
Reply to Reviewers on HESS 2016-470, “Analysis and Modelling of a 9.3 kyr Palaeoflood Record” by Witt et al. (2017) Page 1 of 5 
 

Reply to Reviewers on “Analysis and Modelling of a 9.3 kyr Palaeoflood 
Record: Correlations, Clustering and Cycles” by Witt et al. (2017) 

 
We thank the editor, Anonymous Reviewer 1, and in particular Erwin Zehe (EZ) for their thoughtful 
comments on our manuscript hess-2016-470 (Witt et al., 2017). We have extensively revised our 
manuscript mainly due to the many very constructive comments of Erwin Zehe.  
 
As suggested by Erwin Zehe, we have reduced some of the text, reordered the manuscript (and figure 
numbering) as suggested so that the methods are now separate from the results—this is much more 
readable now, added two new sets of analyses and figures (extending autocorrelation function to 
greater lags, and doing a semivariogram of our data), and responded to his other thoughtful comments 
below and in the text. We believe that the result is much more readable with confusions over certain 
parts of this long paper now better clarified. 
 
Below we reply to each of the reviewers. Attached we also include a track change document of what 
has been changed from the original manuscript. 
 
Reply to Anonymous Reviewer 1 on “Analysis and Modelling of a 9.3 kyr Palaeoflood Record: 
Correlations, Clustering and Cycles” by Witt et al. (2017) 
 
Anonymous Reviewer 1 comments. This was a thorough and interesting paper to read. It is regrading 
relatively novel, but important topics in palaeoscience.  The degree to which we can make informed 
interpretations of proxy data is constrained by our understanding of the memory/persistence of a 
given proxy in a given archive. Finding statistical approaches to help with this understanding is 
therefore important (e.g. Fischer, 2016). This not only helps with interpretations of time-series of past 
change but also in understanding how best to statistically model future scenarios, including the 
frequency of hazards such as flooding. It draws heavily on Witt and Malamud (2013) and applies their 
approaches to a varved lake record. Links to this prior paper, and the useful R code it contains, are 
clear in this paper and with the flood record to also be made available, allow readers to undertake the 
analyses and check output before applying to their own data. This is likely to be a very useful product 
for the community, particularly for working with annual time series such as those available from 
varved lake sequences. Please note, I haven’t had time to work through this for the review. There are 
a couple of small typos in the text, but this is a paper that is publishable as it is. 
 
Author reply 
We thank the reviewer for their positive comments and all four of the authors have examined the 
manuscript for typographical errors in this previous draft, catching a number. We will take extra care 
at the Galley Proof stage also with the typos. 
  



Reply to Reviewers on HESS 2016-470, “Analysis and Modelling of a 9.3 kyr Palaeoflood Record” by Witt et al. (2017) Page 2 of 5 
 

Reply to Erwin Zehe on “Analysis and Modelling of a 9.3 kyr Palaeoflood Record: Correlations, 
Clustering and Cycles” by Witt et al. (2017) 
 

EZ MAJOR COMMENT 1. "The presentation of the manuscript is in many parts a little too wordy. E.g. 
there is no need to explain the concept of correlation in such a depth in the intro, as the auto 
correlation within a time series is well known. Unfortunately the authors mix the presentation of the 
statistical methods and results, this makes the manuscript difficult to follow and to evaluate the partly 
very interesting findings. I suggest to rearrange the presentation in a more old school manner and to 
present methods, results and discussion of those in separate sections." 
 
Author reply 
(i) Wordiness and detail of explanation. We agree that this is a long paper (but we hope well 
organized, so people can dip in and out of certain sections), and that in places the manuscript tends 
towards facts/information that might be well known by certain parts of the community. We have 
relooked at the entire manuscript, editing words out where possible, but also maintaining a level of 
readability and accessibility by those who do not have a background in statistical methods related to 
correlations, clustering, and cyclicity. 
(ii) Mixture of statistical methods and results. Rearrange manuscript to be methods, results, 
discussion. We have now taken all statistics ‘methodology’ sections in the original manuscript Section 
3, left them in Section 3, and then moved results to both Section 2 (data, where it was just describing 
the data) and Section 4 (analyses on clustering, correlations, and cyclicity). This was a tad time 
consuming to break up the methods and results, as they were heavily integrated before. We believe 
that the result is now much more readable, and thank the reviewer for their suggestion of this major 
change. Our outline is now as follows: 
1.0 Introduction 
2.0 Data 
3.0 Definitions and methods for the analysis of event series 

3.1 Interevent Occurrence Times (IEOTs) 
3.2 Poisson processes as a model for an uncorrelated non-clustered time series 
3.3 Weibull distribution of IEOTs as an indicator for clustering 
3.4 Autocorrelation as a method for quantifying temporal (short-range and long-range) correlations 
3.5 Power-spectral analysis and detrended fluctuation analysis (DFA) for quantifying long-range 

correlations 
3.6 Fractional noises as examples of long-range correlated time series 

4.0 Results of statistical metrics, clustering, correlations and cyclicity of the palaeoflood sequence 
4.1 Number of palaeofloods per year, decade and century, compared to a Poisson process 
4.2 Probability of interevent occurrence times (IEOTs) compared to a Weibull distribution as a potential 

indicator of clustering 
4.3 Autocorrelation of palaeoflood sequences to quantify correlations 
4.4 Autocorrelation of interevent occurrence times (IEOTs) as a potential indicator of clustering s 
4.5 Detrended fluctuation analysis (DFA) and power-spectral analysis for quantifying long-range 

correlations and as a potential indicator of cyclicity 
4.6 Cyclicity and fluctuations in the 9.3 kyr palaeoflood record 
4.7 Summary of clustering, correlation and cyclicity of the 9.3 kyr Piànico-Sèllere palaeoflood 

 record 
5.0 Creating a peaks over threshold model to capture correlations and clustering of the observational data 
 [Sections 5.1, 5.2, … the same as 4.1, 4.2, … previously] 
6.0 Summary 
 
EZ MAJOR COMMENT 2 "I wonder why the authors do not employ variograms/semivariances to 
estimate the spatial correlation time. This will better separate the un-correlated from the correlated 
variability in their records. In this context I wonder, how much of the increase in correlation times at 
the hifher aggregation levels may be attributed to well-known scaling effects arising form to the 
aggregation process itself. The range of variogram estimated from data points increased when these 
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are aggregated to blocks (or time intervals here) while nugget increases and sill decreases – this is well 
known from variogram regularization. This effect could be easily determined using data from your 
Poisson null model." 
Author reply:  
Erwin Zehe has suggested that we use semivariograms as a model for finite range correlations or short-
range persistence (i.e., a temporal correlation time), where at a given lag or less in our time series, 
correlations are observed, but that at that lag or greater, correlations are not observed, or the 
correlations fall below a statistical threshold. He then further suggests that any increase in the 
correlation time (based on short-range persistence), might be due to the scaling effects from the 
aggregation process itself. 
 
We have now done a semivariogram analysis up to long lags on the palaeoflood series, with results 
shown in a new Appendix B (along with an explanation of what we have done). The results of the 
semivariogram analysis for long lags (and for the autocorrelation, see reply to Comment #3) is basically 
that within 95% confidence limits, the signal is overwhelmed by the cyclicity, and we can not 
conclusively state that there is short-range (vs. long-range) correlations. We cannot therefore rule out 
the possibility of a power-law decay of the semivariogram with temporal lags. We therefore are unable 
to calculate a sill. 
 
We also note that in our manuscript after our initial explorations of the time series using 
autocorrelation, we decided to apply a model of long-range correlations (i.e., one that does not have 
a temporal correlation time). Certainly, semivariograms can be used a long-range persistence model. 
However, instead of semivariogram analysis we applied Detrended Fluctuation Analysis (DFA) and 
Power-Spectral analysis (PS) for quantifying the long-range persistence strength of our palaeoflood 
and synthetic time series. Both semi-variogram analysis and DFA operate in the time domain, and 
power-spectral analysis in the frequency domain.  In research we did four years ago and published as 
a review paper (Witt & Malamud, 2013) we examined systematically, using 17,000 synthetic 
benchmark series, the types of errors when evaluating long-range persistence using these three 
techniques. All three are appropriate measures for long-range persistence; however, the systematic 
and random errors (biases and standard errors) of DFA and PS analysis are significantly smaller 
(particularly for time series with non-Gaussian one-point probability distribution, and with very few 
values in the time series) compared to semi-variogram analysis, and both DFA and PS analysis are 
appropriate for a much broader range of long-range persistence strengths compared to semi-
variogram analysis. We put our research into the context of the wider literature which has found 
similar results. We therefore in this paper use DFA and power-spectral analysis, due to it being much 
more robust than semivariograms as a long-range model. We add to our manuscript a short 
explanation why we have chosen DFA and power-spectral analysis (compared to semivariograms) for 
examining long-range persistence. 
 
EZ MAJOR COMMENT 3 "I appreciate that one prefers the use of power law functions with infinite 
correlation length – but what is the physical meaning of this?" 
Author reply: We believe (as this refers to correlation length) this comment refers to our presentation 
of the auto-correlation function applied to our palaeoflood time series (per year, per decade, per 
century), and the auto-correlation decaying as an inverse power-law with respect to the temporal lag. 
We will take “correlation length” here as meaning the lag at which values are separated and still 
statistically correlated. One could also consider power-spectral analysis and DFA, in terms of an 
equivalent correlation length for which values are still, on average, statistically correlated. We have 
added the following to the manuscript “For Eqs. (7) (autocorrelation analysis), (8) (power-spectral 
analysis), and (12) (DFA), in each case we have an inverse power‐law decay with increasing temporal 
scales (lag, frequency, temporal segment length), which defines a self-affine time series (the time 
series is statistically self-similar when comparing different temporal scales) (Mandelbrot and Van 
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Ness, 1968). If the power-law exponent held over ‘all’ temporal scales (which it rarely does) then the 
correlation length (the largest lag or temporal scale at which there are still statistical correlations in 
the time series) would be infinite. One potential significance of this ‘infinite’ correlation length is that 
‘all’ values are statistical correlated with one another in the time series. A second significance, is that 
the time series can be explained as a stochastic fractal (Malamud and Turcotte, 1998). In the case of 
our palaeoflood series this means potentially that the flood timings are organised in time as the points 
of a Cantor dust (see Ott, 1993 for a discussion on Cantor sets).” 
 
EZ MINOR COMMENT 1: "The authors use the presence of gravel enriched strata as indicator for 
channelized inflow due to a flood into the lake. This seems plausible as those events might be 
associated with bedload transport and sedimentation into the lake. However, there is no linear 
relation between flow velocity and bed load transport capacity. The literature is full of empirical 
formulas for this. This implies that the thickness of these strata is not linearly related to pealk 
discharge (flow velocities). The authors might consider this as an additional argument against the use 
of layer thickness as proxy for flood peak discharge." 
Author reply: We agree that strata (layer) thickness is not an indicator for flood magnitude. Note that 
in our detrital layers, which represent the flood events, the detrital layers themselves are mainly 
constituted of dolomite from the catchment, i.e. fine grained sediment with no gravel. We have added 
words to our original manuscript Data section to clarify this. 
 
“The detritus is mainly constituted of fine, silt-size Triassic dolomite from the catchment (Mangili et al., 2005). 
Only in the thickest described layers are found fine-sand sized particles in minor amounts. No detrital layers 
contain gravel. Due to their composition and grain size, these detrital layers can easily be distinguished from the 
background endogenic sedimentation of the lake. These detrital layers are considered to be the result of 
channelized streamflow that originated in the hills surrounding the Piànico–Sèllere Basin and triggered by 
extreme precipitation events (Mangili et al., 2005). The site of the outcrops from which the samples have been 
taken have been explicitly selected to avoid gravel sediments which could cause hiatuses through erosion. We 
interpret the site to be a low-energy sedimentary environment in a distal position of the inflowing water.” 
 
“Although detrital layers, which are mainly constituted of silt-sized dolomite, indicate the occurrence (season 
and year) of an extreme precipitation event (flood), the thickness is not taken as representative of the magnitude 
(e.g., peak discharge or flow velocity) of the event. This is because the thickness of a layer can also be influenced 
by the distance between the source of the detritus and the studied section and the amount of detritus available 
at the time of the extreme precipitation and weaker vs. stronger rainfall during the extreme precipitation events 
(Kämpf et al., 2012, 2015). In addition, over the 9336 yr period we investigate, the source of given rainfall events 
might result in different thickness signatures (Swierczynski et al., 2012, 2013). 
 
EZ MINOR COMMENT 2: "Why not showing a long time series of annual flood maxima, they also 
exhibit clustering of extremes and long time periods – this example is maybe closer to the object of 
desire?" 
Author reply: We have now upon your suggestion replaced parts C and D of Figure 1 in our manuscript 
(Atlantic Storm Maximum Wind speed) with flooding events (maximum daily discharge) over 116 years 
from the Mississippi River, which also clearly illustrates our point of clustering.  
 
 
EZ MINOR COMMENT 3: "Could you also infer on clustering of intensities above a threshold using 
indicator auto correlations?" 
Author reply: We understand this question to ask what would happen if we applied the 
autocorrelation function to our palaeoflood time series (per year, per decade, per century) to all 
values above a given threshold, in terms of learning more about the clustering (vs. correlation) 
behaviour of the time series. The values above the threshold could either (time series 1) retain their 
value, and all values below the threshold set to ‘0’, or (time series 2) all values above the threshold 
set to a given value (e.g., ‘1’) (and all values below the threshold ‘0’). 
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Currently we apply autocorrelation analysis to the number of floods per year, per decade, and per 
century, but without a threshold. The problem we have with our palaeoflood time series, is that rather 
a time series that is ‘just’ stochastic, there is also the presence of a long-term cyclicity. In case of 
weakly-stationary data such as a fractional noise (no underlining long term cycle), we could use the 
decay rate of the autocorrelation function for quantifying correlations (and also examine values above 
the threshold to infer clustering behaviour).  
 
However, because of the presence of a long-term cyclicity, the autocorrelation function will be 
strongly impacted, and we therefore use Detrended Fluctuation Analysis (DFA) and power-spectral 
analysis, which are more appropriate for fractional noises with cyclicity. For example, DFA is 
detrending segments of the aggregated time series.  
 
In our manuscript, to examine clustering, we (i) use the one point probability distribution (and in 
particular the shape parameter of the Weibull distribution) of the time intervals between floods as an 
indicator for clustering, but also (ii) apply autocorrelation analysis to the interevent occurrence times 
between events—which is in some ways equivalent to what the reviewer is suggesting (i.e., inferring 
clustering behaviour based on time between a threshold of 1 flood or greater). 
 
EZ MINOR COMMENT 4: "I appreciate the authors effort to provide a reproducible paper, but the 
explanation of the Poisson process is too detailed, this is text book knowledge. The parameter lambda 
is the mean value of floods / time interval, which depends on the aggregation level. As far as I know 
the Poisson process produces cluster data, if lambda is larger than 1?" 
Author reply:  
(a) We have reduced some words and reorganized the section on Poisson processes theory vs. results, 
but have maintained enough detail that a non-expert will have enough to follow the flow of our 
manuscript.  
(b) The Poisson process as introduced in our original manuscript page 8, does not lead to temporal 
clustering of the realisation (in time) of a Poisson process, for any lambda > 0 (Cox and Lewis, 1978). 
We also note that for lambda > 1 the one-point probability distribution of events per time unit is one 
humped and has a defined mode. We have clarified this in the text. 
 
EZ MINOR COMMENT 5: "Page 9 line 5: In case the flood do always occur in the first three years of 
the decade the average inter event period is not 1 year but, 2/3 *1 + 1/3*7= 3 years?" 
Author reply: We thank the reviewer for noting this error. We will change  
“For example, if in a given decade, we have three varves each with one flood, Eq. (2) will be different 
if the three floods are the first three years of the decade (i.e., mean ∆ = 1 yr) vs. a flood in years 1, 5, 
and 9 of the decade (i.e., mean ∆ = 4 yr).”  
to read 
“For example, if in a given decade, we have three varves each with one flood, Eq. (2) will be different 
if the three years with floods are in years 1, 2, 3 (∆1 = ∆2 = 1 yr, ∆3 ≥ 8 yr because the 4th flood will be 
in a subsequent decade) vs. one flood each in years 1, 5, and 9 of the decade (i.e., ∆1 = ∆2 = 4 yr, 
∆3 ≥ 2 yr).” 
 
References Cited 
Cox, D.R., and Lewis, P.A.W.: The Statistical Analysis of Series of Events, Chapman and Hall, London, 1978. 
Witt, A., and Malamud, B.D.: Quantification of long-range persistence in geophysical time series: Conventional 

and benchmark-based improvement techniques. Surveys in Geophysics 34 541–651, 2013. 
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Analysis and Modelling of a 9.3 kyr Palaeoflood Record: Correlations, 
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Correspondence to: Annette Witt (annette.witt@ds.mpg.de) and Bruce D. Malamud (bruce.malamud@kcl.ac.uk) 

Abstract: In this paper, we present a unique 9.5 m palaeo-lacustrine record of 771 palaeofloods which occurred over a period 10 
of 9.310 kyr in the Piànico-–Sèllere basin (southern Alps) during an interglacial period in the Pleistocene (sometime 

393400−800 780 ka) and analyse its correlation, clustering and cyclicity properties. We first examine correlations, by applying 

power-spectral analysis and detrended fluctuation analysis (DFA) to a time series of the number of floods per year and find 

weak long-range persistence: power-spectral exponent βPS ≈ 0.39 and equivalent power-spectra exponent from DFA, βDFA ≈ 

0.25. We then examine clustering using the one-point probability distribution of the inter-flood intervals and find that the 15 
occurrence of palaeofloods do cluster in time as they are Weibull distributed with shape parameter kW = 0.78. We then examine 

cyclicity in the time series of number of palaeofloods per year, and find a period of about 2030 yr. Using these characterizations 

of the correlation, clustering and cyclicity in the original palaeoflood time series, we create a model consisting of the 

superposition of a fractional Gaussian noise (FGN) with a 2030 yr periodic component and then peaks over threshold (POT) 

applied. We use this POTFGN+Period model to create 2,600,00 synthetic realisations of the same length as our original palaeoflood 20 
time series, but with varying intensity of periodicity and persistence, and find optimized model parameters that are congruent 

with our original palaeoflood series. We create long realizations of our optimized palaeoflood model, and find a high temporal 

variability of the flood frequency, which can take values between 0 to >30 floods century−1. Finally, we show the practical 

utility of our optimized model realisations to calculate the uncertainty of the forecasted number of floods per century with the 

number of floods in the preceding century. A key finding of our paper is that neither fractional noise behaviour, or cyclicity, 25 
are sufficient to model frequency fluctuations of our large and continuous palaeoflood record, but rather a model based on both 

fractional noise superimposed with a long-range periodicity is necessary.  

Key words: varve, palaeoflood, time series analysis, event series, long-range correlations, clustering of events, cyclicity, long-

range persistence, peaks over threshold, modelling 

  30 
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1 Introduction 

Risk estimates of floods are often based on instrumental records that cover a comparable small time period (e.g., a maximum 

of 150 yr) and might be influenced by anthropogenic activities. Therefore, palaeoflood sequences represent a promising source 

for understanding the long-term hazard dynamics of the unperturbed climate system (e.g., Kochel and Baker, 1982; Stedinger 

and Cohn, 1986; Baker, 1987, 2006; Ely et al., 1993; O’Connor et al., 1994; Knox, 2000; Yang et al., 2000; Greenbaum et al., 5 
2000; Redmond et al., 2002; Benito et al., 2004; Czymzik et al., 2010; Huang et al., 2013; Swierczynski et al., 2013; Wirth et 

al., 2013). One important aspect of these dynamics is to understand to what extent flood frequencies can be considered as 

constant over time, and more specifically, if floods in a given geographic region have any correlations with themselves and if 

the floods are clustered in time. Here we examine correlations, clustering and cycles in a 9336 yr record of palaeofloods using 

varved (annual) sediments from Palaeolake Piànico-–Sèllere (northern Italy), and construct a model to take into account the 10 
observed behaviour. In this introduction, we presentintroduce the idea of correlations and clustering in time series, then 

summarize the overall organization of this paper.  

 

We first consider correlations in a time series. Consider an uncorrelated time series (e.g., a white noise), where values are 

independent of one another, i.e., it is equally likely at each time step to have values above or below the median value. To 15 
illustrate correlations, take a flood intensity time series, with flood intensity the number of floods per year; a ‘flood’ here might 

be defined in many different ways. If the flood intensity time series is uncorrelated, when there is a year with a large intensity 

(a large number of floods occurring, above the median number of floods), it is equally probable to have the next year a number 

of floods that is above or below the median, i.e., a flood intensity value that is ‘large’ (more floods) or ‘small’ (zero or few 

floods). In contrast, for a flood intensity time series that exhibits positive correlations, adjacent values will have flood 20 
intensities that are on average closer to each other (in intensity) than for an uncorrelated time series; large values tend to follow 

large ones, and small follow small. Temporal correlations are also referred to as persistence or memory (see Witt and Malamud 

2013, and references therein). An Two examples of positive correlations in two time series are given in Fig. 1A and 1B, using 

a tree ring standardized growth index for Bristlecone pine, White Mountain, California, USA, for the years AD 0–1962 and 

cosmic ray neutron counts per hour, Beijing, China, 1 January to 11 March 2008. In these two Fig. 1 panels, successive values 25 
in both series are positively correlated with one another, and are examples of persistent time series.  

 

Correlations can be both short-range (where only values in a time series close to each other are correlated) or long-range (where 

all values in the time series are correlated with one another). We will find that the unequally spaced palaeoflood time series 

used in this paper exhibit both long-range correlations and long period cyclical behaviour, and will focus on long-range (vs. 30 
short-range) persistent models in this paper. Long-range correlations have been discussed and documented for many processes 

in the environmental and Earth Sciences (see Box et al. 2013, Witt and Malamud 2013, and references therein), with examples 

including river run-off and precipitation (Hurst, 1951; Mandelbrot and van Ness, 1968; Montanari et al., 1996; Koscielny-–
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Bunde et al., 2006; Mudelsee, 2007; Khaliq et al., 2009, Ghil et al., 2011), atmospheric variability (Govindan et al., 2004) and 

temperatures over short- to very-long time scales (Pelletier and Turcotte, 1997; Fraedrich and Blender, 2003). A more detailed 

description of correlations, particularly long-range correlations, will be given in Sects. 3 and 4.  

 

The idea of long-range correlations is commonly used to characterize observational and experimental measurement data across 5 
many other scientific disciplines: For instance Peng et al. (1993b, 1994) found long-range persistence in the nucleotide 

organisation of DNA sequences, Kurths et al. (1995) detected long-range correlations in time series from radio astronomy, 

Peng et al. (1993a) and Penzel et al. (2003) analysed long-term recordings of heart rate variability, Koscielny−Bunde et al. 

(2006) found long-range persistence in river runoff series, Fraedrich and Blender (2003) confronted strength of long-range 

correlations of weather records and weather simulations and Ghil et al. (2011) presented an example of a long-range persistence 10 
analysis of an unequally spaced time series (the Nile River). Many more examples are given in Witt and Malamud (2013).  

 

The palaeoflood time series we will examine arein this paper are unequally spaced in integer-valued time series. Some 

examples given above include unequally spaced time series, such as Ghil et al. (2011) who studied long-range persistence of 

the unequally spaced Nile River time series. The palaeoflood time series we examine are also integer valued, i.e. are not aLong-15 
range correlation research is not restricted to time series with continuous one-point probability distribution. These 

correlationsSome long-range persistence research hasve also been investigated in integer-valued time series. For example, the 

example given above for Peng et al. (1993b, 1994) research on long-range persistence of DNA’s nucleotide organisation 

represented the DNA as sequences with four different types of symbols. In another two examples, Altmann et al. (2012) studied 

correlations in texts as represented by binary sequences of texts and Schaigorodsky et al. (2014) investigate long-range memory 20 
in the opening moves of chess games.  

 

An alternative to examining the temporal correlations of flood intensities (here taken as the number of floods per year), is to 

examine if the flood intensities over a given threshold cluster in time. Clustering is the grouping of values in time more than 

one would expect if the process that created them were random. An example of clustering, in unequally spaced wind flood 25 
speed strong storm/hurricane datamagnitudes over a given threshold, is given in Fig. 1C and 1D. Here we observe the 

clustering on an annual  cycle. Correlation and clustering (or lack of) have been studied for different extreme natural events, 

including earthquakes (e.g., Livina et al., 2005; Hainzl et al., 2006; Lennartz et al., 2008; Davidsen and Kwiatek, 2013), 

volcanic eruptions (e.g., Nathenson, 2001), floods (e.g., Pelletier and Turcotte, 1997; Milly and Wetherald, 2002), and tropical 

temperatures (e.g., Blender et al., 2008).  30 
 

In this paper, we use a record of 771 detrital layers of the laminated sediments of the Palaeolake Piànico-–Sèllere (northern 

Italy) covering a time span of 9336 yr. These 771 layers are interpreted as indictors of flood events which occurred somewhere 

during the period of 393 to 780 ka (thousands of years ago). In Sect. 2 we give a detailed description of the palaeoflood 

Commented [MB1]: This was originally in Old Section 3 
and a shortened version brought in here to avoid duplication. 
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sequence. In Sect. 3 we explain key definitions and methods used in this paper. Then in Sect. 43 we analyse the distribution 

of the palaeoflood frequencies per year,  and per decade and century compared to a Poisson (stationary) model, the one-point 

probability distribution of the inter-flood intervals as a potential indicator of clustering, , the temporal correlations among the 

flood events and cyclicity the one-point probability distribution of the inter-flood intervals. In Sect. 53 we also model the 

record of palaeoflood timings as elements of a long-range correlated synthetic time series that exceed a threshold. For this 5 
model type, scaling relationships for the distribution of the inter-event intervals and the temporal correlations are derived in 

dependence on correlation properties of the time series and on the applied threshold. In Sect. 54 we also construct a model that 

consists of multiple realisations of synthetic time series that captures the same clustering and correlation properties that we 

find in our palaeoflood record. Finally, in Sect. 65 we provide a summary of the paper. 

2 Data 10 

As discussed in the introduction, this paper focuses on the correlation, clustering and cyclicity of palaeofloods. We present 

here for the first time and use a very comprehensive flood record at sub-annual resolution, obtained from the varved sediments 

of the Piànico-–Sèllere Basin, located in the Borlezza Valley (Province of Bergamo, Italy; Fig. 2A). This palaeolake sequence 

was first described in the mid 1800s (e.g., Stoppani, 1857), mainly for its fossil content. A detailed stratigraphic study was 

published by Moscariello et al. (2000).  15 
 

 

The Palaeolake Piànico-–Sèllere is located at the foothills of the Southern Alps in Italy. Its sediments (45°48′ N, 10°2′ E, 

280−350 m above sea level) are visible in outcrops (Fig. 2B). The sediment formation is more than 48 m thick and extends for 

about 600 m laterally. It includes four fine-grained laminated stratigraphic units (described more fully below). The size of the 20 
palaeolake has been reconstructed to about 3 km in length and 500−800 m in width (Casati, 1968). The palaeocatchment area 

of the Piànico-–Sèllere Lake was has been probably <estimated to be less than 13 km2 (Moscariello et al., 2000).  

 

The lacustrine sequence that forms the Piànico Formation (Moscariello et al., 2000), is a 48 m thick stratigraphic interval that 

includes four units. For the palaeoflood dataset created here, only the 9.5 m unit called BVC (Banco Varvato Carbonatico or 25 
Carbonate Varved Bed) will be considered (described more fully below). The age of the sediment is still debated. 

Tephrochronological dating of the sequence gives 393±12 ka (Brauer et al., 2007), which corresponds to the interglacial period 

at about 400 ka, i.e. the Marine Isotope Stage (MIS) 11. This interglacial period is considered as the best analogue to the 

Holocene because of similar orbital parameters (e.g., Loutre and Berger, 2003). However, Pinti et al. (2001) dated a tephra 

layer in the varved BVC sequence at 779±13 ka, assigning the sequence to the interglacial at about 780 ka (MIS 19). For the 30 
purposes of the paper here, we will be less concerned with the actual age, and more concerned about the period of overall time 

that has elapsed, based on interpreting the BVC alternating layers (rhythmites) as varves.  



Page 5 of 67 

 

The BVC 9.5 m unit constitutes an almost continuous succession of about 15,500 rhythmites (alternating layers of dark and 

light sediment), 0.2−0.8 mm thick (Moscariello et al., 2000). These endogenic calcite rhythmites have been interpreted to be 

varves (annual cycles) as they have a structure very similar to Holocene Alpine lake varves, in which calcite precipitation take 

place in spring and summer (Kelts and Hsü, 1978; Moscariello et al., 2000). The Piànico-–Sèllere varved sequence formed 5 
under interglacial conditions, as testified by the flora remains included in the sediments (e.g., Amsler, 1900; Maffei, 1924; 

Rossi, 2003; Martinetto, 2009), and the oxygen stable isotope values of this interval (Mangili et al., 2007). The calcite varves 

consist of two layers (Fig. 2B): a lightly coloured and ~0.5 mm thick spring/summer layer formed by up to 96% of endogenic 

calcite, and a dark and thin winter layer constituted of organic remains, diatom frustules and occasional detrital grains 

(Moscariello et al., 2000; Mangili et al., 2005). Using wavelet analysis, Brauer et al. (2008) found that the varve thickness is 10 
partially modulated by solar activity (88 yr and 208 yr cycles), and probably also by the thermohaline ocean circulation (512 

yr cycle). In the BVC stratigraphic interval, the upper 60% (9271 out of 15,500 varves) were examined here in detail using the 

same methodology and location as described in Mangili et al. (2005), but extending the vertical profile from 896 varves 

(Mangili et al., 2005) to 9271 varves (here). Note that at varve 4019 of 9271, there was found to a ‘gap’ of time, consisting of 

be a gap of 65 missing varves, bringing the total sequence to 9336 varves (with 65 varves missing); this gap is described below 15 
in furthermuch more detail. 

 

We briefly describe our microfacies sampling methodology (see Mangili et al., 2005 for further details). Continuous vertical 

profiles of sediment samples were collected from two outcrops stratigraphically similar, 150 m apart: (i) the Main Section, for 

which data areis presented in this paper, and (ii) the Wall Section, a control section which we used to evaluate uncertainties in 20 
the Main Section results. Both sections had more than 30 key marker layers so the two outcrops could be correlated with each 

other. For each vertical section, the outcrops were cleaned with a sharp knife until a smooth and vertical surface was obtained. 

Then a block of sediment was carved out in situ to enable easy pushing of a special stainless box (33 cm x 5 cm) with removable 

side walls onto the sample. Samples were taken with at least a 5 cm vertical overlap, ensuring that a marker layer, allowing 

correlation, was present in both samples. The samples were then slowly dried at room temperature to avoid shrinkage and 25 
cracking and covered with a transparent epoxy resin, resulting in resin impregnation of the surface layer (1–2 mm) of the 

sediments. Samples were cut into two halves with the fresh surface again carefully dried and impregnated. From one half, 10 

cm thick samples with a 4 cm overlap for final thin-section (120 mm x 35 mm) preparation were cut out. The thin sections 

were analysed with a petrographic microscope. For measurement of varve and detrital layer thickness, 100x magnification was 

chosen. 30 
 

Approximately 8% of the varve couplets contain also one or two detrital layers (Fig. 2B), which we describe in more detail 

below. The detritus is mainly constituted of fine, silt-size Triassic dolomite from the catchment (Mangili et al., 2005). Only in 

the thickest described layers are found fine-sand sized particles in minor amounts. No detrital layers contain gravel. Due to 
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their composition and grain size, these detrital layers can easily be distinguished from the background endogenic sedimentation 

of the lake. These detrital layers are considered to be the result of channelized streamflow that originated in the hills 

surrounding the Piànico-–Sèllere Basin and triggered by extreme precipitation events (Mangili et al., 2005). The site of the 

outcrops from which the samples have been taken have been explicitly selected to avoid gravel sediments which could cause 

hiatuses through erosion. We interpret the site to be a low-energy sedimentary environment in a distal position of the inflowing 5 
water. The position of a detrital layer within a varve allows the identification of the season in which the extreme precipitation 

event/flood took place: a ‘spring’ detrital layer settled before the beginning of endogenic calcite precipitation, a ‘summer’ 

detrital layer is within the varve summer layer and a ‘fall/winter’ detrital layer is at the top of the calcite layer or included in 

the winter layer (Mangili et al., 2005). Due to the reduced thickness of the varve winter layer (0.06 mm mean), fall and winter 

detrital layers are not distinguished here. Another layer type (called matrix-supported) has also been observed in the varved 10 
sediments (Mangili et al., 2005); these layers are thought to result from reworking processes within the lake, are not linked to 

extreme precipitation events and will, therefore, not be taken into consideration in this paper.  

 

In our analysis, we will focus on the temporal succession of detrital layers (flood events), the series of events that is graphically 

presented in Fig. 2C, and which consists of 771 single palaeoflood events occurring during a time interval of T = 9336 yr. 15 
There are 9271 varves present, each taken to represent 1 yr, in addition to a ‘gap’ of 65 yr (varve index 4019−4083) which is 

due to a slump at the Main Section. The varve structure there was not recognizable. To ascertain the temporal period of the 

gap, we correlated three marker layers between the Main Section’s disturbed interval, to an undisturbed sequence at the Wall 

Section, where we counted the number of varves, and were able to conclude that the gap in the Main Section is 65 yr. The 

flood events have each been given a specific varve index (relative age) in the time series. In this paper, we will use the following 20 
notation (see also Table 1 for list of all abbreviations and notation used in this paper) for the observed data with respect to 

varves and detrital (flood) layers: nyear[t], t = 1, …, Nvarves is the number of detrital layers per varve (flood events per year) 

where the index t is the varve number index (starting from the top varve) and represents relative age in years (see above) and 

Nvarves = 9336 yr is the length of the observational period, i.e. the total number of varves including the ‘gap’ of 65 yr.  

 25 
The timings of the considered 771 palaeoflood events are transformed into three event series (Fig. 3) which will be analysed 

in detail in the subsections of this Sect. 3, . We will work here with of the number of floods (detrital layers) per year (nyear), 

per decade (ndecade) and per century (ncentury), over the 9271 yr of palaeoflood data (over a 9336 yr record) which are presented 

in Fig. 3A. These three data sets are integer-valued time series which contain Nyear = 9271, Ndecade = 925 and Ncentury = 92 data 

points, and will provide the basis for our time series analyses in . Sect. 4.  30 
 

In these three palaeoflood time series (Fig. 3) which represent our data, we observe that tThere are time periods with little 

fluctuation of the number of floods per century (i.e., the interval from the 18th 24th to the 24th 18th centuriesy with values over 

the range  between 10− and 16 floods per century−1). However, we also see sudden transitions from many to a few to many 

Commented [MB2]: Next two paragraphs were brought in 
from a later section to here, along with top half of original 
Figure 3, and histograms to the right. 
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floods (as from 24 to 24 floods century−1 from the 398th to the 389th century) as well as from a few to many to a few floods (as 

from 25 7 to 7 25 floods century−1 from the 4654th to the 4545th century).  

 

The histograms of these data are also given in Fig. 3B, on the far right of each time series. The number of years (kyear) with no 

floods (nyear = 0 floods yr−1) is kyear = 8530 yr (92.0% of the record). Similarly, for nyear = 1, 2, 3 floods yr−1, the number of 5 
years (respectively) with those values are kyear = 712 (7.7%), 28 (0.3%), 1 (0.01%) yr. For Nyear = 9271 yr examined, there are 

741 yr which have 1 to 3 floods (detrital layers), a total of 771 floods. We will revisit these values belowin Sect. 4.1. The data 

cover Ndecade = 925 non-overlapping decades (because of the 65 yr gap, eight of the decades within the 9336 yr are disrupted). 

The number of decades (kdecade) with no floods (ndecade = 0 floods decade−1) is kdecade = 453 decades (49.0% of the record). 

Similarly, for ndecade = 1, 2, 3 floods decade−1, kdecade = 283 (30.6%) 123 (13.3%), 43 (4.6%) decades. For 4 ≤ ndecade ≤ 8 floods 10 
decade−1, kdecade = 23 (2.5%) decades. No decades have ndecade > 8 floods decade−1. If we consider the data on the century 

resolution, we have Ncentury = 92 non-overlapping centuries, as the 65 yr gap falls completely within 1 century. The number of 

centuries (kcentury) with no floods (ncentury = 0 floods century−1) is kcentury = 1 century (1% of the record). For 1 ≤ ncentury ≤ 5 and 

6 ≤ ncentury ≤ 10 floods century−1, kcentury = 26 and 35 centuries (28% and 38% of the record) respectively. For ncentury > 10 floods 

century−1, kcentury then decreases (Fig. 3B) with a maximum of one century that has ncentury = 31 floods century−1.  15 
 

The thicknesses of the detrital layers representing the 771 flood events that we investigate in this paper range from 0.02 to 

23.00 mm (with quartiles of 25%: 0.07 mm, 50%: 0.10 mm and 75%: 0.18 mm) (see Appendix A, Fig. A1). Although detrital 

layers, which are mainly constituted of silt-sized dolomite, indicate the occurrence (season and year) of an extreme 

precipitation event (flood), the thickness is not taken as representative of the magnitude (e.g., peak discharge or flow velocity) 20 
of the event. , as tThis is because the thickness of a layer may can also be influenced depend onby the distance between the 

source of the detritus and the studied section and, the amount of detritus available at the time of the extreme precipitation and 

weaker vs. stronger rainfall during the extreme precipitation events (Kämpf et al., 2012, 2015). In addition, over the 9336 yr 

period we investigate, the source of given storms rainfall events might result in different thickness signatures (Swierczynski 

et al., 2012, 2013). We also note that although we can identify when a flood is thought to have occurred, this does not preclude 25 
the possibility that other floods occurred but were not identified as a detrital layer. We do acknowledge research (e.g., Corella 

et al., 2014; Schillereff et al., 2014) where the type and thickness of detritus in Holocene varves are used to make interpretations 

of the strength of a hydro-meteorological event; however, due to the age of our sediments this sort of analysis of event 

magnitude was not possible here. In this paper, we therefore focus on just the temporal attributes of the 771 floods themselves 

over this 9336 yr period in the Pleistocene. See data availability for access to the palaeoflood database. 30 
 

In terms of the relative temporal uncertainty of the floods (based on the varve sequence), a flood in a given year (represented 

by the detrital layers) can (very rarely) erode some of the sediment underneath it, forming a hiatus of missing sediment. This 

limitation is discussed in detail in Mangili et al. (2005), who analysed for 10% of the outcrop presented in this paper, the same 
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stratigraphic intervals in both the Main Section and the Wall Section, again 150 m apart. Out of 896 varves they examined in 

both sections, they found that 3 varves out of 896 were not present (e.g., eroded away by a flood) in the Wall Section but were 

present in the Main Section, and 4 varves out of 896 were not present in the Main Section, but present at the Wall Section. 

Overall, this represented a total of 889 out of 896 varves (99.2%) in common between the two outcrops, which means that if 

we extend their results to the other 90% of the outcrop, some uncertainty might exist with up to 1% of the varves ‘missing’ in 5 
time, which should have a very small impact on the relative timing of floods discussed in this paper.  

 

The analyses in this paper will concentrate on the fluctuations in flood frequency over time (i.e., the number of floods per year 

and per decade), examining the temporal correlations, clustering and cyclicity of the flood frequencies. Before proceeding to 

the analyses of these time series, we provide next (Sect. 3) the definitions and methods used in subsequent sections. 10 

3 Definitions and methods for the analysis of event series 

Both correlations and clustering were introduced in Sect. 1.  Here we provide more in-depth definitions and explanations of 

clustering and correlation methods that will be used in examining our palaeoflood time series. Definitions and methods related 

to cyclicity will not be presented here, but rather our results will be presented in Section 4.*. In Sect. 3.1, we introduce 

interevent occurrence times (IEOTs). Then in Sect. 3.2 Poisson processes, a model for non-correlated and non-clustered time 15 
series. Sect. 3.3 describes the Weibull distribution (in the context of IEOTs) as an indicator of clustering. Sect. 3.4 introduces 

autocorrelation as a method to quantify short-range and long-range correlations in a given time series. I 

 

In this section we willn Sect. 3.5, we  describe power-spectral analysis and detrended fluctuation analysis as methods for 

quantifying long-range correlationsstart with a general statistical background on long-range correlations and discuss longshort-20 
range versus long-range correlations, then we describe the idea of long-range persistence and fractional noises. Finally, in Sect 

3.6 we briefly introduce fractional noises. 

,3.1 Interevent occurrence times (IEOTs)  

In this paper, we will consider the number of palaeofloods per year, decade, and century as event series in time. As indicators 

of clustering and/or correlations (or lack of), we will apply statistical methods to the event magnitudes (i.e., the number of 25 
floods per year, decade or century). We will also consider the time intervals between successive events, i.e. the interevent 

occurrence times (IEOTs) which we introduce here. We will later use the statistical distribution of the IEOTs as an indicator 

of clustering (or lack of) in the original time series.  
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Here, wWe  introduce  interevent occurrence times (IEOTs) in the context of ourthe yearly palaeoflood record time series (top 

panel of Fig. 3) where, which are derived as follows as previously, (t is the relative age in years in our time series and as 

previously, nyear is the number of floods per year).  
First, we define a flood year to be any year t with at least one flood in it, i.e. nyear[t] ≥ 1 flood yr−1.  

Second, we define IEOT as the time interval ∆ between successive years that have 1 or more floods, i.e., more formally, nyear[t] 5 
≥ 1 flood yr−1 and nyear[t + ∆] ≥ 1 flood yr−1 but for all years in-between, nyear[t + l] = 0 floods yr−1 for l = 1, 2, …, ∆−1.  

 

In Fig. 4A we illustrate finding the IEOTs: we present the number of detrital layers per year (Fig. 4A.1 which is the same as 

the top panel in Fig. 3) with as inset (Fig. 4A.2) an example for four detrital layers with IEOTs of ∆ = 52, 3 and 26 yr. In Fig. 

4B we give all the ∆ as a function of relative age t for the entire palaeoflood data set. The values of ∆ range from 1 to 125 yr 10 
(with quartiles of 25%: 3 yr, 50%: 7 yr, and 75%: 15 yr) and a mean ∆  = 12.5 yr. We then use a subscript j to indicate 

successive IEOTs, ∆j, which we plot using ‘natural’ time, in other words where each ∆ is no longer represented temporally 

when it occurs, but rather successively one after another, j = 1, 2, 3, ..., N∆ with the total number of natural time intervals N∆ = 

739 (we discard the j value corresponding to the gap). In Fig. 4C we plot the same ∆ from Fig. 4B, but now as a function of 

detrital varve index (natural time), j = 1, 2, 3, …, N∆. 15 
 

The use of natural time (i.e., the time between all events is ‘equal’ in natural time) to represent unequally spaced events in time 

series has been mainly used to examine seismic related time series (e.g., Uyeda et al., 2009; Rundle et al., 2012), but has found 

use in a variety of other disciplines ranging from biology and environmental sciences to cardiology (see Varotsos et al., 2011 

for a review of its use in various disciplines). In Fig. 4C we plot the same ∆ from Fig. 4B, but now as a function of detrital 20 
varve index (natural time), j = 1, 2, 3, …, N∆.  

 

3.2 Poisson process as a model for an uncorrelated non-clustered time series 

The standard example of an event series that is uncorrelated in time, non-clustered, and stationary in time, is the realization of 

a Poisson process. In later analyses (Sect. 4.1) we will compare the statistical distribution of the magnitudes in our three 25 
palaeoflood time series (Fig. 3) to those of a Poisson process, thus inferring the lack of correlations and clustering (if a Poisson 

process) or the presence of correlations or clustering (if not a Poisson process). If a real-world process (e.g., flooding) by which 

a time series results is assumed to be Poissonian, then many synthetic realisations of that Poisson process can be created, and 

their statistical properties confronted with those of the observed ‘real-world’ time series. Poisson processes have been found 

in some cases used to model the temporal occurrence of floods occurrences (e.g., Kirby, 1969; Todorovic and Zelenhasic, 30 
1970). The ‘validity’ of the Poisson distribution has been discussed by various authors (e.g., Cunnane, 1979) and more complex 

Poisson-cluster processes have been applied for modelling rainfall. Other authors have shown that Poisson processes are 
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inappropriate, and in other cases to not be an appropriate model (e.g.,  for example Mudelsee et al.,  (2004,) who showed that 

the winter floods of the river Elbe from 1500 – 2000 cannot be modelled by a stationary Poisson process).  

 

For a time series to be considered a realisation of a Poisson process the following must be true (Cox and Lewis, 1978):  

 (i) the time series elements are non-negative integers;  5 
(ii) the time series considered is stochastic (i.e., has no obvious trends and periodicities and no deterministic components);  

(iii) the one-point probability distribution of the time series elements follows a Poisson distribution, that is a positive integer-

valued random variable X, whose probability densities Pλ are defined as (Cox and Lewis, 1978):  

 ( ) ( )exp , 1,2,3,...
!

n

P X n n
nλ
λ λ= = − =   (1) 

where ‘!’ means factorial, exp is the exponential function, λ is the rate parameter with λ > 0, and n is the intensity 10 
(number of occurrences) of the ‘random’ variable per a given time unit (e.g., hour, year, decade, century). The rate 

parameter λ is a physical quantity and thus has units (time unit)−1, but the Poisson process as given in Eq. (1) is a 

mathematical model and Pλ does not have units.  

(iv) the times between successive events (interevent occurrence times, IEOTs) are independent in time (i.e., there is no 

correlation between one IEOT and others, so events occur independent of one another);  15 
(v) the frequency-sizeone-point probability distribution P of the IEOTs ∆ is is exponential. with  

 ( ) ( )exp exp , 0P ∆ λ λ∆ ∆= − ≥   (2) 

 with the same rate parameter λ as in Eq. (1) and the time unit of the original time series is small enough that almost all 

time units have just 0 or 1 event (i.e., λ << 1). 

 20 
The Poisson process as defined in Eq. (1) does not lead to any temporal clustering. The one-point probability distribution for 

the Poisson process for 0 < λ ≤ 1 had no mode, and for λ > 1 has a defined mode. 

3.3 Weibull distribution of IEOTs as an indicator for clustering 

If the ∆j (the IEOTs), in addition to not being exponentially distributed, are Weibull distributed, this is taken as an indicator 

for clustering of the original time series (Bunde et al., 2005; Witt et al., 2010). The two-parameter Weibull probability 25 
distribution (Weibull, 1951) is a standard waiting time distribution, i.e., frequently used for modelling the time intervals 

between successive events (Cox and Lewis, 1978). The continuous (vs. discrete, as in Eq. (1) for the Poisson distribution) two-

parameter Weibull probability distribution given by (Weibull, 1951): 
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( )
1

exp
W Wk k

W
W

W W W

kP ∆ ∆∆
λ λ λ

−     
 = −        

, ∆ ≥ 0  (3) 

 

where the two parameters are λW for scale and kW for shape, and ∆ is any real number ≥ 0. When the shape parameter kW = 

1.0, the two-parameter continuous Weibull distribution (Eq. 3) turns into: 

 5 

( ) 1 expW
W W

P ∆∆
λ λ

 
= − 

 
, ∆ ≥ 0,  (4) 

 

that is the exponential distribution which describes the IEOT distribution of a Poisson process with a parameter λ = 1/λW (see 

Eq. 1).  

 10 
For shape parameters 0.0 < kW < 1.0, the two-parameter Weibull distribution (Eq. 3) is heavy-tailed (i.e., asymptotically scale 

invariant) with a tail parameter of (1 – kW) which means that the probability density for very large values ∆ in Eq. (3) scales 

with a power law with the tail parameter as power-law exponent. 

3.4 Autocorrelation as a method for quantifying temporal (short-range and long-range) correlations 

There are a variety of methods that can be used to explore and quantify temporal correlations both in observed time series and 15 
realisations of a modelling process. As discussed in Section 1, cCorrelations (also called persistence, memory) have been 

studied in many environmental time series (e.g., see Box et al., 2013 and Witt and Malamud, 2013 for reviews). Measures for 

correlations quantify the statistical dependence between variables, and in particular, measures for temporal correlations 

describe the intensity of this relation between time series elements with a fixed temporal distance. To quantify the strength of 

correlations, we use autocorrelation analysis applied to the time series of number of floods per year (nyear), decade (ndecade), and 20 
century (ncentury) (Fig. 3A). The autocorrelation function C (e.g., Priestley, 1982) for the number of floods is defined as: 

( ) ( ) ( )( )2
1

1 N

j j
j

C n n n n
N n

τ

ττ
σ

−

+
=

= − −∑   (53) 

where nj is a time series of the number of floods per year (decade, century) with j = 1,2,…,N, with N = Nyear, Ndecade or Ncentury 

(i.e., the total number of years, decades, centuries in the record), n  is the mean number of floods (per year, decade, century) 

for the entire record, τ is the time lag (in years, decades, centuries), and σ2(n) is the variance of the time series. Positive values 25 
of the autocorrelation function are indicative of a process that on average, for a given lag τ, has positive persistence between 

values separated by that lag τ. In other words, if there are a large number of floods in a given year, on average, τ years later 

will also be followed by a large number of floods (compared to the mean number of floods per year overall). The converse is 
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also true, if there are few floods in a given year, on average, τ years later will also be followed by only a few floods (compared 

to the mean number of floods per year overall). Negative values of the autocorrelation function are indicative of negative 

persistence, whereby if there are a large number of floods in a given year, on average, τ years later will be followed by a very 

few number of floods (compared to the mean number of floods per year overall). 

 (DFA) 5 

 

Temporal correlations describe the statistical dependence of directly and distantly neighboured values in a time series. If the 

correlations are essentially linear and thus can be described by the autocorrelation function, two types of correlations can be 

considered: (i) short-range correlations (Priestley, 1982; Box et al., 2013) and (ii) long-range correlations (e.g., Taqqu and 

Samorodnitsky; 1992; Beran, 1994; Malamud and Turcotte, 1999).  10 
 

Short-range correlations are characterized by a decay of the autocorrelation function C(τ) (Eq. 53) that is bounded by an 

exponential decay for large lags, τ: 

( ) ( )0 0exp ,C τ γ γτ τ τ≤ − > ,,  (86) 

where τ0, γ0 and γ are non-negative constants. In particular, this definition applies for time series with a finite correlation length 15 
(C(τ0) = 0 for τ > τ0). Statistical models for short-range correlated time series include autoregressive (AR) and moving average 

(MA) processes (Priestley, 1982).  

 

In contrast to short-range correlated time series, long-range correlated time series approach a power-law decay of the 

autocorrelation function C(τ) (Eq. 35) for large lags τ: 20 
 

( ) ( )1C βτ τ − −
 , 0.0 ≤ β ≤ 1.0  (97) 

 

The parameter β (0.0 ≤ β ≤ 1.0) is called the strength of the long-range correlations, with β the strength of long-range 

correlations. The limiting values (for the autocorrelation function) β = 0.0 represents short-range persistence (see Eq. 86) 25 
between the time series elements, and β = 1.0 for pink (or 1/f) noises. Koutsoyiannis and Montanari (2007) have shown that 

the statistical uncertainty of the mean value of (hydrological) time series is increased in the presence of correlations, and in 

particular long-range correlations. 
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3.5 Power-spectral analysis and detrended fluctuation analysis (DFA) for quantifying long-range correlations 

In the last section, we used the autocorrelation function as one method to quantify long-range (and short-range) correlations. 

Here we describe two more methods for quantifying long-range correlations: power spectral analysis and detrended fluctuation 

analysis. We focus on long-range (vs. short-range) correlations as these form the main part of our analyses and modelling in 

later sections. These two methods are both more robust than autocorrelation in quantifying long-range correlations (Witt and 5 
Malamud 2013).  

 

Long-range correlations areis also reflected by a scaling of the power spectral density, S (square of the modulus of the Fourier 

coefficients appropriately normalized) with frequency f. The power-spectral density S exhibits a power-law scaling such that 

(Taqqu and Samorodnitsky, 1992; Beran, 1994): 10 
 

( )S f f β−
 ,   (108) 

 

where f is the frequency and the relationship holds (for long-range persistence) over all β (Pelletier and Turcotte, 1999; Witt 

and Malamud, 2013). Positive exponents (β > 0.0) in Eq. (78) represent positive (long-range) persistence and negative ones 15 
(β < 0.0) anti-persistence. The specific case of β = 0.0 corresponds to an uncorrelated time series (e.g., a white noise), and a 

value of β = 1.0 is known also as a 1/f or pink noise (Mandelbrot and van Ness, 1968; Bak et al., 1987). Some examples of 

these long-range persistent time series are given in the next Sect. 3.6. In this paper, to avoid confusion with other estimators 

(e.g., DFA, see next), we will indicate the measurement of the strength of long-range persistence by power-spectral analysis 

using the notation βPS. 20 
 

Another common method for quantifying long-range correlations is dDetrended fFluctuation aAnalysis (DFA) (e.g., Peng et 

al., 1994; Kantelhardt et al., 2001). Here, the scaling properties of long-range correlated time series are quantified in terms of 

the fluctuation function. In this paper the number of floods per year, decade or century can be analysed by DFA, we call these 

time series here xt, t = 1, …, N. The fluctuation function is based on the running sums (or profile) of the considered time series 25 
xt, t = 1, …, N:  

1

t

t i
i

s x
=

= ∑ .  (119) 

This time series of the running sums st, t = 1, …, N is then split up into non-overlapping segments of length l. For the kth 

segment of the running sums, sk,i , i = 1, …, l, the fluctuation is determined as the variance of the difference of this segment 

and its best fitting polynomial trend tk,i , i = 1, …, l, (with the polynomial order k, usually between 1 and 4)  30 
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The fluctuation of the time series is the mean of the fluctuation of the segments: 

( ) ( )2 2 ,
k

F l F k l=  . (113) 

Where k is the mean value taken over all fluctuations of length k segments. If the underlining time series xt, t = 1, …, N has 

long-range correlations, then the fluctuation function F(l) exposes for long segment lengths l a power-law scaling and will 5 
scale as (Peng et al., 1992). 

( )F l lα
 .  (124) 

The strength of long-range correlations, β, is related to the scaling parameter of the fluctuation function, α, as β = 2α−1. If 

polynomials of order k are considered, then the resultant estimate of the long-range dependence is called DFAk (e.g., DFA1, 

DFA2). In this paper we will calculate α using DFA1 to DFA4. We will provide results using the notation βDFA (to indicate 10 
the use of DFA) based on βDFA = 2α−1. 

 

For Eqs. (7) (autocorrelation analysis), (8) (power-spectral analysis), and (12) (DFA), in each case we have an inverse power‐

law decay with increasing temporal scales (lag, frequency, temporal segment length), which defines a self-affine time series 

(the time series is statistically self-similar when comparing different temporal scales) (Mandelbrot and Van Ness, 1968). If the 15 
power-law exponent held over ‘all’ temporal scales (which it rarely does) then the correlation length (the largest lag or temporal 

scale at which there are still statistical correlations in the time series) would be infinite. One potential significance of this 

‘infinite’ correlation length is that ‘all’ values are statistical correlated with one another in the time series. A second 

significance, is that the time series can be explained as a stochastic fractal (Malamud and Turcotte, 1998). In the case of our 

palaeoflood series this means potentially that the flood timings are organised in time as the points of a Cantor dust (see Ott, 20 
1993 for a discussion on Cantor sets). 

  

Extensive details about power spectral analysis, DFA and software written in R (R Core Team, 2013) for performing time 

series analysis using these techniques are given in the review paper by Witt and Malamud (2013). This latter study also 

investigates biases of both techniques which typically occur when they are applied to time series that have a one-point 25 
probability distribution that is strongly non-Gaussian and or the time series has very few values (e.g., just a few thousand data).  

 

3.6 Fractional noises as examples of long-range correlated time series 

 



Page 15 of 67 

Fractional noises are standard examples of long-range correlated time series (Malamud and Turcotte, 1999; Mandelbrot, 1999), 

which we will use here to help us model long-range persistent characteristics of our palaeoflood time series. Examples of six 

fractional noises are shown in Fig. 56, with the strength of long-range persistence ranging from β = 0.0 (a white noise) to β = 

1.0 (a pink noise), in 0.2 increments. In the white noise in Fig. 65, the values are uncorrelated with each other, and as we 

increase the strength of long-range persistence, the values, although drawn from the same underlying probability distribution, 5 
become more correlated with one another (and their clustering increases). 

3 4 Results of Statistical statistical metrics, clustering, correlations and cyclicityand clustering of the palaeoflood 
sequence 

In this section, we first statistically analyse the 771 timings of palaeofloods in terms of their elementary metrics of number of 

palaeofloods per year, decade and century compared to a Poisson process (Sect. 43.1). We then examine the probability of 10 
interevent occurrence times (IEOTs) compared to a Weibull distribution as a potential indicator of clustering (Sect. 4.2). We 

then use autocorrelation of the palaeoflood time series to characterise the temporal clustering correlations (Sect. 4.3) and 

autocorrelation of the IEOTs as another potential indicator of clustering (Sect. 4.4)of the palaeoflood time series using 

autocorrelation (Sect. 3.2) and interevent occurrence time (Sect. 3.3). Next, we characterize the temporal correlations of the 

time series using detrended fluctuation analysis and power-spectral analysis (Sect. 43.45). Finally, we characterize the cyclicity 15 
of the palaeoflood time series using a sinusoidal model (Sect. 43.56). As the techniques we used are designed for time series 

with a continuous one-points probability distribution (e.g., Gaussian, log-normal or Levy distribution) vs. the integer values 

that are found in our palaeoflood time series, we throughout also show the statistical significance of our findings. 

43.1 Number of palaeofloods per year, decade and century, compared to a Poisson process  

We now examine the number of floods per year, decade and century, as if the process that created them resulted in a series of 20 
floods uncorrelated in time. Here, we will consider a time series to be the realisation of the underlying process. If we are able 

to show that our time series has properties different from a Poisson process (Sect. 3.2), we can infer that it is correlated or 

clustered and therefore non-stationary.  

 

We will use as a model a Poisson process  with a constant rate parameter to create model time series of flood events per year, 25 
decade and century (i.e., similar to the palaeoflood time series shown in Fig. 3A). We will see below that the resultant model 

realizations will be stationary, uncorrelated in time and non-clustered, and then show in subsequent sections that this modelling 

is inappropriate for our palaeoflood time series.  

 

We first interpret the number n in Eq. (1) as the number of detrital layers per varve (nyear, floods yr−1). The rate parameter λ 30 
controls the probability of an event: the mean number of events per year (i.e., per varve) is year yearn λ=  and the variance of the 
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number of events is ( )2
year yearnσ λ= . This equation holds only mathematically but not physically, i.e., it holds for the numbers 

but not for the units. The probability in Eq. (1) is not time-dependent, and rather only depends on (if we take our unit of time 

to be one year) the probability of nyear = 1 flood yr−1, nyear = 2 floods yr−1, etc., and not the relative temporal spacing of the 

floods in time. For modelling the series of the number of flood events per year in the 9.3 kyr Piànico-–Sèllere palaeoflood time 

series, we use a (constant) rate parameter of λ = 0.083 floods yr−1 that is the mean number of detrital layers per varve (i.e., 5 
(771 floods)/(9271 yr) = 0.083 floods yr−1, where we discard the 65 yr gap for the total number of years considered).  

 

As discussed in Sect. 3.2, another consequence of considering the number of floods per year as a Poisson process is that the 

time interval ∆ between two successive events (i.e., the interevent occurrence times (IEOTs) between two successive floods) 

follow an exponential one-point probability distribution P for very small time units (Cox and Lewis, 1978Eq. 2):  10 

( ) ( )exp exp , 0P ∆ λ λ∆ ∆= − ≥   (2)  

with the same rate parameter λ as in Eq. (1). Now, the relative ordering between single floods is taken into account. For 

example, if in a given decade, we have three varves each with one flood, Eq. (2) will be different if the three years with floods 

are the first threein years 1, 2, 3 (∆1 = ∆2 = 1 yr, ∆3 ≥ 8 yr because the 4th flood will be in a subsequent decade) vs. one flood 

each in years 1, 5, and 9 of the decade (i.e., ∆1 = ∆2 = 4 yr, ∆3 ≥ 2 yr). of the decade (i.e., mean ∆ = 1 yr) vs. a flood in years 1, 15 
5, and 9 of the decade (i.e., mean ∆ = 4 yr). Note, that the time interval ∆ can have non-integer values, for instance if two or 

more events (floods) occur in a single time unit (within one year).  

 

For our palaeoflood time series (Fig. 3A), we now consider whether the histograms (horizontalvertical bars in on right hand 

side of Fig. 3, horizontal bars3B) of the observed number of years, decades and centuries with a given number of floods per 20 
year, decade and century follow Poisson distributions. For each palaeoflood time series, we create a Poisson model which 

consists ofd 100 realisations of a Poisson process, each realisation with 9271, 927 and 92 (respectively, for year, decade and 

century) time series elements and with rate parameters λ =λyear = 0.083 floods yr−1 = λdecade = 0.83 floods decade−1 = λcentury = 

8.3 floods century−1 (the measurements values are different as well as the units, the differences cancel out because of 

multiplication of measurement values and units). We discard the 65 yr gap for the purposes of this model. Each realisation 25 
therefore has values that are uncorrelated in time and follow a Poisson distribution (Eq. 1). Many common software 

programmes (e.g., Excel, R, Matlab) are able to easily generate such realisations.  

 

We give the results of our Poisson model for each respective time resolution (year, decade, century) in Fig. 653AB as diamonds 

(mean of the 100 realisations) ± error bars (standard deviation of the 100 realisations). We find that for the yearly data, the 30 
number of years observed (kyear) with a given number of floods per year, nyear = 0, 1, 2, 3 floods yr−1, follows closely the number 

of years given by the Poisson model. For example, returning to the values given above, the number of years with nyear = 0, 1, 



Page 17 of 67 

2, 3 floods yr−1 is observed to be kyear = 8530, 712, 28, 1 yr (respectively), and with the Poisson model kyear = 8531 ± 26, 709 

± 25, 30 ± 5, 1 ± 1 yr (mean ± standard deviation) (respectively). In contrast, for both the decadal and centennial data, the 

observed data set contains decades and centuries with many fewer or greater floods compared to the model data (see Fig. 

653AB). For example, the number of decades with ndecade = 0, 1, 2 floods decade−1 is observed to be kdecade = 453, 283, 123 

decades (respectively) with the Poisson model giving kdecade = 406 ± 15, 338 ± 13, 140 ± 11 decades (mean ± standard deviation) 5 
(respectively).  

 

We therefore conclude that at the yearly scale the observed data follow a Poisson process, but at the decadal and centennial 

scales, the time series are more clustered than realisations ofcannot be modelled as a Poisson process. This clustering property 

will be qualitatively and quantitatively characterized iIn Sects. 3.2 and 3.3.subsequent sections we will explore whether 10 
clustering, correlations or both are responsible for this. 

43.3 2 One-point pProbability  density of iInterevent occurrence times (IEOTs) compared to a Weibull distribution as 
a potential indicator of clustering 

3.3.1 One-point probability density of interevent occurrence times (IEOTs) 

Here, we analyse the one-point probability distributions of the interevent occurrence times (IEOTs) (Sect. 3.1). As discussed 15 
in Sect. 3.12, a realization of a Poisson process is characterized by ‘events’ that are uncorrelated with one another and the ∆j 

have an exponential distribution (Eq. 2). Conversely, it means that if the ∆j (the IEOTs) are non-exponentially distributed, the 

process is non-Poisson. In Fig. 765A, we give the frequency density of ∆ (the one IEOT that includes the sediment gap is 

excluded) of the flood record along with an exponential distribution which represents the interevent occurrence times of events 

in a Poisson process. The distribution of the IEOTs has a higher number of both short and long time intervals compared to an 20 
exponential distribution. This observation is supported by statistical hypothesis testing where an Anderson-–Darling test 

(Anderson and Darling, 1952) was adjusted to integer values of the IEOT distribution (using a method described in Choulakian 

et al., 1994; Arnold and Emerson, 2011), and the test rejected the null hypothesis that this distribution can be explained as the 

result of a Poisson process (p-value < 0.002).  

 25 
We have shown above that our data are not a Poisson process, and now wish to further characterize the distribution of the 

IEOT. For the palaeoflood IEOTs, we use a maximum-likelihood estimation (MLE) and assume a two-parameter Weibull 

distribution (Eq. 35) and discussed in Sect. 3.3. We find (see Fig. 765A) a best fit shape parameter for the Weibull distribution 

of kW = 0.91 ± 0.024. However, this result is questionable as the MLE technique is tailored to a Weibull distribution as a 

continuous probability distribution, but the interevent occurrence times ∆ have discrete (integer) values. Therefore, we use 30 
benchmarks (500 realisations of a Weibull distributed model for random numbers) for fitting Weibull distributions to integer 

Commented [MB3]: Moved methods to Section 3 
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valued data. We find that the MLE estimator tends to over-fit the shape parameter by 0.12, i.e., we can correct our estimate of 

the shape parameter to kW = 0.79± 0.024.  

43.2 3 Temporal correlations using aAutocorrelation of palaeoflood sequences to quantify correlations 

We now use the autocorrelation function (ACF) discussed in Sect. 3.4 and apply it to our palaeoflood sequence as a potential 

indicator of correlations. In our analyses of the palaeoflood sequence, only pairs of years, decades or centuries ( ),j jn n τ+  5 

which do not contain the 65 yr gap in the 9336 yr sequence of floods (detrital layers) are considered. The autocorrelation 

function (Eq. 5) applied to the times series of the number of floods per year, decade and century are given as correlograms in 

Fig. 653BC (squares). This correlogram of the yearly floods shows significant positive correlations with a decaying trend, and 

no obvious periodic components for lags of 1 ≤ τ ≤ 200 yr. Due to the strongly fluctuating behaviour of the annual data’s 

correlogram (squares) in Fig. 653BC it is difficult to determine the functional form of the decay, i.e., to decide if the decay is 10 
exponential (thin tailed, short-range persistent) or approaching a power-law (heavy tailed, long-range persistent). Therefore, 

we apply the autocorrelation function to the time series of the number of floods per decade (with respect to non-overlapping 

ten-year time intervals) and find (Fig. 65B3C) a power-law behaviour  

 

( ) ACFC γτ τ −∼ , τ > 0  (413) 15 

 

with a power-law exponent for the decadal time series of γdecade ACF = 0.34 ± 0.04 (fitted for lags 1 ≤ τ ≤ 20 decade, which is 

equivalent to 10 yr ≤ τ  ≤ 200 yr) with uncertainties ±1 standard error of the exponent. Comparing to Eq. (7), γACF = (1−β ACF), 

giving βACF = 0.66 ± 0.04. We will return to this power-law model (Eq. 413) in Sects. 43.5 and 54.2. We conclude that for the 

floods per decade time series, when using the autocorrelation function, the data exhibit long-range correlations.  over the range 20 
10 yr ≤ τ  ≤ 200 yr. 

 

The time series of the number of floods per century contains only 92 data points. We therefore have calculated the 

autocorrelation function C only for lags τ = 1 century and τ = 2 century as graphically presented in Fig. 65B3C. Based on this 

figure, we see significant positive correlations and thus confirm the results found for the temporal correlations of the number 25 
of floods per year and decade. Due to the very few lag values, however, we cannot discuss the functional shape of this 

autocorrelation function.  

 

We conclude that the three considered time series nyear, ndecade and ncentury have positive autocorrelations for lags of τ < 200 yr. 

For the number of floods per decade, ndecade, we find indications of a power-law shape of the autocorrelation function which 30 
indicates long-range persistence of the time series over lags τ > 200 yr. However, we will see later (Sect. 4.6) that for lags τ > 
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200 yr that a power-law model cannot be conclusively fit, and thus over all lags, we cannot conclusively use ACF as a robust 

quantifier of long-range correlations.  

43.43.2 Auto-correlation of interevent occurrence times (IEOTs) ) as a potentialn indicator of clustering 

Another indicator for clustering is positive temporal correlations of the interevent occurrence times (IEOTs) (Sect. 3.1). Such 

correlations are particularly caused by a ‘lumping’ of small (large) IEOTs which results in time intervals with an increased 5 
(decreased) flood rate which correspond to flood clusters (phases of little flooding activity). In Fig. 765B, we examine 

correlations (vs. clustering) of the IEOTs by applying autocorrelation analysisfunction (Eq. 5) to the ∆j for the IEOTs. We find 

significant positive correlations of the ∆j for flood year lags 1 ≤ τ∆ ≤ 20 (no units). This indicates that for the IEOT, small 

values of ∆j tend to follow small ones, and large ones tend to follow large. Similar to Eq. (13), tThe correlogram (see Fig. 

765B) of ∆j exhibits a power-law behaviour 10 
 

( ) , 0C γτ τ γ∆−
∆ ∆ ∆∼ >   (714) 

 

with a power-law exponent of γ∆ = 0.45 ± 0.14 (fit for lags of 1 ≤ τ∆ ≤ 20 IEOTs, which is equivalent to 12.5 yr ≤ τ ≤ 250 yr). 

Power-law correlations for IEOTs are reported for a class of theoretical models by Bunde et al. (2003) and Eichner et al. (2007) 15 
who have studied peaks over thresholds of long-range correlated time series. We will explore this in more detail below.  

 

In summary, we have analysed the one-point probability distribution and the autocorrelation function of the IEOTs of the 

palaeofloods with respect to a time resolution of 1 yr (i.e., we have not used time resolutions between palaeofloods that are 

sub-annual, such as three months). The distribution of the IEOTs can be well approximated by a Weibull distribution with a 20 
shape parameter of kw=0.78. Therefore, the IEOTs are more likely to be very short or very long temporal periods compared to 

a random (uncorrelated) occurrence of the IEOTs and therefore the palaeoflood time series is not a realisation of a Poisson 

process. Furthermore, the IEOTs have positive temporal correlations. This is particularly caused by a clustering of the very 

high and very low IEOTs and thus by a temporal clustering of the floods. The autocorrelation function seems to follow a 

power-law behaviour.  25 

43.54 Quantifying long-range correlations using dDDetrended fluctuation analysis (DFA)FA and power-spectral 
analysis for as a way to quantifquantifyingy long-range correlations and as a potential indicator of cyclicity 

We now apply both DFA and power-spectral analysis (both discussed in Sect. 3.5) to our time series given in Fig. 3return to 

correlations so that we can quantify the degree of correlations in our data, at yearly, decadal, and centennial scales. As discussed 

in Sect. 3.5, both methods are both more statistically robust than autocorrelation in quantifying long-range correlations. 30 
Methods for quantifying long-range correlations have systematic and random errors in the resultant estimator for time series 
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with very asymmetric probability distributions and the finite size effects of the time series. The systematic error is how much 

the resultant estimator deviates from the underlying ‘correct’ value, and random errors are the spread of the estimated quantity. 

Witt and Malamud (2013), using 17,000 synthetic benchmark series, studied systematically these two types of errors for power-

spectral analysis, DFA, and semivariogram analysis. ACF gives similar results of robustness to semivariogram analysis due to 

the two methodologies being very similar. Witt and Malamud (2013) found that the systematic and random errors (biases and 5 
standard errors) of DFA and PS analysis are significantly smaller (particularly for time series with non‐Gaussian one‐point 

probability distribution, and with very few values in the time series) compared to semi‐variogram analysis, and both DFA and 

PS analysis are appropriate for a much broader range of long‐range persistence strengths compared to semi‐variogram analysis. 

We therefore only consider power-spectral analysis and DFA when considering the quantification of long-range correlations. 

 10 
and then use these ideas to quantify our data.  

3.4.1 Definitions and background 

3.4.2 Application of DFA and power-spectral analysis to our palaeoflood time series 

We now apply both DFA and power-spectral analysis to our time series given in Fig. 3. We start with our yearly flood record 

nyear which contains 771 floods and extends over 9336 yr. It has a heavily skewed one-point probability distribution with a 15 
coefficient of variation of cv = 3.46. Witt and Malamud (2013) showed that very asymmetric one-point probability distributions 

lead to a systematic underestimation of the persistence strength for both techniques. Due to the palaeoflood time series elements 

being integer valued and in a small range (0 ≤ nyear ≤ 4 floods yr−1) both techniques lead to uncertain results. Therefore, we 

will not apply power spectral analysis and DFA to the annual palaeoflood data set. But we will quantify long-range persistence 

of the decadal and centennial flood series, as the data are less heavily skewed (cv = 1.30 and 0.77, respectively) and where 20 
there are a wider range of integer values (0 ≤ ndecade ≤ 8 floods decade−1 and 0 ≤ ncentury ≤ 31 floods century−1).  

 

In Fig. 87 we show the results of the DFA analysis  of ndecade. The fluctuation functions for different orders of detrending are 

shown on logarithmic axes. The almost linear shape indicates power-law behaviour of the fluctuation function (see Eq. 12) for 

DFA3 and DFA4. DFA1 [and DFA2] follow this linear shape just for segment lengths up to 70 [or 100] decades. We expect a 25 
slowly varying trend (a long-term cyclicity >700 [−1000] yr) to cause this dependence on the type of detrending and will 

analyse it in more detail in the next Sect. 43.65. The power-law exponent for the decadal palaeoflood time series was estimated 

(for DFA3) as α DFA = 0.62 which corresponds to a strength of long-range persistence of βDFA = 0.25. This is a weak strength 

of long-range persistence. The third data set that counts the number of floods per century contains just 92 time series elements, 

which is not enough for a reliable DFA. 30 
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Power spectral analysis for the decadal palaeoflood series ndecade is shown in Fig. 98. Although the power spectral density S 

has a lot of scatter, it is clearly oriented along a line in the log-log axes, and thus power-law (self-affine) behaviour (see Eq. 

8). The persistence strength (i.e., the magnitude of the power-law exponent of the power spectral density S) is estimated as βPS 

= 0.39. This again indicates a weak strength of long-range persistence. The centennial palaeoflood series ncentury is not suited 

for power spectral analysis due to the short length of Ncentury = 92 centuries.  5 
 

We also see the hint of long-term periodic components superimposed on the long-range persistence that is identified using 

power spectral analysis. In Fig. 8 9 are given three 95% confidence intervals. The derivation of these confidence intervals will 

be described in detail in a later section (Sect. 54.21). What we observe is that three values (large blue dots, outlined with a 

grey ellipse) are above the three 95% confidence intervals (i.e., they are significant with p < 0.05) at a cyclicity of 1300 to 10 
2300 yr. Again, as for DFA, we will explore this long-term cyclicity (fluctuation) that appears to be superimposed on the long-

range persistent signal in the next subsection.  

 

We now consider both the systematic and random errors that can occur when using DFA and power-spectral analysis by Both 

DFA and power-spectral analysis, however, have systematic and random errors in the resultant estimator for time series with 15 
very asymmetric probability distributions and the finite size effects of the time series. The systematic error is how much the 

resultant estimator deviates from the underlying ‘correct’ value, and random errors are the spread of the estimated quantity. 

Witt and Malamud (2013) studied systematically these two types of errors for these two techniques. uUsing the techniques 

given in Witt and Malamud (2013) and their systematic study using thousands of benchmark synthetic time series to calibrate 

the ‘error’ in each method for a given one-point probability distribution, length of time series and strength (uncalibrated) of 20 
correlations. and We ignoring ignore any underlying periodicity as a contributing factor to any errors, . We find for our 

palaeoflood per decade time series with 927 values and a coefficient of variation of cv = 1.3, βPS would lead to a calibrated 
* 0.52PSβ =  with (0.32, 0.71) the 95% confidence interval and calibrating the value of βDFA would give *

DFA 0.37β =  with 

(0.13, 0.63) the 95% confidence interval.  

 25 
However, we have already indicated that there might be a long-range fluctuation (cyclicity) superimposed on our long-range 

persistence signal. Therefore, we are unable to ‘calibrate’ our βPS and βDFA using the techniques of Witt and Malamud (2013) 

and will instead proceed with an investigation of the period and amplitude of the long-term cyclicity (see Sect. 43.56) which 

will lead us to a model-based approach (see Sect. 54). In summary, by applying DFA and power spectral analysis we find 

evidence for long-range correlations in our palaeoflood data set. For the decadal palaeoflood time series and The over temporal 30 
scales from yearly to millennia, the estimated strength of persistence for the (uncalibrated) values of βPS = 0.39 and βDFA = 

0.25. . 
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43.65 Cyclicity and fluctuations in the 9.3 kyr palaeoflood record 

Several climate cycles on millennial scales are known from the analysis of long-term palaeo climate proxy data (e.g. ice cores). 

They are related to Heinrich events (Heinrich, 1988; Bond et al., 1992) and the Dansgaard-Oeschger (Dansgaard et al., 1993, 

Johnsen et al., 1992; Voelker, 2002; Fisher, 2016) cycle which are caused by ocean ice dynamics and variations in solar activity 

(Gray et al., 2010). The corresponding cycle lengths range between 1000−5000 yr. These long-term cyclicity processes might 5 
play a role as a background signal in the flood frequency described in our palaeoflood data set. 

 

In Sect. 34.4 5 we quantified the long-range persistence of our three palaeoflood records. We also found that by applying (i) 

DFA [power-spectral analysis] there was an indication [hint] for a long-term cyclicity with a period at >700−1000 yr, and (ii) 

. We also found using power-spectral analysis a hint of long-term cyclicity with a period of  [1300−2300 yr] time scales. We 10 
now further explore potential long-term temporal cycles and fluctuations in our data. 

 

We first return to our autocorrelation  function analysis results presented in Section 4*.32 (Fig. 65B) where we used lags τ up 

to 200 yr and found (i) for the decadal and centennial palaeoflood time series, positive correlations (C > 97.5% of Poisson 

model) for τall lags up to  < 200 yr for the decadal and centennial palaeoflood time series, and (ii) for the yearly palaeoflood 15 
time series, much weaker correlations (in places below the confidence limits, and with significant scatter) for the yearly time 

series.  

 

*We  and now extend the same autocorrelation analysis up to lags τ of 7500 yr for all three time series. For the yearly 

palaeoflood time series, there waswe found significant scatter, and so we just show the results for the autocorrelation analysis 20 
applied to the decadal and centennial palaeoflood time series (Figure 10Fig. 10). As before, use longer lags, up to ***. The 

results are shown in Figure *.we also show the lower and upper bound of the 95% confidence interval of the ACF (for lags τ 

> 0) of the Poisson model. We now observe a strong oscillating signal on both sides of the 95% confidence interval, for about 

three periods, with minima at about 900, 3100, 5000 yr, and maxima at about 2000, 4000, and 5500-6500 yr. In other words, 

we see a strong indicator of a cycle with a period in the range of 1900−-2100 yr. This is not contradictory with our previous 25 
observations using DFA [power-spectral analysis] of cyclicity with a period of >700−-1000 yr [1300-2300 yr]. In terms of 

correlations, for both the decadal and centennial autocorrelation signals, the cycle overwhelms the signal so no short-term or 

long-term correlation behaviour can be concluded from Fig. 10.  

 

In the ***hydrology  communityies, semivariograms are also commonly used for studying temporal correlations in time series 30 
(e.g., Chiverton et al., 2015). The variogram was developed by a French professor of mining and engineering, Matheron (1963). 

We therefore apply semivariograms to our yearly, decadal and centennial palaeoflood time series for lags up to 7500 yr, with 

an explanation of semivariograms and results given in Appendix B. Results are comparable to that found with the 
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autocorrelation analysis with a cyclicity at a period of about 1900−-2100 yr.  and dDue to athe long-term cyclicity, the 

semivariogram does not approach a limit value for large lags. 

 

 

 5 
Previously (Sects. 43.21 to 4.3), our modelling considered the flood rate per year as constant (λyear =0.83 floods yr–1) (see Eq. 

(1), Fig. 653, Fig. 765). We will now model the flood rate λyear as a function of time t (in yr), and use the symbol Λ(t), t = 1, 

…, 9336 yr, to denote the long-–term fluctuations of the flood rate in our palaeoflood record. First, to visualize the long-term 

fluctuations of the flood rate, we use a kernel density estimator (see Appendix CB) which computes a weighted mean of the 

number of floods per year nyear for a sliding time window. We applied Gaussian (based on a standard deviation of σ = 250 yr) 10 
weights and dealt appropriately with the gap and the values close to the boundaries of the observational interval and also 

computed 95% confidence intervals for Λ (for technical details see Appendix CB). The results (Fig. 119A) show that the time-

dependent flood rate Λ is varying on millennial scales. We have high values of Λ > 0.15 floods yr−1 at the beginning of the 

record, a first minimum with Λ = 0.065 floods yr−1 at a relative age of t = 1,000 yr, a second maximum at t = 2,000 yr, a second 

minimum at t = 3,400 yr and an absolute maximum with Λ = 0.16 floods yr−1 at a relative age of t = 4,300 yr. The long-term 15 
fluctuations of the flood rate Λ(t) continue for larger relative ages, but get weaker. As the 95% confidence intervals of the 

absolute maximum and some of the minima do not overlap, the fluctuations are statistically significant. This long-term 

fluctuation can also be seen in the time series of ncentury (Fig. 119B), but due to scatter the millennial-scale cyclicity is not well 

defined. 

 20 
We then model the cyclical behaviour of the flood frequency by fitting a sinusoidal function to the annual palaeoflood time 

series nyear. A best-fit sinusoidal function is obtained by applying (with period T) least-squares regression to time t in yr: 

( ) ( )year 1 2 3sin(2 ) cos(2 )n t a a t T a t T tπ π ε= + + +   (1415) 

with a1 a constant very similar to the mean average flood rate λyear = 0.083 floods yr–1 given in Eq. (1), the term “a2 sin(2π t/T)+ 

a3cos(2π t/T)” is the best-fit sinusoidal function with optimized parameters a2 and a3, and ε(t) is the residual of the statistic 25 
model. Using trigonometric functions, we can rewrite the middle two terms of the right hand side of Eq. (1415) such that:  

( ) ( )year 1 ratesin((2 / ) )n t a A t T tπ φ ε= + + + .  (1516) 

with the amplitude Arate = (a2
2+ a3

2)0.5 and the phase φ = arctan(a3/a2).  

 

We have calculated the best-fitting sinusoidal model for periods 1500 < T < 2500 yr (with step size ∆T = 10 yr) and have found 30 
that the model leads to the smallest variance of the residuals (σ2(ε2)=0.081) when T = 2030 yr (see Appendix D,C Fig. DC1), 

where we find just one minimum and a very low curvature (platykurtic) shape. The model with T = 2030 yr best explains the 
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original palaeoflood time series when considering the time dependent flood rate as a sine wave. The corresponding model 

parameters are (when T = 2030 yr) a1 = 0.082 floods yr–1 (≈λyear = 0.083 floods yr–1), amplitude Arate = 0.049 floods yr–1, and 

phase φ = 39°. The value for Arate is almost 60% of the constant palaeoflood rate (λyear). This model is graphically presented in 

Fig. 119 as a red line.  

 5 
When the periodic rate model is compared to the kernel density estimate of the time dependent rate Λ, we find (i) a good 

agreement of the positions of the maxima and minima, (ii) constant values of the maxima and of the minima of the periodic 

rate model but very different values for the five maxima of the time dependent flood rate Λ and (iii) the periodic rate model is 

far outside the 95% confidence levels of the time dependent rate Λ for the time interval of 5800 yr < t <6700 yr, which is just 

10% of the length of the palaeoflood record. We can conclude that the periodic rate model captures the most important features 10 
of the time dependent rate Λ.  

34.76 Summary of clustering, correlation and cyclicity of the 9.3 kyr Piànico-–Sèllere palaeoflood record  

In Sect. 43 we have seen that the decadal number of floods cannot be explained by a Poisson process due to the palaeoflood 

time series’ one-point probability distribution and long-range persistence (strength βPS ≈ 0.39 using power spectral analysis 

and βDFA ≈ 0.25 using DFA). Furthermore, we found our palaeoflood series to be clustered as the interevent occurrence times 15 
are approximately Weibull distributed (shape parameter kW = 0.78 ± 0.02) and long-range correlated (power-law exponent of 

the autocorrelation function γ∆ = 0.45± 0.14). We also found evidence for long-term cyclicity (period T ≈ 2030 yr). In the next 

section we will suggest a minimal model that captures these identified characteristics of clustering, correlation and cyclicity. 

54 Creating a peaks over threshold (POT) model to capture correlations and clustering of the observational data  

In the previous section, we examined a 9.3 kyr palaeoflood record from Piànico-–Sèllere that occurred sometime during the 20 
period 393400 to 78000 ka, and found long-range persistence indicated by power-law behaviour of the power spectral density, 

the fluctuation function and the autocorrelation function as well as temporal clustering and long-period cyclicity of the flood 

time series. We now introduce a model using peaks over threshold (POT) of synthetic time series that consist of a fractional 

Gaussian noise (FGN) + period, which we will abbreviate as a POTFGN+Period model. This model is based on the idea of long-

range persistence and cyclicity that (i) captures the correlation and clustering properties of the palaeoflood observational data, 25 
(ii) captures the long-period cyclicity, (iii) depends on a minimum number of parameters. In this section, we will first present 

a method by which we can create a general model to incorporate correlations, clustering and cyclicity (Sect. 54.1). We next 

quantify the correlation, clustering and cyclicity properties of this model (Sect. 54.2) and specify the parameters of this general 

model to reflect the specific properties of our observed 9.3 kyr palaeoflood data (Sect. 54.3). We then confront the model with 
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the optimized parameters with the palaeoflood data (Sect. 54.4) and finally discuss properties and a use of this specified model 

by analysing long model realisations (Sect. 54.5).  

54.1 A peaks over threshold (POT) model utilizing fractional noises and long-term cyclical behaviour (POTFGN+Period) 

For describing our palaeoflood record, we model a series of events with no magnitude along a time line such that they exhibit 

correlation and clustering. As discussed in Sect. 3.65, fractional noises exhibit linear correlations (i.e., by linear, we mean 5 
correlations that can be quantified by autocorrelation function or power spectral analysis) that are long-range persistent (Beran, 

1994). Peaks over thresholds (POT) of fractional noises are a popular technique for modelling time series of extreme events, 

which expose long-range persistence. To model this type of linear correlations in time, extreme events are considered to be the 

values of the considered fractional noise that exceed a high threshold (i.e., the POTs) (Altmann and Kantz, 2005; Bunde et al., 

2005; Eichner et al., 2007; Olla, 2007; Santhanam and Kantz, 2008; Moloney and Davidsen, 2009). It has been shown, that 10 
the interevent occurrence times of such POT values follow a heavy-tailed or Weibull distribution and have long-term 

correlations (Bunde et al., 2005). Similar results have been found to hold for processes with multifractal and other nonlinear 

correlations (Bogachev et al., 2007, 2008; Olla, 2007), but not for nonlinear deterministic systems (Schweigler and Davidsen, 

2011). We have taken the idea of using POTs of fractional noises and have modified it in order to gain long-term periodic 

fluctuations in the flood frequency and an annual number of floods ranging from 0 ≤ xyear(t) ≤ 5 floods yr−1. 15 
 
The long-period cyclical behaviour of our 9.3 kyr palaeoflood data set was taken into account by superimposing a sine wave 

with a period of T = 2030 yr on an input fractional Gaussian noise. The resulting time series is formally different from the 

periodic fractional noises introduced by Montanari et al. (1999). An integer valued time series of floods per year was created 

from the strongly fluctuating input signal by introducing a group of thresholds. The model POTFGN+Period was implemented 20 
using the following three-part schema: 

 

Step 1. Creation of a superposition of a fractional noise and a periodic signal (FGN+Period) to input to our Peaks 

over Thresholds (POTs) model. 

a. Begin with a realisation yt, t = 1 ,…, 9270 yr of a fractional Gaussian noise (FGN) with a given long-range 25 
persistence strength (βmodel). 

b. Normalize the FGN so that it has mean = 0.0 and standard deviation 1.0. An example of this normalized 

FGN is illustrated in Fig. 120A.  

c. Add to the normalized FGN a sine wave with period T = 2030 yr and a given amplitude (which can be varied) 

Amodel. The T = 2030 yr is based on the results of Sect. 43.6. The result of the normalized FGN superimposed 30 
with a sine wave is a periodic FGN. 

Step 2. POTs to obtain the number of floods per year. 

d. Begin with our periodic FGN from Step 1. 
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e. Decide the maximum number of floods per year, xmax, the model will produce. For this paper, we used xmax 

=5 floods yr-–1, i.e., the model can produce xyear = 0, 1, 2, 3, 4, 5 floods yr-–1. 

f. Define xmax thresholds where the thresholds θ01, θ12, θ23, …, are xmax horizontal lines which will intersect our 

periodic FGN. The thresholds θ01, θ12, θ23 … are chosen such that the resultant one-point probability 

distribution is a Poisson distribution with a rate parameter of λyear = 0.083 floods yr−1 , i.e., the same as in 5 
our palaeoflood series  

g. Determine for each value of the periodic FGN yt, t = 1, …, 9270 yr the highest of the xmax thresholds which 

is exceeded. The ordinal number of this threshold is the modelled number of floods per year xyear (as 

illustrated in Fig. 120B). If no threshold is exceeded, the number of floods per year is set to zero, xyear(t) = 0 

floods yr−1. 10 
h. The result is an integer valued time series that models the number of floods per year (as illustrated in Fig. 

120C) that has the same one-point probability distribution, the same number of data points and the same 

long-term period (T = 2030 yr) as our original palaeoflood record. The model depends on two model 

parameters (long-range persistence strength βmodel and amplitude of periodic signal Amodel). 

Step 3. Number of floods per decade and century. 15 
i. For computing the modelled number of floods per decade xdecade the number of floods per year xyear is summed 

up over 10 consecutive years. 

j. For computing the modelled number of floods per century xcentury the number of floods per decade xdecade is 

summed up over 10 consecutive centuriesdecades. 

 20 
The resultant outputs of our POTFGN+Period model, the integer valued synthetic flood time series xyear depend on two parameters 

which are both related to the strongly fluctuating input signal: the strength of long-range persistence βmodel and the amplitude 

of the superimposed sine wave Amodel. In Fig. 131 twelve model realisations are shown. The six floods per year time series 

presented in Fig. 131A are constructed with strength of long-range persistence βmodel = 0.0, 0.2, …, 1.0, but without a long-

term periodic component (Amodel = 0.0). We see visually from Fig. 131A that higher values of persistence lead to stronger 25 
clustering of the annual number of floods, i.e., years with many floods tend to follow years with many floods and years without 

floods tend to follow years without floods. The six synthetic floods per year time series presented Fig. 131B are constructed 

with white noise (βmodel = 0) and with an increasing amplitude of the long-term periodic component Amodel = 0.0, 0.2, …, 1.0. 

In Fig. 131B we can visually observe that for high values of Amodel the years with many floods cluster periodically with a period 

of T = 2030 yr.  30 
 

We now return to the confidence intervals in Fig. 98. These were derived as follows: We simulated 1000 realizations of the 

model POTFGN+Period with Amodel=0.0 and βmodel = 0.1, 0.3 or 0.5. For a fixed value of βmodel the power spectral density (the 
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periodogram) was computed for all resultant event time series. For each frequency f the 1000 values of S(f) were ordered from 

smallest to biggest and the 975th of 1000 values was taken as the upper end of the 95% confidence interval and drawn as a 

coloured dot in Fig. 98. 

 

In summary, the time series presented in Figs. 131A and B show that high values of either of the model parameters lead to 5 
strong clustering. In the next subsection, we will investigate the dependence of the clustering and correlation properties on the 

model parameters.  

54.2 Quantifying correlation, clustering and cyclicity properties of the POTFGN+Period model 

In the previous subsection, we have shown that it is possible to use the POTs of a fractional noise that has been superimposed 

with a 2030 yr period to create an integer valued time series with long-range persistence (correlation) properties and periodicity. 10 
In addition, we have been able to capture the same ‘number’ of values in our synthetic flood time series as in our palaeoflood 

record.  

 

Now we want to evaluate the strength of clustering caused by persistence and the contribution of the long-term periodicity for 

different model parameters of our POTFGN+Period model. This is done by creating multiple model realisations for different pairs 15 
of model parameters and by measuring the strength of long-range persistence, the shape parameter of the Weibull distribution 

of the interevent occurrence times and the periodic rate fluctuations of these realisations and comparing them with the values 

measured for the palaeoflood record. The model has two parameters: (i) βmodel, the long-range persistence strength of the 

underlying fractional Gaussian noise, and (ii) Amodel, the amplitude of the superimposed periodic component with a period T = 

2030 yr. Both parameters were sampled with a step size of 0.02 from 0.00 to 1.00, resulting in a square grid of 51 × 51 = 2601 20 
pairs of model parameters. For each pair of model parameters (βmodel, Amodel) 1000 synthetic flood series (model realisations) 

were produced using the peaks-over-thresholds method described in Sect. 54.1 and illustrated in Fig. 120. The differences 

between the realisations for one and the same pair of model parameters are caused by different noise realisations. 

 

The amplitude of the best-fitting sinusoidal flood rate Arate assuming a period of T = 2030 yr and the shape parameter kW of the 25 
best-fitting Weibull distribution of the interevent occurrence times were determined for each model realisation (xyear). Further, 

each resultant palaeoflood yearly series (xyear) was aggregated to give the number of floods per decade (xdecade) and then (using 

power-spectral analysis and detrended fluctuation analysis) its strength of long-range persistence βPS and βDFA was computed.  

 

In Fig. 142A to 142D, for each of the 51 × 51 ‘cells’ of the parameter space of our POTFGN+Period model, are given the mean 30 
values of measured βPS, βDFA, kW and Arate (see legend for colours and contours) for that cell’s (βmodel, Amodel) 1000 model 

realisations. The graphs show that on average an increase of the model parameter long-range persistence strength of the 
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underlining fractional Gaussian noise, βmodel, leads to an increased strength of long-range persistence, βPS and βDFA, of the 

synthetic floods per decade series xdecade and to a decrease of the shape parameter kW of the Weibull distribution of the modelled 

interevent occurrence times (of xyear). Moreover, an increase of the Amodel parameter of our POTFGN+Period model (i.e., the 

amplitude of the superimposed periodic component with period T = 2030 yr), leads to a larger best fitting sinusoidal flood rate 

Arate. However, in both cases the intensity of the increase depends also on the second model parameter, as otherwise, the images 5 
presented in Fig. 142A to 142D would have horizontally or vertically striped structures. Furthermore, the mean values of βPS, 

βDFA, kW and Arate (Fig. 142A to 142D) do not give information about the spread of these measured parameters for a specific 

model parameter. This implies that for a specific cell, we do not have the information about the probability to have a model 

realisation that is similar to the Piànico palaeoflood data set.  

54.3 Parameter fitting of the POTFGN+Period model 10 

Here we identify pairs of model parameters (βmodel, Amodel) that correspond to flood time series whose strength of long-range 

persistence (βPS or βDFA), interevent occurrence time distribution (measured as the shape parameter of the Weibull distribution 

kW) and best fitting sinusoidal flood rate Arate have values close to those measured for the palaeoflood record from Piànico. 

From the 2.6×106 synthetic flood series realisations generated in Sect. 45.2, the realisations’ parameters are within the range 

of our palaeoflood original series parameters as follows: 162,213 realisations (6.2% of the total # of model realisations) with 15 
0.370 ≤ βPS ≤0.410, 157,782 realisations (6.1%) with 0.23 ≤ βDFA ≤0.27, 132,025 realisations (5.1%) with 0.76 ≤ kW ≤ 0.81 

and 152,056 realisations (5.8%) with 0.0450 ≤ Arate ≤ 0.0530. In Fig. 142C the corresponding model parameters of these 

realisations are presented as clouds of points and each point stands for a POTFGN+Period model realisation that is similar to the 

Piànico palaeoflood record with regard to a single measure of correlation or clustering. These points are located in specific 

areas: For instance, model realisations with a strength of long-range persistence βPS similar to the value of the palaeoflood 20 
record (pink dots) are found for βmodel < 0.8 and on the right hand side of the line connecting the points (βmodel = 0.4, Amodel = 

0) and (βmodel = 0.0, Amodel = 0.8). Realisations with values of Arate close to 0.049, i.e., the value of the best fitting sinusoidal 

flood rate of the palaeoflood record, are centred around Amodel = 0.32 (green dots) with a spread that is growing with increasing 

values of βmodel. Next, we will identify the model parameters βmodel and Amodel which lead to model time series that best match 

our palaeoflood record. 25 
 

Figure 142E also shows that there are just a very few model parameters that belong to all four clouds and thus are in the 

desired ranges of βPS, βDFA, kW, Arate. To identify optimum model parameters, we choose POTFGN+Period model realisations where 

the following four parameters intersect: βPS and βDFA (characterise strength of long-range persistence, pink and brown dots, 

respectively), kW (characterizes clustering, blue dots) and Arate (characterises cyclicity strength, green dots). In other words, we 30 
find where the brown, pink, blue and green dots intersect. Just 143 realisations (presented as black dots in Fig. 142E) out of 

the the 2.6×106 model realisations are part of this intersection. They are located in a small area of the 2D parameter space: 0.10 
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≤ βmodel ≤ 0.30 and 0.20 ≤ Amodel ≤ 0.38. It should be noted that this area does not intersect with the x- or the y-axis, meaning 

that both model parameters are necessary for an appropriate description of the palaeoflood data. Because 143 realisations were 

not sufficient to effectively investigate (and visualize) the 2D probability distribution of βmodel and Amodel, for 0.06 ≤ βmodel ≤ 

0.34 and 0.16 ≤ Amodel ≤ 0.42 (a slightly extended area as to that just found) we created more realisations (10,000 per cell) to 

gain a total of 1518 realisations with the desired long-range -persistence, clustering and cyclicity properties. The 2D probability 5 
density of these points has been approximated by a normalized 2D histogram (Fig. 142F). The grid cell of βmodel = 0.25 and 

Amodel = 0.30 (presented as a red bullet) has the highest probability. This pair of model parameters is considered to the best 

fitting. Approximately 50% of the 1518 model realisations that are similar to the palaeoflood data set are found for model 

parameters 0.19 < βmodel < 0.29 and 0.26 < Amodel < 0.34; this range is indicated by blue dashed lines in Fig. 142EF. These 

ranges give an estimate of the accuracy of POTFGN+Period model parameter determination. 10 
 

In summary, the model evaluation provides evidence that both model parameters of the strongly fluctuating input signal (the 

strength of long-range persistence of the fractional noise and the amplitude of the sine wave superposed on it) of our 

POTFGN+Period model are required for an appropriate modelling of the clustering properties of the palaeoflood record. Optimum 

parameters including error bars (βmodel = 0.24 ± 0.05 and Amodel = 0.030 ±0 .04) have been determined. One realisation of the 15 
model with optimum parameters is given in Fig. 153A. 

54.4 Model confrontation 

In the last subsection, we specified the parameters of our POTFGN+Period model in order to reproduce the observed clustering 

and long-term periodic properties. Now we will investigate further model properties such as the distributions of floods per 

decade or per century and confront these properties with the values measured for the palaeoflood record from Piànico. 20 
 

For a comparison of the properties of the palaeoflood data and of the POTFGN+Period model with the specified parameters, we 

have created 1000 model realisations (50 of these xyear series shown in Fig. 153B). For each of the 1000 model realisations the 

time dependent flood rate Λmodel(t) (Sect. 43.6) was computed which enabled the calculation of the mean time dependent flood 

rate ( )model tΛ  and its 95% confidence intervals (Fig. 153C). The mean time dependent flood rate ( )model tΛ  fluctuates 25 

periodically with a 2030 yr period and replicates the long-term changes in rate fluctuations qualitatively. However, the 

amplitudes of the rate changes for some time intervals (t = 0 to 600 yr, 3800 to 4800 yr and 5500 to 6800 yr) are not correctly 

captured, i.e., they are outside the 95% confidence intervals of Λmodel. This is due to the stationary character of our palaeoflood 

model and the non-stationary character of the long-term-rate fluctuations.  

 30 
For the ensemble of all model realisations, the histograms of the number of floods per year, per decade and per century were 

computed, such that the mean number of floods per time unit with 95% error bars could be estimated (Fig. 153D). The number 
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of the Piànico palaeofloods per year, decade and century (as discussed in Sect. 43.1 and seen in Fig. 63A) fit well within the 

95% confidence intervals of the considered histograms.  

 

Finally, for the ensemble of all POTFGN+Period (with specified parameters) model realisations, the clustering and correlation 

properties were quantified: the persistence strength (βPS, βDFA), the shape parameter of the Weibull distribution of the interevent 5 
occurrence times (kW) and the time dependent flood rate (Λmodel(t)) were computed (see Table 2). Table 2 shows, that the 

correlation properties (βPS, βDFA) of the model are on average weaker than those of the palaeoflood record. Nevertheless, the 

95% confidence intervals from the model contain the original palaeoflood values for βPS, βDFA, kW, Arate. The clustering 

properties (kW, Arate) of the data are excellently captured by the model as the mean values of the corresponding measures 

computed for the model realisations are very close to the values measured for the data.  10 
 

In summary, we find a good agreement between the POTFGN+Period model and the palaeoflood data series in particular with 

respect to the distribution of floods per time unit and the clustering properties.  

54.5 Using and analysing realisations from the POTFGN+Period model 

We have shown in Sect. 54.4 above, that our POTFGN+Period model reproduces several properties of the palaeoflood time series 15 
including the distribution of floods per year, decade and century as well as long-range persistence, clustering and cyclicity 

properties. We now use realisations from the POTFGN+Period model with optimized parameters to explore how the number of 

floods per time unit (e.g. per decade or century) is related to the number of floods in the following time unit (e.g., does a 

century (decade) with a few floods tend to follow a century (decade) with a few floods). To do this we create one long model 

realisation with 109 yr (108 decades, 107 centuries), we computed the probability of floods per century for given numbers of 20 
floods in the preceding century.  

 

Figure 164A shows the 2D probability distribution of the number of floods per century (ncentury(j)) and the number of floods 

in the succeeding century (ncentury(j+1)). This distribution is concentrated along the diagonal line ncentury(j+1) = ncentury(j) and 

thus indicates positive correlations in the number of floods per century time series realisations. Figure 164B presents the 25 
distribution of the number floods per century if the preceding century contained 0, 8 or 16 floods century−1. These distributions 

are unimodal with a systematic shift in the mode and a dispersion that is increasing with the numbers of floods in the preceding 

century. In other words, the uncertainty of the forecasted number of floods per century increases with the number of floods in 

the preceding century. 

 30 
Our results shown in Fig. 164 imply that low numbers of floods century−1 follow law low ones, and high ones follow high. In 

other words, a century with no floods is much more likely to follow a century with no or a very few floods rather than a century 
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with many floods, and a century with many (e.g., 20) floods is much more likely to follow a century with many (e.g., 20) 

floods rather than a century with no or a very few floods. However, this holds only in the statistical sense and successions of 

centuries with many floods can certainly follow centuries with very few floods (and vice-versa). For example, in the 

palaeoflood data set we have found a “jump” from 24 to 24 floods century−1 (between the 398th and 39th 38th century). In our 

model the probability that a century with 24 4 floods is following a century with 244 floods is 0.02% on average, but will be 5 
much higher for time periods with a high amplitude of the periodic component of the input signal. We also observe that in our 

original palaeoflood time series there is a jump from 25 7 to 257 floods century−1 between the 465th and 456th centuries. A 

jump of this magnitude in our optimized POTFGN+Period model has a probability of 3.9% based on our long synthetic realisation, 

and is thus well captured by the model. Furthermore, we found for the POTFGN+Period model, that medium changes in flood 

frequencies are fairly likely, as for instance a transition from 25 floods century−1 to <10 floods century−1 has a probability of 10 
>20%. In a similar manner, we have also examined the summary statistics for the number of floods per decade using our long 

synthetic time series realisation. For the simulated 108 decades, we find between 0 to 13 floods decade−1, although >10 floods 

decade−1 is very unlikely. Similar to the centennial data we find indications for correlations that decades with few [many] 

floods are followed by decades with few [many] floods, i.e., on average, low values follow low ones, and high ones follow 

high.  15 

56. Summary 

We have presented a 10 9.3 kyr comprehensive flood record at sub-annual resolution, obtained from the varved interglacial 

Pleistocene sediments of the Piànico-–Sèllere Basin. A lacustrine sediment unit of 9.5 m thickness has been considered which 

consists of an almost continuous succession of about 15,500 varves that are interpreted as annual cycles. Approximately 8% 

of the varves contain 1−3 detrital layers which are considered to be the result of channelized streamflow that originated in the 20 
hills surrounding the Piànico-–Sèllere Basin and triggered by extreme precipitation events (Mangili et al., 2005). Our analysis 

was aimed at understand the temporal succession of detrital layers. 

 

The analysed palaeoflood record is unique as it comprises the relative timings of 771 flood events, is continuous (except a gap 

of 65 yr, <1% of the length of the 9336 yr time period) and was not affected by anthropogenic influences. This palaeoflood 25 
record provides an example of the high natural variability of flood frequency over a long period (e.g., variations of 0−31 floods 

century−1). Because of the comprehensive data set, the temporal succession of palaeofloods could be extensively studied as to 

its underlying statistics of correlations, clustering and cyclicity. We showed that the correlations of the yearly number of floods 

over the 10 9.3 kyr palaeoflood are long-range with a long-range persistence strength of βPS ≈ 0.39 (power spectral analysis) 

and βDFA ≈ 0.25 (DFA). These long-range correlations are modulated by a long-term cyclicity with a period of T = 2030 yr. 30 
The palaeofloods are also shown to be temporarily clustered as the interevent occurrence times are Weibull distributed (with 

shape parameter of kW = 0.78). 
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We have derived a model (POTFGN+Period) that is based on peaks over thresholds (POT) of a fractional Gaussian noise (FGN) 

superimposed by a long period signal. This model allows us to construct many realisations of an event series with properties 

similar to those identified for the original palaeoflood time series. Should more information (e.g., higher resolution, extending 

the data series in time) come available related to our original palaeoflood series, then the parameters of correlation, clustering 5 
and cyclicity are likely to be slightly changed, and a modified model can then be easily created.  

 

We used our model to create 2,600,000 synthetic flood series with different parameters, and then confronted the clustering, 

correlation and cyclicity properties of our original palaeoflood record with the synthetic series to come up with optimized 

parameters in our POTFGN+Period model. Based on the optimized POTFGN+Period model we found that it is important when 10 
modelling our original palaeoflood time series, that the model needs to capture both long-range correlations and a slowly 

varying component (periodicity) to capture the correlation, clustering and cyclicity properties of the palaeoflood record. In 

other words, the observed temporal flood clusters in our 10 9.3 kyr time series cannot be explained by either long-range 

correlations or slow cyclical changes, rather both components need to be present.  

 15 
As a practical example of the application of our optimized POTFGN+Period model we use it to create long simulations with 

parameters similar to that of our palaeoflood time series. We show that centuries with no or a few floods tend to follow each 

other and that centuries with many floods tend to follow centuries with many floods. We also found that the uncertainty of the 

forecasted number of floods per century increases with the number of floods in the preceding century.  

 20 
Our research in this paper combines the statistical analysis of correlations, clustering and cyclicity in a very complete and 

unique interglacial record of floods from the Pleistocene, allowing one to create a model to simulate many realisations with 

similar parameters to our original series. We believe that this approach is applicable to other environmental event time series 

(e.g., palaeo-hazards), where event magnitude is unknown, the timings are unequally spaced in time, and where the one-point 

probability distribution of the number of events per time unit is strongly asymmetric (i.e., non-Gaussian). This is true for many 25 
palaeo- and historical environmental event series (e.g., earthquakes, wildfires, volcanic eruptions). We also believe our 

approach of creating an optimized model that is congruent with the correlation, clustering and cyclicity parameters of the 

original event series is one that is generally applicable, and useful for creating many ‘realisations’. 

 

 30 
Data availability: We will add a link to the palaeoflood data here, which if the manuscript is accepted, will be lodged at the 

PANGAEA database (https://www.pangaea.de/about/).  
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Appendix A: Detrital layer thickness figure 

 
Figure A1. : Detrital layer thickness: (A) Thickness and temporal location of the detrital layers in the varved sediment. 771 layers are 
located within the 9271 varves. The x-axis represents relative age, with 0 yr representing the most recent varve and increasing values 
indicating further back in time. The grey bar represents a sediment gap of 65 yr. The varve detrital layer thickness (green vertical bars), 5 
shown on a logarithmic scale, ranges from 0.002 to 23 mm, some layers are just reported and not measured (black dots). The detrital layers 
are unequally distributed over time. A histogram of the layer thickness is given in (B) 

Commented [MB4]: FIGURE: Change y to yr. 
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Appendix B: Semivariogram analysis of palaeoflood time series 

 
In the hydrological sciences, semivariograms are a standard tool for investigating second order correlations. The 
semivariogram s(τ) is a function of the lag τ as 
 5 
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where N is the length of the time series. The semivariogram is a linear function of the autocorrelation function C (see Eq. 
53). In case of a stationary time series, the semivariogram s saturates at a certain level (the sill).  
 
Shown in Fig. B1 are semivariograms of the three palaeoflood time series, nyear, ndecade and ncentury for lags 0 ≤ τ ≤ 7500 yr. 10 
Also shown are the 95% range of the best fitting Poisson models. The semivariograms of the number of floods per decade 
and per century (ndecade and ncentury) are significantly different from the semivariograms of the Poisson model. Furthermore, 
there is no sill, i.e., due to a long-term cyclicity, the semivariogram does not approach a limit value for large lags. 
 
 15 

 
Figure B1.: Semivariogram (Eq. B1) of the three palaeoflood time series, nyear, ndecade and ncentury for lags 0 ≤ τ ≤ 7500 yr. Also shown 
is the 95% range of the best -fitting Poisson model (see Sect. 3.2).  
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Appendix CB: Computing the time dependent flood rate with kernel density estimators 

Determining the time dependent flood rate is necessary for detecting gradual changes in flood frequency and for identifying 

long term cyclicity in flood occurrence. Here, the time dependent flood rate and its corresponding 95% confidence intervals 

have been determined by kernel density estimation (Silverman, 1986). The kernel K is a non-negative function which is 5 
symmetric with respect to 0. For our purposes we use a Gaussian kernel KG with bandwidth σ: 

( )
2

22

1 exp
22

GK ττ
σπσ

 
= − 

 
  (CB1) 

with τ a discrete time step (for this paper τ =1yr). The kernel is truncated such that it is defined only for 3 3σ τ σ− ≤ ≤ . This 

specific kernel is a discretized and truncated Gaussian probability density function. The bandwidth parameter σ that is the 

standard deviation of the Gaussian distribution controls the width of the kernel. For this paper, we have applied a bandwidth 10 
of σ = 250 yr, and therefore the Gaussian kernel that is created has a width of 1500 yr (range of ± 3σ ). The idea of kernel 

density estimation is to replace each flood in the floods per year function nyear by a smooth kernel and to consider the 

superposition of all kernels as a measure for the number of floods per year. This is implemented by convolving Eq. (CB1) 

with the time series of the number of floods per year, nyear. At step one, the time dependent flood rate Λ(t) with respect to the 

specific kernel KG is computed for times t = 1, … T by  15 
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  (CB2) 

with 1 the temporal range function of our time series, i.e., 1(t) = 1 for values of t in the temporal range of the time series and 

1(t) = 0 for values outside (i.e., t ≤0, t >T or t is inside in the gap). Thus, the numerator is the convolution of the kernel density 

KG and the number of floods per year nyear and the denominator is the convolution of the kernel density and the range function 20 
of the time series. Note, that the range function is only needed for approximately handling nyear values that are near the two 

ends of the time series and the gap. 

 

After convolution and derivation of the time dependent flood rate Λ(t), in step 2, we now derive their respective 95% 

confidence intervals. This requires the computation of the effective number of data points N(t) for each time point t , which 25 
describes the number of time series elements that contribute to the kernel density estimate of the rate, Λ(t) : 

( ) ( ) ( )
3 , ,3

2 GN t t K
τ σ σ

σ τ τ
=−

= −∑ 1


,   (CB3) 

This effective bandwidth N(t) is smaller than 2σ for time points t which are close to the beginning and end of the observational 

interval (e.g., t = 1 or t = T), and equal to 2σ for time points t far from these interval ends.  

 30 
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The distribution of the time dependent rate Λ(t) is related to a two parameter Gamma distribution (Johnson et al., 1993). This 

allows us to calculate the corresponding 95% confidence intervals, i.e., the lower (Λ0.025) and the upper (Λ0.975) endpoints of 

the 95% confidence intervals, as: 

( ) ( ) ( )
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with FΓ the cumulative distribution function of the two parameter Gamma distribution with (i) 0.025 (0.0975) the considered 5 
quantile, (ii) 0.5 N(t)R(t) ({0.5 N(t)R(t)}+1) the shape parameter and (iii) and 1 the scale parameter. For comparison, we also 

calculated confidence intervals of the time dependent rates by applying a bootstrap-based method as introduced by Mudelsee 

(2014) in his section 6.3.2 on inhomogeneous Poisson processes and nonparametric occurrence rate estimations. The two 

methods for calculating confidence intervals resulted in very similar values. 

  10 
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Appendix DC: Variance of sinusoidal function residuals figure 

 
Figure DC1. : Shown is the variance of the residuals (σ2(ε)) for fitting a sinusoidal function (Eq. 16) to the floods per year series nyear as a 
function of the period T of this periodic function. The function for the variance of the residuals has a minimum at Tmin = 2030 yr (shown as 5 
a star in the figure).  
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Table 1: Abbreviations and Notation  

Abbreviation Description 

BVC Banco Varvato Carbonatico (Ccarbonated Vvarved Bbed) 

DFA detrended fluctuation analysis 

FGN fractional Gaussian noise 

MIS Marine Isotope Stage 

MLE Maximum Likelihood Estimation 

IEOT interevent occurrence time 

POT peaks over threshold 

PS power spectrum or power-spectral analysis 
 

Symbol Description Units 

α Power-law exponent of the fluctuation function, with 

βDFA = 2α−1. 

[unitless] 

DFAβ  Strength of long-range persistence (based on the power-law 

exponent α of the fluctuation function) 

[unitless] 

modelβ  Strength of long-range persistence (model parameter) [unitless] 

PSβ   Strength of long-range persistence (based on the power-law 

exponent of the power spectral density) 

[unitless] 

γ Power-law exponent of the autocorrelation function  [unitless] 

, j∆ ∆
 

Interevent occurrence time plotted on the x-axis in real time 

(∆) and in natural time (∆j). 

yr 

, j∆ ∆
 

Mean interevent occurrence time j∆ = ∆  yr 

Θ, Θ12 Threshold (general, that separates 1 and 2 floods per time unit) [unitless] 

Λ(t) Time dependent flood rate [floods yr-–1] 

Λmodel(t) Time dependent flood rate of model realizations [floods yr-–1] 

( )
model

tΛ  
Mean of time dependent flood rate taken over many model 

realizations 

[floods yr-–1] 
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Symbol Description Units 

λ Rate parameter of the Poisson distribution [unitless] 

λyear, λdecade, λcentury Flood rate per year, per decade, per century [floods yr-–1, floods 

decade-–1, floods 

century-–1]  

λW Scale parameter of the Weibull distribution [unitless] 

µ Mean of the values considered. Variable dependent 

σ, σ 2 Standard deviation, variance Variable dependent 

τ Time lag in real time yr, decades, centuries 

τ∆ Time lag in natural time (of the interevent occurrence time 

series ∆j, j = 1, 2, …, N) 

[unitless] 

   

   

Amodel Amplitude of the periodic component (model parameter)  [unitless] 

Arate Amplitude of the periodic component of the time dependent 

flood rate fit to the palaeoflood time series. 

[unitless] 

a1, a2, a3 Parameters for the modelling the cyclicity of the annual flood 

series  

[floods yr-–1] 

C(τ), C(τ∆) Autocorrelation function, depends on the lags τ and τ∆  Variable dependent 

cv Coefficient of variation (cv = σ/µ) [unitless] 

F Fluctuation function [unitless] 

j Index of natural time, 1 ≤ j ≤ N∆  [unitless] 

k Integer valued variable  [unitless] 
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Symbol Description Units 

kyear, kdecade, kcentury Number of occurrences of nyear, ndecade, ncentury with a specific 

value during a given period of time considered. For example, if 

there are 80100 times that nyear ≥ = 32 floods yr–1 over 10 9.3 

kyr, then kyear = 100 80 yr [at nyear = 3 floods yr–1]. 

yr 

decades 

centuries 

kW  Shape parameter of the Weibull distribution [unitless] 

l Integer valued variable  [unitless] 

n Intensity (# of occurrences) of the random variable X (in Eq. 

(1)) 

[unitless] 

nyear, ndecade, ncentury Number of detritic layers (floods) per varve (i.e., per year), per 

ten varves (i.e., per decade), and per one hundred varves (i.e., 

per century). 

floods yr–1,  

floods decade–1,  

floods century–1 

Nfloods Total number of floods (detritic layers) (Nfloods = 771 floods) floods 

N, Nyear, Ndecade, Ncentury Total number of years/decades/centuries where varves are 

present in the palaeoflood data set (Nyear = 9271 yr, Ndecade = 

925 decades, Ncentury = 92 centuries) with N the place holder  

yr  

decades  

centuries 

Nvarves Total number of varves (9336 varves).  varves 

N∆ Total number of interevent occurrence times, (N∆ = 739) [unitless] 

Pexp  One-point probability density distribution of the exponential 

distribution 

[unitless] 

Pλ One-point probability density distribution of the Poisson 

distribution 

[unitless] 

PW One-point probability density distribution of the Weibull 

distribution 

[unitless] 

S(f) Power spectral density depending on the frequency f Variable dependent 

st, t=1,…, N Running sum Variable dependent 
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Symbol Description Units 

t = 1, 2, …, N Relative varve index or time index for our palaeoflood time 

series. Note that the index ‘skips over’ the 65 yr gap, so for N = 

Nyear it goes from t = 1 to 9271 yr.  

yr 

X Discrete random variable in Eq. (1) [unitless] 

xyear(t), xdecade(t), 

xcentury(t) 

Number of floods per year, decade, century depending on time 

t (model output) 

floods yr–1,  

floods decade–1,  

floods century–1 

y(t) Model input depending on time t [unitless] 
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Table 2: Statistics of long-range persistence, clustering and cyclicity properties of the specified (βmodel = 0.24, Amodel = 0.30) 
palaeoflood model. 1000 model realisations were created and their long-range correlations (βPS and βDFA), clustering (kW) and 
cyclicity properties (Arate) were quantified. Given is for each measure the mean value and the 2.5th and 97.5th quantile of the model 
realisations, the value measured for the palaeoflood record and the percentile of the value measured with respect to the values of the 
model.  5 

Measure Model: mean value  

(2.5th and 97.5th percentile) 

Palaeoflood 

record 

Percentile of 

palaeoflood record 

β PS (computed for ndecade) 0.26 (0.14, 0.40) 0.39 97% 

βDFA (computed for ndecade) 0.21 (0.07, 0.34) 0.25 74% 

kW 0.79 (0.74, 0.84) 0.79 48% 

Arate 0.050 (0.038, 0.063) 0.049  48% 

  



Page 51 of 67 

  
Figure 1. : Example of correlations, clustering and cyclicity (figure part A and B after Witt et al., 2010). (A) Tree ring standardized 
growth index for Bristlecone pine, White Mountain, California, USA, for the years AD 0–1962 (Ferguson et al., 1994). (B) Cosmic ray 
neutron counts per hour, Beijing, China, 1 January to 11 March 2008 (NGDC, 2008). In (A) and (B) successive values in each both series 
are positively correlated with one another, and are examples of persistent time series. (C) Maximum daily discharge, Q, for station 05474500 5 
on the Mississippi River at Keokuk, Iowa, for 116 water years, 1878−1993 with The maximum wind speed in knots is plotted as a function 
of date, for 730 Atlantic Basin named and unnamed severe storms and hurricanes, 1930–2003 (NOAA, 2003); only storms with maximum 
wind speed ≥ 35 knot are included.data from Slack and Landwehr (1992) and USGS (2017) and described in Malamud et al. (1996). (D) 
Partial-duration flood series, where floods are the largest 116 maximum daily discharge from (C) over the 116 yr period, with daily discharges 
separated by at least 30 days to be considered a flood. In our partial duration series, 48 of the 116 years have 0 floods, 33 years have 1 flood, 10 
26 years have 2 floods, and 6/2/1 years have 3/4/5 floods. The same data as in C, but focussing in on 1980–1990, with minor tick marks 
representing months. The value of these maximum wind speeddaily discharges  for each storm flood event is projected to the x-axis (daily 
wind speeddischarge = 0 knotm3 s−1). Below this is shown (green dots) all events over the threshold of 35 knot along one line, an example 
of a data series that is strongly clustered in time. Clustering is due to (i) seasonal effects (cyclicity) and  (ii) longer-term cycles(ii) fewer 
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Atlantic Basin events occurring (on average) during El Niño years (e.g. April 1986–March 1988) and more events occurring (on average) 
during La Niña years (e.g. April 1988–June 1989). 
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Figure 2: Site, sediment outcrop and data. (A) Location of the Palaeolake Piànico–Sèllere, Italy. (B) Detail of the 9.5 m sediment outcrop 
containing a winter and a parts of two summer layer with, shown here, a detrital layer in-between, that is interpreted to be a flood event. (C) 
Graphical representation of the sediment outcrop with the grey horizontal lines indicating detrital layers and the striped bar showing a 65 yr 5 
gap (see Fig. 3, for more detailed time series). The relative age represents years before the top of the stratigraphic section examined, with 
actual age estimated to be anywhere from 3930 to 780 ka (see text). 
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Figure 3: Temporal succession, histograms and autocorrelation of the detrital layers of the 9336 yr Piànico-–Sèllere, Italy palaeoflood 
record. (A) The number of observed detrital (flood) layers per year (blue dots, 0 ≤ nyear ≤ 3 floods yr−1), decade (orange dots, 0 ≤ ndecade ≤ 8 
floods decade−1) and century (green dots, 0 ≤ ncentury ≤ 31 floods century−1) are presented over the 9336 yr of record examined. The x-axis 
represents relative age, with 0 yr the most recent varve and increasing values indicating further back in time. The grey bar represents a 5 
sediment gap of 65 yr (leaving 9271 yr of record examined over the 9336 yr). In addition, for each time resolution is given (upper right) the 
coefficient of variation cv = σ/µ, where σ is the standard deviation and µ is the mean of the given time series. (B) Shown to the right of each 
palaeoflood time series, is the respective hHistogram of the number floods per year (blue bars), decade (orange bars) and century (green 
bars)), with each compared to the Poisson model with respective rate parameters λyear = 0.083 floods yr−1, λdecade = 0.83 floods decade−1, 
λcentury = 8.3 floods century−1. Diamonds represent the mean Poisson model value over 100 realisations, and the error bars the standard 10 
deviation of the realisations. (C) Autocorrelation function (ACF) of the number of floods per year (blue squares), decade (orange squares) 
and century (green squares). Also shown for the ACF of the number of floods per decade, is the best-fitting power-law model to the ACF 
(black dotted line). Also shown are the 97.5 percentile, i.e., the upper bound of the 95% confidence interval of the ACF (for lags τ > 0) of 
an uncorrelated signal with the same one-point probability distribution.   

Commented [MB9]: FIGURES: Figure 3. We have 
removed part B and C (ACF) and moved these to new Figure 
5. We have also added the histograms to the right hand side 
of A (removed letter A).] 



Page 55 of 67 

 
Figure 4: Data series of detrital layers (floods) and interevent occurrence times (IEOTs) from the Piànico-–Sèllere, Italy 
palaeoflood sequence. (A) In (A.1) are shown the number of detrital layers (floods) per varve, nyear, given as a function of varve number 
index t = 1 to 9336 yr (blue dots) as shown in Fig. 3. In (A.2) a 100 yr portion of (A.1) (from t = 8090 to 8190 yr) is expanded with an 
illustration of four flood years that have detrital layers (floods) in them, and the interevent occurrence times ∆ between them. These four 5 
flood years, each with nyear ≥ 1 flood in them, occur as yellow symbols in all panels. (B) Interevent occurrence times, ∆, temporally located 
(i.e., as function of the relative age) when they occurred. (C) Interevent occurrence times, ∆j, plotted as function of ‘natural’ time, where 
each ∆ is no longer represented temporally when it occurs, but rather successively one after another, j = 1, 2, 3,..., 741; interevent 
occurrence times of ∆j = 0 are not shown. The detrital varve index j includes only those years (varves) where there are nyear ≥ 1 floods yr−1 
(i.e., at least one detrital layer in that year).   10 
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Figure 65: Examples of synthetic fractional Gaussian noises with different modelled strengths of long-range persistence, 0.0 ≤ β ≤ 
1.0. The presented synthetic data series (unitless in magnitude and time), which have 512 elements each, are normalized to have a mean of 
zero and a standard deviation of one, and were created by Fourier filtering (see Appendices 1 and 2 in Witt and Malamud, 2013 for further 
details). 5 
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Figure 6: Histograms and autocorrelation of the palaeoflood time series with corresponding Poisson model. (A) Histogram (also 
shown in Fig. 3) of the number of floods per year (blue bars), decade (orange bars) and century (green bars), with each compared to the 
Poisson model with respective rate parameters λyear = 0.083 floods yr−1, λdecade = 0.83 floods decade−1, λcentury = 8.3 floods century−1. 5 
Diamonds represent the mean Poisson model value over 100 realisations, and the error bars the standard deviation of the realisations. (B) 
Autocorrelation function (ACF) (Eq. 5) of the number of floods per year (blue squares), decade (orange squares) and century (green squares). 
Also shown for the ACF of the number of floods per decade, is the best-fitting power-law model to the ACF (black dotted line) (Eq. 13). 
Also shown are the 97.5 percentile, i.e., the upper bound of the 95% confidence interval of the ACF (for lags τ > 0) of an uncorrelated signal 
with the same one-point probability distribution (i.e., realisation of a Poisson model).  10 
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Figure 75: Frequency-size and autocorrelation analysis of the interevent occurrence times (IEOTs) and comparison to the Poisson 
model. (A) Frequency density of the IEOTs between the flood years given as a function of IEOTs in yr (pink vertical bars, semi-logarithmic 
scale), the corresponding best-fit Poisson model (grey diamonds) (Eq. 2) which was considered in Fig. 3B 6 and the best-fit Weibull 5 
distribution (black diamonds) (Eq. 3), both with 95% confidence intervals. (B) Autocorrelation function (Eq. 5) of the IEOTs between flood 
years (those years with n ≥ 1 flood). Also given is the best fitting power-law model (dashed black line) (Eq. 14) and the upper limit of the 
95% significance for the autocorrelation function of a non-correlated time series with the same one-point probability distribution (horizontal 
dotted line, pink). 
  10 
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Figure 78. : Detrended fFluctuation aAnalysis (DFA) of the 9271 yr Piànico-–Sèllere, Italy palaeoflood record: The fluctuation function 
F for the number of floods per decade shown as a function of the segment length l and for different orders of the detrending (see legend) on 
a double logarithmic scale. Segments containing parts of or the entire gap were excluded. Also shown are best fitting power-law function 5 
(Eq. 12) for DFA3 and the corresponding power-law exponent α and its corresponding value of βDFA = 2α–1. 
.  
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Figure 98: Power spectral analysis: The power spectral density (periodogram) is presented as a function of the frequency (measured per 
decade) for the number of floods per decade. Also given is the best fitting power-law function (Eq. 8) and the corresponding power-law 
exponent. Additionally, presented are the 95th percentiles of the power spectra created for synthetic data based on peaks over thresholds of 5 
fractional noises (see Sect. 54.1) for different strength of persistence (see legend, and description in text). Highlighted are the three values 
of the power spectral density that exceed all of these 95th% percentiles, the corresponding cycle lengths are given.  
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Figure 10: Autocorrelation analysis of the decadal and centennial palaeoflood records (see Fig. 3) and its Poisson model for lags up 
to 7500 yr. Autocorrelation function (ACF) (Eq. 5) of the number of floods per decade (A, orange squares) and century (B, green triangles). 
Also shown are the 97.5 and 2.5 percentiles, i.e., the upper and lower bounds of the 95% confidence interval, of the ACF (for lags τ > 0) of 
an uncorrelated signal with the same one-point probability distribution (i.e., realisation of a Poisson model, see Sect. 3.2). See also Fig. 6B 5 
which is a similar analysis, but only up to lags τ of 200 yr.  
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Figure 911: Analysis of flood rate fluctuations: (A) Shown is the time dependent flood rate Λ (black line) and its 95% confidence bands 
(green bands) as a function of the relative age t = 1 to 9336 yr for the palaeoflood data set shown in Fig. 3A which was computed by using 5 
a kernel density estimator. The grey colour indicates results that might be affected by boundary effects. The estimator is based on a Gaussian 
kernel with a width of ±3σ, where σ = 250 yr (Appendix BC), shown in the inset figure. Also shown areis the mean average flood rate 
(dashed blue grey horizontal line) of λyear = 0.83 floods yr-–1.  and the best-fit sinusoidal curve (red curved line, Eq. 16). (B) For a 
comparisoncomparison, the number of floods per century ncentury (green bars) is presented. The grey vertical bar indicates the gap in the data 
set. 10 
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Figure 1012: Schematic of the POTFGN+Period model: (A) Shown is a synthetic fractional Gaussian noise (unitless in magnitude)  with a 
persistence strength of βmodel = 0.5.  The synthetic time series resolution is set at ∆t = 1 yr. See Fig. 5 for an example of other fractional 
Gaussian noises. (B) Three thresholds are set (dashed horizontal lines). All noise values that are below the threshold θ01 are considered as 
years with 0 floods yr−1, . Aall noise values between the thresholds θ01 and θ12 [θ12 and θ23] are considered as years with one 1 [two2] floods 5 
yr−1., and aAnd, all noise values that exceed the threshold θ23 are considered years with 3 floods yr−1. The thresholds θ01, θ12 and θ23 are 
chosen such that the resultant one-point probability distribution is the same as our flood series (C) Time series of the modelled number of 
floods per year (blue circles) for 1000 years. For parts (A), (B) and (C) are also shown the histogram of the number of values at a given size.  
 

  10 
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Figure 131: POTFGN+Period model realisations: Shown are (A) long-range persistent flood time series that are modelled with the proposed 
POTFGN+Period model (see Fig. 120) as peaks over thresholds (POT) of a fractional Gaussian noise (illustrated in Fig. 65) with different 
persistence strengths βmodel  = 0.0, 0.2, 0.4, 0.6, 1.0, and (B) flood time series xyear with a long-term periodic cyclicity which are modelled as 
peaks over thresholds (POT) of a Gaussian white noise (βmodel = 0.0) superimposed with a sine wave (T = 20300 yr) with different sine wave 5 
amplitudes Amodel = 0.0, 0.2, 0.4, 0.6, 1.0. 
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Figure 1214: Analysis of model realisations of the POTFGN+Period model with different pairs of parameters for persistence strength 
and amplitude of the periodic component. Given for all six panels are the two model parameters of the POTFGN+Period: (i) strength of long-
range persistence of the underlining fractional Gaussian noise βmodel = 0.00 to 1.00 (step size 0.02) on the x-axis and (ii) the amplitude of the 
superimposed periodic component (period T = 2030 yr), Amodel = 0.00 to 1.00 (step size 0.02) on the y-axis. For each of the 51 × 51 = 2601 5 
pairs of model parameters (βmodel, Amodel) 1000 realisations were produced. Each realisation is a synthetic floods per year series which is 
constructed as described in Sect. 54.1 and illustrated in Fig. 120. In A to D are given the mean of the measured βPS, βDFA, kW and Arate (see 
legend for colours and contours) for the 1000 realisations in each of the 51 × 51 cell parameter pairs (βmodel, Amodel). In panel E, we then take 
measured values from each of the panels A to D and show in Panel E their corresponding (βmodel, Amodel) values. The measured values are 
chosen from each panel to be the same range (with error bars) as our Piànico palaeoflood data as follows: (i) strength of persistence, 0.370 10 
≤ βPS ≤ 0.410, 5000 values from Panel A, magenta dots; (ii) strength of persistence, 0.23 ≤ βDFA ≤ 0.27, 5000 values from Panel B, brown 
dots; (iii) shape parameter of the Weibull distribution, 0.77 ≤ kW ≤ 0.81, 5000 values from Panel C, blue dots; and (iv) sinusoidal flood rate, 
0.0450 ≤ Arate ≤ 0.0530, 5000 values from Panel D, green dots. When a given realisation has βPS, βDFA, kW and Arate all that satisfy the 
preceding conditions (i.e., all four colours for a given realisation appear in Panel E), then we give the colour a black dot. In panel F, the 2D 
probability density of model parameters (βmodel, Amodel) are shown whose persistence strength (βDFA), shape parameter of the Weibull 15 
distribution (kW) and best fitting sinusoidal flood rate have similar values to that of the Piànico palaeoflood record (see legend for the colour 
code). Marked is the mode (red bullet) and the area that contains approximately 50% of the points (blue dashed lines).  
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Figure 1315: POTFGN+Period model with optimized parameters: (A) Shown (black time series) is a realisation of a fractional Gaussian 
noise (FGN) with a long-range persistence strength of βmodel = 0.24 (normalized to a mean = 0.0 and variance = 1.0) that is superimposed 
with a periodic component (period: T = 2030 yr, amplitude A = 0.30). This synthetic time series is given a time resolution of ∆t = 1 yr and 
the length Nyear = 9270 yr. Peaks over thresholds (POT) are considered (as in Fig. 120) for five thresholds (three shown here) θ01, θ12, etc. 5 
where input (FGN+period) values <θ01 translate to xyear = 0 flood yr−1, input values between θ01 and θ12 result in xyear = 1 flood yr−1, etc. The 
resultant model series of the number of floods per year (grey and blue circles) for 9270 years is constructed to have a Poissonian one-point 
distribution and is shown at the bottom of the panel A. (B) Shown are 50 more model realisations of the POTFGN+Period model as number of 
floods per year (see legend for the colour code), with maximum xyear = 4 floods yr−1. (C) Time dependent flood rate Λ(t) given as a function 
of time t (see Fig. 119A, text and Appendix CB) using 1000 model realisations similar to Panel B. We first compute a kernel density 10 
estimator for each of the 1000 model realisations. Then we take the mean of these at each time step, giving us a mean Λ(t) (dashed black 
line). We then compute the 95% confidence band limits (dark grey bands), by ordering the 1000 values of Λ(t) for each time step t, and 
choosing the 25th and 975th values. As the flood rate of the first and last 500 years might be affected by edge effects, the corresponding dark 
grey colour banding is changed to light grey. For a comparison the corresponding time dependent flood rate for the palaeoflood data (solid 
black line), as shown in Fig. 119A, is given. (D) Black diamonds represent the mean number of floods per year, decade and century based 15 
on 1000 realisations of our POTFGN+Period model as given in the previous panels, with error bars 95% confidence intervals. For comparison 
are shown: (i) histogram (also shown in Fig. 6A3) of the original palaeoflood time series number of floods per year (blue bars), decade 
(orange bars) and century (green bars); (ii) the corresponding Poisson model (grey diamonds, also shown in Fig. 6A3) with respective rate 
parameters λyear = 0.083 floods yr−1, λdecade = 0.83 floods decade−1, λcentury = 8.3 floods century−1.   
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Figure 1416: Using the optimized POTFGN+Period model for forecasting the number of floods in one century based on the number of 
floods in the previous century: Based on the palaeoflood model realizations for one billion (109) years are shown (A) The 2D probability 
of the number of floods per century (xcentury(j)) and the number of floods in the succeeding century (xcentury(j+1)) (background grid colours, 
see legend for scale). The solid grey diagonal line represents equality of the number of floods in both centuries (xcentury(j+1) = xcentury(j)). (B) 5 
The two-dimensional probability distribution shown in (A) is cut vertically at xcentury = 0, 8 and 16 floods century−1 and the corresponding 
probability densities of floods per centuries after a century with xcentury = 0, 8 and 16 floods century−1 are presented as coloured lines (see 
legend). Also given is the probability density of floods per century of the palaeoflood model. 
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