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To Editor 

Dear Prof. Gelfan, 

Thank you very much for the comments. The manuscript has been further amended to address 

the issues raised. The point-by-point replies are listed below. 

 

If there are any further questions, please let us know. 

 

Lu Zhuo 

The Corresponding author (lu.zhuo@bristol.ac.uk ) 

University of Bristol 

 

The 1st Referee expressed reasonable concern that the presented results don’t allow a reader to 

evaluate the model’s applicability because of short duration of the calibration/validation period 

(2 years) and suggested prolonging it. I have checked the streamflow data availability for the 

Vermilion River at Pontiac and found that there are at least 8-year period of continuous daily 

records from 2009 till 2017. Importantly, this period covers the SMOS satellite data. Thus, I 

strongly recommend taking into account the criticism of the referee and prolonging the study 

period.  

Reply: We thank the editor for the careful checking. In the study catchment, there have been 

many data gaps from 2013-2017 (see the figures below), and the data quality in 2012 was poor. 

As a result, only the data in 2010-2011 are consistent and of high quality. As pointed out by 

Liu and Han (2010), ‘Traditionally, hydrologists use rules of thumb to select a certain period 

of hydrological data to calibrate the models (i.e., 6 year data).’ However, their study has shown 

‘the information content of the calibration data is more important than the data length; thus 6 

month data may provide more useful information than longer data series.’  Therefore, the two 

years of high quality data adopted in the study are better than a longer period of poor quality 

data. We have added this explanation to the updated manuscript to clarify the issue.   

Reference: 

J. Liu and D. Han, Indices for calibration data selection of the rainfall-runoff model, Water 

Resources Research, doi:10.1029/2009WR008668, 2010 

mailto:lu.zhuo@bristol.ac.uk
http://dx.doi.org/10.1029/2009WR008668
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I consider that the next comment of the referee also requires more serious attention. His/her 

question related to ability of the XAJ model for reproducing soil moisture dynamics under 

frozen conditions. This ability is important because frequent soil freezing events in winter 

seasons are specific for the study basin. In their response to this comment, the authors argued 

that “XAJ model is very good at simulating the flow even during the winter season”. In my 

experience, this argument does not sufficient and good model’s performance in reproducing 

streamflow does not confirm the model’s performance in describing water content of frozen 

soil. Moreover, it is not too difficult tuning the model to short (2 years only) time-series of 
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streamflow data without considering frozen conditions at all. Unfortunately, I could not find 

examples of the XAJ model’s application for these conditions (the mentioned two-page paper 

Zhou et al, 2008 can hardly be considered as a convincing example). Thus, I recommend adding 

more results and discussion confirming ability of the XAJ model for reproducing soil moisture 

dynamics under frozen conditions 

Reply:  We agree that this can be misleading. It is better to add some text based on the 

comments from the editor and reviewer in the updated manuscript to let the readers be aware 

of the issue. 

--------------  to add in the manuscript ------------ 

The Pontiac catchment is characterized by soil freezing events in winter seasons. During 

freezing events, soil moisture transfer fundamentally differs from the unfrozen conditions 

(e.g. Gelfan, 2006). Although the XAJ model has been successfully applied in simulating 

flows in frozen soil conditions (e.g., see Zhou et al., 2008) as well as in this case study, the 

lumped XAJ model does not explicitly consider soil freezing, thus SMD simulations can be 

inaccurate for winter seasons and further research is needed to investigate this issue further.  

References: 

Gelfan A. N. (2006) Physically based model of heat and water transfer in frozen soil and its 

parametrization by basic soil data. IAHS Publ., 303, pp. 293-304. 

Zhou, S., Li, Y., Zhu, J., 2008. Application of Xin'anjiang model in severe cold region of 

Niqiu River. Water Resources & Hydropower of Northeast China, 26(9). 

DOI:10.3969/j.issn.1002-0624.2008.09.016 
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Abstract 6 

Reliable estimation of hydrological soil moisture state is of critical importance in operational 7 

hydrology to improve the flood prediction and hydrological cycle description. Although there 8 

have been a number of soil moisture products, they cannot be directly used in hydrological 9 

modelling. This paper attempts for the first time to build a soil moisture product directly 10 

applicable to hydrology using multiple data sources retrieved from SAC-SMA (soil moisture), 11 

MODIS (land surface temperature), and SMOS (multi-angle brightness temperatures in H-V 12 

polarizations). The simple yet effective Local Linear Regression model is applied for the data 13 

fusion purpose in the Pontiac catchment. Four schemes according to temporal availabilities of 14 

the data sources are developed, which are pre-assessed and best selected by using the well-15 

proven feature selection algorithm Gamma Test. The hydrological accuracy of the produced 16 

soil moisture data is evaluated against the Xinanjiang hydrological model’s soil moisture 17 

deficit simulation. The result shows that a superior performance is obtained from the scheme 18 

with the data inputs from all sources (NSE = 0.912, r = 0.960, RMSE = 0.007 m). Additionally 19 

the final daily-available hydrological soil moisture product significantly increases the Nash-20 

Sutcliffe efficiency by almost 50 % in comparison with the two most popular soil moisture 21 
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products. The proposed method could be easily applied to other catchments and fields with 22 

high confidence. The misconception between the hydrological soil moisture state variable and 23 

the real-world soil moisture content, and the potential to build a global routine hydrological 24 

soil moisture product are discussed.  25 

Keywords: Hydrological soil moisture state (SMD); Local Linear Regression (LLR); Gamma 26 

Test (GT); Soil Moisture and Ocean Salinity (SMOS) multi-angle brightness temperatures; 27 

North American Land Data Assimilation System 2 (NLDAS-2); Moderate Resolution Imaging 28 

Spectroradiometre (MODIS) land surface temperature 29 

1. Introduction 30 

Soil moisture is a key element in the hydrological cycle, regulating evapotranspiration, 31 

precipitation infiltration and overland flow (Wanders et al., 2014). For hydrological 32 

applications, the antecedent wetness condition of a catchment is among the most significant 33 

factors for accurate flow generation processes (Berthet et al., 2009; Matgen et al., 2012a). 34 

(Norbiato et al., 2008) reported that initial wetness conditions are essential for efficient flash 35 

flood alerts. Additionally an operational system requires reliable hydrological soil moisture 36 

state updates to reduce the time drift problem (Aubert et al., 2003; Berg and Mulroy, 2006; 37 

Dumedah and Coulibaly, 2013). However, currently there is no available soil moisture product 38 

that can be used directly in hydrology modelling, primarily because soil moisture is difficult to 39 

define and there is no single shared meaning in various disciplines (Romano, 2014).  40 

Although there have been many soil moisture measuring projects (e.g., satellite missions such 41 

as Advanced Scatterometer (ASCAT), Soil Moisture and Ocean Salinity (SMOS), and Soil 42 
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Moisture Active Passive (SMAP); ground-based networks such as Soil Climate Analysis 43 

Network (SCAN), U.S. Surface Climate Observing Reference Networks (USCRN), and 44 

COsmic-ray Soil Moisture Observing System (COSMOS)), they are not sufficiently used in 45 

hydrology due to the following reasons: 1) misconception between the hydrological soil 46 

moisture state variable and the real-field soil moisture content (Zhuo and Han, 2016a); 2) 47 

unawareness of data availability and strength/weakness of different data sources; 3) the existing 48 

soil moisture products are mainly evaluated against point-based ground soil moisture 49 

observations or airborne retrievals which have significant spatial mismatch (both horizontally 50 

and vertically) to catchment-scales, and are therefore less applicable to hydrological modelling 51 

(Pierdicca et al., 2013); 4) underutilisation of multiple data sources (e.g., multi-angle raw 52 

observations by satellite sensors).  53 

Some studies have attempted to directly utilise the existing soil moisture products (i.e., data 54 

from satellites, land surface models, and in-situ methods directly) for flood prediction 55 

improvement, for example (Brocca et al., 2010) explored that utilising the soil water index 56 

from ASCAT sensor could improve runoff prediction mainly if the initial catchment wetness 57 

conditions were unknown; (Aubert et al., 2003) assimilated in-situ soil moisture observations 58 

into a simple rainfall-runoff model and acquired better flow prediction performance ; (Javelle 59 

et al., 2010) suggested that estimations of antecedent soil moisture conditions were useful in 60 

improving flash flood forecasts at ungauged catchments; contrarily (Chen et al., 2011)’s study 61 

showed assimilating ground-based soil moisture observations was generally unsuccessful in 62 

enhancing flow prediction; and (Matgen et al., 2012b) revealed that satellite soil moisture 63 

products added little or no extra value for hydrological modelling. Clearly those results are 64 
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rather mixed. Challenges remain in integrating soil moisture estimated outside the hydrological 65 

field into hydrological models. We believe if a hydrologically directly applicable soil moisture 66 

product could be produced, the aforementioned studies’ results would be significantly 67 

improved.  68 

Therefore the aims of this paper are to clarify the aforementioned misconception between the 69 

hydrological model’s soil moisture state and the real-world soil moisture, assess the data 70 

availabilities for direct hydrological soil moisture state estimation, and fuse those available 71 

data sources using a hydrologically relevant approach. It is hoped that the final product has a 72 

superior hydrological compatibility over the existing soil moisture products. To achieve these 73 

aims, the Xinanjiang (XAJ) (Zhao, 1992) operational rainfall-runoff model is used as a target 74 

to simulate flow and soil moisture state information (i.e., soil moisture deficit (SMD)) for the 75 

Pontiac catchment in the central United States (U.S.). The reason for adopting XAJ is explained 76 

in the following section. For the purpose of hydrological soil moisture state estimation, it is 77 

effective to adopt the data driven method, which can map multiple data sources into the desired 78 

dataset without computational burden. In this study the Local Linear Regression (LLR) model 79 

is used. The multiple data sources applied in this study include the SMOS (Kerr et al., 2010b) 80 

multi-angle brightness temperatures (Tbs) with both horizontal (H) and vertical (V) 81 

polarizations, the Moderate Resolution Imaging Spectroradiometre (MODIS) (Wan, 2008) 82 

land surface temperature, and the soil moisture product by SAC-SMA (Xia et al., 2014). The 83 

detail explanations of those datasets are covered in the methodology section. A well-proven 84 

feature selection algorithm Gamma Test (GT) (Stefánsson et al., 1997; Zhuo et al., 2016b) is 85 

employed to pre-assess the selected data inputs and find the optimal combination of them for 86 
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soil moisture state calculation. In addition, an M-test (Remesan et al., 2008) is adopted to 87 

explore the best size of the training data. The desired soil moisture product is trained and tested 88 

by the XAJ SMD simulation. In total four data-input schemes are developed according to the 89 

temporal availability of the selected data inputs, which are then combined to give a daily 90 

hydrological soil moisture product.  91 

Compared with previous work, our study contains the following new elements: i) a 92 

hydrologically directly usable soil moisture product is proposed; ii) the GT and LLR techniques 93 

are used for the first time in a data fusion of multiple data sources for hydrological soil moisture 94 

state estimation; iii) the use of multiple data sources is useful, which allows data users to 95 

analyse the availability of the different products and compare the relative benefits of them.  96 

2. Material and Methods 97 

2.1 Study Area 98 

In this study, the Pontiac catchment (1,500 km2, Figure 1) is used for the calibration and the 99 

validation of the XAJ model. Pontiac (40.878°N, 88.636°W) lies on the north-flowing 100 

Vermilion River, which is a tributary of the Illinois River of the state of Illinois, U.S. The worst 101 

flood in this area occurred on December 4, 1982, cresting at 5.84 m above mean sea level 102 

(MSL); and the most recent flood occurred on January 9, 2008, cresting at 5.75 m MSL, so this 103 

catchment is likely located within a winter-flooding region. Pontiac is covered with moderate 104 

canopy (the annual mean Normalized Difference Vegetation Index retrieved from the MODIS 105 

satellite is around 0.4), when compared with a densely vegetated catchment, it has more 106 

accurate soil moisture estimations from satellites (Al-Bitar et al., 2012). Based on the Köppen-107 
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Geiger climate classification, this medium sized catchment is dominated mainly by hot summer 108 

continental climate (Peel et al., 2007). With reference to the University of Maryland 109 

Department Global Land Cover Classification, it is used primarily for agriculture purpose 110 

(Bartholomé and Belward, 2005; Hansen, 1998). The soil mostly consists of Mollisols, which 111 

has deep and high organic matter, and the nutrient-enriched surface soil is typically between 112 

60-80 cm in depth (Webb et al., 2000). The study period is from January 2010 to December 113 

2011. The reason for using this two-year period of data is because there have been many data 114 

gaps from 2013-2017, and the data quality in 2012 was poor. As a result, only the data in 2010-115 

2011 are consistent and of high quality. As pointed out by Liu and Han 2010, ‘Traditionally, 116 

hydrologists use rules of thumb to select a certain period of hydrological data to calibrate the 117 

models (i.e., 6 year data).’ However, their study has shown ‘the information content of the 118 

calibration data is more important than the data length; thus 6 month data may provide more 119 

useful information than longer data series.’ Therefore, the two years of high quality data 120 

adopted in the study are better than a longer period of poor quality data. 121 

The North American Land Data Assimilation System 2 (NLDAS-2) (Mitchell et al., 2004) 122 

provides precipitation and potential evapotranspiration information to run the XAJ model. Both 123 

data forces are at 0.125o spatial resolution and have been converted to daily temporal resolution. 124 

In order to use those distributed forcing into the lumped XAJ model, both forcing have been 125 

interpolated with the area-weighted average method instead of the more complicated Kriging 126 

approach, because the latter could produce errors if not well controlled (Wanders et al., 2014). 127 

The average annual rainfall depth is about 954 mm, and the average annual potential 128 
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evapotranspiration is approximately 1670 mm. The daily observed flow data are acquired from 129 

the U.S. Geological Survey. 130 

2.2 Hydrological Model 131 

The XAJ hydrological model is used for the simulation of SMD and river flow at a daily time 132 

step. It is a simple lumped rainfall-runoff model with many applications performed in world-133 

wide catchments (Chen et al., 2013; Gan et al., 1997; Shi et al., 2011; Zhao, 1992; Zhao and 134 

Liu, 1995; Zhuo et al., 2016a; Zhuo et al., 2015b). Since XAJ can obtain rather effective flow 135 

modelling performances and require only two meteorological forcing (precipitation and 136 

potential evapotranspiration) inputs (Peng et al., 2002), it is used more widely than the more 137 

complicated semi-distributed/ fully-distributed hydrological models for operational 138 

applications.  139 

As shown in Figure 2, the XAJ model has three main components: evapotranspiration, runoff 140 

generation, and runoff routing. XAJ consists of soil layers (upper, lower and deep) in its 141 

evapotranspiration calculations. Because XAJ adopts the multi-bucket variable-size method in 142 

its modelling concept, it has unfixed soil depths which is more effective than the fixed depths 143 

models (Beven, 2012). Other widely used models such as PDM (Moore, 2007), VIC (Liang et 144 

al., 1994), and ARNO (Todini, 1996) also follow this concept.  145 

In XAJ, the three-layer soil moisture state variables are all calculated as SMD, which is an 146 

important soil wetness variable in hydrology. SMD is defined as the amount of water to be 147 

added to a soil profile to bring it to the field capacity (Calder et al., 1983; Rushton et al., 2006). 148 

In this study, only the surface SMD (i.e., top layer) referring to the vegetation and the very thin 149 
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topsoil, is utilised as a hydrological soil moisture target. This is because the water held in the 150 

top few centimetres of the soil has been widely recognised as a key variable associated with 151 

water fluxes (Eltahir, 1998; Entekhabi and Rodriguez-Iturbe, 1994). Moreover the current 152 

satellite technology is only capable of acquiring the Earth information from the outermost layer 153 

of the soil. Therefore as a case study based on the XAJ model, we only focus on the surface 154 

soil moisture state investigation here. Future research will focus on the root-zone soil moisture 155 

product development by using a similar method proposed in this study.  156 

In this study, a modified version of the XAJ model is adopted, and interested readers are 157 

referred to (Zhuo and Han, 2016b) for more details. All the XAJ’s 17 parameters are used 158 

during the model calibration, which are shown in Table 1. In this study, the genetic algorithm 159 

(Wang, 1991) is used for parameter optimisation. Based on the genetic algorithm result, minor 160 

trial and error adjustments to the parameters EX, B, WUM, WLM and WDM are also carried out 161 

to obtain the best model performance (Chen and Adams, 2006). The calibration and the 162 

validation results (during January 2010-April 2011 and May 2011 to December 2011, 163 

respectively) of the XAJ model can be found in (Zhuo et al., 2015a). Discussion regarding the 164 

river flow and SMD simulation results in this catchment have been published in (Zhuo and 165 

Han, 2016b), with Nash-Sutcliffe Efficiency (NSE) obtained larger than 0.80 during both the 166 

calibration and validation periods. The results are not repeated here.   167 

2.3 Multiple Data Sources for Hydrological Soil Moisture State Estimation 168 

Data sources from SMOS, MODIS and SAC-SMA are used (Table 2). All data sources have 169 

been converted into catchment-scale datasets by the area-weighted average method. The detail 170 
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description of each data source is given as follows. The main reason for choosing those three 171 

data sources is due to their Near-Real-Time (NRT) availabilities (MODAPS Services, 2015; 172 

Rodell, 2016) (SMOS becomes available in NRT recently (ESA Earth Online, 2016)), which 173 

allows fast implementation in flood forecasting. 174 

2.3.1 SMOS Multi-angle Brightness Temperatures (SMOS-Tbs) 175 

The SMOS (1.4 GHz, L-band) Level-3 Tbs data covering the studying period are available from 176 

the Centre Aval de Traitement des Données SMOS (CATDS) (Jacquette et al., 2010). The 177 

reason for choosing the SMOS satellite is because compare with other satellite techniques (i.e., 178 

optical, and thermal infrared), microwave bands (especially with longer wavelength such as L-179 

band (21 cm)) can penetrate deeper into the soil (~ 5 cm) and have less interruptions from 180 

weather conditions (Njoku and Kong, 1977). Additionally SMOS has a relatively longer period 181 

of data record compares with other satellite missions such as SMAP. SMOS retrieves the 182 

thermal emission from the Earth in both H and V polarizations with a wide ranges of incidence 183 

angles from 0o to 60 o. The observation depth of SMOS is approximately 5 cm with a spatial 184 

resolution of 35-50 km depending on the incident angle and the deviation from the satellite 185 

ground track (Kerr et al., 2012; Kerr et al., 2010a; 2001).  186 

SMOS provides Tbs retrievals at all incidence angles averaged in 5o -width angle bins, which 187 

have been transformed into the ground polarization reference frame (i.e., H, and V 188 

polarizations). Therefore the number of the SMOS-Tbs inputs for the hydrological soil moisture 189 

estimation can be as high as 24 (12 angle bins per polarization), with the centre of the first 190 

angle bin at 2.5o in both polarizations (Rodriguez-Fernandez et al., 2014). As satellite 191 



13 
 

progresses, any given location on the Earth’s surface is scanned a number of times at various 192 

incidence angles, depending on the location with respect to the satellite subtrack: the further 193 

away, the fewer the angular acquisitions (Kerr et al., 2010b). The data availabilities of the 194 

SMOS-Tbs are illustrated in Figure 3 (the availabilities for H and V polarizations are the same). 195 

It can be seen that the data availabilities among various incidence angles are rather different. 196 

In this study the only angle range that gives the most available record of data is from 27.5o to 197 

57.5o (i.e., 7 for H and 7 for V polarization), which is therefore chosen for the hydrological soil 198 

moisture development. This angle range is in line with the angle selection in (Rodriguez-199 

Fernandez et al., 2014). In addition the SMOS Level-3 soil moisture product from the CATDS 200 

(SMOS-SM) is also acquired for a comparison with the estimated soil moisture product. 201 

Retrievals that are potentially contaminated with Radio Frequency Interference have been 202 

removed. Readers are referred to (Kerr et al., 2012) for a full description of the SMOS 203 

retrieving algorithms, and (Njoku and Entekhabi, 1996) for a good knowledge of how passive 204 

microwave relates to soil moisture variations.  205 

2.3.2 MODIS Land Surface Temperature (MODIS-LST) 206 

The MODIS/Terra (Earth Observing System AM-1 platform) (Wan, 2008) daily MOD11C1-207 

V5 land surface temperature covering the studying period is downloaded from the Land 208 

Processes Distributed Active Archive Centre website. MODIS is chosen among other 209 

operational optical satellites for its suitable features, mostly, due to its frequent revisiting time 210 

and free NRT data availability. It measures 36 spectral bands between 0.405 and 14.385 μm, 211 

and acquires data at three spatial resolutions 250 m, 500 m, and 1,000 m respectively while the 212 
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adopted MOD11C1 V5 product incorporates 0.05o (5.6 km) spatial resolution. The benefit of 213 

adding land surface temperature information is that previous studies have shown the variations 214 

in soil moisture have a strong linkage with land surface temperature (Carlson, 2007; Goward 215 

et al., 2002; Mallick et al., 2009). One reason is the changes of land surface temperature are 216 

mainly affected by albedo and diurnal heat capacity, and the diurnal heat capacity is mainly 217 

controlled by soil moisture (Price, 1980). (Wan, 2008) compared MOD11C1-V5 land surface 218 

temperatures in 47 clear-sky cases with in situ measurement and revealed that the accuracy was 219 

better than 1 K in the range from −10° to 58 °C in about 39 cases. Cloud-contaminated data 220 

have been removed by a double-screening method, and its detail can be found in (Wan et al., 221 

2002).  222 

2.3.3 SAC-SMA Soil Moisture Estimation (SAC-SMA-SM) 223 

The reason for choosing the SAC-SMA land surface modelled soil moisture product is because 224 

satellite can often have missing data due to various weather and canopy conditions (e.g., rainfall, 225 

frozen weather, and vegetation coverage), so this daily dataset is essential in producing a 226 

temporally completed hydrological soil moisture product. In this study, the surface soil 227 

moisture (0-10 cm) simulated from the SAC-SMA model is selected. This is because its 228 

estimated soil moisture gives a high accuracy against the observational soil moisture and a 229 

good correlation with the XAJ SMD (Zhuo et al., 2015b). The daily SAC-SMA-SM is given 230 

in a spatial resolution of 0.125o. The dataset can be download from 231 

(http://www.emc.ncep.noaa.gov/mmb/nldas/ ). Readers are referred to (Xia et al., 2012) for a 232 

full description of the SAC-SMA data products. 233 
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2.3.4 Data Availabilities 234 

As shown in Table 2, the availability of the three data sources is rather different. Unlike SMOS 235 

and MODIS, SAC-SMA-2 SM is a model based product which runs in a NRT mode, so it 236 

produces valid data every day during the whole studying period. Whereas the two satellites’ 237 

data are more exiguous depends on weather and surface conditions. Compared with MODIS, 238 

the SMOS’s retrieval is even sparse and the biggest data shortage normally occurs in the winter 239 

season where its returned microwave signal is mostly affected by frozen soils (Zhuo et al., 240 

2015a). Based on the data availability analysis, the proposed hydrological soil moisture product 241 

is built from four data-input schemes as presented in Table 3. Those four schemes enable us to 242 

test and compare the estimated soil moisture state more comprehensively. Since the continuity 243 

of a soil moisture product is essential for any operational applications, SAC-SMA-SM is 244 

included in all of the schemes.  245 

2.4 Data Fusion  246 

2.4.1 Gamma Test (GT) for Feature Selection 247 

Before model building, it is important to carry out a feature selection process, because it can 248 

simplify the model inputs, shorter training times, and reduce overfitting problems. In this study 249 

a proper combination of the incidence angles from the SMOS Tbs is vital for the best soil 250 

moisture state calculation. For this purpose, a feature selection method called GT is adopted. It 251 

has been effectively used in numerous studies for model inputs selection (Durrant, 2001; Jaafar 252 

and Han, 2011; Noori et al., 2011; Remesan et al., 2008; Tsui et al., 2002; Zhuo et al., 2016b). 253 

In addition to the feature selection, GT can also give useful indication about the underlying 254 
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model complexity. It is a near-neighbour data analysis routine which determines the minimum 255 

mean-squared error (MSE) that can be achieved based on the input-output dataset utilising any 256 

continuous nonlinear models (Zhuo et al., 2016b). The calculated minimum MSE is referred as 257 

the Gamma statistics and denoted as Γ. For detailed calculations about the GT algorithm, 258 

interested readers are referred to (Koncar, 1997; Pi and Peterson, 1994; Stefánsson et al., 1997). 259 

Here only the basic knowledge about the GT is shown: 260 

{  ii yx , , Mi 1 }                (1) 261 

here the inputs 
m

i Rx  are vectors restricted by a closed bounded set mRC , and their 262 

corresponding outputs Ryi   are scalars, M stands for the sample points. The outputs y are 263 

determined by the input vectors x that carry predictively useful messages. The only assumption 264 

made is that their latent relationship is from the following function: 265 

rxxfy m  )( 1                 (2) 266 

here f is built up as a smooth model with r representing random noise. Without loss of generality, 267 

the assumption of r noise distribution is that its mean is always zero, because all the constant 268 

bias has been considered within the f model. Additionally r’s variance ( )(rVar ) is restricted 269 

within a set boundary. The observations’ potential model is now defined within the class of 270 

smooth functions.  271 

The Γ is related to  kiN , , which represents as the kth ( pk 1 ) nearest neighbours of each 272 

vector xi ( Mi 1 ), written as )1(],[ pkx kiN  , where p is a fixed integer. In order to 273 

determine the Gamma function from the input vectors, the Delta function is used: 274 
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here the function 
ikiN xx ],[

 calculates the Euclidean distance. The Gamma function for its 276 

output values is expressed as in Eq. 4, and the Γ can be determined from Eq. 3 and 4: 277 
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k             ( pk 1 )        (4) 278 

here ],[ kiNy is the corresponding output values for the kth nearest neighbours xi ( ],[ kiNx ). To 279 

find Γ a least-squared regression line for the p points ( )(kM , )(kM ) is built using the 280 

following equation: 281 

  A                   (5)  282 

where Γ can be determined when δ is set as zero. The detailed explanation is: 283 

)()( rVarkM  , when 0)( kM              (6) 284 

Eq. 5 gives us valuable information about the underlying system: not only that the Γ is a useful 285 

indicator of the optimal MSE result that any smooth functions can achieve, but its gradient A 286 

also provides guidance about the underlying model complexity (i.e., the steeper the gradient 287 

the more sophisticated the model should be adopted). In this study, the winGammaTM software 288 

is used for GT calculation (Durrant, 2001). The mathematical feasibility of GT has been 289 

published in (Evans and Jones, 2002).  290 

2.4.2 M-test for Training Data Size Selection 291 

A common practice in nonlinear modelling is to split the dataset into training and testing parts. 292 

However there is no universal solution on how to divide the datasets (i.e., the proportion of 293 
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each part) so that the best modelling results could be obtained. Here, an M-test is carried out, 294 

where M stands for the training data size. M-test is accomplished by calculating the Γ for 295 

increasing the M value (i.e., expanding the training data) and exploring the resultant graph to 296 

judge whether the Γ approaches a stable asymptote. Such an approach is straightforward and 297 

effective in finding the optimal sizes of training and testing datasets, while avoiding overfitting 298 

problems and reducing unsystematic attempts.  299 

2.4.3 Local Linear Regression (LLR) 300 

Various data fusion techniques have been developed (Prakash et al., 2012; Srivastava et al., 301 

2013; Wagner et al., 2012), however their methods require high computational time to run and 302 

this, in a real-time flood forecasting framework, could not match the operational needs. 303 

Comparatively, LLR model is a simpler method and requires relatively low computational time. 304 

Therefore it is chosen in order to test if a simple method is able to provide effective 305 

performance. LLR is a nonparametric regression model that has been applied in (Liu et al., 306 

2011; Pinson et al., 2008; Sun et al., 2003; Zhuo et al., 2016b) for forecasting and smoothing 307 

purposes. LLR builds local linear regression based on the nearest points (pmax) of a targeted 308 

point, and repeats such a process over the whole training dataset to produce a piecewise linear 309 

model. There are many methodologies in selecting the pmax, in this study a method called 310 

influence statistics is used (Durrant, 2001; Remesan et al., 2008), which is outlined as below. 311 

Assume there are pmax nearest points, then the Eq. 7 can be built: 312 

yXm                     (7) 313 
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here X is a dp max  matrix which shows the d dimensional information of pmax, xi are the 314 

nearest points confined between 1 and pmax, y is the output vector with pmax dimension, and m 315 

is a set of parameters formed in a vector, which plays an important role in mapping the solution 316 

from X to y. Therefore Eq. 7 can be expanded as 317 
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         (8) 318 

In order to solve the equation, the following two conditions are set: a) if X is square and non-319 

singular then Eq. (7) can be simply calculated as yXm 1 ; b) if X is not square or singular, 320 

Eq. (7) needs to be rearranged and m can be get by finding the minimum of: 321 

2
yXm                    (9) 322 

with the distinct solution of:  323 

yXm #                   (10) 324 

where X# is the pseudo-inverse matrix of X (Penrose, 1955; Penrose, 1956). 325 

3. Results 326 

In this section, different combinations of input data (Table 3) are adopted to examine their 327 

impacts on hydrological soil moisture estimation. XAJ SMD is used as a hydrological soil 328 

moisture state benchmark for the training and testing. More discussion about the misconception 329 

between the hydrological model’s soil moisture state variable and the real-world soil moisture 330 

content is covered in Section 4. During GT and M-test processes, all data inputs need to be 331 
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normalised so that their mean is zero and standard deviation is 0.5. This step is necessary in 332 

reducing the impacts of numerical difference from various inputs, hence improves the GT 333 

efficiency (Remesan et al., 2008). Five statistical indicators are used for the soil moisture 334 

estimation analysis: Pearson product moment correlation coefficient (r), MSE which is the 335 

same value as the Gamma statistic Γ, Standard error (SE), NSE (Nash and Sutcliffe, 1970), and 336 

Root Mean Square Error (RMSE).  337 

3.1 Scheme 1: SMD Estimation Using SAC-SMA-SM as input 338 

Although in this scheme, there is no need for data feature selection because only one data input 339 

is involved, the GT is still carried out to explore the useful information about the underlying 340 

relationship between the XAJ SMD and the SAC-SMA-SM. The calculated Gamma statistics 341 

are shown in Table 4. The Γ of 0.072 indicates that the optimal MSE achievable using any 342 

modelling technique is 0.072; and the small value of SE means the precision and accuracy of 343 

the GT result. Γ is a significant target value in the M-test to find the most suitable training data 344 

size. As presented in Figure 4a, when more training data (i.e., M increases in steps of one) is 345 

used the Γ changes dramatically. Eventually at M = 292, Γ starts to stabilise around 0.072. The 346 

M-test allows us to confidently apply the first 292 datasets to build a model of a given quality, 347 

in the sense of predicting with a MSE around the asymptotic level. The corresponding Gamma 348 

gradient (A) suggests the complexity of the underlying system: the larger the A value is the 349 

more complex the system is. For example if A is significantly large, a more complicated model 350 

like a Support Vector Machine might be required, but A = 1.353 in Scheme 1 is small (Remesan 351 

et al., 2008), therefore a LLR model should be able to simulate the system. For LLR modelling, 352 
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its complexity level is controlled by the pmax parameter. As illustrated in Figure 5, pmax is 353 

identified from a trial and error method. The procedure is by increasing the LLR pmax value 354 

from 2 to 100 to analyse the variations of their corresponding Γ results. It can be seen from 355 

Figure 5 that the smallest Γ is achieved at pmax = 4, which is therefore adopted for the LLR 356 

modelling. The training and testing scatter plots for the LLR modelling are shown in Figure 6a. 357 

It is observed that there are some points lying far above the bisector line during the training 358 

period signifies higher estimations whereas some points sit far below the bisector line during 359 

the testing period indicates under-estimation of the SMD. For the testing results, when XAJ 360 

simulated soil moistures state have already reach the total dryness (i.e., XAJ SMD peaks at 361 

around 0.080 m) the predicted soil moisture state is still in the drying progress. Figure 7a plots 362 

the time series of the estimated and the targeted SMD. The plot shows that the estimated SMD 363 

follows the seasonal trend of the soil moisture fluctuations well, so it is wetter during the winter 364 

season and exsiccated during the hot summer season. However it is clear to see that the model 365 

is not able to capture the extreme situations very well, especially during the wet season when 366 

the XAJ SMD becomes smaller (e.g., between Day 300 and Day 350).  367 

3.2 Scheme 2: SMD Estimation Using SAC-SMA-SM and MODIS-LST as inputs 368 

Land surface temperature is the product of the soil temperature multiplied by the emissivity, 369 

and the emissivity depends on the dielectric constant of the soil and soil moisture (Rodriguez-370 

Fernandez et al., 2015). Therefore the additional MODIS-LST information could potentially 371 

improve the soil moisture estimation. The modelling process is the same as in Scheme 1. In 372 

Table 4, it is clear to observe that by adding the MODIS-LST input, the Γ is improved to 0.060 373 
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and its corresponding gradient A is reduced significantly to less than half of the Scheme 1’s. 374 

Meanwhile the SE value is decreased remarkably as well showing the accuracy of the GT. The 375 

M-test in Figure 4b shows the graph settles to an asymptote around 0.060 which is consistent 376 

with the calculated Γ result. Training data size of 199 is chosen here because it gives the lowest 377 

Γ value. For the LLR modelling, the best pmax value is found to be 2 from the trial and error 378 

result in Figure 5. The LLR training and testing performances are presented in Figure 6b. 379 

Although the problem of underestimation of extremely dry soil still exists (i.e., the points 380 

concentrate at the right end of the training and testing plots), overall the model’s prediction 381 

ability during both phases are better than Scheme 1’s (i.e., data points are closer to the 45o line). 382 

The improvement can also be seen clearly in the time series plot in Figure 7b. For example, the 383 

big disparities between the estimated and the targeted SMDs around DAY 300 and DAY 350 384 

are reduced evidently.   385 

3.3 Scheme 3: SMD Estimation Using SAC-SMA-SM and SMOS-Tbs as inputs 386 

The multi-angle Tbs retrievals are the main data inputs for SMOS soil moisture calculation, 387 

therefore their inclusion should also add a positive effect to the hydrological soil moisture 388 

estimation. As aforementioned, an efficient feature selection of the SMOS incidence angles is 389 

important for the best SMD calculation. In this study all the possible combinations from all 390 

inputs variables are examined with the Γ result as the statistical indicator. This method is 391 

capable of examining every combination (16383 embeddings in this case) of data inputs to 392 

target the optimal combination that gives the smallest absolute Γ value. As discussed in Section 393 

2.3.4, SAC-SMA-SM is a compulsory data input, so it is not included in the selecting process. 394 
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The best set of SMOS-Tbs to retrieve soil moisture state is composed of H polarization at the 395 

incidence angles of 27.5o-47.5o, 57.5o, and V polarization at the incidence angles of 27.5o-42.5o, 396 

52.5o, 57.5o. This result demonstrates that using a combination of H and V Tbs gives a better 397 

soil moisture estimation, which is logically sensible because different polarizations carry 398 

distinct information of the Earth surface. However some incidence angles could held common 399 

features which when putting together could result in a negative effect to the LLR modelling, 400 

and are therefore not included. The detailed investigation of the possible common features is 401 

out of the scope of this paper which is mainly due to the SMOS working mechanism.  402 

As seen from Table 4, the inclusion of SMOS-Tbs significantly improves the Γ result by 54%, 403 

while the gradient A is reduced greatly by 89% as compared with Scheme 1. The small A value 404 

illustrates that the underlying system is more straightforward and easier to model than the 405 

Scheme 1’s. The M-test analysis in Figure 4c produces an asymptotic convergence from 120 406 

training data size of Γ value around 0.033. It is interesting to see that the proportion of the 407 

required training data is relatively larger than those in Scheme 1 and 2. The potential reason 408 

could be explained by the larger amount of data inputs in this scheme. For LLR modelling, the 409 

pmax that gives the smallest Γ is 7 (Figure 5). The SMD estimations during the training and the 410 

testing are presented in Figure 8a. It can be seen that the SMD prediction ability of this scheme 411 

is remarkably better than the previous ones, as most of the points lie on the bisector line albeit 412 

there are still some under- and over- estimations. The reason SMOS outperforms MODIS in 413 

SMD estimation could be due to the long wavelength microwave has, so it presents the top few 414 

centimetres of the soil while MODIS LST (thermal infrared) only provides information at the 415 

soil surface. The used LLR algorithm has been double checked to filter out the potential of 416 
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overfitting problem. The checking processes are performed by muddling the SMD target in the 417 

testing datasets as well as altering the input file, and its efficiency stays the same. Hence it is 418 

believed that the LLR model is very useful in calculating SMD from this scheme. Generally 419 

the NSE, r and RMSE statistical indicators show a high agreement during both training and 420 

testing phases. For the time series plot in Figure 7c, it is clear to see that most of the estimated 421 

points lie closely to the benchmark line. The observed outliers could be partly due to the data 422 

shortage in this scheme, so that not all the scenarios are covered in the datasets.   423 

3.4 Scheme 4: SMD Estimation Using SAC-SMA-SM, MODIS-LST, and SMOS-Tbs as 424 

inputs 425 

In this scheme, all the three data sources are used to test if the modelling performance can be 426 

further improved. Here the full embedding calculation is again carried out to explore the most 427 

suitable incidence angles from the SMOS-Tbs. This is because the added MODIS-LST data 428 

could carry identical (i.e., redundant) features with some of the SMOS-Tbs datasets. As a result 429 

of the full embedding calculation, the best set of SMOS-Tbs is composed of H polarization at 430 

the incidence angles of 37.5o-57.5o, and V polarization at the incidence angles of 37.5o-42.5o, 431 

57.5o. As seen in Figure 4d, the total amount of data is significanly reduced due to the shortage 432 

of simultanuously available days between the MODIS and the SMOS observations. 433 

Interestingly the M-test graph vibrates more significantly than the other three schemes, which 434 

could be due to the smaller data size and the larger amount of data inputs in this scheme. Here 435 

the training data size is chosen as 62 with Γ obtained at around 0.030. The optimal pmax is 436 

identified to be 5 (Figure 5). The LLR modelling results are shown in Figure 7d and Figure 8b. 437 
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It is obvious that this scheme further improves the accuracy of the SMD estimation, especially 438 

with the high statistical performances achieved during both training and testing phases. 439 

Comparatively this scheme is more stable for SMD estimation, albeit it requires more data 440 

inputs and is only realisable when both the MODIS and the SMOS observations are available.     441 

3.5 Produce an Unintermitted Soil Moisture Product 442 

The data availability of the four schemes varies. As shown in Figure 9, Scheme 1 which has 443 

the poorest soil moisture state estimation gives the most data availability, while Scheme 4 444 

which has the most accurate soil moisture state estimation owns the least data availability. In 445 

order to produce an unintermitted hydrological soil moisture product, the four schemes need to 446 

be combined together to complement each other. The combining method is by selecting the 447 

best available soil moisture estimation. For example if all the schemes have available data at 448 

the same time, the best scheme’s soil moisture data is chosen (i.e., scheme 4 in this situation); 449 

whereas if just one scheme has data on that day, only that scheme’s soil moisture data is used. 450 

The performances of the four schemes as well as the combined product are summarised in 451 

Table 5. Although the combined soil moisture state is obtained with lower statistical 452 

performances than Scheme 3’s and 4’s, it is still hydrologically very accurate especially when 453 

comparing with the SMOS’s official soil moisture product (Table 5). The time series of the 454 

combined soil moisture state is plotted in Figure 10. It can be seen that the general trend of the 455 

produced soil moisture state follows the targeted data very well. However it tends to 456 

overestimate some of the wet events during the rainy season and significantly underestimate 457 

the dryer soil condition in September 2011. Those poor estimations are mostly from the Scheme 458 
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1 and 2 where Schemes 3 and 4 are not available. Since more and more microwave satellite 459 

observations are becoming obtainable, those new data sources could add extra benefits into the 460 

proposed model, and the accuracy of the soil moisture product is expected to be further 461 

enhanced.  462 

4. Discussion  463 

- What is a soil moisture state variable? 464 

This study uses the XAJ’s SMD simulation as a target because it is hydrological model directly 465 

produced. However it is argued that models with different parameters values can generate 466 

equally good flow results named as the equifinality effect, because they are all calibrated based 467 

on the observed flow. For this reason, their soil moisture state variables can be distinct among 468 

each other.  469 

In order to investigate this effect in more details, the XAJ model is manipulated by increasing 470 

one of its parameters WUM by 30 %. By doing so, the XAJ’s flow simulation remains as 471 

effective as its original form (the same NSE values), but its soil moisture state changes 472 

significantly from its original values. For a better visualisation, an enlarged plot of the SMD 473 

simulations between Day 222 and Day 344 is presented. As seen from Figure 11a although the 474 

soil moisture state variables from two equally good calibrations have a wide range of value 475 

differences (NSE = 0.34), they both follow the same pattern: when it rains they become wet by 476 

the similar amount; when there is a dry period they all move into a dryer state in a similar rate 477 

to the actual evapotranspiration. Therefore they appear as in parallel movements and the latter 478 

plot (Figure 11b) shows a very strong linear correlation (r = 1.0) between them. It is important 479 
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to note that the selection of the dry period (i.e., high SMD values) is because it is the most 480 

critical period of time for the need of accurate soil moisture values for hydrological modelling. 481 

This is because during the real-time flood forecasting, after a long period of dryness, the 482 

accumulation of error in the hydrological models can become larger and larger with time. With 483 

accurate soil moisture information, the error could be corrected. 484 

Although the absolute values of the models’ soil moisture state variables are not quite 485 

meaningful and comparable, their variations are the true reflection of the soil moisture 486 

fluctuations in the real-world. This clarification is a very important concept, because there has 487 

been a wide spread of misunderstanding about the hydrological model’s soil moisture state and 488 

its connection with the real-world soil moisture.  489 

- Soil moisture state normalisation 490 

One deficiency of this study is that the generated soil moisture state is based on a hydrological 491 

model’s SMD simulation, so it is model parameter dependent. It is desirable to produce a soil 492 

moisture indicator which is independent from model parameters and dimensionless with 493 

variables between 0 and 1. Normalised Hydrological Soil Moisture State (NHSMS) indicators 494 

are produced as presented in Figure 12 (corresponding to the SMD simulations shown in Figure 495 

11). The normalisation method is by adopting the following equation: 496 

)min()max(

)min(

SMDSMD

SMDSMD
NHSMS




            (11)  497 

Such an approach is very effective as demonstrated by the almost identical SMD curves 498 

between the two XAJ simulations. In the future it is planned to use the same process on other 499 
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hydrological models to test if the normalised soil moisture indicators are not only model 500 

parameter independent but also model structure independent. Since all hydrological models are 501 

driven by the same physics laws on the conservation of mass, their normalised soil moisture 502 

indicators should respond in a similar way (soil becomes wetter when it rains and drier when 503 

there is no rain). If this is true a new soil moisture product based on NHSMS could be generated 504 

as a routine product by the operational organisations such as NASA and ESA. Such a soil 505 

moisture product will also be very useful to the meteorological and hydro-meteorological fields 506 

in their land surface modelling because the current land surface models suffer from poor 507 

performance in their runoff estimations. As aforementioned, all current soil moisture products 508 

such as those from ESA and NASA are not optimised for different application fields. Our study 509 

gives an example of simulating the soil moisture data targeted to serve the hydrological 510 

community. It is possible other products serving farmers in agriculture, ecologists in the 511 

environment, and geotechnical engineers in construction could be produced using the proposed 512 

method.  513 

- Application of the produced soil moisture data 514 

Another area needs further work is the hydrological application of the produced data. Generally 515 

effective hydrological application of soil moisture data needs three pre-conditions: 1) a good 516 

soil moisture data relevant to hydrology; 2) a hydrological model compatible with such data; 517 

3) an effective data assimilation scheme. This paper tackles the first point, and the other two 518 

points would need further research because there are significant knowledge gaps in them. If all 519 

the three points are solved, such a data has a huge potential in operational hydrological 520 
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modelling. For example, initialisation of the model could be shortened which reduces the need 521 

for model warm up. This is important during real-time flood forecasting when there is not 522 

enough data to warm up the model for an imminent flood event. Such a warm-up period could 523 

be very long, as demonstrated by the study in (Ceola et al., 2015). In addition the XAJ SMD 524 

data used here is based on the calibration of the observed rainfall and flow, so that the targeted 525 

SMD is interpolated between observations and there is a minimum time-drift. In the real-time 526 

flood forecasting the errors in precipitation and evapotranspiration could accumulate which 527 

cause time-drift problems. Therefore a soil moisture product such as the one produced in this 528 

study (i.e., based on minimal time-drift SMD) could help avoiding such a problem. The 529 

proposed soil moisture data is also valuable for the validation of land surface models, especially 530 

useful for their runoff simulations. Due to the limit of time and resources this study has not 531 

tackled all the issues, but has laid a good foundation for their future researches.  532 

- XAJ model under frozen conditions 533 

The Pontiac catchment is characterized by soil freezing events in winter seasons. During 534 

freezing events, soil moisture transfer fundamentally differs from the unfrozen conditions (e.g., 535 

(Gelfan, 2006)). Although the XAJ model has been successfully applied in simulating flows in 536 

frozen soil conditions (e.g., see Zhou et al. 2008) as well as in this case study, the lumped XAJ 537 

model does not explicitly consider soil freezing, thus SMD simulations can be inaccurate for 538 

winter seasons and further research is needed to investigate this issue further. 539 

5. Conclusions 540 
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A hydrological soil moisture product is produced for the Pontiac catchment using the GT and 541 

the LLR modelling techniques based on four data-input schemes. Three data sources are 542 

considered including the soil moisture product from the SAC-SMA model, the land surface 543 

temperature retrieved by the MODIS satellite, and the multi-angle brightness temperatures 544 

acquired from the SMOS satellite. The four data-input schemes are built from the four 545 

combinations of the data sources. The generated soil moisture product (unintermitted with no 546 

missing data) for a period of two years (2010-2011) is compared with the XAJ hydrological 547 

model’s SMD simulation to test its hydrological accuracy. It is concluded that the GT and the 548 

LLR modelling techniques together with the chosen data inputs can be used with high 549 

confidence to estimate an unintermitted hydrological soil moisture product, and the proposed 550 

method could be easily applied to other catchments and fields. 551 

In this study it has been found that different data sources have their own unique information 552 

contents, so that they can complement each other using data fusion technique. Their synergy 553 

can be best achieved to produce an enhanced soil moisture product. In data fusion an important 554 

principle is MRmr (Maximum Relevance minimum redundancy). The soil moisture state in 555 

this study is generated from a large number of data inputs, and their selection is carried out by 556 

the GT which is one of the methods in MRmr. This is the first time that the GT is used in a data 557 

fusion of satellite multiple Tbs scans, land surface temperature and external soil moisture 558 

information for producing a hydrological soil moisture product. Future studies should explore 559 

other MRmr methods in addition to GT, to compare if they are more effective input selection 560 

methods. As to the data fusion regression model, LLR is chosen in this study because it is easily 561 
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applied and very effective. However it is possible there may exist other better models. We 562 

encourage the community to apply the proposed methodology using other regression models. 563 
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Table 1. The XAJ model parameters used in the Pontiac catchment.  

Symbol Model parameters Unit Range 

K Ratio of evapotranspiration [-] 0.10-1.20 

WUM The areal mean field capacity of the upper layer mm 30-50 

WLM The areal mean field capacity of the lower layer mm 20-150 

WDM The areal mean field capacity of the deep layer mm 30-400 

IMP Percentage of impervious and saturated areas in the catchment % 0.00-0.10 

B Exponential parameter with a single parabolic curve, which represents the non-

uniformity of the spatial distribution of the soil moisture storage capacity over the 

catchment 

 

[-] 

 

0.10-0.90 

C Coefficient of the deep layer that depends on the proportion of the catchment area 

covered by vegetation with deep roots 

 

[-] 

 

0.10-0.70 

SM Areal mean free water capacity, which represents the maximum possible deficit of free 

water storage 

 

mm 

 

10-50 

KG Outflow coefficient of the free water storage to groundwater relationships [-] 0.10-0.70 

KSS Outflow coefficient of the free water storage to interflow relationships [-] 0.10-0.70 

EX Exponent of the free water capacity curve [-] 1.10-2.00 

KKG Recession constant of the groundwater storage [-] 0.01-0.99 

KKSS Recession constant of the lower interflow storage [-] 0.01-0.99 

CS Recession constant in the lag and route method for routing through the channel system 

with each sub-catchment 

 

[-] 

 

0.10-0.70 

L Lag in time [-] 0.00-6.00 

V Parameter of the Muskingum method m/s 0.40-1.20 

dX Parameter of the Muskingum method [-] 0.00-0.40 
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Table 2. General data-input properties relevant for this study. 

 SMOS-Tbs MODIS-LST SAC-SMA-SM 

Product brightness 

temperature  

land surface 

temperature 

soil moisture 

Unit Kelvin (K) Kelvin (K) m3/m3 

Near-Real-Time (NRT) Yes  Yes Yes 

Spatial resolution (km) 35-50 5.6 14 

Data time-step ~ every three days ~ daily Daily 

Data availability for the 

studying period (days) 

217 458 730 
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Table 3. Four data-input schemes: scheme 1: SAC-SMA-SM; scheme 2: SAC-SMA-SM and 

MODIS-LST; scheme 3: SAC-SMA-SM and SMOS-Tbs; scheme 4: SAC-SMA-SM, MODIS-

LST, and SMOS-Tbs. 

 SAC-SMA-SM MODIS-LST SMOS-Tbs 

Scheme 1 x   

Scheme 2 x x  

Scheme 3 x  x 

Scheme 4 x x x 
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Table 4. Model statistical performances and modelling information, where Γ is the calculated 

gamma statistic which is the minimum MSE that can be achieved from a modelling method; A 

is the Gamma gradient; SE is the Standard error; pmax is the nearest points for LLR modelling; 

M is the training data size; and SMOS IA is the chosen incidence angles of SMOS-Tbs.   

 Γ  A SE pmax M SMOS IA 

Scheme 1 0.072 1.353 0.004 4 292 - 

Scheme 2 0.060 0.568 0.002 2 199 - 

Scheme 3 0.033 0.152 0.004 7 120 H: 27.5o-47.5o, 57.5o 

V: 27.5o-42.5o, 52.5o, 57.5o 

Scheme 4 0.029 0.119 0.006 5 62 H: 37.5o-57.5o 

V: 37.5o-42.5o, 57.5o 
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Table 5. Summary of SMD estimation performances. It is noted that RMSE is in the unit of 

metre.   

 Training  Testing 

 NSE r RMSE  NSE r RMSE 

Scheme 1 0.752 0.870 0.011  0.688 0.830 0.014 

Scheme 2 0.767 0.877 0.011  0.747 0.865 0.012 

Scheme 3 0.928 0.965 0.006  0.876 0.940 0.008 

Scheme 4 0.912 0.957 0.007  0.912 0.960 0.007 

Combined - - -  0.790 0.889 0.011 

SMOS-SM - - -  0.420 0.650 0.017 

 



47 
 

 

Figure. 1. The location and river network of the Pontiac catchment in the U.S., with 

the flow gauge and NLDAS-2 central grid points (Zhuo et al., 2015a). 
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Figure. 2. Adopted flowchart of the XAJ model (Zhao, 1992). The model consists of an evapotranspiration 

component (a), a runoff generating component (b), and a runoff routing component (c). P, PET, and ET are 

the precipitation, potential evapotranspiration, and the simulated actual evapotranspiration respectively; WU, 

WL and WD represent the upper, lower, and deep soil layers’ areal mean tension water storage respectively; 

WM is the areal mean field capacity; EU, EL, and ED stand for the upper, lower, and deep soil layers’ 

evapotranspiration output respectively; S is the areal mean free water storage; a is the portion of the sub-

catchment producing runoff; IMP is the factor of impervious area in a catchment; RB is the direct runoff 

produced from the small portion of impervious area; R is the total runoff generated from the model with 

surface runoff (RS), interflow (RI), and groundwater runoff (RG) components respectively. These three runoff 

components are then transferred into QS, QI, and QG and combined as the total sub-catchment inflow (T) to 

the channel network. The flow outputs Q from each sub-catchment are then routed to the catchment outlet to 

produce the final flow result (TQ). The rest of the symbols are explained in Table 1. 
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Figure 3. SMOS-Tbs data availabilities. It is noted that the available dates for the horizontal and the vertical 

polarizations are the same, so only one is shown here. 
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Figure 4. M-test, to find the best training data size: a) Scheme 1; b) Scheme 2; c) Scheme 3; and d) Scheme 

4.  

 



51 
 

 

Figure 5. Gamma statistic (Γ) variations for increasing the LLR pmax value.
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Figure 6. LLR modelling during the training and testing phases for a) Schemes 1 and b) Scheme 2. 
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Figure 7．The time series plots of the XAJ SMD and the estimated SMD from the four schemes: a) Scheme 

1; b) Scheme 2; c) Scheme 3; and d) Scheme 4.
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Figure 8．LLR modelling during the training and testing phases for a) Schemes 3 and b) Scheme 4. 
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Figure 9. Data availability plots of the four schemes: Scheme 1: SAC-SMA-SM input; Scheme 

2: SAC-SMA-SM and MODIS-LST inputs; Scheme 3: SAC-SMA-SM and SMOS-Tbs inputs; 

Scheme 4: SAC-SMA-SM, MODIS-LST, and SMOS- Tbs inputs. The total available days for 

the four schemes are 730, 458, 217, and 140 respectively. 
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Figure 10. Time series plot of the combined daily hydrological soil moisture state estimations.
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Figure 11. SMD variations from the manipulated XAJ calibration (i.e., the WUM 

parameter is increased by 30 %) and its original calibration.  
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Figure 12．Normalised SMD variations from the manipulated XAJ calibration (i.e., 

the WUM parameter is increased by 30 %) and its original calibration.  

 

 


