential driving factors causing 29 changes in spatial extent of vegetation and its biomass levels. Hydrological variables including Q, 30 ΔQ and climatic variables including P and T were related to spatial extents and biomass levels of 31 natural and crop vegetation through multiple linear regression analysis to find-assess whether or 32 notif there were any significant relationships. These selected variables were also taken as 33 independent variables to find the quantitative models between these variables and the vegetation 34 spatial extents. The regression analysis was applied to the dataset covering the entire study period and the sub-dataset since 1980s (derived from Landsat) respectively to check the robustness of the 35 36 relationship. As the reconstruction data for the historical periods might incur great uncertainties in 37 records and estimations, the regression analysis was conducted for the whole study period and the 38 recent decades with instrumental data respectively. The analysis was performed with the IBM SPSS 39 Statistics software package (version 20.0).

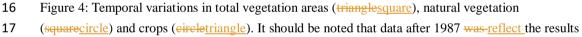
40 3 Results

1 3.1 Spatial and temporal variations in vegetation distribution in the past 2000 years

2 The reconstructed natural (green) and crop (red) vegetation distributions in-spanning the past 2000 3 years are shown in Figure 3. Historic maps (before 1987) were derived from Lu's results (Lu et al., 4 2015) and maps after that were interpreted from Landsat images. The spatial extent of crop 5 vegetation in both midstream and downstream of HRB has changed significantly over the study 6 period. Historic distribution-Distribution of crops was focused within the relatively small regions 7 with certain variations Ejina and Jinta in Han dynasty. Since Tang dynasty, the major crop 8 distribution shifted to the regions surrounding the current Zhangye City, while cropland in lower 9 reaches were largely decreased. It was untilSince the establishment of the PRC the crop vegetation 10 started tohad increased at a high rate, especially in the midstream. As clearly demonstrated in the 11 maps, there were crop areas distributed in downstream regions around Juyan Lakes in historic 12 periods, however, in the modern China, crops were distributed mainly in the middle basin of HRB. 13 As for natural vegetation: prior to Yuan Dynasty, natural vegetation in downstream was primarily 14 distributed along the East river channel. Vegetation distributions along the West River were 15 observed since the Ming Dynasty. For modern China (after RC), natural vegetation presented an 16 overall decrease from RC to 1980s and 1990s. A recovering trend wasere observed since the 17 2000s.there There were few changes in natural vegetation distribution in the midstream regions in ancient dynasties (prior to Qing Dynasty). From 1949 to 2000, natural vegetation in the midstream 18 19 basin has substantially significantly increased with large substantial inter-annual fluctuations. After 20 2000, vegetation distribution was relatively stable at a high level. The downstream vegetation has 21 experienced gradually increase corresponding to the crop area decreasing during these periods.






Figure 3: Reconstructed natural (green) and crop (red) vegetation distributions in the past 2000 years.
Historic maps (before 1987) were derived from Lu's results (Lu *et al.*, 2015) and maps after that were

- 4 interpreted from Landsat images.
- 5

6 The temporal variation of vegetation areas over the past 2000 years is presented in Figure 4. The

1 total vegetation area increased by 8,732 km² during the studied period. Historically, total vegetation 2 within HRB experienced a slight decrease, from about 8,122 km² in Han Dynasty to about 6,918 km² in the Republic of China. Natural vegetation for this period constantly decreased by 21% to 3 4 only 5,000 km². Cropland for the same period presented more variations: ilt had a large spatial 5 extent inat Han Dynasty at about 1,755 km², and then gradually decreased to about 379 km² in Yuan 6 Dynasty. From the Ming Dynasty onward, it started to increase again and reached a peak of 1,917 7 km² in the Republic of China. Situations were different in the period of modern China. Total vegetation area increased from about 6,918 km² to 11,362 km² in 1987 and to 13,863 km² in 2000 8 9 with an increasing rate of 2% per year, while the crops have substantially increased by about 150% 10 to 4,939 km² in 2000. In the same period, natural vegetation has also substantially increased from about 6,559 in 1987 to about 8,924 km² in 2000. After 2000, the increasing rate of the crop area has 11 12 decreased from 3% per year to 0.3% per year while the natural vegetation has substantially increased 13 to about 11,691 km² in 2013, resulting in the total vegetation area keeping steadily increased steadily to 16,854 km² in 2013. 14

- 18 after applying a 3 years moving average to reduce the annual fluctuations.
- 19

15

20 The ratio of natural vegetation area to crop vegetation areas varied over the past 2000 years (Figure 21 5). The ratio, to some extent, reflected the relationship and interactions between the two vegetation 22 systems. As demonstrated in Figure 5, although small in scale, natural vegetation occupied a major 23 portion of the vegetation in this area in Han Dynasty and it substantially increased until Ming 24 Dynasty when the ratio peaked at 16. The increased ratio during this period could be attributed to 25 the degraded-decreased amount of farming activities (Figure 3, Figure 4). As agriculture started to boom since Qing Dynasty, the ratio decreased significantly to about 1.4 in the Republic of China. 26 Afterward, the ratio showed a constant increase with a rate of 0.06 per year ($R^2 = 0.8063$). Overall, 27 28 the ratio of natural vegetation area to crop vegetation areas during the modern China period was 29 relatively stable compared with to the great historic fluctuations and it ishas stabilized at around 2.2 30 since 2005.

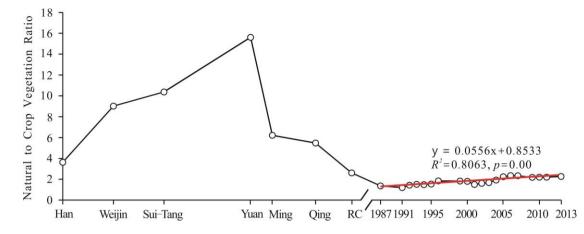


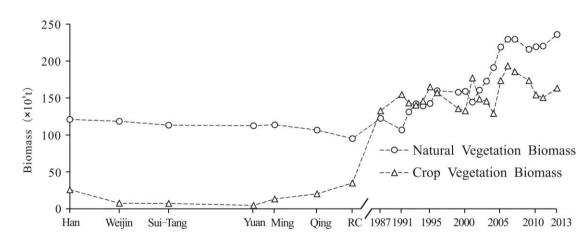
Figure 5: Changes in ratio between the areas of natural vegetation to crop vegetation in the past 2000years

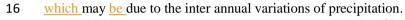
4 **3.2** Changes in vegetation biomass over the past 2000 years.

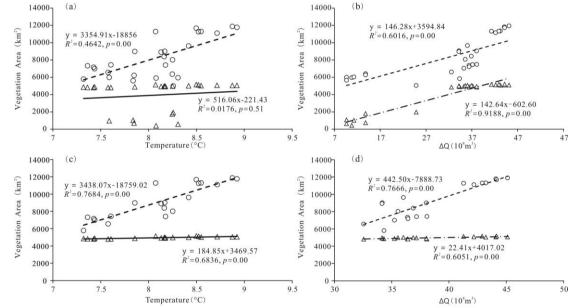
5 Using the Landsat-derived biomass estimations and the corresponding hydrological and climatic 6 records, we produced created the relationship between biomass and T and ΔQ streamflow as 7 demonstrated in equation 3. The relationship was applied to the long term T and streamflow records 8 to derive historic biomass estimations. As showed in Figure 6, biomass in natural vegetation in 9 historic periods (Han Dynastyprior to the Republic of China) had experienced a slight-decrease by 20% and the biomass of crop underwent a decrease before Tang Dynasty and increased after. Since 10 11 the Republic of China, biomass in natural vegetation has shown a gradually increase from about 95 12 \times 10⁴ t to 159 \times 10⁴ t in 2000. After 2000, the upward trend continued with a higher increasing rate-was observed. For crops, the annual biomass presented a sharp increase trend since 1949 by 13 about 4 times from RC to 1980s. and s A sSlight increase trend in past 30 years was observed. The 14 15 average productivity biomass per unit area of natural vegetation was stable while the average 16 productivity-biomass per unit area of crop increased by 2.2 times in-over the past 2000 years. The 17 average productive biomass per unit area of crop increased by about 180% since PRC.

19

1




Figure 6: Temporal variations in biomass of natural vegetation (triangle) and crops (circle) over thepast 2000 years

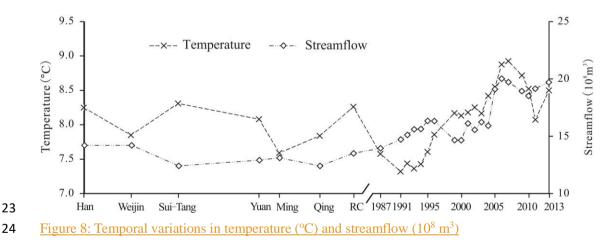

22 3.3 Impacts of hydrological and climatic variables over vegetation development in the past

1 **2000 years**

2 The regression analysis-on the relationship between vegetation development and hydrological and

- climatic variables and vegetation development show that both T and ΔQ presented an overall 3
- 4 positive effect on natural and crop vegetation distributions (Figure 7 a and b). From a holistic 5 perspective, T showed a significant impact over natural vegetation expansion while its effects on
- crops were quite limited. Meanwhile, ΔO exerted similar effects on both natural ($R^2 = 0.6016$, p =6
- 0.00) and crop ($R^2 = 0.9188$, p = 0.00) vegetation development over the past 2000 years. It is also 7
- found that T showed significant positive impacts over both natural ($R^2 = 0.7684$, p = 0.00) and crop 8
- 9 $(R^2 = 0.6836, p = 0.00)$ vegetation during the past three decades with instrumental data (Figure 7 c and d). Similar for ΔQ , it alone contributed about 77% and 60% of the area expansion since 1980s 10
- for natural (p = 0.00) and crop (p = 0.00) vegetation, respectively. A multiple factor regression 11
- 12
 - analysis shows that increasing T and ΔO could explain over 90% of the vegetation development-or
- (i.e. 96.0% for natural vegetation and 91.7% for crops). Although the development of vegetation 13
- 14 did not show an obvious evident relationship with precipitation, there were few some years that
- 15 during which vegetation area was less than other years in last 30 years, for example, 1992 and 2001,

18 Figure 7: Correlation between vegetation (circle: natural vegetation, triangle: crops) and T (a, c) and 19 ΔO (b, d). (a) and (b) presented all reconstructed data for the past 2000 years, (c) and (d) only used 20 Landsat-derived estimations.


21 4 **Discussions and Conclusions**

17

22 This study paper presented an empirical study of investigating the evolution of vegetation systems in the HRB over the past 2000 years. The vegetation system was categorized into natural vegetation 23 24 and crop vegetation. The area and biomass of each vegetation system since the 1980s were estimated 25 based on the remote sensing image data. For the historical periods, the area and biomass of each 26 vegetation system were reconstructed based on the relationship between the area and biomass of the 27 vegetation system and the climatic and hydrological variables in the last 30 years with the measured 28 data. Some major research findings and their implications for future research and river basin 1 management practice are discussed as follows: will be discussed below.

2

3 Both natural and crop vegetation development in Heihe River BasinHRB, based on the change in 4 area and biomass in the past 2000 years (Figures 3, 4, 7), can be divided into 3 stages: (1) Pre-5 development stage (before 1949RC), (2) Rrapid development stage (1949RC-2000), and (3) pPost-6 development stage (after 2000). In pre-development stage, agriculture was developed at a low 7 leveler, resulting in a high natural to crop vegetation ratio. Water was not limiting agricultural 8 activities. No significant contributions from climatic (T and P) and hydrological (Q) variables were 9 observed in the regression analysis as welleither. The small scale and decreasing crop vegetation 10 distributions could be attributed to the small population size. Previous scholars studies have reported 11 that agricultural activities for these periods were primarily aimed to level only for meet the political 12 and military needs (Xie et al., 2013). However, the slightly decreased streamflow (Sakai et al., 2012) might be thea key contributor to the overall decreased natural vegetation prior to the Ming Dynasty, 13 as evidenced by the synchronous change between vegetation area and streamflow records (Figure 14 15 4, Figure 8) and the regression relationship between the two (Figure 7a). In the Ming Dynasty, temperature dropped while streamflow slightly recovered (Figure 8). The decreased 16 17 evapotranspiration and increasing water availability might have stimulated vegetation growth along 18 the river channel as demonstrated in Figure 3, especially for the natural vegetation distributions 19 along the West River. During this period, the temperature fluctuated marginally and the terminal 20 lake area did not change much (Yang, et al., 2002; Lu, et al., 2015). The natural vegetation showed a slight decrease trend as the runoff from upstream decreased from 14.2×10^8 m³ to 13.5×10^8 m³. 21 22 The natural vegetation/crop ratio came to the highest point in the Yuan Dynasty in Fig.5.

After 1949RC (the rapid development stage), crop area in HRB experienced rapid increase as food 25 26 security had been the priority agricultural policy in China. The government encouraged farmers to 27 reclaim unused land and promoted lots of numerous irrigation projects (Zhang, et al., 2015). In 28 addition, the shelter forest system established after the 1980s not only protected the existing 29 cropland but also made it possible to change the desert surrounding oasis into farmtillable lands. 30 The consistently increasing streamflow due to the warm climate (more notably for the past two 31 decades) and therefore increased precipitation and snow melting in upper reaches might have 32 supported the expansion of crop vegetation. The increased streamflow might have supported the 33 rapid natural vegetation growth in the middle reaches as well, either through direct watering of the 34 river side vegetation system, or through Natural vegetation during this period also experienced rapid

increase, temperature increase by $0.5 - 1^{\circ}$ C and upper stream runoff increase from 13.5×10^{8} m³ to 1 2 15 × 10⁸ m³ - could explain it. And water leakage from crop irrigation areas may also contribute to 3 natural vegetation development. However, vegetation in the lower reaches did not show 4 synchronous development. Obviously, overuse of water in the middle reaches was the primary 5 contributor which <u>agreed well</u>-coheres with with-the existing literatures (Nian et al., 2017; Zhao 6 et al., 2016; Cheng 2002; Wang et al., 2007). As a consequence of the rapid development of 7 agriculture, the terminal lake (Juyan Lake) of about 900 km² was dried up and groundwater was 8 over-pumped for irrigation. 9

- After Since 2000 (the post-development stage), crop vegetation distribution has slightly increased but natural vegetation has experienced a relatively faster increase. This could be attributed to two 10 11 major reasons. The first is the elevated temperature and increased streamflow provided sufficient 12 water for both crop and natural vegetation development, this could be evidenced by their significant relationship with both natural and crop vegetation areas (Figure 7 c, d). The second is owing to the 13 14 implementation of the water reallocation policy which aimed to kept relatively stable as a result of 15 the implementation of the policy "secure water supply to the lower course of the basin to avoid 16 ecosystem degradation". Natural vegetation keeps increasing during this period because the 17 temperature and runoff continue to increase. These stage developments were the result of changes 18 in agricultural and water policies and changes in climatic and hydrologic variables.
- 19 There was a much faster increase of crop biomass than that of native-natural vegetation since 1949 20 (Figure 6). The average biomass of crop per unit area increased by 180% and while the biomass of 21 natural vegetation did not change much considerably. Lu et al (2015) also found that the agricultural 22 water productivity increased by 6 times in the past 50 years in the middle reach of Heihe RiverHRB. 23 This is the result of due to technological progress on agriculture and water application. After 1949, 24 especially after reform and opening of the national economy in the late 1980s, there were great 25 improvements in irrigation, crop varieties, chemical fertilizers and pesticides, and mechanization in 26 HRB. Technological improvement influences the relationship between crop and natural vegetation. Advances in agricultural and water technologies enabled more crop biomass without the 27 28 increase of crop area and facilitated the transfer of water from agriculture to downstream 29 ecological purposes without compromise of the middle stream economic benefit.
- The total vegetation area in HRB has been increased by 8,732 km² in the past 2000 years. Crop and 30 31 natural vegetation presented different evolutionary patterns (Figure 3 and Figure 4) and the ratio of 32 natural vegetation to crop vegetation ranged from 16 at Yuan Dynasty to at about 2.2 since 2005 33 (Figure 5). It is-was the result of the increase in: (1) -human water demand from agriculture and 34 urban development, (2) increase in agricultural and water technological development for improving 35 crop biomass, increase in(3) water allocation for the environment (terminal lake) and increases in(4) 36 temperature and upstream runoff. Any changes in these factors will bring about the change of in the 37 ratio of natural vegetation to crop vegetation. This ratio represents the land and water development 38 at river basin scale at changing climate and social-economy economic conditions. Thus, it could be 39 used as an indicator to of plan the objective or examine the outcome of water and land management 40 at river basin. More research is needed in future to develop an understanding of the mechanism of 41 dynamic interaction between natural vegetation and crop vegetation. With the knowledge of this 42 interaction, water and land would be better managed for the better balance between the human and 43 natural systems in river basins.

1 2 Finally, some limitations in our study need to be acknowledged. Seven ancient periods were studied 3 to track the long term vegetation dynamics, where the short-lived Sui Dynasty (AD 581 - 617) was 4 combined with the Tang Dynasty. However, some periods documented with human activities were 5 not included in the current study due to a lack of data. For instance, Xixia Dynasty ruled the area 6 for more than 150 years (AD 1038 - 1227) and prosperous human activities were recorded which 7 might cause substantial changes to both crop and natural vegetation. Exsisting literature reported 8 crop distribution in the lower reaches of HRB in Xixia using archaeological methods (Hu and Li, 9 2014), but data for crop and natural vegetation covering the entire basin is lacking in both literature and historical documents. Meanwhile, there was also an inconsistency between the reconstructed 10 11 historic vegetation distribution and remote sensing-based extractions. For reconstruction periods, 12 the priority was given to the river side regions while vegetation in remote areas were less discussed; 13 whereas for modern periods, remotely sensed images captured comprehensive vegetation 14 distribution in all regions. Moreover, <u>-Mmore</u> research is needed in future to develop an 15 understanding of the mechanism of dynamic interaction between natural vegetation and crop 16 vegetation. 17

- 18 Acknowledgement:
- 19 This project is supported by the National Natural Science Foundation of China (No: 41301036,

20 41501464, 91625103), Natural Science Foundation of Jiangsu Province, China(BK20130996)

and the Australian Research Council (Project No: FT130100274).

22

23 **References**

24

Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., Canadell,
J. G., Friedlingstein, P., Jain, A. K., Kato, E., Poulter, B., Sitch, S., Stocker, B. D., Viovy, N., Wang, Y.
P., Wiltshire, A., Zaehle, S., and Zeng, N.: The dominant role of semi-arid ecosystems in the trend and

variability of the land CO2 sink, *Science*, 348, 895-899, doi: 10.1126/science.aaa1668, 2015.

29 Beuchle, R., Grecchi, R.C., ShimabukuroY. E. a, b, Seliger, R., Eva, H.D., Sano, E., and Achard F.: Land 30 cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic 31 Applied 58. 116 remote sensing sampling approach. Geography, 127. doi: 32 10.1016/j.apgeog.2015.01.017, 2015

- 33 Cheng, G.: Study on the sustainable development in the He
- Cheng, G.: Study on the sustainable development in the Heihe River watershed from the view of
 ecological economics. *J Glaciol Geocryol* 24, 335–343, 2002.
- Esteban, E., and Albiac, J.: Groundwater and ecosystems damages: Questioning the Gisser–S ánchez
 effect, *Ecological Economics*, 70, 2062-2069, doi:10.1016/j.ecolecon.2011.06.004, 2011.
- Feng, X., Fu, B., Lu, N., Zeng, Y., and Wu, B.: How ecological restoration alters ecosystem services: an
- analysis of carbon sequestration in China Loess Plateau, *Scientific Reports*, 3, 2846, doi:
 10.1038/srep02846, http://www.nature.com/articles/srep02846#supplementary-information, 2013.
- 40 Fu, L., Zhang, L. and He, C.: Analysis of Agricultural Land Use Change in the Middle Reach of the
- 41 Heihe River Basin, Northwest China. Int. J. Environ. Res. Public Health 11, 2698-2712, doi:

42 10.3390/ijerph110302698, 2014.

- 43 Hu, N. and Li, X.: Spatial distribution of an ancient agricultural oasis in Juyan, northwestern China.
- 44 Frontiers of Earth Science, 8(3): 338-350, doi: 10.1007/s11707-014-0452-9, 2014.

- 1 Huang, G., Qin, X., He, L., Zhang, H., Li, Y., and Li, Z.: Nonstationary desertification dynamics of desert
- 2 oasis under climate change and human interference, Journal of Geophysical Research: Atmospheres, 120,
- **3** 11,878-811,888, 10.1002/2015JD023826, 2015.
- 4 Ian, M. F., and Reed, M. M.: Human impacts on terrestrial hydrology: climate change versus pumping
- 5 and irrigation, *Environmental Research Letters*, 7, 1-8, doi: 10.1088/1748-9326/7/4/044022, 2012.
- 6 Lowry, D. P. and Morrill, C.: Changes in the Global Hydrological Cycle: Lessons from Modeling Lake
- 7 Levels at the Last Glacial Maximum, American Geophysical Union, Fall Meeting, San Francisco,
- 8 California, USA, 5-9 December 2011, 2011.
- 9 Kefi, S., Rietkerk, M., Alados, C. L., Pueyo, Y., Papanastasis, V. P., ElAich, A., and de Ruiter, P. C.:
- Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems, *Nature*, 449, 213-217, doi:10.1038/nature06111, 2007.
- 12 Lan, Y., Ding, Y., and Kang E.: Variations and Trends of Temperature and Precipitation in the Mountain
- 13 Drainage Basin of the Heihe River in Recent 50 Years, *Plateau Meteorology*, 23, 724 727, 2004.
- 14 Leggett, K., Fennessy, J., and Schneider, S.: Does land use matter in an arid Environment? A case study
- 15 from the Hoanib River catchment, north-western Namibia, Journal of Arid Environments, 53, 529-543,
- 16 doi:<u>10.1006/jare.2002.1066</u>, 2003.
- 17 Li, X., Xiao, D., He, X., Chen, W., and Song, D.: Evaluation of landscape changes and ecological
- 18 degradation by GIS in arid regions: a case study of the terminal oasis of the Shiyang River, northwest
- 19 China, Environmental Geology, 52, 947-956, 10.1007/s00254-006-0536-2, 2007.
- 20 Lu, Z., Wei, Y., Xiao, H., Zou, S., Xie, J., Ren, J., and Western, A.: Evolution of the human-water
- relationships in the Heihe River basin in the past 2000 years, Hydrol. Earth Syst. Sci., 19, 2261–
- 22 2273, doi:10.5194/hess-19-2261-2015, 2015.
- 23 Lu, Z., Wei, Y., Xiao, H., Zou, S., Ren, J., and Lyle, C.: Trade-offs between midstream agricultural
- 24 production and downstream ecological sustainability in the Heihe River basin in the past half century,
- 25 Agricultural Water Management, 152, 233–242, doi:10.1016/j.agwat.2015.01.022., 2015.
- Lu, Z., Xiao H. Wei Y., Zou, S., Ren, J., and Zhang, Z.: Advances in the study on the human-water-
- ecology evolution in the past two thousand years in Heihe River Basin, Advances in Earth Science, 30(3):
 396-406, doi: 10.11867/j.issn.1001-8166.2015.03.0396, 2015.
- 29 Mi, L., Xiao, H., Zhu, W., Li, J., Xiao, S., and Li L.: Dynamic variation of the groundwater level in the
- middlereaches of the Heihe River during 1985-2013, Journal of Glaciology and Geocryology, 37(2),
 461-469, 2015.
- 32 Nian, Y. Y., Li, X., and Zhou, J.: Landscape changes of the Ejin Delta in the Heihe River Basin in
- Northwest China from 1930 to 2010. International Journal of Remote Sensing 38 (2): 537-57. doi:
 10.1080/01431161.2016.1268732, 2017.
- **54** 10.1080/01451101.2010.1208752, 2017.
- Pettorellia, N., Vika, J.O., Mysteruda, A., Gaillardb, J.M., Tuckerc, C.J., and Stenseth, N.C.: Using the
- 36 satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology &
- **37** *Evolution*, 20, 503 510, doi:10.1016/j.tree.2005.05.011, 2005.
- 38 Pinsky, M.L. & Fogarty, M. Lagged social-ecological responses to climate and range shifts in fisheries.
- 39 *Climatic Change*, 115, 883 -891. doi:10.1007/s10584-012-0599-x, 2012.
- 40 Ramankutty, N., and Foley, J.A.: Estimating historical changes in global land cover: Croplands from
- 41 1700 to 1992, Global Biogeochem. Cycles, 13(4), 997–1027, doi:10.1029/1999GB900046, 1999.
- 42 Sakai, A., Inoue, M., Fujita, K., Narama, C., Kubota, J., Nakawo, M., Yao, T. Variations in discharge
- 43 from the Qilian mountains, northwest China, and its effect on the agricultural communities of the Heihe
- 44 basin, over the last two millennia, Water Hist. 4, 177 196 doi:10.1007/s12685-012-0057-8, 2012.

- 1 Sivapalan, M., Savenije, H. H. G., and Blöschl, G.: Sociohydrology: A new science of people and water,
- 2 Hydrol. Process., 26, 1270–1276, doi:10.1002/hyp.8426, 2012.
- 3 Su, Y. Z., Zhao, W. Z., Su, P. X., Zhang, Z. H., Wang, T., and Ram, R.: Ecological effects of desertification
- 4 control and desertified land reclamation in an oasis-desert ecotone in an arid region: A case study in Hexi
- 5 Corridor, northwest China, *Ecological Engineering*, 29, 117-124, <u>doi:10.1016/j.ecoleng.2005.10.015</u>,
- 6 2007.
- 7 Thevs, N., Peng, H., Rozi, A., Zerbe, S., and Abdusalih, N.: Water allocation and water consumption of
- 8 irrigated agriculture and natural vegetation in the Aksu-Tarim river basin, Xinjiang, China, Journal of
 9 Arid Environments, 112, Part A, 87-97, doi:10.1016/j.jaridenv.2014.05.028, 2015.
- Turner, B. L., Lambin, E. F., and Reenberg, A.: The emergence of land change science for global
 environmental change and sustainability, P. Natl. Acad. Sci. USA, 104, 20666–20671,
 doi:10.1073/pnas.0704119104, 2007.
- 13 Wang, J. F., Cheng, G. D., Gao, Y. G., Long, A. H., Xu, Z. M., Li, X., Chen, H., and Barker, T.: Optimal
- 14 Water Resource Allocation in Arid and Semi-Arid Areas, Water Resources Management, 22, 239-258,
- 15 10.1007/s11269-007-9155-2, 2007.
- 16 Wang, Y., Xiao, H., and Lu, M.: Analysis of water consumption using a regional input-output model:
- Model development and application to Zhangye City, Northwestern China, Journal of *Arid Environments*73, 894–900, doi: 10.1016/j.jaridenv.2009.04.005, 2009.
- 10 75, 094-900, doi: 10.1010/j.jandenv.2009.04.005, 2009.
- 19 Xiao, S. and Xiao, H.: Advances in the study of the water regime process and driving mechanism in the
- 20 Heihe River basin, Adv. Earth Sci., 23, 748–755, 2008.
- Xie, Y., Wang, X., Wang, G., and Yu, L.: Cultivated land distribution simulation based on grid in middle
 reaches of Heihe River basin in the historical periods, Adv. Earth Sci., 28, 71–78, 2013.
- 23 Xie, Y.: Dataset of cultivated oasis distribution in the Heihe River Basin during the historical period,
- Heihe Plan Science Data Center, Lanzhou, China, doi:10.3972/heihe.092.2013.db, 2013.
- 25 Xie, Y., Wang, J., Wang, X. and Fan, P.: Assessing the evolution of oases in arid regions by reconstructing
- 26 their historic spatio-temporal distribution: a case study of the Heihe River Basin, China, Frontiers of
- 27 Earth Science, doi: 10.1007/s11707-016-0607-y, 2016.
- 28 Xue, X., Liao, J., Hsing, Y., Huang, C., and Liu, F.: Policies, Land Use, and Water Resource Management
- in an Arid Oasis Ecosystem, Environmental Man*agement*, 55, 1036-1051, 10.1007/s00267-015-0451-y,
 2015.
- 31 Yang, W., Khanna, M., Farnsworth, R., and Onal. H.: Integrating economic, environmental and GIS
- 32 modeling to target cost effective land retirement in multiple watersheds. Ecol Econ, 46, 249 267,
- **33** 10.1016/S0921-8009(03)00141-1, 2003.
- 34 Yang, B., Braeuning, A., Johnson, KR., and Shi Y.: General characteristics of temperature variation in
- 35 China during the last two millennia. Geophysical Research Letters, 29, 38-1 38-4,
 36 doi:10.1029/2001GL014485, 2002.
- 37 Zhou S., Huang Y., Wei Y., and Wang G.: Socio-hydrological water balance for water allocation between
- human and environmental purposes in catchments, Hydrol. Earth Syst. Sci., 19, 3715–3726, doi:
- **39** 10.5194/hess-19-3715-2015, 2015.
- 40 Zhao, W., Chang, X., He, Z., and Zhang Z.: Study on vegetation ecological water requirement in Ejina
- 41 Oasis, *SCI China Earth Sci*, 50, 121-129, doi:10.1007/s11430-007-2035-z, 2007.
- 42 Zhao, W., Niu, Z., Chang, X., and Li S: Water consumption in artificial desert oasis based on net primary
- 43 productivity. SCI China Earth Sci. 53: 1358-1364 doi:10.1007/s11430-010-4028-6, 2010.
- 44 Zhao, Y., Wei, Y. P., Li, S. B., and Wu, B. F.: Downstream ecosystem responses to middle reach regulation

- 1 of river discharge in the Heihe River Basin, China, Hydrol. Earth Syst. Sci., 20, 4469-4481,
- 2 doi:10.5194/hess-20-4469-2016, 2016.