
Suggestions for revision or reasons for rejection (will be published if the paper is 

accepted for final publication) 

Second review of „ Monitoring soil moisture from middle to high elevation in Switzerland: 

Set-up and first results from the SOMOMOUNT network“ by Pellet et al. 

 

The manuscript has been extensively reworked and most of the earlier reviewer comments 

have been appropriately addressed. I also very much appreciate the additional chapter on the 

effects of soil freezing on soil moisture measurements and the restricted accuracy of liquid 

soil moisture measurements during frozen conditions. This limited measurement accuracy 

should be also mentioned later in the interpretation and discussion of the results. 

 

However, there are still several issues that need to be resolved before publication can be 

recommended. 

 

General comments 

 

The different terms “liquid VWC”, “VWC”, “total VWC”, “total soil moisture” and “soil 

moisture” are used at random, which is confusing for the reader. I suggest to consistently 

using the term “LSM” for liquid soil moisture and “TSM” for total soil moisture (in the 

following I will use these abbreviations. Also the axis captions of all figures need to be 

adopted in this way. 

 
We are thankful to the reviewer for this comment. We agree that a consistent use of clear terms 
such as liquid soil moisture (LSM) and total soil moisture (TSM) would improve the clarity of the text. 
All the different terms used previously for liquid and total soil moisture in the manuscript have been 
conscientiously replaced by the terms LSM and TSM following the reviewer’s suggestion.    

 

All soil moisture measurements below 0 °C have now been indicated in the figures to indicate 

frozen soil conditions (i.e. measurements are not representing TSM anymore). However, there 

are cases where frozen conditions seem to occur above 0 °C. For instance in Fig. 6 (e.g. GFU) 

one can clearly see that LSM is dropping sharply when temperatures approaches 0 °C, 

indicating that a substantial part of the soil water within the measurement volume of the 

sensors has already started to freeze, although soil temperatures is still above 0 °C according 

to the temperature sensor. This indicates that the temperature measurements are not well 

representing the measurement volume of the sensor. This is not surprising, since the 

electromagnetic waves of the soil moistures sensors penetrate a certain part of the soil, 

whereas the temperature sensor only measures its own temperatures inducing a scale 

mismatch. In order to circumvent this problem, a higher threshold value for soil temperature 

should be to be chosen (e.g. 1 °C or higher). 

 
We thank the reviewer for this pertinent comment. Given the accuracy of the temperature sensor 
(±0.4°C)  and the difference of measured volume, we agree with the reviewer that the 0°C threshold 
is not perfect to indicate frozen/unfrozen soil conditions. Following the reviewer’s suggestion a 1°C 
threshold has been used. All figures have been modified accordingly and an additional mention has 
been included in the revised manuscript.    

 
Original manuscript: 
However, the VWC measurements carried out at temperatures below 0°C are clearly identified in all 
figures in the manuscript and have to be interpreted with care, especially regarding their absolute 
values. 



 
Revised version: 
Given the generally lower accuracy of the soil moisture sensors under partially frozen and frozen 

conditions, the LSM measurements carried out at temperatures below 1°C are clearly identified in all 

figures hereafter. The 1°C threshold was selected to account for partially frozen conditions as well as 

the scale mismatch between the temperature and LSM measurements. These data have thus to be 

interpreted with care, especially regarding their absolute values. 

 

There are still issues related to the special situation at DRE. Only after reading the recent 

HESSD paper I was able to understand the process of convective heat transport by air 

circulation within the talus slope. The authors suggest that is effect also explains lower LSM 

values. They argue that atmospheric air is transported during winter periods into the ground at 

the location of the monitoring station due to this process, thus when air temperature is well 

below 0 °C. This would induce soil freezing below the snow cover and thus explaining the 

observed drop in LSM. However, the soil temperature stays close to 0 °C during this (Figure 

6), which is the typical soil situation below an insulating show cover. In addition the drop in 

LSM happens mostly in 50 cm, which is counter intuitive since freezing should be more 

pronounced near the soil surface.  

Therefore an alternative explanation for the drop in LSM should be considered: Since the 

DRE soil has a very high porosity (the bulk density of 0.12 g/cm³ show in Tab. 3 means that 

the porosity is >90 %!), the drop in LSM could be easily explained by exfiltration of soil 

water into the bed rock fissures below the soil layer or by lateral water transport downhill. In 

addition, the drop in LSM in winter is only marginal and cannot explain the substantial lower 

annual mean LSM compared to MLS or FRE. It is more realistic that LSM at MLS and FRE 

are higher due to the influence of shallow groundwater that keeps the soil saturated for longer 

time periods (i.e. LSM stays constant at the maximum value), whereas DRE does not show 

any sign of groundwater influence (i.e. LSM shows high variability and the LSM is well 

below the soil porosity).  
 
We are thankful to the reviewer for this important and detailed comment. We agree with the 
reviewer that the importance of the convective heat transport in our current interpretation of the 
low LSM at DRE is overestimated. In the dataset presented in this paper the cooling effect only 
impacts LSM during the winter and over short time period. Thus, it cannot be used to explain the 
overall low LSM observed, which is rather caused by the specific soil properties. 
 
In the revised version of the manuscript we therefore clarified the respective importance of the soil 
properties and the convective heat transport process with regard to the mean annual LSM and LSM 
dynamics. As stated by the reviewer, the overall low mean annual LSM values are due to the soil 
properties, which lead to water exfiltration and prevents the influence of groundwater. The influence 
of the air circulation (cooling effect) is restricted to the winter period and explains the prolonged 
near 0°C temperature observed as well as the corresponding low LSM values. The manuscript was 
modified as follow in order to clarify this point. 
 
Original manuscript: 
To summarise the findings from the SOMOMOUNT network presented above, a simple theoretical 
model of the evolution of soil moisture and its contributing factors with elevation can be visualised 
with the grey shading in Figure 14. Comparing the observations qualitatively with this model (circles 
in Fig. 13), it can be seen that DRE does not fit the model. The recorded mean annual liquid VWC 
values are much lower than expected.  



 
The case of DRE is particular not only for its soil moisture dynamics but also in terms of snow duration 
(longer than expected) and mean annual ground temperature (lower than expected). Both anomalies 
are due to site specific characteristics, which are independent from elevation. 
 
The low mean annual ground temperature results from… 
 
In the conclusion: 
Among the six soil moisture stations of SOMOMOUNT, and also in comparison with additional 
stations from other networks, the station of Dreveneuse is a clear exception to the elevation 
dependent theoretical model. This middle elevation site undergoes strong winter freezing as well as 
marked summer evaporation, the latter being due to the vegetation cover. Due to complex air 
circulation within the underlying talus slope the ground temperatures are unusually low for this 
elevation. In addition, the soil properties favoured rapid water transport through the ground. The soil 
properties were found to play an important role in the short term soil moisture variations as well as in 
the mitigation or intensification of the extreme events. 

 
Revised version: 
To summarise the findings from the SOMOMOUNT network presented above, a simple theoretical 
model of the distribution of LSM and its contributing factors with elevation can be visualised with the 
grey shading in Figure 13. Comparing the observations qualitatively with this model (circles in Fig. 
13), it can be seen that DRE does not fit the model. The recorded mean annual LSM values are much 
lower than expected. This is due to the composition of the soil profile. The uppermost layer of the 
subsurface has a very high porosity (> 90%, see Table 3), which leads to exfiltration of water into the 
underlying talus slope or lateral water transport. Furthermore, and conversely to FRE and MLS, no 
evidences of groundwater influence are seen at DRE (Fig. 6). This is consistent with the coarse blocky 
structure of the talus slope which does not retain the infiltrating water. 
 
The case of DRE is also particular in terms of snow duration (longer than expected) and mean annual 
ground temperature (lower than expected). Both anomalies are due to site specific characteristics, 
which are independent from elevation. The low mean annual ground temperature results from … 
 
In the conclusion: 
Among the six soil moisture stations of SOMOMOUNT, and also in comparison with additional 
stations from other networks, the station of Dreveneuse is a clear exception to the elevation 
dependent theoretical model. The lower than expected LSM can be attributed to particular soil 
properties, which favour rapid water transport through the ground. In addition, this middle elevation 
site undergoes strong winter freezing as well as marked summer evaporation, the latter being due to 
the vegetation cover. Due to complex air circulation within the underlying talus slope the ground 
temperatures are unusually low for this elevation. Finally, the soil properties were found to play an 
important role in the short term LSM variations as well as in the mitigation or intensification of the 
extreme events. 

 

In the sensor comparison (Chapter 4.1) only the R²-values are discussed. However, the RMSE 

is much better indicator for the accuracy of the LSM measurements. 

 
We are thankful to the reviewer for this comment. The reviewer is right of course that the RMSE is 
the better indicator for accuracy, whereas the R2- values can be used to verify the similarity of the 
LSM variations. A more in depth discussion of the RMSE is now included in the revised version of the 
manuscript.    

 



Original manuscript: 
At FRE, DRE, MLS and GFU the correlation between the VWC measured by the two sensors was found 
to be satisfactory (lowest correlation at MLS: r2 = 0.749, Fig. 4). 
 
And: 
 
Similar to Fig. 4, the comparison between FDR and TDR sensors at the same depth (Fig. 5) shows a 
generally good correlation (lowest r2 = 0.524 at STO) with some deviations from the one-to-one 
relation (black line). At FRE and GFU the comparison between PICO64 and SMT100 soil moisture 
measurements yield very similar results to the comparison of the two SMT100 sensors, with slightly 
higher RMSE values. MLS shows a larger dynamic range and mostly higher values for the SMT100 
sensor, but a similar temporal variability. 

 
Revised version: 
At FRE, DRE, MLS and GFU the correlation between the LSM measured by the two sensors is found to 
be satisfactory (lowest correlation at MLS: r2 = 0.766, Fig. 4). The RMSE is more variable with the 
lowest value at GFU (2.16 vol.%) and the largest at DRE (11.2 vol.%). 
 
And: 
 
Similar to Fig. 4, the comparison between SMT100 and PICO64 sensors at the same depth shows a 
generally good correlation (lowest r2 = 0.524 at STO) with some deviations from the one-to-one 
relation (Fig. 5). The RMSE is generally larger than for the SMT100 intercomparison (Fig. 4) at all sites, 
which can be explained by the different measurement volume of the SMT100 and PICO64 sensors (see 
section 2.1 and Fig. 2). At FRE and GFU the comparison between PICO64 and SMT100 LSM 
measurements yields very similar results to the comparison of the two SMT100 sensors, with slightly 
higher RMSE values (4.53 and 2.52 vol.%, respectively). MLS shows a larger dynamic range and 
mostly higher values for the SMT100 sensor (RMSE = 16.7 vol.%), but a similar temporal variability (r2 

= 0.606). A similar pattern is observed, when comparing the PICO64 sensor with the second SMT100 
sensor installed at 30cm (Table 5). This dry bias of the PICO64 sensor at MLS is probably due to a bad 
contact between its rods and the surrounding soil. 

 

Chapter 3 should be restructured (only one sub-chapter is a bit awkward). 

 
We thank the reviewer for pointing out this fact. The subsection header (3.1 Technical considerations 
for frozen conditions) was removed in the revised manuscript. 

 

In general, the manuscript should be carefully checked for syntax and tense errors (preferably 

by a native speaker). 

 
We revised and corrected the whole manuscript again regarding syntax and tense errors. We hope to 
have adequately addressed all language errors. 

 

Specific comments 
 

P1L19: “up to” instead of “until” 
 
We thank the reviewer for pointing out this fact and modified the manuscript accordingly. 

 
Original manuscript: 
The observed elevation dependency of soil moisture is found to be non-linear, with an increase of the 



mean annual values until ~2000m.a.s.l. followed by a decreasing trend towards higher elevations. 

 
Revised version: 
The observed elevation dependency of LSM is found to be non-linear, with an increase of the mean 
annual values up to ~2000 m.a.s.l. followed by a decreasing trend towards higher elevations. 
 

P1L21: “VWC” is not defined 

 
Following the general comment that suggested a consistent use of either LSM for liquid soil moisture 
or TSM for total soil moisture, the term VWC was removed from the revised manuscript. 

 

P3L22: “Qu et al., 2013” 

P3L20-21: Actually, the frequency of the SMT100 sensor is not fixed. The SMT100 sensor 

generates a pulse, which is inverted and then fed back to the input of the line driver resulting 

in an “oscillation” frequency that mainly depends on the dielectric permittivity of the 

surrounding medium (between 150 MHz in water and 340 MHz in air), see Bogena et al. 

(2017) for more details on the SMT100 technology. Bogena et al. (2017) also showed the 

effects of temperature on SMT100 reading and demonstrated that any temperature 

dependency of the measured soil moisture are related to temperature related changes in 

permittivity and thus are not a result of the SMT100 sensor electronics and thus can be easily 

corrected using temperature information. 

P3L26: According to Bogena et al. (2017) the accuracy of the SMT100 for ideal 

conditions/media is about 1 vol.% (factory calibration) and even better in case of sensor 

specific calibration. 

 
We thank the reviewer for this detailed comment. The manuscript was modified in order to include 
this new reference and clarify the working of the SMT100 sensor. Additionally, an external review in 
the context of the PhD examination pointed out the fact that this sensor uses the frequency domain 
but is not a reflectometry device. Therefore, the term FDR was removed from the manuscript or 
replaced by “frequency domain”. 

 
Original manuscript: 
The SMT100 sensors are the newest generation of the so-called SISOMOP sensors, which have been 
used to monitor soil moisture at Schilthorn (one of the high elevation permafrost sites, see section 
2.3) since 2007 (Hilbich et al. 2011), demonstrating the sensors robustness and capability to measure 
in mountainous areas. Furthermore, laboratory experiments performed by Mittelbach et al. (2012) 
showed that the SISOMOP sensors have a similar absolute accuracy (±3 vol.%) compared to three 
other, more widely used, FDR sensors. 
 
Revised version: 
The SMT100 sensors are composed of a ring oscillator which feeds a 10cm long transmission line (Fig. 
2). The sensors emit an electromagnetic pulse. Its resulting oscillation frequency is recorded and can 
then be related to the dielectric permittivity and thus to the LSM of the surrounding medium (see e.g. 
Bogena et al, 2017; Qu et al., 2013). The SMT100 sensors are the newest generation of the so-called 
SISOMOP sensors, which have been used to monitor LSM at Schilthorn (one of the high elevation 
permafrost sites, see section 2.3) since 2007 (Hilbich et al. 2011), demonstrating the sensors 
robustness and capability to measure in mountainous areas. Additionally, Bogena et al. (2017) 
showed that the SMT100 sensors have an absolute accuracy of ±1 vol.%  in ideal conditions using the 
factory calibration. 

 

P4L4-10: Remove redundancies (e.g. penetration depth) 



 
The manuscript was modified as follow. 
 
Original manuscript: 
Finally, the PR2/6 sensor is a 100cm long down-hole water content sensor measuring soil moisture at 
6 different depths (10, 20, 30, 40, 60 and 100cm) using the capacitance technique (Fig. 2). Each 
measurement depth comprises a pair of stainless steel rings, which transmit the 100 MHz 
electromagnetic signal into the ground, and one detector to record the returned signal. This technique 
relies on the fact that the emitted wave generates an electromagnetic field, which extends about 
100mm into the surrounding soil and depending on its dielectric properties and thus on the VWC is 
partly reflected (Verhoef et al., 2006). The sensor is lodged in an access polycarbonate tube of 25mm 
diameter and its measurement volume is ~10cm diameter with an absolute accuracy of ±6 vol.% 
(Delta-T Device, 2008). 
 
Revised version: 
Finally, the PR2/6 sensor is a 100cm long down-hole water content sensor measuring LSM at 6 
different depths using the capacitance technique (Fig. 2). Each measurement depth comprises a pair 
of stainless steel rings, which transmit the 100 MHz electromagnetic signal into the ground, and one 
detector, which records the returned signal. The sensor is lodged in an access polycarbonate tube of 
25mm diameter and its measurement volume is ~10cm diameter with an absolute accuracy of ±6 
vol.% (Delta-T Device, 2008; Verhoef et al., 2006). 

 

P10L2-4: This statement is not fully correct. Watanabe and Wake (2009) showed that the 

relationship of liquid water fraction measured with NMR and the permittivity measured with 

TDR can be approximated with Topp’s equation for sand (except −0.1 < T > 0 °C), but not for 

other soil textures like loam. Thus, for most of your sites this means that the LSM 

measurements have less accuracy during frozen conditions.  

 
We thank the reviewer for pointing out this fact and modified the manuscript as follow. 

 
Original manuscript: 
However, according to Watanabe and Wake (2009), for sand the calibration using Topp’s empirical 
relationship in frozen conditions shows only small deviations from the measured total VWC using 
NMR except for temperatures between 0 and -1°C.  
 
Revised version: 
For frozen sand however, Watanabe and Wake (2009) showed that TDR devices calibrated using 

Topp’s equation exhibit only small deviations from the measured LSM using NMR except at 

temperatures between 0 and -1°C.  

 

P11L3: Check grammar 

 
The manuscript was modified as follow. 
 
Original manuscript: 
The TDR-based PICO64 sensors, which have a higher absolute accuracy (Mittelbach et al., 2012) are 
also, are installed at 30cm depth. 
 
Revised version: 
In addition, the TDR-based PICO64 sensors, having a nominally higher absolute accuracy (Mittelbach 



et al., 2012) have been installed at 30cm depth. 

 

P11L8: Here you also should mention the very high RMSE at MLS.  

 
We thank the reviewer for pointing out this fact and modified the manuscript accordingly. See also 
our response to the general comments. 

 
Original manuscript: 
MLS shows a larger dynamic range and mostly higher values for the SMT100 sensor, but a similar 
temporal variability. 

 
Revised version: 
MLS shows a larger dynamic range and mostly higher values for the SMT100 sensor (RMSE = 16.7 
vol.%), but a similar temporal variability (r2 = 0.606). 

 

P11L21: In fact, the temperatures are typically staying close to 0 °C. 

 
The manuscript was modified as follow. 
 
Original manuscript: 
DRE, GFU, SCH and STO show a clear drop of temperatures below the freezing point during the 
winter, whereas no freezing was recorded at FRE. At MLS negative soil temperatures were only 
observed at 10cm depth during 10 days in early winter 2016.  
 
Revised version: 
DRE, GFU, SCH and STO exhibit temperatures close to and below the freezing point during the winter, 
whereas no freezing was recorded at FRE. At MLS negative soil temperatures were only observed at 
10cm depth during 10 days in early winter 2016.  

 

P11L29: A high retention capacity should lead to less variability in temporal soil moisture 

dynamics. 

 
We thank the reviewer for pointing out this fact and modified the manuscript as follow. 

 
Original manuscript: 
At GFU the 10cm sensor is much more variable than the ones at 30 and 50cm and shows much higher 
values. This is due to the high organic content and high retention capacity of this particular soil layer 
(Fig.3d and Table 3).  
 
Revised version: 
At GFU the 10cm sensor values are much more variable than the values at 30 and 50cm and exhibit 
higher values. This is due to the high organic content and low bulk density of this particular soil layer 
(Fig. 3d and Table 3). 

 

P11L32: Is the high evaporation rate really only due higher temperature? What about other 

meteorological parameters, especially low precipitation rates? 

 
We thank the reviewer for pointing out this fact. According to MeteoSwiss (2016) and the 
measurements available at the different stations, precipitation was also unusually low during this 
period. We modified the manuscript to include this point. 
 



Original manuscript: 
This marked soil moisture decrease is due to the exceptionally high air temperatures recorded in July 
2015 (MeteoSwiss, 2016; Scherrer et al., 2016) leading to increased evaporation. 
 
Revised version: 
This marked LSM decrease is due to the exceptionally high air temperatures and low precipitation 
recorded in July 2015 (MeteoSwiss, 2016; Scherrer et al., 2016) leading to increased evaporation. 

 

P12L18: This is an indication for preferential flow. 

 
We thank the reviewer for pointing out this fact and added one sentence relative to this point in the 
manuscript. 
 
Original manuscript: 
As expected, the uppermost layer (10cm) reacts stronger than the lower ones to atmospheric forcing, 
however, the response time is very fast and in some cases almost simultaneous at all depths.  
 
Revised version: 
As expected, the uppermost layer (10cm) reacts stronger to atmospheric forcing than layers below. 

However, the response time is very fast and in some cases almost simultaneous at all depths, which is 

an indication for preferential flow.  

 

P12L29: Why “also”? 

 
The manuscript was modified as follow. 
 
Original manuscript: 
During this period liquid VWC increases/decreases slowly but remains decoupled from precipitation 
events. Punctual lateral inflow and/or snow meltwater infiltration are also possible. 
 
Revised version: 
During this period LSM increases/decreases slowly but remains decoupled from precipitation events. 
Punctual lateral inflow and/or snow meltwater infiltration are possible. 

 

P13L13: “event” instead of “daily” 

 
The manuscript was modified accordingly. 
 
Original manuscript: 
Using moisture orbits of different time scales (annual, pluri-annual and daily), allows us to analyse 
the dominant processes playing a role in the temporal evolution of soil moisture. 
 
Revised version: 
Using moisture orbits of different time scales (annual, pluri-annual and event), allows us to analyse 
the dominant processes playing a role in the temporal evolution of LSM.  

 

P14L9: Check grammar. 

P14L12: Check grammar. 
 
The manuscript was modified as follow. 



 
Original manuscript: 
The start of the thawing process at larger depth can be due to preferential water infiltration events or 
to the influence of warm temperatures from the preceding summer at depth (e.g. Zenklusen Mutter 
and Phillips, 2012). In the case of the latter, warmer ground temperatures in spring can be found at 
depth compared to the near surface due to the time-lag of heat propagation into the subsurface. The 
occurrence of this phenomenon depends on the thermal properties of the subsurface and the strength 
of the winter freezing. . 
 
Revised version: 
The start of the thawing process at larger depth can be due to preferential water infiltration events or 
to the influence of high temperatures from the preceding summer (e.g. Zenklusen Mutter and Phillips, 
2012). In the latter case, the ground temperatures in spring are higher at depth compared to the near 
surface due to the time-lag of heat propagation into the subsurface. The occurrence of this 
phenomenon depends on the thermal properties of the subsurface and the strength of the winter 
freezing. 

 

P14L13: Which depth? 
 
In this sentence, the potential influence of the warm temperature from the preceding summer on 
the thawing process is proposed as an explanation for the earlier melt observed at 50cm than at 
10cm. Unfortunately no temperature measurements deeper than 50cm are available at that precise 
location. Thus, the exact depth at which this process occurs is not possible to assess with precision. 
From the nearby borehole, it is known that the active layer thickness (maximum penetration depth of 
the 0°C isotherm during the summer) varies between 5m and 10m depending on the year. 
Furthermore, the process described above has been observed in the borehole at approximatively 
1.5m depth in several occasions. 
 

P14L27: Please indicate the soil type in terms of FAO classification. 

 
We used the USDA classification throughout the text. For better readability we rephrased the 
sentence as follows:  
 
Original manuscript: 
This is due to the soil properties. At DRE the soil profile down to 50cm consists of one single organic 
rich sandy loam layer with a very low bulk density (Table 3), which is underlain by large sized 
boulders. This soil type is characteristically highly draining (Beringer et al., 2001) and the water is 
rapidly transported through. 

 
Revised version: 
This is due to the soil properties. At DRE the soil profile down to 50cm consists of one single organic 
rich sandy loam layer with a very low bulk density (Table 3), which is underlain by large sized 
boulders. These particular soil properties render the uppermost layer highly draining (Beringer et al., 
2001) and the water is rapidly transported through. 

 

P15L4: Check grammar and repetition. 

 
The manuscript was modified as follow. 
 
Original manuscript: 
This is confirmed by additional ERT measurements realized in summer from 2013 to 2015, which 



indicate extremely low specific resistivities (~250 Ωm) down to 2.5m (not shown). The combination of 
near saturated conditions at 50cm and highly variable VWC at 10cm yields an almost horizontal 
moisture orbit shape. . The organic rich layer has a lower thermal conductivity (Beringer et al., 2001) 
than the other soil types thus reducing the influence of air temperature (evaporation and/or freezing) 
at larger depth. 

 
Revised version: 
This is confirmed by additional ERT measurements realized in summer from 2013 to 2015, which 
indicate extremely low specific resistivities (~250 Ωm) down to 2.5m (not shown). The combination of 
these two factors explains the almost horizontal moisture orbit shape observed at GFU. The organic 
rich layer has a lower thermal conductivity (Beringer et al., 2001) than the other soil types thus 
reducing the influence of air temperature (evaporation and/or freezing) at larger depth.  

 

P15L12: “large elements” is not an appropriate term in this respect. 

 
We thank the reviewer for pointing out this fact and revised the manuscript. 
 
Original manuscript: 
Finally at SCH and STO, the ground consists of sand or loamy sand, with a significant proportion of 
large size elements (at 10cm 25% of the soil particles are larger than 10mm at SCH and 45% at STO, 
see also Fig. 3e-f). 

 
Revised version: 
Finally at SCH and STO, the ground consists of sand or loamy sand, with a significant proportion of soil 
particles larger than 10mm (25% and 45% respectively at 10cm, see also Fig. 3e-f). 

 

P16L8: “soil material”, “near the soil surface” 

 
The manuscript was modified accordingly. 
 
Original manuscript: 
This pattern is consistent with the vertical succession of soil found at SCH: sandy loam at the surface, 
which retains water at the beginning of the event and sand at larger depth, which is more draining. 

 
Revised version: 
This pattern is consistent with the vertical succession of soil material found at SCH: sandy loam near 
the soil surface, which retains water at the beginning of the event and sand at larger depth, which is 
more draining. 

 

P16L11: The slope is higher than 45°. Better present the slope of a regression. 

P16L12: The slope was less steep. 

 
We simplified the manuscript as follows: 
 
Original manuscript: 
At DRE the moisture orbit has a large amplitude at both depths and the slope is about 45°. This is in 
good agreement with the annual moisture orbit described above. 

 
Revised version: 
At DRE the moisture orbit has a large amplitude at both depths with a slope > 45°.  

 



P16L18: Please add the LSM values. 

 
The manuscript was modified accordingly. 
 
Original manuscript: 
From Fig. 6c, it can be seen that, at the time of the precipitation event, the VWC at 10cm and 30cm 
depths were unusually low, thus generating a larger gradient in pressure head from the surface… 

 
Revised version: 
From Fig. 6c, it can be seen that, at the time of the precipitation event, the LSM at 10cm and 30cm 
depths were unusually low (23 vol.% and 24.5 vol.%, respectively), thus generating a larger gradient 
in pressure head from the surface … 

 

P17L23-24: The statement that temperature is a result of the radiation balance is not correct. 

Air temperature in mountainous regions typically decreases with elevation according to the 

moist adiabatic lapse rate due the decrease in atmospheric pressure with elevation and latent 

heat exchange processes. 

 
We thank the reviewer for pointing out this fact and revised the manuscript. 
 
Original manuscript: 
Air temperature (Fig. 12b), resulting from the radiation balance, controls the energy available for 
evaporation and freezing, whereas the precipitation amount (Fig. 12c) controls the water input at the 
surface. 

 
Revised version: 
Air temperature (Fig. 12b) is one of the controlling factors for evaporation and freezing processes, 
whereas the precipitation amount (Fig. 12c) controls the water input at the surface. 

 

P18L2: Explain “surface offset” 

 
We thank the reviewer for this comment and explained the term surface offset after the first 
mention in the text (P17L26). 
 
Original manuscript: 
The snow cover duration (Fig. 12e) has several effects on the soil moisture dynamics: it insulates the 
ground from the cold winter temperatures (yielding positive surface offsets, Fig. 12b) 
 
Revised version: 
The snow cover duration (Fig. 12e) has several effects on the LSM dynamics: it insulates the ground 
from the cold winter temperatures (yielding positive surface offsets (i.e. the difference between 
ground and air temperature), Fig. 12b) 

 

P18L18: The term “evolution” is not appropriate here. 
 
The manuscript was modified accordingly. 

 
Original manuscript: 
To summarise the findings from the SOMOMOUNT network presented above, a simple theoretical 
model of the evolution of soil moisture and its contributing factors with elevation can be visualised 
with the grey shading in Figure 14. 



 
Revised version: 
To summarise the findings from the SOMOMOUNT network presented above, a simple theoretical 
model of the distribution of LSM and its contributing factors with elevation can be visualised with the 
grey shading in Figure 13. 
 

P19L10: Fig. 13 is not a conceptual model. You could call it a generalised schematic or 

similar. 

 
The manuscript was modified accordingly. 

 
Original manuscript: 
Our elevation dependent model is an empirical model developed using seven stations. 
 
Fig. 13: Conceptual model of the evolution of air temperature, precipitation, snow duration, ground 
temperature and soil moisture with elevation. The circles represent the observations from 2015 (see 
Fig. 12), the grey area the expected theoretical evolution and the colour scale the soil type. The 
mismatches between model and observations are highlighted in red. 
 
Revised version: 
The elevation dependent generalized schematics shown in Fig. 13 has been empirically developed 
using seven stations. 
 
Fig. 13: Generalised schematics of the evolution of air temperature, precipitation, snow duration, 
ground temperature and LSM with elevation. The circles represent the observations from 2015 (see 
Fig. 12), the grey area the expected theoretical evolution and the colour scale the soil type. The 
mismatches between model and observations are highlighted in red. 

 

Fig. 6 is overcrowded with time series making it very difficult to read, especially since the 

colours are also quite similar. Since you are later using only the SMT100 data, I suggest 

removing all other L. SM data. The 0°C-threshold is not working always (see general 

comment). 
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Fig. 6: SMT100 measured LSM (upper panel) and ground temperatures (lower panel) at each 
SOMOMOUNT station (a-f). At FRE the uppermost panel displays the PR2/6 measured LSM. The 
vertical dotted lines at FRE and SCH indicate the period analysed in Fig. 7. The dashed LSM lines 
represent the soil moisture measurements taken when the ground temperature was below 1°C. 

 

Fig. 7: Precipitation should be shown for the whole period. Use different axis for snow and 

LSM (the LSM range is too wide). 
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Fig. 7: SMT100 measured LSM, ground temperature and soil resistivity at FRE (a) and SCH (b) from 
March to August 2015. In addition, daily air temperature, snow depth and precipitation sums are 
shown as well as the date of the transition between the different stages in the thermal evolution at 
SCH at 10cm (dashed lines A and B, see text for details). The dashed LSM lines represent the soil 
moisture measurements taken when the ground temperature was below 1°C. 
 

Fig. 8: You should use the 10 cm temperature data to indicate freezing conditions. 
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Fig. 8: Moisture orbit at each SOMOMOUNT station from the 1st January to the 31st December 2015. 
The numbered arrows indicate the most important stages at each station as well as the sense of the 
evolution. The hollow circles represent LSM measurements taken when the temperature was below 
1°C at 10cm. 

 

Fig. 10: Yellow is hardly visible. 
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This reference has been added to the list. 

 

Fig. 10: Moisture orbit at each SOMOMOUNT station for one precipitation event between the 23rd 
and the 27th August 2015. The LSM values are given as hourly mean and expressed as the change of 
absolute value compared to the first measurement (23rd August at 23:00). The daily precipitation 
sums recorded (FRE, DRE and MLS) and extrapolated (GFU, SCH and STO) for the 24th August are 
indicated. 
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Abstract. Besides its important role in the energy and water balance at the soil-atmosphere interface, soil moisture can be a 

particular important factor in mountain environments since it influences the amount of freezing and thawing in the 

subsurface and can affect the stability of slopes.  

In spite of its importance, the technical challenges and its strong spatial variability usually prevents soil moisture from being 10 

measured operationally at high and/or middle altitudes. This study describes the new Swiss soil moisture monitoring network 

SOMOMOUNT (soil moisture in mountainous terrain) launched in 2013. It consistsing inof six entirely automated soil 

moisture stations distributed along an altitudinal gradient between the Jura Mountains and the Swiss Alps, ranging from 

1205m.a.s.l. to 3410m.a.s.l. elevation. In addition to the standard instrumentation comprising fFrequency dDomain sensor 

Reflectometry (FDR) and tTime Ddomain Rreflectometry (TDR) sensors along vertical profiles, soil probes and 15 

meteorological data are available at each station.  

In this contribution we present a detailed description of the SOMOMOUNT instrumentation and calibration procedures. 

Additionally, the liquid soil moisture (LSM) data collected during the three first years of the project are discussed with 

regard to their soil type and climate dependency as well as their altitudinal distribution. The observed elevation dependency 

of soil moistureLSM is found to be non-linear, with an increase of the mean annual values up tontil ~2000m.a.s.l. followed 20 

by a decreasing trend towards higher elevations. This altitude threshold marks the change between precipitation/evaporation 

controlled and frost affected soil moistureLSM regimes and frost affected ones. The former is characterized by high liquid 

VWCLSM throughout the year and minimum values in summer, whereas the latter typically exhibits long lasting winter 

minimum liquid VWCLSM values and high variability during the summer.  

Keywords: Soil moisture, monitoring network, TDR, FDR, mountain, elevation gradient, seasonal frost, permafrost 25 

1 Introduction 

Soil moisture is a key factor controlling the energy and water exchange processes at the soil-atmosphere interface as well as 

the physical properties of the subsurface. The latter such as include also important properties for the thermal regime such as 

heat capacity and thermal conductivity (for a review see e.g. Seneviratne et al., 2010). In 2010 soil moisture was classified as 
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an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS) and has thus to be continuously and 

globally monitored. Even though the number of soil moisture networks is globally increasing, it is still far from being 

standardised, coordinated or spatially representative. Coordination efforts are however increasing with the International Soil 

Moisture Network being the largest soil moisture data source to date (Dorigo et al., 2011).  

Existing soil moisture monitoring networks have many different foci, such as the validation of remote sensing products (e.g. 5 

Bircher et al., 2012; Rautiainen et al., 2012), the investigation of hydrological processes at hillslope scale (e.g. Brocca et al., 

2007; Martini et al., 2015) or catchment scale (e.g. Bogena et al., 2010) as well as the study of land-atmosphere interactions 

(e.g. Hauck et al., 2011; Krauss et al., 2010; Mittelbach et al., 2011). In the interest of representativeness for large scale 

studies and due to easy implementation most of the current monitoring networks are located at middle to low elevation. In 

Switzerland, the long term monitoring network SwissSMEX was initiated in 2008 and is composed of 16 stations distributed 10 

across the Swiss plateau and other low elevation regions (Mittelbach and Seneviratne, 2012).  

In mountain environments, soil moisture is particularly crucial since it can control the initiation of convective precipitation 

(e.g. Barthlott et al., 2011; Hauck et al., 2011), the generation of runoff (e.g. Morbidelli et al., 2016; Zehe et al., 2010) and 

thereby the mitigation or intensification of flash floods (e.g. Borga et al., 2007). Soil moisture also significantly affects the 

vegetation growth and distribution (e.g. Paschalis et al., 2015; Porporato et al., 2004). In terrains affected by seasonal and 15 

permanently frozen conditions, its effect on the stability of slopes and the thermal and kinematic characteristics of periglacial 

landforms was highlighted in several observation and modelling studies (e.g. Boike et al., 2008; Hasler et al. 2011; Hinkel et 

al., 2001; Krautblatter et al. 2012; Scherler et al., 2010; Streletskiy et al. 2014; Westermann et al., 2009; Zhou et al. 2015). A 

general overview of the interactions between hydrological, mechanical and ecological processes in frozen grounds is given 

by Hayashi (2013). 20 

However, soil moisture measurements in mountainous areas are technically challenging because of the often coarse blocky 

substrate, the temperatures below the freezing point and the remoteness of the sites, which also adds difficulties regarding 

energy supply and data transfer. They are therefore also more costly to implement. Furthermore, among the numerous well 

established in situ soil moisture monitoring devices (e.g. Hillel, 2004; Robinson et al., 2008; Vereecken et al., 2014), only 

few have been tested in such harsh and partly frozen conditions (e.g. Pellet et al., 2016; Rist and Phillips, 2005, Zhou et al., 25 

2015). Thus measurements in mountainous terrains are currently restricted to uncoordinated and project based installations 

(e.g. Hilbich et al., 2011; Rist and Phillips, 2005; Zhou et al., 2015). Furthermore the systematic investigation of soil 

moisture along a large elevation gradient reaching to Alpine permafrost conditions is non-existent so far.  

The project SOMOMOUNT (Soil moisture in mountainous terrain and its influence on the thermal regime in seasonal and 

permanently frozen terrains, see also Pellet et al., 2016), which started in 2013 and is funded by the Swiss National Science 30 

Foundation, has the main objective to fill this data gap. In collaboration with the Swiss permafrost monitoring network 

(PERMOS) and the Swiss Federal Office for Meteorology and Climatology (MeteoSwiss), six automatic soil moisture 

monitoring stations have been established at different altitudeselevations.  
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In this contribution we will present a detailed description of the SOMOMOUNT monitoring network's instrumentation, 

monitoring strategy and calibration procedure, and discuss the measurement accuracy of the measurements. Additionally, the 

data collected during the three first years of the SOMOMOUNT project will be discussed regarding the importance of the 

different water related processes, which are dominant at the different elevation bands. Hereby the differential impact of a 

three-week lasting heat wave on the different sites during summer 2015 is highlighted. 5 

2 Soil moisture network 

The soil moisture network established within the framework of the SOMOMOUNT project is currently composed of six 

fully automatic soil moisture monitoring stations installed along an elevation gradient ranging from 1205 m.a.s.l. to 3410 

m.a.s.l., which spans spanning from the Jura Mountains to the western Swiss Alps (Fig. 1). It is designed to be compatible 

with the existing low elevation soil moisture monitoring network SwissSMEX (Mittelbach and Seneviratne, 2012) as well as 10 

the stations of the Swiss Permafrost Monitoring Network (PERMOS). Finally In addition, the high elevation soil moisture 

and permafrost monitoring station of Cervinia, Italian Alps, (Pellet et al., 2016; Pogliotti et al., 2015) is also included in the 

comparative analyses. 

2.1 Instruments 

Three different types of sensors are used within the SOMOMOUNT network: the SMT100 (TRUEBNER GmbH, Germany), 15 

which is a based on the frequency-based  domain reflectometrysensor (FDR) technique, the TRIME-PICO64 (IMKO GmbH, 

Germany) based on the time domain reflectometry (TDR) technique and the PR2/6 (Delta-T Device Ltd, UK) based on the 

capacitance technique. Both the SMT100 and the PICO64 sensors are measuring simultaneously soil moisture and ground 

temperature. The sensor characteristics are listed in Table 1.  

Both FDR and TDRAll methods are indirect measurement techniques that use electromagnetic waves to estimate the 20 

dielectric permittivity of the ground and relate it to the soil volumetric water contentliquid soil moisture (VWCLSM). The 

SMT100 sensors are composed of a ring oscillator which feeds a 10cm long transmission line (Fig. 2). The sensors emit an 

electromagnetic wave at a fixed frequencypulse. and Its resultingthe recorded  oscillation frequency is recorded and can then 

be related to the wave propagation velocity and thus the dielectric permittivity and thus to the VWCLSM of the surrounding 

medium (see e.g. Bogena et al, 2017; Qu et al., 20032013). The SMT100 sensors are the newest generation of the so-called 25 

SISOMOP sensors, which have been used to monitor soil moistureLSM at Schilthorn (one of the high elevation permafrost 

sites, see section 2.3) since 2007 (Hilbich et al., 2011), demonstrating the sensors robustness and capability to measure in 

mountainous areas. Furthermore, laboratory experiments performed by MittelbachBogena et al. (20172) showed that the 

SISOMOP SMT100 sensors have an similar absolute accuracy (of ±13 vol.% in ideal conditions using the factory 

calibration) compared to three other, more widely used, FDR sensors. 30 
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The PICO64 sensors are based on the standard TDR technique, which relates the travel time of an electromagnetic wave to 

the dielectric permittivity of the medium surrounding the sensors, which can in turn be related to the VWCLSM of said 

medium. The PICO64 sensors emit an electromagnetic impulse at a frequency of 1 GHz along two 16cm long parallel rods 

separated by 40mm, yielding a measurement volume of ~1.25 L (~10cm diameter around the rods). The recorded travel 

times are related to the VWCLSM using a general calibration based on Topp’s equation (Topp et al., 1980). This sensor was 5 

selected for its high absolute accuracy (±1 vol.%, IMKO, 2015) and because it corresponds to the new generation of TRIME-

EZ sensors used by the SwissSMEX monitoring network (Mittelbach et al., 2011). Additionally, due to its large 

measurement volume, this sensor is particularly suitable for heterogeneous media (IMKO, 2015).  

Finally, the PR2/6 sensor is a 100cm long down-hole water content sensor measuring soil moistureLSM at 6 different depths 

(10, 20, 30, 40, 60 and 100cm) using the capacitance technique (Fig. 2). Each measurement depth comprises a pair of 10 

stainless steel rings, which transmit the 100 MHz electromagnetic signal into the ground, and one detector to , which records 

the returned signal. This technique relies on the fact that the emitted wave generates an electromagnetic field, which extends 

about 100mm into the surrounding soil and depending on its dielectric properties and thus on the VWC is partly reflected 

(Verhoef et al., 2006). The sensor is lodged in an access polycarbonate tube of 25mm diameter and its measurement volume 

is ~10cm diameter with an absolute accuracy of ±6 vol.% (Delta-T Device, 2008; Verhoef et al., 2006). This sensor was 15 

selected for its measurement depth and its easy installation. However, it is not suited for heterogeneous subsurface or coarse 

grained material since a good contact between the access tube and the soil is necessary. Furthermore, at least 1m soil is 

needed for its installation, thus it was only used at Frétaz (Sect. 2.3). 

2.2 Network design 

Each soil moisture station is equipped with 4 to 6 sensors along a vertical profile. The standard instrumentation consists of 20 

one SMT100 at 10cm, two at 30cm and one at 50cm as well as one PICO64 at 30cm and one at 50cm (Fig. 2). The doubled 

sensors at 30cm were installed to check for long-term instrumental drift on the long term. Depending on the soil 

characteristics, the iInstallation of the complete instrumentation at all depths was not possible at all sites due to soil 

characteristics. The site specific set-ups are summarized in Table 2.  

The same sensor installation procedure was followed at all sites and is based on the criteria described in Krauss et al. (2010) 25 

and Mittelbach et al. (2011). While digging the pit for the sensor installation, each soil horizon was stored separately in order 

to preserve and restore the initial soil profile. At the depth of each sensor, up to two soil samples were collected at the side 

for granulometric analysis and determination of water content determination. The sensors were then installed in the 

undisturbed soil with the blade in vertical position to avoid ponding (Fig. 2 and Fig. 3). Finally, the soil was refilled 

according to the original order of horizons and compacted to restore its original density. Additionally, larger samples of soils 30 

samples (about 8 L) were collected in the vicinity to perform for material specific calibrations of the sensors (Sect. 3). The 

Ddata are recorded using a CR1000 data logger (Campbell Scientific) and transmitted with wirelessly transfer to an ftp 

server. The measurement interval is depending on the electrical power capacity of each station (see Table 2).  
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2.3 Field sites 

The site selection for the installation of the long term soil moisture monitoring stations within the SOMOMOUNT project 

was constrained by the following criteria: 

i. high enough sufficiently high elevation, so that for the ground thermal regime is to be affected by seasonally or 

permanently frozen conditions. 5 

ii. equal distribution along an altitudinal gradient. 

iii. availability of additional meteorological data and if possible ground temperature data. 

iv. easy access on site, and a minimum of 50cm of fine grained material, to guarantee the installation of the sensors. 

The stations were installed in collaboration with the Swiss Federal Office for Meteorology and Climatology (MeteoSwiss,  

(cf. SwissMetNet, http://www.meteoswiss.admin.ch) for stations at middle elevation and the Swiss Permafrost Monitoring 10 

Network PERMOS (http://www.permos.ch) for stations at higher elevation (see Table 2). Located in the western part of 

Switzerland, the SOMOMOUNT network covers an elevation range from 1205 m.a.s.l. to 3410 m.a.s.l. with altitudinal 

differences between stations of 400-500m (Fig. 1). Detailed information about the climatic conditions and subsurface 

properties at each field site are summarized in Table 3. 

2.3.1 Frétaz (FRE) 15 

Frétaz is located in the western part of Switzerland on the first crest of the Jura Mountains at an altitude of 1205 m.a.s.l. The 

soil moisture monitoring station is installed within the perimeter of the weather station belonging to the MeteoSwiss 

automatic network SwissMetNet. , where gIn addition, ground temperatures down to 1m depth were also measured until 

2005. 

The surface cover consists of managed grass following the general directives from MeteoSwiss (grass cover maintained at all 20 

times at a few cm). The soil is composed of a unique layer of sandy loam down to 50cm (Table 3). According to geophysical 

surveys (Electrical Resistivity Tomography, ERT) the limestone bedrock is located at 5 to 10m depth underneath the station 

(see Pellet et al., 2016).    

2.3.2 Dreveneuse (DRE) 

The Dreveneuse field site is located at an altitude of 1650 m.a.s.l. in a small North orientated valley within the Swiss Pre-25 

Alpine region, where the mean annual air temperature is around 5°C (Morard, 2011). The soil moisture station is installed on 

a vegetated talus slope near an automatic weather station, and ground temperatures are monitored in two boreholes down to 5 

and 14m depth, respectively. 

This site is situated below the lower altitudinal limit of permafrost occurrence in the Alps but is still affected by permafrost 

conditions due to complex air circulation within the talus slope (Delaloye, 2004). The coarse limestone blocks composing 30 

the talus slope are covered by a single layer of organic rich sandy loam (Table 3, Fig. 3b). The surface is covered by moss 
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and spruces and according to repeated ERT soundings as well as drilling logs, the talus slope is approximatively 11m thick 

(Morard, 2011). 

2.3.3 Moléson (MLS) 

The Moléson soil moisture station is situated at 1974 m.a.s.l. on top of the eponym mountain in the Swiss Pre-Alpine region. 

For the reference period 1981 to 2010 the mean annual air temperature was 3°C and the annual sum of precipitations is 929 5 

mm y-1 (MeteoSwiss). As for FRE, the soil moisture station is integrated within the perimeter of a SwissMetNet station, 

where the surface cover consists of managed grass. 

No apparent layering was found in the soil profile (homogeneous layer of silty loam down to 50cm, see Fig. 3 and Table 3). 

and According to ERT measurements and the construction journal of the weather station, the bedrock, which consists of 

limestone, is located at around 75cm depth underneath the station. 10 

2.3.4 Gemmi (GFU) 

The Gemmi soil moisture monitoring station is located at 2450 m.a.s.l. in a West-orientated valley within the main alpine 

ridge of Switzerland (Fig. 1). The monitoring station is installed on a solifluction lobe in the direct vicinity of a 1m deep 

temperature profile and a weather station (Krummenacher and Budminger, 1992).  

This site is situated just below the lower limit of permafrost occurrence in the Alps and therefore undergoes marked seasonal 15 

freezing processes down to at least 1m depth. The surface is covered by grass during the summer and the uppermost 10cm of 

the ground is composed of an organic rich silty loam layer (Table 3, Fig. 3). According to ERT measurements performed in 

2014, the bedrock is located at around 5m depth underneath the station (Pellet et al., 2016).   

2.3.5 Schilthorn (SCH) 

The Schilthorn field site is situated at an elevation of 2900 m.a.s.l. on a small plateau in the North-facing slope of the 20 

Schilthorn summit in the northern Swiss Alps (Fig. 1). The soil moisture station is installed next to an automatic weather 

station and two three boreholes, where ground temperatures have been monitored since 1998 (Harris et al., 2001).  

Permafrost is present at SCH and the depth of the seasonally unfrozen soil layer (the so-called active layer) can reach up to 

10m (PERMOS, 2016). The surface cover is vegetation free and consists of a layer of fine grained debris with material 

ranging from loamy sand to sand (Table 3) which reaching several meters thickness according to ERT measurements 25 

(Hilbich et al., 2008). SCH is the only station of the SOMOMOUNT network where soil moisture has already been 

monitored since end of August 2007 (Hilbich et al. 2011). 
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2.3.6 Stockhorn (STO) 

The highest soil moisture monitoring station of the SOMOMOUNT network is located at an elevation of 3410 m.a.s.l. on the 

Stockhorn plateau in the Western Swiss Alps. The soil moisture station is installed in the vicinity of an automatic weather 

station as well as two boreholes measuring ground temperatures since summer 2000 (Harris et al., 2001). 

The Stockhorn plateau is underlain by at least 100m deep permafrost (Gruber et al., 2004), where the active layer thickness 5 

can reach up to 5m (PERMOS, 2016). The surface is free of vegetation and consists of a 1m deep layer of fine grained debris 

ranging from sand to loamy sand (Table 3) underlain by Albit-Muskovit schist bedrock (Gruber et al., 2004). 

2.3.7 Additional stations 

In addition to the SOMOMOUNT network we used the stations of Sion (SIO, Mittelbach and Seneviratne, 2012) and 

Cervinia (CER, Pellet et al., 2016; Pogliotti et al., 2015) for comparative analysis. The first one is part of the SwissSMEX 10 

network and is located in the Rhone valley at an elevation of 490 m.a.s.l. Since 2009, soil moistureLSM is measured down to 

80cm depth within the perimeter of the SwissMetNet station. Conversely, Cervinia is a high elevation (3100 m.a.s.l.) 

permafrost monitoring site managed by the regional environmental protection agency of Val d’Aosta (ARPA). Since 2006, 

the site is equipped with two boreholes (7m and 14m deep) as well as an automatic weather station and one soil moisture 

sensor at 20cm depth. 15 

2.4 Data processing 

To ensure the quality of the soil moistureLSM and ground temperature data, two different automatic filters are applied: a 

technical filter and a temporal filter. The filters are based on guidelines from Dorigo et al. (2013). 

The technical filter is designed to eliminate all unrealistic values due to technical issues. Firstly, a threshold method is 

applied to detect and remove measurements outside of the plausible ranges (<0% and >80% for VWCLSM and <-20°C and 20 

> 30°C for ground temperature). The threshold for VWCLSM used here was empirically determined based on the data from 

all SOMOMOUNT stations. It is slightly higher than the 60% proposed by Dorigo et al. (2013) for the International Soil 

Moisture Network. Secondly, the values collected with insufficient battery voltage (< 10 V) are removed, since too low 

power supply can disturb the measurements. For the SMT100 sensors, readings with a raw sensor output (given in so-called 

moisture counts, MC, see Truebner, 2016) outside of the laboratory-defined range defined in the laboratory (MCwater ≈ 9000 25 

and MCair ≈ 20000) are also excluded. At all sites the technical filter eliminated less than 0.1% of the measured values except 

at GFU, where the PICO64 sensors had a default in wiring and thus 8.3% of the measured data were had to be excluded. 

The temporal filter is designed to eliminate any VWC value exhibiting unrealistically large temporal variability (random 

spikes). Three-day running means (rmean) and standard deviations (rstdev) are calculated for all sensors. , and the Measurement 

values lying outside of the range defined by rmean ± x∙rstdev are subsequently removed, where x is an empirically determined 30 

site specific tolerance factor (3 at FRE and GFU, 4 at DRE, SCH and STO and 5 at MLS). This filter is was applied to soil 
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moistureLSM and ground temperature measurements with an elimination rate varying between 0% (DRE) and 0.3% (FRE 

and SCH) of the measured data.  

Numerous data gaps occurred at the different SOMOMOUNT stations during the monitoring period 2013-2016 (see Fig. 6). 

They were mainly caused by problems related to power supply (large data gap for all the sensors at one a station e.g. autumn 

2013 at FRE and MLS), data logging (short gaps for all sensors of the a station e.g. winter 2014 at GFU) or sensor 5 

malfunction (single sensors for variable time, e.g. PICO64 at 50cm end of summer 2016 at STO). Given the highly variable 

nature of soil moistureLSM, no gap filling technique was applied. 

2.5 Complementary analysis 

All soil moistureLSM datasets used in the following analysis were homogenised to hourly arithmetic mean values. For the 

elevation dependency investigation (Sect. 5.2), annual and seasonal means were calculated using for the year 2015, since all 10 

stations except GFU have complete data series during that period. The data gaps at GFU (24.02-01.03.2015 and 24.04-

25.05.2015) were filled for that this specific analysis only by linear interpolation between the nearest available data points. 

Finally, for the analysis of the moisture transport of moisture through the ground we used the so-called moisture orbits (see 

Sect. 5.1).  

To analyse and understand in detail the temporal evolution of soil moistureLSM in detail, additional datasets such as weather 15 

and ground temperature data are needed. The stations of SIO, FRE and MLS are located next to SwissMetNet stations and 

thus data sets with good quality are available. This is not always the case at the high altitude/permafrost stations DRE, GFU, 

SCH and STO, where high altitude related logistical problems in maintenance may lead to data gaps and precipitation is 

often not measured at all. 

For the stations without explicit precipitation measurements, precipitation data were extracted from the 2km gridded dataset 20 

generated by MeteoSwiss (MeteoSwiss, 2014), which is available at daily resolution and is based on 430 observation stations 

across Switzerland. and available at daily resolution. The dData gaps of in the in-situ measured in situ air temperature series 

were completed using the two step quantile mapping approach described in Rajczak et al. (2016). Finally, the snow cover 

duration was extracted from the near surface ground surface temperature variability using the snow index method described 

in Staub and Delaloye (2016). 25 

3 Calibration 

In order to increase the accuracy of the absolute soil moistureLSM measurements, the SMT100 sensors require a material 

specific calibration (Table 4). Using the large soil samples collected at each site, a material specific calibration was 

performed in the laboratory following the general procedure outlined by Starr and Paltineanu (2002). 

In a first step, the entire soil sample was oven dried and packed into a plastic container at approximatively the field bulk 30 

density (see Table 3). A SMT100 sensor was then inserted in the sample and its raw outputs were continuously recorded. 
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Finally, a soil sample was collected using a standard 100 cm3 measurement cylinder. In a second step, 200ml of water were 

added to the calibration soil (increase VWCLSM increase by about 3-5%) which was with subsequently thoroughly mixed 

mixing to get a homogenous repartition of the water in the calibration sample. The SMT100 was then reinserted, its raw 

outputs recorded and a soil sample collected. This operation procedure was repeated until saturation of the soil material was 

reached, yielding 9 to 12 calibration data points depending on the soil type. 5 

The volumetric water content (VWCLSM (, θv) of the collected samples was determined following the standard gravimetric 

method. First For this, the samples were weighted and oven dried at 105°C during 24 hours for the mineral soils and 60°C 

during 48 hours for organic soils. The dry samples were then weighted to determine the gravimetric water content (mass of 

water which evaporated θg) and to calculate the dry bulk density (ρb). Finally, θv was obtained using Eq. 1: 

𝜃𝜃𝑣𝑣 = 𝜌𝜌𝑏𝑏 ∙ 𝜃𝜃𝑔𝑔            (1) 10 

The gravimetric method was also applied to the in situ soil samples collected during the sensor installation. The calculated 

VWCLSM (θv) values obtained from both the laboratory and the in situ samples were then fitted to the SMT100 raw data 

(Moisture Counts, MC) using a linear (Eq. 2) and an exponential relation (Eq. 3). 

𝜃𝜃𝑣𝑣 = 𝑎𝑎 ∙ 𝑀𝑀𝑀𝑀 + 𝑏𝑏            (2) 

𝜃𝜃𝑣𝑣 = 𝑐𝑐 ∙ e(𝑀𝑀𝑀𝑀 ∙𝑑𝑑)            (3) 15 

Table 4 lists the value of the parameters a, b, c and d for each station, as well as the number of samples considered and the 

goodness of the fit for both methods. At GFU, two different material specific calibrations for mineral and organic soil were 

realized due to the clear layering of the soil profile (Fig. 3). At all locations except DRE the linear relation yields higher r2 

and lower RMSE than the exponential onerelation. Thus, the linear calibration is used for all sites since except at DRE, 

where the exponential one is preferredcalibration is used. 20 

For the PICO64, the built-in calibration based on Topp’s equation (Topp et al., 1980) was used and no additional material 

specific calibration was performed. In this study the PICO64 sensors are only used for inter-network comparison with the 

SwissSMEX network but not for further analysis. Thus for consistency we adopted the same calibration approach as 

Mittelbach et al. (2011) (i.e. the built in calibration for generic soils). 

Similarly, the manufacturer’s calibration was used for the PR2/6 sensor (Delta-T Device, 2008), which is mainly used for 25 

test purposes within the SOMOMOUNT network at the moment. Depending on the middle-term results further PR2/6 

sensors might later be added later to the network.  

3.1 Technical considerations for frozen conditions 

Given the high-elevation application of the FDSR and TDR techniquesvarious soil moisture  sensors at field sites which 

undergoing freezing and thawing processes, some considerations are important to make. As mentioned above both the 30 

frequency based, capacitance and TDR techniques make use of the high permittivity of liquid water (~80) compared to the 

surrounding soil and air (2-9 and 1, respectively) to relate the recorded electromagnetic signal to the VWCLSM. However, 

the permittivity of liquid water is sensitive to temperature variations and can increase from ~80 at 20°C up to ~88 at 0°C 
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(e.g. Wraith and Or, 1999), thus introducing an additional uncertainty in the calibration for unfrozen conditions. 

Furthermore, under frozen conditions a part of this total water turns into ice, which has having again a much lower 

permittivity (~2-3, e.g. Aragones et al., 2010). Thus, upon freezing, the recorded signal and measured VWCLSM strongly 

decreases although the total soil moisture VWC(TSM) stays constant. Given these limitations, the term VWC used hereafter 

is always referring to the liquid VWC.  5 

Characteristically, at temperatures below 0°C water and ice can coexist in the soil (e.g. Spaans and Baker, 1995). However, 

the presented calibration procedure presented was conducted at room temperature and thus does not account for the presence 

of ice in the soil mixture. The resulting sensor accuracy is therefore only valid for above 0°C ground temperatures (unfrozen 

conditions). The use of standard empirical calibration in frozen conditions often yields overestimations of the liquid 

VWCLSM (e.g. Spaans and Baker, 1995; Yoshikawa and Overduin, 2005). For frozen sand hHowever, according to 10 

Watanabe and Wake (2009), showed that for sand TDR devices the calibrationed using Topp’s empirical 

relationshipequation in frozen conditions exhibitsshows only small deviations from the measured total VWCLSM using 

NMR except for at temperatures between 0 and -1°C.  

Although the absolute accuracy of measured liquid VWCLSM under frozen conditions is difficult to assess, the its relative 

changes are well captured. At SCH, Hilbich et al. (2011) showed that the soil apparent resistivity (using data from 15 

continuous ERT monitoring) and soil moistureLSM (measured with similar FDR devices as in the present studythe precursor 

model of the SMT-100) exhibit consistent variations under frozen and unfrozen conditions. Given the sandy composition of 

the ground at SCH and STO as well as the evidence from the coinciding resistivity measurements (cf. also Hauck, 2002), we 

find the liquid VWCLSM data with standard calibration to be consistent enough to be used here with the standard calibration 

described abovefor further analysis. Given the generally lower accuracy of the soil moisture sensors under partially frozen 20 

and frozen conditions, However, the VWCLSM measurements carried out at temperatures below 01°C are clearly identified 

in all figures in the manuscripthereafter. The 1°C threshold was selected to account for partially frozen conditions as well as 

the scale mismatch between the temperature and LSM measurements. These data and have thus to be interpreted with care, 

especially regarding their absolute values. 

4 Results 25 

4.1 Sensor comparison and consistency 

At 30cm depth two SMT100 sensors werehave been installed in parallel in order to investigate potential instrumental drift 

over longer time periods. Comparing their outputs also allows us to assess the quality of the sensor installation, the reliability 

of the measurements and potential spatial heterogeneity.  

At FRE, DRE, MLS and GFU the correlation between the VWCLSM measured by the two sensors wais found to be 30 

satisfactory (lowest correlation at MLS: r2 = 0.749766, Fig. 4). The RMSE is more variable with the lowest value at GFU 

(2.16 vol.%) and the largest at DRE (11.2 vol.%). Deviations from the one-to-one correspondence of the two sensors (black 
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line in Fig. 4) can be attributed to small scale soil heterogeneities in the soil directly surrounding the sensors. , which Soil 

heterogeneities can result in differences of reaction time to the infiltration and/or evaporation events as well as wet or dry 

biases due to different soil properties. This is particularly visible at MLS, where the an increase of VWCLSM is 

systematically recorded first by the left sensor (y axis) and later by the right sensor (x axis). At DRE (Fig. 4b) the right 

sensor shows consistently higher values (~5-10 vol.%) than the left sensor, but the relation between the measured VWCLSM 5 

values is almost constant, illustrating the effect of different soil properties.  

DRE is also the site with the largest RMSE (0.618563°KC) between the measured temperatures at 30cm depth, indicating 

that specific physical processes such as the convective heat transport through air flow within the coarse blocks of the ground 

(e.g. Wicky and Hauck, 20176) may influence the two sensors in a different way (see Sect. 5.3). At FRE, MLS and GFU the 

measured temperatures correspond almost perfectly one-to-one showing no different physical processes. Therefore the 10 

VWCLSM deviations are most likely due to soil heterogeneities.  

Sensor comparison was only possible at four sites. At SCH the terrain prevented the installation of two sensors at 30 cm, 

whereas at STO two one of the installed sensors were installed but only one gives unreliable data. The second This sensor at 

30 cm depth at STO probably suffers from bad coupling with the soil (air pockets near the blade and thus bad contact with 

the soil) stemming from a faulty installation due to the blocky subsurface.  15 

In addition, tThe TDR-based PICO64 sensors, which have having a nominally higher absolute accuracy (Mittelbach et al., 

2012) are also, arehave been installed at 30cm depth. Similar to Fig. 4, the comparison between FDR SMT100 and TDR 

PICO64 sensors at the same depth (Fig. 5) shows a generally good correlation (lowest r2 = 0.524 at STO) with some 

deviations from the one-to-one relation (Fig. 5black line). The RMSE is generally larger than for the SMT-100 

intercomparison (Fig. 4) at all sites, which can be explained by the different measurement volume of the SMT-100 and 20 

PICO64 sensors (see section 2.1 and Fig. 2). At FRE and GFU the comparison between PICO64 and SMT100 soil 

moistureLSM measurements yields very similar results to the comparison of the two SMT100 sensors, with slightly higher 

RMSE values (4.53 and 2.52 vol.%, respectively). MLS shows a larger dynamic range and mostly higher values for the 

SMT100 sensor (RMSE = 16.7 vol.%), but a similar temporal variability (r2 = 0.606). A similar pattern is observed, when 

comparing the PICO64 sensor with the second SMT100 sensor installed at 30cm (Table 5). Thus, the is dry bias of the 25 

PICO64 sensor at MLS is probably due to a bad contact between its rods and the surrounding soil. At SCH and STO the 

differences between the sensors have a characteristic shape, but are centred on the one-to-one relation. It can be attributed to 

different onset of freezing and thawing processes at the two sensor locations marked by the grey dots (see also Fig. 6e-f). 

AdditionallyIn addition, clear wet and dry biases in the PICO64 measurements are observed at SCH and STO, respectively, 

which can be explained by an unreliable calibration using Topp’s equation for the high-mountain subsurface material present 30 

at SCH and STO (e.g. Robinson et al., 2004). 

Figure 5 only considers the sensors at 30cm (left) at all sites with the exception of SCH, where the 10cm sensor wais used, 

since it is the depth of the only available PICO64. The same analysis was performed with the 30cm right and 50cm sensors 
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(Table 5). The overall results are very similar regarding statistical fit (lowest fit at MLS and highest fit at GFU) and observed 

patterns (not shown). 

4.2 Soil moisture temporal evolution 

Figure 6 shows the evolution of the measured VWCLSM and ground temperature at all SOMOMOUNT stations from July 

2013 until August 2016 for all sensor types. The temperatures exhibit a typical seasonal pattern with maximum values during 5 

the summer and minimum values in winter. The amplitude of these seasonal variations is specific to each site. DRE, GFU, 

SCH and STO show exhibit a clear drop of temperatures below close to and below the freezing point during the winter, 

whereas no freezing was recorded at FRE. At MLS negative soil temperatures were only observed at 10cm depth during 10 

days in early winter 2016.  

On the other hand, the VWCLSM differs strongly at each station and no common pattern is found. The sites can be divided 10 

into two categories of soil moistureLSM dynamics: A low elevation pattern at FRE and MLS characterized by a summer 

minimum of short duration and high VWCLSM values for the rest of the year. The second category, typical for high 

elevations (SCH and STO), is defined by a long lasting liquid VWCLSM minimum in winter, and maximum absolute values 

accompanied by strong variability during the summer. GFU and DRE display features characteristic from both categories, 

namely a long winter minimum as well as VWCLSM decrease during summer. At GFU the 10cm sensor values is are much 15 

more variable than the ones values at 30 and 50cm and shows muchexhibit higher values. This is due to the high organic 

content and low bulk density high retention capacity of this particular soil layer (Fig. 3d and Table 3).  

Comparing the two summer seasons in 2014 and 2015 at FRE, MLS and GFU one can observed a stronger VWCLSM 

decrease in 2015 at all sites. This marked soil moistureLSM decrease is due to the exceptionally high air temperatures and 

low precipitation recorded in July 2015 (MeteoSwiss, 2016; Scherrer et al., 2016) leading to increased evaporation. 20 

However, the effect of this anomalous event on soil moistureLSM is different at all sites. At MLS the effect is the most 

pronounced (44 vol.% VWCLSM loss at 30cm) and the VWCLSM in the uppermost layers still did have still not returned to 

their original values in May 2016. At FRE the effect is less marked (18% vol.% VWCLSM loss at 30cm) and shorter but it 

can be observed down to 100cm. At DRE it a drying is seen at all depths with a similar amplitude (12 vol.% VWCLSM loss 

at 30cm), whereas at GFU the effect wais strong but of short duration at 10cm (40 vol.% VWCLSM loss) butand almost not 25 

seen below. Finally, at the two highest stations (SCH and STO) no characteristic VWCLSM decrease wais observed. 

To characterize these two patterns of soil moistureLSM dynamics identified above in more detail and to analyse the 

processes controlling them, we focus on a 5 months period from spring to summer 2015 at the lowest and highest field sites, 

FRE and SCH (Fig. 7).  

At FRE the minimum VWCLSM is reached during the summer, when air temperatures are highest and thus evaporation is 30 

maximal. No clear VWCLSM maximum can be identified throughout the year (Fig. 6a) but multiple maxima are observed 

following precipitation events. The snow cover, which disappeared mid-March in 2015, reduces the link between VWCLSM 

variations and the atmospheric conditions. During the snow melt period only a small VWCLSM increase is seen, which 
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could be attributed to conditions close to saturation throughout the winter. After the disappearance of the snow cover the 

variability of VWCLSM increases at all depths and is systematically related to precipitation events (VWCLSM increase) and 

dry spells, both, with and without air temperature increases (VWCLSM decrease). As expected, the uppermost layer (10cm) 

reacts stronger than the lower ones to atmospheric forcing than layers below,. hHowever, the response time is very fast and 

in some cases almost simultaneous at all depths, which is an indication for preferential flow.  5 

At SCH the evolution is very different. Minimum liquid VWCLSM values are recorded in winter, when the ground is 

entirely frozen and the maximum is reached in early summer due to the combined effect of snow melt and thawing of the 

ground (Fig. 6f and Fig. 7b). As long as ground temperatures are below the freezing point, the meltwater from the snow 

cover is either running off directly at the surface or refreezes at the top of the frozen layer (and releases latent heat which can 

contribute to further thawing, e.g. Scherler et al. 2010). In contrast to FRE (Fig. 7a) the evolution of liquid VWCLSM at 10 

SCH is mainly driven by ground temperatures and the snow conditions and it is less affected by liquid precipitation. Three 

main stages of liquid VWCLSM evolution and ground thermal regime can be identified. The frozen stage is characterized by 

the lowest liquid VWCLSM values due to the frozen state of the ground and the insulating snow cover. It is followed by the 

so-called zero-curtain period, defined by Outcalt et al., (1990) as extended period of time with near 0°C temperature induced 

by latent heat effects in a thawing or refreezing active layer. During this period liquid VWCLSM increases/decreases slowly 15 

but remains decoupled from precipitation events. Punctual lateral inflow and/or snow meltwater infiltration are also possible 

(cf. Hilbich et al., 2011). Finally, the unfrozen stage coincides with the snow-free period and is characterized by high liquid 

VWCLSM variability coupled with the precipitation events. Although, the accuracy of the soil moistureLSM measurements 

during the frozen and zero-curtain periods is difficult to assess due to the presence of ice, the relative changes and thus the 

timing of each phase is well captured. The liquid VWCLSM variations are coherent with the change of specific resistivity in 20 

the uppermost ~50 centimetres of the ground. Similar to the dielectric permittivity, the electrical resistivity is highly 

dependent on the amount of unfrozen water content in the ground (Hauck, 2002). The frozen stage is thus characterized by 

high resistivities and a marked drop is observed during the zero-curtain period due to the thawing of the ground (see also 

Hilbich et al., 2011). Finally, the unfrozen stage exhibits the lowest resistivity values. The same typical stages of liquid 

VWCLSM evolution have been described for other mountain permafrost sites (e.g. Pellet et al., 2016) and landforms (e.g. 25 

Zhou et al., 2015). These stages are also observed in the data collected by spatially distributed SMT100 sensors installed at 

30cm depth at SCH and STO, with marked differences in absolute liquid VWCLSM as well as variable onset and duration of 

the three stages even at close vicinity (not shown).   

5 Discussion 

5.1 Dominant processes 30 

To visualize how the moisture is transported through the ground we adapted the so-called thermal orbits (Beltrami, 1996) to 

soil moistureLSM (moisture orbits). It consists of a scatter plot of simultaneously measured VWCLSM at two different 
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depths. The shape of the resulting point cloud depends on the nature and speed of the vertical transport of water through the 

soil layers, as well as on soil properties such as hydraulic conductivity, degree of saturation and porosity. Using moisture 

orbits of different time scales (annual, pluri-annual and dailyevent), allows us to analyse the dominant processes playing a 

role in for the temporal evolution of soil moistureLSM.  

5.1.1 Seasonal variations 5 

To investigate the seasonal dynamic of soil moistureLSM, we used the moisture orbits between the SMT100 sensors 

installed at 10 and 50 cm depth for the year 2015 at each site (Fig. 8). Again, the field sites can be divided into two 

categories of soil moistureLSM dynamics, controlled by different processes. 

FRE and MLS exhibit similar moisture orbit shapes driven by precipitation events and evaporation. They are divided into 

three main stages. From January to May the VWCLSM is maximal at both sensors, with some small variations due to snow 10 

melt and/or precipitation events. Starting in June, the summer evaporation causes the VWCLSM to decrease strongly at 

10cm and slightly at 50cm. Then VWCLSM simultaneously decreases at both depths due to the increased evaporation 

generated by the July 2015 heat wave. Finally, VWCLSM increases again, with different speed at each depth. The main 

difference between the two stations is that at MLS the orbit is not closed. At the end of 2015 there is about 30 vol.% 

VWCLSM less than at the beginning of the year. It indicates that at MLS the near surface VWCLSM did not recover from 15 

the increased evaporation generated by the heat wave in July 2015 (cf. Fig. 6). The dry top soil conditions can generate a 

large water potential gradient with depth and thereby an increased infiltration capacity, but also suitable conditions for 

potential preferential flow processes which tend to induce bypass flow of precipitation water (e.g. Wiekenkamp et al., 2016). 

On the contrary, at FRE the VWCLSM returned to its original value. Comparatively, both Both sites received a similar 

amount of precipitation following the heat wave, from July to end of 2015 (443 mm and 534 mm respectively, MeteoSwiss). 20 

Furthermore, the atmospheric forcing (i.e. air temperature, radiation and calculated potential evaporation) was very similar at 

both sites as well (MeteoSwiss). Therefore, the larger and longer lasting impact of the 2015 heat wave at MLS is due to the 

higher initial VWCLSM and thus lower potential evaporation limitation than at FRE. The amount of available water 

available for evaporation is dependent on the soil properties. At MLS the soil type is silty loam and is able to retain more 

water than the sandy loam present at FRE. 25 

At SCH and STO the shape of the moisture orbit is controlled by freezing/thawing processes. It can be divided into 5 stages 

consistent with the frozen, zero-curtain and unfrozen state of the ground. At the beginning of the year both sensors show 

their lowest value (frozen stage). This is followed by a sharp increase at 50cm not seen at 10cm (1), followed by and a strong 

increase at 10cm but not at 50cm (2) consistent with the melting of the ground from underneath, which takes place at 

different time at the two depths (spring zero-curtain). The start of the thawing process at larger depth can be due to 30 

preferential water infiltration events or to the influence of warm high temperatures from the preceding summer at depth (e.g. 

Zenklusen Mutter and Phillips, 2012). In the case of the latter case, the warmer ground temperatures in spring are warmer 

higher at can be found at depth compared to the near surface due to the time-lag of heat propagation into the subsurface. The 
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occurrence of this phenomenon depends on the thermal properties of the subsurface and the strength of the winter freezing. . 

Although the thawing process systematically starts at the surface in response to meteorological forcing, the warmer 

temperatures heat reservoir remaining at larger depth will can also start the thawing from below. This process is more likely 

to occur where especially marked forthe permafrost temperatures are close to 0°C as it is the case at SCH. During the 

summer, the ground is unfrozen and strong variations are recorded at both depths (3). The orbit is finally closed by a 5 

succession of liquid VWCLSM decrease at 10cm not seen at 50cm (4) and a strong decrease at 50cm but not 10cm (5), 

consistent with the downward propagation of the freezing front from the surface (autumn zero-curtain). The orbits are closed 

at both sites indicating no long-lasting perturbation during the year 2015 and as well as similar winter conditions. These 

stages have also been observed by e.g. Hilbich et al. (2011) and Zhou et al. (2015).  

At DRE and GFU it is difficult to determine a clear temporal evolution of soil moistureLSM. DRE exhibits a winter and 10 

summer minimum (see also Fig. 6b) corresponding to the freezing of the ground and the summer evaporation peak 

respectively. This double minimum is also found at GFU but less marked, especially at the deeper layer.  

5.1.2 Soil type dependency 

At DRE the shape of the moisture orbit is almost diagonal indicating very rapid transfer of water from the surface downward 

and little storage in the uppermost soil layer (wet anomaly at 50cm). This is due to the soil properties. At DRE the soil 15 

profile down to 50cm consists of one single organic rich sandy loam layer with a very low bulk density (Table 3), which is 

underlain by large sized boulders. These particular is soil typeproperties is characteristically render the uppermost layer 

highly draining (Beringer et al., 2001) and the water is rapidly transported through. Additionally tThe boulders underneath 

do not retain the water, likely preventing the creation of any shallow water table. Furthermore, and in contrast to the large 

blocks below, the organic rich material at the surface retains the water and has a larger thermal conductivity (Beringer et al., 20 

2001), thus favouring summer evaporation and winter freezing.  

At GFU the presence of an organic rich layer in the uppermost 10cm of the soil causes the measured VWCLSM at 10cm to 

be highly variable and generally higher than in the remaining soil column (see also Fig. 6d). At 50cm the measured 

VWCLSM shows near saturation conditions throughout the year indicating a potential influence of shallow ground water. 

This is confirmed by additional ERT measurements realized in summer from 2013 to 2015, which indicate extremely low 25 

specific resistivities (~250 Ωm) down to 2.5m (not shown). The combination of near saturated conditions at 50cm and highly 

variable VWC at 10cm yields an these two factors explains the almost horizontal moisture orbit shape observed at GFU. . 

The organic rich layer has a lower thermal conductivity (Beringer et al., 2001) than the other soil types thus reducing the 

influence of air temperature (evaporation and/or freezing) at larger depth. Furthermore, at 30 and 50cm the soil is composed 

of loam and sandy loam with much larger bulk densities (Table 3), which are typically characterized by lower hydraulic 30 

conductivities if no preferential flow is occurring (Cosby et al., 1984). These soil properties also contribute to the observed 

lower soil moistureLSM variability at these depths. 
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At FRE and MLS, the soil type is relatively homogeneous within the uppermost 50cm of the ground, which results in similar 

VWCLSM temporal evolution with only slight variations in timing and absolute values between the sensors. At MLS the soil 

type is silty loam and is thus able to retain more water than the sandy loam present at FRE. Finally at SCH and STO, the 

ground consists of sand or loamy sand, with a significant proportion of large soil particles larger than 10mmsize elements (at 

10cm 25% and 45% respectively at 10cmof the soil particles are larger than 10mm at SCH and 45% at STO, see also Fig. 3e-5 

f). Such soil composition is highly heterogeneous even on over small distances explaining the high variability between the 

sensors as well as the comparatively low liquid VWCLSM during unfrozen and snow free periods.  

5.1.3 Climate dependency 

As seen in Fig. 6, the soil moistureLSM temporal evolution is strongly influenced by the variations in atmospheric 

conditions such as the extreme temperaturesheat wave of July 2015. Thus, the shapes of the moisture orbits can be different 10 

for each year even though the same processes are dominant (evaporation or freezing). Comparing all years where 

measurements are available (Fig. 9), one can see that at low elevation (FRE), where the evolution of soil moistureLSM is 

mainly controlled by evaporation and precipitation, the moisture orbits of the year 2014 and 2016 are very similar in shape 

and amplitude, whereas 2015 is marked by an exceptional decrease of VWCLSM at both depths.  

Conversely, at high elevation in permafrost terrain (SCH), 2015 is not particularly anomalous and the same patterns with 15 

comparable amplitudes are observed in all years available. This is to be expected since the freezing/thawing processes occur 

every year, with only slight variations regarding snow duration and timing.  

Finally, at GFU, which is an intermediate site with similar characteristics to both FRE and SCH, two very different orbit 

shapes can be observed. In 2014, the ground froze down to 50cm producing a moisture orbit similar to SCH and STO 

characterized by large variations occurring at the two sensors. Conversely, in 2015 and 2016 only the 10cm layer froze, 20 

yielding horizontal shaped moisture orbits.   

5.1.4 Infiltration events 

Using differential moisture orbits one can also characterize single infiltration events and investigate further the influence of 

the soil type on the short term soil moistureLSM evolution. We selected one precipitation event recorded at all six stations 

and plotted the moisture orbits for a period of 5 days (Fig. 10). At all sites except STO, this precipitation event yields clear 25 

moisture orbits of different shapes and amplitudes. The slope of the orbits indicates at which depth the VWCLSM is most 

affected by the precipitation event and the amplitude the amount of infiltrating water.  

At FRE, GFU and SCH the orbits are horizontal (SCH) to slightly inclined (FRE and GFU), showing that the strongest 

variations of VWCLSM are occurring at 10cm. The wetting and drying phases are faster and the perturbation is larger at 

10cm than at 50cm. At SCH the maximum VWCLSM at 10cm is reached after two hours while no variation is recorded at 30 

50cm during that interval. The VWCLSM starts increasing at 50cm once the VWCLSM at 10cm is already decreasing. This 

pattern is consistent with the vertical succession of soil material found at SCH: sandy loam nearat the soil surface, which 
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retains water at the beginning of the event and sand at larger depth, which is more draining. At FRE and GFU the orbits 

correspond to soils with smaller hydraulic conductivity and higher retention capacity (sandy loam and loam-sandy loam 

respectively, Table 3). 

At DRE the moisture orbit has a large amplitude at both depths and the with a slope is larger thanabout > 45°. This is in good 

agreement with the annual moisture orbit described above. It indicates a rapid transfer of water through the soil and little 5 

storage at 10cm, which is typical for the particular soil composition found at DRE (single organic rich layer with low bulk 

density underlain by coarse blocks with large interconnected pores).   

At MLS the moisture orbit is almost vertical due to VWCLSM increase/decrease at 50cm depth only, which indicates an 

instantaneous transfer of water through the uppermost layer. It is the station where the event was the smallest (+8 mm d-1) 

but the resulting perturbation was the second highest (> +7 vol.%). From Fig. 6c, it can be seen that, at the time of the 10 

precipitation event, the VWC LSM at 10cm and 30cm depths were unusually low (23 vol.% and 24.5 vol.%, respectively), 

thus generating a larger gradient in pressure head from the surface to the lower soil layers as well as providing very suitable 

conditions for the activation of preferential flow (see e.g. Wiekenkamp et al., 2016). The degree of saturation of the soil 

layer is thus another key factor influencing the soil moistureLSM dynamics. The almost total absence of LSM variation at 

10cm during this infiltration event could also indicate lateral flow of water. 15 

Our interpretation of the moisture orbit shapes accounts only for vertical transfer of water in the soil. However, lateral flows 

can also play an important role. At DRE, MLS, SCH and STO the stations are located on slightly inclined slopes or at their 

bottom. Furthermore, permanent snow patches have been observed at SCH and STO on several occasions and may constitute 

a continuous water supply during summer (Python, 2015; Wicki, 2015). The infiltration of snow melt water is a spatially 

very heterogeneous process on slopes, especially when the subsurface is characterized by large size particles and draining 20 

soil types. An example of the influence of snow melt processes can be seen at STO, where the precipitation event shown in 

Fig. 10e did not yield a clear moisture orbit. Its effect is lost in the daily moisture orbit patterns due to snow melt cycles. For 

each day shown in Fig. 10e, an oval shaped moisture orbit can be seenis present. These daily cycle orbits are very similar in 

amplitude and structure. The uppermost sensor reacts first (wetting and drying) and the maximum VWCLSM increase 

happens at the same time at both depths. 25 

As seen above for MLS, the influence of a single precipitation event on soil moistureLSM does not only depends on the soil 

properties but also on the moisture conditions prior to the event. To investigate this process we computed the moisture orbits 

of three selected precipitation events at FRE and DRE, which were preceded by different soil moistureLSM conditions (Fig. 

11). The first event in mid-May is a combination of low precipitation amount preceded by comparatively high VWCLSM . 

The second event is of very different amplitude at both sites (+39 mm d-1 at FRE and +10 mm d-1 at DRE) but it marked the 30 

end of the summer 2015 heat wave at both sites. The last event is the same as in Fig. 10. It consists of a large amount of 

precipitation preceded by relatively high VWCLSM. 

At FRE, the first and third events yield similar moisture orbit shapes with a larger amplitude for the larger precipitation 

event. However, the second event produces a diagonal moisture orbit with almost no VWCLSM decrease. As for MLS 



18 
 

above, the VWCLSM is low at all depths creating suitable conditions for preferential flow as well as an increased infiltration 

capacity due to a high gradient of water potential. Both processes could explain the larger and faster increase of VWCLSM 

observed at larger depth due to the bypass of the dry uppermost layer. The same indications for preferential flow are seen at 

DRE, where the second precipitation event is comparatively small (+10 mm d-1) but yields the strongest and fastest 

VWCLSM increase at depth. Given the soil properties, the preferential flow interpretation is preferred to the enhanced 5 

infiltration capacity. 

5.2 Altitude dependency 

As seen above four main processes are driving the annual soil moistureLSM dynamics, namely evaporation/infiltration and 

freezing/thawing of the ground. The respective predominance of one of these processes is dependent on the station location 

and more specifically on its elevation. Using all SOMOMOUNT stations as well as selected the SwissSMEX stations of Sion 10 

(SIO, PAY and PLA) and Cervinia we investigated the elevation dependency of mean annual and mean seasonal liquid 

VWCLSM for the year 2015 (Fig. 12a). 

The relation between soil moistureLSM and elevation is clearly non-linear. Disregarding DRE (see Sect. 5.3), a distinct 

pattern emerges. The mean annual liquid VWCLSM regularly increases with elevation until about 2000 m.a.s.l. and then 

decreases with increasing elevation. This tipping point corresponds also to a clear shift in the soil moistureLSM regime. 15 

Below 2000 m.a.s.l. the maximum liquid VWCLSM is recorded in winter and the minimum in summer, whereas above this 

threshold the inverse occurs (maximum liquid VWCLSM in summer and minimum in winter).  

This shift in soil moistureLSM regime can be related to a series of variables, which are known to be important for mountain 

climates and which were have also been plotted against elevation (Fig. 12b-e). The AaAir temperature (Fig. 12b), resulting 

from the radiation balance, c is one of the controllings factors the energy available for the evaporation and freezing 20 

processes, whereas the precipitation amount (Fig. 12c) controls the water input at the surface. The sSnow cover duration 

(Fig. 12e) has several effects on the soil moistureLSM dynamics: it insulates the ground from the cold winter temperatures 

(yielding positive surface offsets (i.e. the difference between ground and air temperature), Fig. 12b) and it acts as a water 

retention layer, which stores water throughout winter and liberates it in spring/early summer. For each variable, all available 

data from the monitoring networks of MeteoSwiss, PERMOS and IMIS (Intercantonal Measurement and Information 25 

System maintained by the SLF) were collected and  a linear regression model was calculated based on the annual mean 

(resp. sum) of the year 2015. Globally, the same elevation dependency trends are observed using the single stations (dots) or 

the entire datasets (regression lines).    

From Fig. 12 the following relationships can be determined: ground- and air temperature, as well as the thawing degree days 

(absolute sum of positive temperatures per year) all linearly decrease with elevation, yielding a decreasing trend of 30 

evaporation and thus a theoretically increasing trend of liquid VWCLSM. Conversely the freezing degree days (absolute sum 

of negative temperatures per year), surface offset and the snow cover duration increase with elevation, which results in 

longer lasting winter liquid VWCLSM minimum and thus lower mean annual liquid VWCLSM with increasing elevation. 
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Finally, a slightly increasing trend in the precipitation distribution is observed with large site specific variations due to the 

strong microclimatic effects, however, on larger spatial scale (continental) precipitation is known to increase with elevation 

(Smith, 1979). This combination of overall increasing precipitation and decreasing evaporation yields a trend of increasing 

soil moistureLSM with elevation until the altitude threshold of about 2000 m.a.s.l., where it is balanced by the increasingly 

important ground freezing. and Above this threshold soil moistureLSM starts decreasing with elevation.  5 

At lower elevation (below 2000 m.a.s.l.), evaporation dominates the soil moistureLSM regime, causing the summer liquid 

VWCLSM minimum. With increasing elevation air temperature decreases, precipitation increases and the snow cover 

duration is prolonged, explaining the increase of mean annual liquid VWCLSM.  

At higher elevation (above 2000 m.a.s.l.), the ground thermal regime and more specifically the soil freezing process drives 

the soil moistureLSM regime, causing the liquid VWCLSM minimum to shift from summer to winter, when freezing occurs. 10 

This is confirmed by the observed negative ground temperatures as well as the increasing freezing degree days. With 

increasing elevation, aAir and ground temperatures decrease with increasing elevation yielding increasingly long duration of 

seasonally frozen ground and thus explaining the decreasing trend of liquid VWCLSM.  

5.3 Special case: Dreveneuse 

To summarise the findings from the SOMOMOUNT network presented above, a simple theoretical model of the evolution 15 

distribution of soil moistureLSM and its contributing factors with elevation can be visualised with the grey shading in Figure 

1413. Comparing the observations qualitatively with this model (circles in Fig. 13), it can be seen that DRE does not fit the 

model. The recorded mean annual liquid VWCLSM values are much lower than expected. This is due to the composition of 

the soil profile, which is an elevation independent factor. The uppermost layer of soil the subsurface has a very high porosity 

(> 90%, see Table 3), which leads to exfiltration of water into the underlying talus slope or lateral water transport. 20 

Furthermore, and conversely to FRE and MLS, no evidences of groundwater influence are seen at DRE (Fig. 6). This is 

consistent with the coarse blocky structure of the talus slope which does not retain the infiltrating water. 

The case of DRE is also particular not only for its soil moisture dynamics but also in terms of snow duration (longer than 

expected) and mean annual ground temperature (lower than expected). Both anomalies are due to site specific characteristics, 

which are independent from elevation.  25 

The low mean annual ground temperature results from convective heat transport by a complex air circulation within the 

underlying talus slope (Delaloye, 2004; Morard, 2011), which is made possible by the large interconnected pore space 

between the coarse blocks of the talus. During winter, ascending warm air within the talus slope leads to cold air inflow at 

the bottom of the talus slope, where the soil moisture and weather stations are located. This process is able to efficiently cool 

the ground even when the snow cover is present.  In summer the air circulation is reversed and with a gravity driven outflow 30 

of cold air from the inside of the talus slope takes place at the bottom, where soil moistureLSM and ground temperatures 

isare measured.  This process has been observed at many similar talus slopes in low and high elevation mountain regions 

(e.g. Delaloye and Lambiel, 2005; Gude et al., 2003; Kneisel et al., 2000; Sawada et al., 2003; Wakonigg, 1996). 
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Furthermore, the lower ground temperatures caused by the air circulation have been successfully reproduced using numerical 

modelling (Wicky and Hauck, 20176). The longer snow duration is due to the spruces and low vegetation surrounding the 

station, which efficiently traps the snow for an extended period of time. Additionally the The cold ground temperatures help 

in addition to conserve the snow cover for a longer period. 

TAt DRE, the relatively low elevation of the station DRE implies a high air temperature and thus more energy available for 5 

evapotranspiration. Additionally, the presence of vegetation at the surface induces water uptake. The reduced ground 

temperatures by the air circulation result in a negative surface offset (ground temperature lower than air temperature) and 

slightly positive freezing degree days, both indicating a seasonal freezing of the ground. Thus two phases of minimal liquid 

VWCLSM values are observed: one during the summer due to evaporation and one in winter due to partial or complete 

freezing of the ground (see Fig. 6b and 12a). Additionally, the coarse grained soil type at DRE has low water retention 10 

properties and induces a fast transport of water to the deeper layers, affecting strongly the short term soil moisture dynamics. 

Our The elevation dependent model generalized schematics is an shown in Fig. 13 has been empirically model developed 

using seven stations. Although the stations are regularly distributed with elevation (~500m steps) the representativeness of 

these locations is hard to assess. Additional low elevation soil moistureLSM monitoring stations are available within the 

SwissSMEX network and fit well in the presented model. Comparison with further low- to middle altitude stations in the 15 

Black Forest region (Southwest Germany) show also good agreement (Krauss et al., 2010). Finally, the high elevation 

monitoring station at Cervinia/Italy (3100 m.a.s.l., see Pellet et al., 2016) exhibits soil moistureLSM dynamics comparable to 

STO and SCH and its mean annual liquid VWCLSM for 2015 fits well in the elevation model presented above.  

However, the example of DRE shows that some of the processes and site specific properties playing a role for in the soil 

moistureLSM dynamics do not have a trivial elevation dependency. Precipitation in mountainous areas is especially difficult 20 

to monitor and the elevation factor is hereby less important than topographic effects. As shown in Fig. 12c, the annual sum 

of precipitation at a given altitude can vary up to 2000 mm y-1 depending on the location. From our field sites FRE appears 

to receive more precipitation than expected, whereas STO receives much less than predicted. Indeed, FRE is situated on top 

of the easternmost ridge of the Jura mountain chain, which is known to have a comparatively high annual precipitation sum, 

as is also shown by the neighbouring SwissMetNet stations of Chasseral (1599 m.a.s.l.) and Chaumont (1136 m.a.s.l.), which 25 

recorded annual precipitation sums of 1509 mm y-1 and 1240 mm y-1 respectively for the period 1961-1990 (MeteoSwiss). 

STO is located in the central alpine region, which is very dry due to the wind shading effects from the surrounding mountain 

crests (see e.g. Smith, 1979). This effect is also seen at the station of Findelen (VSFIN), which is located about 3km from 

STO and which is also much drier than the stations at comparable elevation (Fig. 12c). 
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6 Conclusion 

In this paper we presented a detailed description of the new soil moisture monitoring network for middle and high altitudes 

in Switzerland (SOMOMOUNT). Starting in summer 2013, six automatic stations have been set up along an elevation 

gradient ranging from 1205 to 3410 m.a.s.l. 

The use of two types of standard soil moisture sensors for application in coarse grained terrain undergoing freeze/thaw 5 

cycles at middle and high elevation was shown to be reliable, both regarding inter-sensor comparisons as well as in 

comparison with related variables such as ground temperature and precipitation. A standard calibration approach combining 

in situ and laboratory analysis was applied to improve the measurement accuracy. However, the absolute value during the 

frozen period remains difficult to assess even though both the SMT100 and the PICO64 sensors yield similar absolute values 

(±3 vol.% range). The measurements also confirmed that unfrozen water content is present at temperatures below the 10 

freezing point and that it can be measured with the sensors. 

The data collected during the first three years of the SOMOMOUNT network revealed very distinct soil moistureLSM 

dynamics at the different sites, which could be were summarized into a simple elevation dependent model. At middle and 

low elevation, annual soil moistureLSM dynamics are controlled by evapotranspiration and precipitation events whereas at 

high elevation the freeze-thaw cycle is the main driving factor. This shift between the two distinct moisture regimes was 15 

found to take place at about 2000 m.a.s.l., where the maximum annual liquid VWCLSM values have been recorded. 

Marked inter-annual variations have been observed. However, depending on the site-specific properties, the impacts have 

been more or less important. The exceptionally high air temperatures of July 2015 induced a stronger and longer lasting soil 

moistureLSM decrease than 2014 or 2016, but only for low- and middle-altitude stations. At high elevation (>2900 m.a.s.l.) 

no effect of the 2015 heat wave was observed, since the soil moistureLSM dynamics is predominantly controlled by the 20 

ground thermal regime. 

Among the six soil moisture stations of SOMOMOUNT, and also in comparison with additional stations from other 

networks, the station of Dreveneuse is a clear exception to the elevation dependent theoretical model. The lower than 

expected LSM can be attributed to particular soil properties, which favour rapid water transport through the ground. In 

Thisaddition, this middle elevation site undergoes strong winter freezing as well as marked summer evaporation, the latter 25 

being due to the vegetation cover. Due to complex air circulation within the underlying talus slope the ground temperatures 

are unusually low for this elevation. In addition, the soil properties favoured rapid water transport through the grounFinally, 

d. Tthe soil properties were  found to play an important role in the short term soil moistureLSM variations as well as in the 

mitigation or intensification of the extreme events. 
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Fig. 1: Map of Switzerland showing the location of the soil moisture monitoring stations from the SOMOMOUNT and SwissSMEX 
project (Mittelbach and Seneviratne, 2012) as well as the ARPA monitoring station Cervinia (Pogliotti et al. 2015). Selected 
mountain weather stations form the SwissMetNet network used in Sect. 5.2 are also displayed. 
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Fig. 2: Instrumentation of the standard SOMOMOUNT station. 
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Fig. 3: Illustration of the soil characteristics and sensor installation for all SOMOMOUNT stations.  
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Fig. 4: Comparison of measured soil moistureLSM (upper row) and ground temperature (lower row) from both FDR SMT100 
measurements sensors at 30 cm depth using the linear calibration at FRE (a, e), DRE (b, f), MLS (c, g) and GFU (d, h). The hollow 
grey points represent LSM measurements taken when the ground temperature was below 1°C 5 
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Fig. 5: Comparison between TDR- PICO64- (x-axis) and FDR-SMT100-measured LSM liquid VWC (y-axis) at all sites. The linear 
relation is used for the FDR SMT100 calibration. The hollow grey points at GFU, SCH and STO represent soil moisture 
measurements taken when the ground temperature was below 01°C.   

 5 
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Fig. 6: SMT100 Mmeasured VWC LSM (upper panel) and ground temperatures (lower panel) at each SOMOMOUNT station (a-
f). At FRE the uppermost panel displays the PR2/6 measured liquid VWCLSM. The vertical dotted lines at FRE and SCH indicate 
the period analysed in Fig. 7. The dashed VWCLSM lines represent the soil moisture measurements taken when the ground 
temperature was below 01°C. 5 
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Fig. 7: SMT100 Mmeasured liquid VWCLSM, ground temperature and soil resistivity at FRE (a) and SCH (b) from March to 
August 2015. In addition, daily air temperature, snow depth and precipitation sums are shown as well as the date of the transition 
between the different stages in the thermal evolution at SCH at 10cm (dashed lines A and B, see text for details). The dashed VWC 
LSM lines represent the soil moisture measurements taken when the ground temperature was below 01°C. 5 
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Fig. 8: Moisture orbit at each SOMOMOUNT station from the 1st January to the 31st December 2015. The numbered arrows 
indicate the most important stages at each station as well as the sense of the evolution. The hollow circles represent soil 
moistureLSM measurements taken when the temperature was below 01°C at 150cm. 5 
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Fig. 9: Moisture orbits at FRE (a), GFU (b) and SCH (c) for the consecutive monitoring years (Jan. 2014-Aug. 2016 at FRE, Aug. 
2013-Aug. 2016 at GFU and Aug. 2014-June 2016 at SCH). The hollow circles represent soil moistureLSM measurements taken 
when the temperature was below 10°C at 510cm. 5 
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Fig. 10: Moisture orbit at each SOMOMOUNT station for one precipitation event between the 23rd and the 27th August 2015. The 
VWC LSM values are given as hourly mean and expressed as the change of absolute value compared to the first measurement 
(23rd August at 23:00). The daily precipitation sums recorded (FRE, DRE and MLS) and extrapolated (GFU, SCH and STO) for 5 
the 24th August are indicated. 
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Fig. 11: Moisture orbit at FRE (a) and DRE (b) for three precipitation events in 2015. The VWC LSM values are hourly means 
and expressed as the change of absolute value compared to the first measurement (first day at 23:00). The daily precipitation sums 
recorded at the beginning of each event are indicated. 

 5 
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Fig. 12: Elevation dependency of the winter-, summer- and annual mean liquid VWCLSM at 30cm depth (a), air-, ground 
temperature and surface offset (ground minus air temperature) at 10cm (b), annual precipitation sum including selected 
SwissMetNet stations for comparison (cf. Fig. 1) (c), freezing and thawing degree days (calculated from ground temperatures at 
10cm) (d) and snow duration (calculated from ground temperature at 10cm using the method described in Staub and Delaloye 5 
(2016)) (e) during the year 2015. The VWC LSM values for SIO, PAY and PLA are part of the SwissSMEX network (Mittelbach 
and Seneviratne, 2012). Due to missing data at 30cm the VWC LSM shown for PAY and PLA was measured at 50cm and 20cm at 
CER. The dashed green lines illustrate the linear regression based on all available SwissMetNet, PERMOS and IMIS stations in 
Switzerland (the numbers of station with complete data series in 2015 are indicated) and the shaded areas represent the 99% 
confidence intervals. The length of each regression line corresponds to the maximum elevation of the available stations. 10 
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Fig. 13: Conceptual modelGeneralised schematics of the evolution of air temperature, precipitation, snow duration, ground 
temperature and soil moistureLSM with elevation. The circles represent the observations from 2015 (see Fig. 12), the grey area the 
expected theoretical evolution and the colour scale the soil type. The mismatches between model and observations are highlighted 
in red. 5 
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Sensors 
Measurement 

technique 
range of VWCLSM 

operating 

temperature 
Accuracy 

SMT100 (Truebner 

GmbH, Germany) 

FDRfrequency 

domain 

0 to 100 vol.% (60-

100% limited 

accuracy) 

-40° to 60°C 

±3 vol.% for 0-50 vol.% 

±1 vol.% using medium 

specific calibration 

PICO64 (IMKO 

GmbH, Germany) 
TDR 0 to 100 vol.% -15° to 50°C 

±1 vol.% for 0-40 vol.% 

±2 vol.% for 40-70 vol.% 

PR2/6 (Delta-T 

Devices Ltd, UK) 
Capacitance 0 to 100 vol.% -20° to 60°C 

±6 vol.% for 0-40 vol.% 

±4 vol.% using medium 

specific calibration 

Table 1: Characteristics of the three types of soil moisture sensors used in the SOMOMOUNT network. All values in the table are 
provided by the manufacturers (Delta-T Device, 2008; IMKO, 2015; Truebner, 2016). 
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Site 
Elevation 

[m.a.s.l.] 

Sensor depth [cm] Measurement 

interval 
Start date 

Related 

networks SMT100 PICO64 PR2/6 

FRE 1205 10, 30, 30,50 30, 50 
10,20,30, 

40,60,100 
10 min 11.10.2013 SwissMetNet 

DRE 1650 10, 30, 30,50 - - 60 min 26.09.2014 PERMOS 

MLS 1974 10, 30, 30,50 30, 50 - 10 min 17.10.2013 SwissMetNet 

GFU 2450 10, 30, 30,50 30, 50 - 30 min 17.07.2013 PERMOS 

SCH 29700 10, 30, 50 10 - 30 min 31.07.2014 PERMOS 

STO 3410 10, 30, 30,50 30, 50 - 30 min 27.08.2014 PERMOS 

Table 2: Summary of the station instrumentation and characteristics at the field sites Frétaz (FRE), Dreveneuse (DRE), Moléson 
(MLS), Gemmi (GFU), Schilthorn (SCH) and Stockhorn (STO). 
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Site 
Elevation 

[m.a.s.l.] 

Tair
a
 

[°C] 

Pa 

[mm] 

Depth 

[cm] 

Particle size 

distribution [%] Textureb 

Bulk 

density 

[gcm-3] 

Organic 

Fraction 

[%] 

Thermal 

regime 
Clay Silt Sand 

FRE 1205 6 1333 

0-10 2.2 33.3 52.4 Sandy Loam 0.95 0.1 

No frost 10-30 2.5 36.1 39.3 Sandy Loam 1.06 - 

30-50 3.0 30.8 53.7 Sandy Loam 1.01 - 

DRE 1650 5 936 0-50 0.6 24.4 71.3 Sandy Loam 0.12 7.7 Permafrost 

MLS 1974 3 929 
0-10 11.8 72.5 15.6 Silty Loam 0.58 0.15 Seasonal 

frost 10-30 15.1 77.6 7.1 Silty Loam 0.71 - 

GFU 2450 0 
1800- 

2500 

0-10 2.0 63.3 34.2 Silty Loam 0.58 4.80 
Seasonal 

frost 
10-30 2.1 39.7 27.8 Loam 1.52 - 

30-50 2.6 46.5 39.8 Sandy Loam 1.39 - 

SCH 29700 -3 2700 
0-10 1.0 14.5 60.0 Loamy Sand 1.53 - 

Permafrost 
10-30 0.6 8.7 40.6 Sand 1.35 - 

STO 3400 -5 1500 

0-10 0.3 6.4 48.7 Sand 1.42 - 

Permafrost 10-30 0.6 20.4 56.5 Loamy Sand 1.67 - 

30-50 0.7 21.6 58.9 Loamy Sand 1.54 - 
adata source: MeteoSwiss at FRE and MLS; Morard (2011) at DRE; Krummenacher et al. (2008) at GFU; Imhof et al. (2000) 

and PERMOS at SCH; King (1990) and PERMOS at STO; baccording to the USDA classification 

Table 3: Summary of the climatic conditions and soil properties at each SOMOMOUNT station.   
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Site 

linear fit exponential fit 

n 
a b r2 

RMSE 

[vol.%] 
c d r2 

RMSE 

[vol.%] 

FRE -0.005630 98.15 0.96 2.76 707.1 -0.0002680 0.93 3.66 16 

DRE -0.006361 114.7 0.89 5.71 1219 -0.0002889 0.96 3.51 12 

MLS -0.008108 139.2 0.97 3.59 741.7 -0.0002507 0.95 5.03 16 

GFUmin -0.005327 93.7 0.80 5.57 465.8 -0.0002336 0.75 6.18 13 

GFUorg -0.007819 140.2 0.95 3.93 534.2 -0.000209 0.93 4.83 14 

SCH -0.004301 77.55 0.81 4.47 899.2 -0.0002925 0.88 3.57 12 

STO -0.004851 85.71 0.84 4.02 457.9 -0.0002378 0.79 4.58 18 

Table 4: Parameters and statistics of the linear and exponential calibration curve for each station. 
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Site 

10 cm 30cm left 30cm right 50cm 

r2 
RMSE 

[vol.%] 
r2 

RMSE 

[vol.%] 
r2 

RMSE 

[vol.%] 
r2 

RMSE 

[vol.%] 

FRE - - 0.8303 4.53 0.934 2.12 0.504 10.4 

MLS - - 0.64138 16.1 0.848 12.1 0.553 10.1 

GFU - - 0.959 2.523 0.89 2.37 0.91 1.78 

SCH 0.811 7.56 - - - - - - 

STO - - 0.5412 4.1822 - - 0.807 6.93 
Table 5: Correlation (R2) and RMSE between the TDR PICO64 and FDR SMT100 measured VWCLSM at all sites. 
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