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Abstract. This study evaluates predictive uncertainties in the snow hydrology of the Fraser River Basin 

(FRB) of British Columbia (BC), Canada, using the Variable Infiltration Capacity (VIC) model forced 

with several high-resolution gridded climate datasets. These datasets include the Canadian Precipitation 10 

Analysis and the thin-plate smoothing splines (ANUSPLIN), the North American Regional Reanalysis 

(NARR), University of Washington (UW) and Pacific Climate Impacts Consortium (PCIC) gridded 

products. Uncertainties are evaluated at different stages of the VIC implementation starting with the 

driving datasets, optimization of model parameters, and model calibration during cool and warm phases 

of the Pacific Decadal Oscillation (PDO).  15 

The inter-comparison of the forcing datasets (precipitation and air temperature) and their VIC 

simulations (snow water equivalent (SWE) and runoff) reveal widespread differences over the FRB, 

especially in mountainous regions. The ANUSPLIN precipitation shows a considerable dry bias in the 

Rocky Mountains whereas the NARR winter air temperature is 2C warmer than the other datasets over 

most of the FRB. In the VIC simulations, the elevation-dependent changes in the maximum SWE 20 

(maxSWE) are more prominent at higher elevations of the Rocky Mountains where the PCIC-VIC 

simulation accumulates too much SWE and ANUSPLIN-VIC yields an underestimation. Additionally, 

at each elevation range, the day of maxSWE varies 10 to 20 days between the VIC simulations. The 
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snow melting season begins early in the NARR-VIC simulation whereas the PCIC-VIC simulation 

delays the melting indicating seasonal uncertainty in SWE simulations. When compared with the 

observed runoff for the Fraser River main stem at Hope, BC, the ANUSPLIN-VIC simulation shows 

considerable underestimation of runoff throughout the water year owing to reduced precipitation in the 

ANUSPLIN forcing dataset. The NARR-VIC simulation yields more winter and spring runoff and 5 

earlier decline of flows in summer due to a nearly 15-day earlier onset of the FRB springtime snowmelt. 

Analysis of the parametric uncertainty in the VIC calibration process shows that the choice of the initial 

parameter range plays a crucial role in defining the model hydrological response for the FRB. 

Furthermore, the VIC calibration process is biased toward cool and warm phases of the PDO and the 

choice of proper calibration and validation time periods is important for the experimental setup. Overall 10 

the VIC hydrological response is prominently influenced by the uncertainties involved in the forcing 

datasets rather than those in its parameter optimization and experimental setups.  
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1 Introduction 

While advances in computational power and ongoing developments in hydrological modelling have 

increased the reliability of hydrologic simulations, the issue of adequately addressing the associated 

uncertainty remains challenging (Liu and Gupta, 2007). There is a growing need for proper estimation 

of uncertainties associated with hydrological models and the observations required to drive and evaluate 5 

their outputs. Hydrological simulations of snow processes and related hydrology depend critically on 

the input climate forcing datasets, particularly the precipitation and air temperature (Reed et al., 2004; 

Mote et al., 2005; Tobin et al., 2011). Both of these input forcings regulate the quantity and phase of 

modelled precipitation and affect the response of simulated snow accumulation and runoff. The model 

results therefore rely heavily on the quality of these forcings as the uncertainty (measurement errors, 10 

etc.) in such data will propagate through all hydrological processes during simulations (Wagener and 

Gupta, 2005; Anderson et al., 2007; Tapiador et al., 2012). Studies such as Essou et al. (2016a) 

compared hydrological simulations of different observed datasets over the continental United States 

(US). They reported that there are significant differences between the datasets, although all the datasets 

were essentially interpolated from almost the same climate databases. Furthermore, Essou et al. (2016b) 15 

compared the hydrological response of three reanalysis datasets over the US and found precipitation 

biases in all reanalyses, especially in summer and winter in the southeastern US. The uncertainties in 

hydrological simulations also arise from the model parameters, its structure and in the objective 

function and the calibration variable that is used for model calibration. Hence the reliability of input 

forcings along with the capability of the hydrological model and the experimental setup ultimately 20 

determine the fate of hydrological variables essential for water resource management. 
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Several observed gridded climate datasets of precipitation and air temperature (Mesinger et al., 2006; 

Hopkinson et al., 2011), based on available observational data, post-processing techniques and, in some 

cases, climate modelling, are currently available over the Canadian landmass to facilitate climate and 

hydrological simulations. These datasets provide long term gridded precipitation and air temperature 

records on hourly and daily bases making them especially useful for hydrological simulations, 5 

particularly over areas where in situ station densities are low. However, these datasets, being spatially 

interpolated or assimilated to gridcells, rely mainly on the spatial density of the observational network, 

which is often quite low in mountainous regions (Rinke et al., 2004). Observational data incorporated 

into gridded datasets may also contain measurement errors and missing records that translate into the 

data interpolation and contribute to the overall uncertainty in gridded data products. Such uncertainties 10 

are assessed in many studies focusing on the forcing data (Horton et al., 2006; Graham et al., 2007; Kay 

et al., 2009; Eum et al., 2014).  

The quality of hydrological modelling depends on how well a model simulates the regional detail and 

topographic characteristics of the region, especially in mountainous regions. However, most 

mountainous regions exhibit higher errors in gridded datasets because they are usually based on an 15 

uneven number of stations that are mostly located at lower elevations (Eum et al., 2012). This is true for 

most large basins in western Canada that exhibit highly variable elevation ranges and strong 

climatological heterogeneity. One such large basin is British Columbia’s (BC’s) Fraser River Basin 

(FRB), which is vital for Canada’s environment, economy and cultural identity. Its mountainous 

snowpack serves as a natural reservoir for cold-season precipitation, providing snowmelt driven flows 20 

in summer. Evaluating uncertainties in modelling the FRB’s hydrology is crucial for informed decision-
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making and water resources management. This includes the communication of the uncertainties, 

propagated into the model predictions, in an appropriate manner to decision makers or stakeholders, 

thereby allowing confidence in the model results.  

Although the currently available gridded datasets (reanalysis and interpolated) over the FRB are derived 

from observational stations using various interpolation and assimilation techniques, they may still have 5 

systematic biases because of their grid resolution, the density of the surface station network used for 

data assimilation, and the topographic characteristics of the FRB. In the FRB, 23% of the basin exceeds 

1500 m in elevation whereas roughly 5% of the in situ meteorological stations surpasses this elevation 

(Shrestha et al., 2012). Such mismatch between station densities at different elevations makes the 

precipitation interpolation at higher elevations excessively influenced from the lower elevation stations 10 

(Stahl et al., 2006; Rodenhuis et al., 2009; Neilsen et al., 2010). Therefore, despite extensive 

implementation of hydrologic modelling with single observed forcings (e.g. Shrestha et al., 2012; Kang 

et al., 2014, 2016), evaluation of the uncertainties in forcing datasets remains a critical and challenging 

issue for the FRB. As such, the first step is to evaluate available observation-based forcing datasets for 

their suitability to be used in hydrological modelling over the FRB.   15 

In Canada, numerous studies have assessed the performance of hydrologic simulations driven by only 

one particular driving dataset (Pietroniro et al., 2006; Choi et al., 2009; Bennett et al., 2012; Kang et al., 

2014). Sabarly et al. (2016) used four reanalysis datasets to assess the terrestrial branch of the water 

cycle over Quebec with satisfactory results over 1979-2008. Eum et al. (2014) recently compared 

hydrological simulations driven by several high-resolution gridded climate datasets over western 20 

Canada’s Athabasca watershed and found significant differences across the simulations. While BC’s 



6 

 

snowpacks and hydrology are well studied in the literature (Danard and Murty, 1994; Choi et al., 2010; 

Thorne and Woo, 2011; Déry et al., 2012; Shrestha et al., 2012; Kang et al., 2014, 2016; Islam et al., 

2017; Trubilowicz et al., 2016), detailed inter-comparisons of available observational forcing in terms 

of their hydrological response is not thoroughly analysed, particularly over the FRB’s complex 

topography. In this study, we therefore investigate the simulated hydrological response of uncertainties 5 

associated with air temperature and precipitation forcing on the FRB’s mountainous snowpack and 

runoff. To achieve this, four forcing datasets, namely the Canadian Precipitation Analysis and the thin-

plate smoothing splines (ANUSPLIN hereafter; Hopkinson et al., 2011), the North American Regional 

Reanalysis (NARR hereafter; Mesinger et al., 2006), University of Washington (UW hereafter; Shi et 

al., 2013) and Pacific Climate Impacts Consortium (PCIC hereafter; Shrestha et al., 2012) gridded 10 

products are applied to the FRB. These datasets are explored across three different regions and multiple 

elevation ranges. The PCIC and UW datasets are used by Shrestha et al. (2012) and Kang et al. (2014, 

2016), respectively to drive the VIC hydrological model over the FRB whereas the NARR and 

ANUSPLIN datasets are not yet evaluated over this region. However, the NARR dataset is used in 

studies focusing on other regions of Canada (Woo and Thorne, 2006; Choi et al, 2009; Ainslie and 15 

Jackson, 2010; Eum et al., 2014; Trubilowicz et al., 2016). To our knowledge, this is the first 

comprehensive study that collectively examines the spatial and elevation dependent hydrological 

response of these datasets for the FRB.  

Along with forcing datasets, many studies have focused their attention either on model structure (Wilby 

and Harris, 2006; Jiang et al., 2007; Poulin et al., 2011; Velazquez et al., 2013) or on calibration 20 

parameters (Teutschbein et al., 2011; Bennett et al., 2012). Arsenault et al. (2014) estimated the 

http://onlinelibrary.wiley.com/doi/10.1002/hyp.8043/full#bib60
http://onlinelibrary.wiley.com/doi/10.1002/hyp.8043/full#bib24
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uncertainty due to parameter set selection using the hydrological model over several basins in Quebec. 

They showed that parameter set selection can play an important role in model implementation and 

predicted flows. For parameter uncertainty, a hydrological model can have many equivalent local 

optima within a realistic parameter space (Poulin et al., 2011). Therefore, several different parameter 

sets may be available for the same “optimal” measure of efficiency during the optimization process (i.e. 5 

parameter non-uniqueness; Beven, 2006). Here we evaluate the parameter uncertainties involved in the 

model calibration process, i.e. calibration optimizer sensitivity to parameter initial limits. Moreover we 

focus on another unique aspect of modelling uncertainty related to the selection of time periods for 

model calibration and validation under changing climatic conditions on decadal time scales. Studies 

such Klemeš (1986) and Seiller et al. (2012) highlighted the issue of calibration and validation of 10 

hydrological modelling under different climatological conditions. In this study, we estimate the 

hydrological model sensitivity to different climatological conditions by focusing on the FRB’s air 

temperature and precipitation teleconnections with cool and warm phases of the Pacific Decadal 

Oscillation (PDO). 

Overall, the main goals of this study are: (i) to compare and identify the most reliable available gridded 15 

forcing datasets for hydrological simulations over the FRB; (ii) to evaluate hydrological modelling 

responses of different driving datasets over a range of FRB elevations; (iii) to assess the uncertainty 

involved in the model calibration process by focusing on the optimizer used for parameter optimization; 

and (iv) to evaluate the calibration process under changing climatic conditions. To achieve these four 

objectives, the macroscale Variable Infiltration Capacity (VIC) hydrological model (Liang et al., 1994, 20 

1996) is used as the simulation tool. The VIC model conserves surface water and energy balances for 
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large-scale watersheds such as the FRB (Cherkauer et al., 2003). It has been successfully implemented, 

calibrated and evaluated over the FRB (Shrestha et al., 2012; Kang et al., 2014; Islam et al., 2017).  

The remainder of this paper is structured as follows. Section 2 discusses the FRB, the driving datasets, 

the VIC model and experimental setup. Section 3 describes the forcings inter-comparison, hydrological 

simulations, parameter sensitivity and uncertainly related to the PDO. Section 4 summarizes and 5 

concludes this study. 

2. Study Area, Model and Methodology 

2.1 Fraser River Basin (FRB) 

The FRB is one of the largest basins of western North America spanning 240,000 km
2
 of diverse 

landscapes with elevations varying from sea level to 3954 m above sea level at Mt. Robson, its tallest 10 

peak (Benke and Cushing, 2005). It covers the mountainous terrain of the Coast and Rocky Mountains 

along with dry central plateaus (Fig. 1). The FRB’s headwaters are in the Rocky Mountains with its 

major tributaries the Stuart, Nechako, Quesnel, Chilcotin, Thompson, and Harrison Rivers. The Fraser 

River runs 1400 km through the whole basin before reaching Hope, BC, where it veers westward to 

drain into the Salish Sea and the Strait of Georgia at Vancouver, BC (Benke and Cushing, 2005; 15 

Schnorbus et al., 2010).  

In winter, considerable amounts of snow usually accumulate at higher elevations, except in coastal 

areas. In late spring and early summer, snowmelt from higher elevations induce peak flows in the main 

stem of the Fraser River and its many tributaries (Moore and Wondzell, 2005), which rapidly decline in 
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late summer following the depletion of snowmelt. Owing to its complex mountainous ranges, the FRB’s 

hydrologic response varies considerably across the basin, differentiating it into snow-dominant, hybrid 

(rain and snow), or rain-dominant regimes (Wade et al., 2001). The glaciers cover only 1.5% of the 

FRB (Shrestha et al., 2012) and provide only a modest contribution to streamflow, primarily in late 

summer (August/early September). 5 

2.2 Datasets 

Along with recent developments in hydrological models, several observation-based gridded datasets are 

now available to drive the models such as ANUSPLIN, NARR, UW and PCIC. These meteorological 

forcing datasets are developed using high-resolution, state-of-the-art data interpolation and (for NARR 

only) assimilation techniques. This is to improve the quality of forcing data to analyse a model’s 10 

hydrological response over any particular basin.   

The ANUSPLIN dataset, developed by Natural Resources Canada (NRCan), contains gridded data of 

daily maximum and minimum air temperature (°C), and total daily precipitation (mm) for the Canadian 

landmass south of 60°N at ~10 km resolution (NRCan, 2014). This Canadian dataset uses a trivariate 

thin-plate smoothing spline technique referred to as ANUSPLIN (Hutchinson et al., 2009) with recent 15 

modifications (Hopkinson et al., 2011). Eum et al. (2014) used the ANUSPLIN dataset for hydrological 

modelling over Alberta’s Athabasca watershed and reported underestimations in simulated runoff, 

owing to a dry bias in ANUSPLIN precipitation.  

NARR was developed at 32 km spatial and 3-hourly temporal resolution to improve the National 

Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) 20 
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global reanalysis data by employing the Eta Data Assimilation system for the North American domain 

for the period from 1979 to the current year. The interannual variability of the NARR seasonal 

precipitation and accuracy of its temperature and winds are found superior to earlier versions of the 

NCEP/NCAR reanalysis datasets (Mesinger et al., 2006; Nigam and Ruiz-Barradas, 2006). Choi et al. 

(2009) investigated the applicability of air temperature and precipitation data from NARR for 5 

hydrological modelling of selected watersheds in northern Manitoba. They found that NARR air 

temperature and precipitation data are in much better agreement with observations than the NCEP–

NCAR Global Reanalysis-1 dataset (Kalnay et al., 1996; Kistler et al., 2001). Woo and Thorne (2006) 

used air temperature and precipitation data from two global reanalysis datasets and from NARR as input 

to a hydrological model for the Liard River Basin in western subarctic Canada and reported significant 10 

improvement in its hydrological simulations. NARR output has also been used in regional water budget 

calculations (Luo et al., 2007; Ruane, 2010; Sheffield et al., 2012). Choi et al. (2009) and Keshta and 

Elshorbagy (2011) reported that NARR output is suitable for hydrologic modelling, especially when 

other observations are unavailable. However, they focused on the Canadian Prairies, where the 

topography is not complex. 15 

The UW dataset of daily precipitation, maximum and minimum air temperature, and average wind 

speed are based on the extended gridded UW dataset (Shi et al., 2013; Adam et al., 2006; Adam and 

Lettenmaier, 2008). Monthly precipitation originates from the University of Delaware observed land 

surface precipitation product (Matsuura and Willmott, 2009), which was converted to daily data using 

the high temporal precipitation dataset from Sheffield et al. (2006). To improve the precipitation 20 

estimates, the monthly data were adjusted to account for gauge undercatch by using the methods 
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outlined by Adam and Lettenmaier (2008). Such adjustment is important since gauge-based 

precipitation measurements may underestimate solid precipitation in winter by 10%–50% (Adam and 

Lettenmaier 2003). Daily wind speeds are extracted from the NCEP/NCAR reanalysis datasets (Kalnay 

et al., 1996).  

The PCIC dataset of precipitation, maximum and minimum temperature, and wind speed was derived 5 

primarily from Environment and Climate Change Canada (ECCC) climate station observations, with 

additional inputs from the United States Co-operative Station Network, the BC Ministry of Forests, 

Lands and Natural Resource Operations, the BC Ministry of Environment’s Automated Snow Pillow 

network, and BC Hydro’s climate network (Schnorbus et al., 2011; Shrestha et al., 2012).  These data 

are available at ~6 km resolution and were corrected for point precipitation biases and elevation effects 10 

(Schnorbus et al., 2011).  

 The ANUSPLIN, NARR, UW and PCIC datasets are available at 10 km, 32 km, 25 km and 6 km 

spatial resolution, respectively, and at a daily time scale. To facilitate comparison, the ANUSPLIN, 

NARR and PCIC datasets were regridded to 25 km resolution using bilinear interpolation to match the 

scale of the current VIC implementation. The NARR (32 km) dataset was interpolated from coarse 15 

resolution curvilinear grids to slightly higher (25 km) resolution rectilinear grids. On the other hand, 

both the PCIC (6 km) and ANSUPLIN (10 km) datasets were interpolated to a coarser resolution (25 

km). The elevation correction, which is important when interpolating from coarser to higher spatial 

resolutions (Dodson and Marks, 1997), was not used to correct the orographic effects for the NARR 

dataset. Interpolating the NARR dataset from a 32 km to a 25 km resolution does not induce much 20 

elevation dependent uncertainties since the change in orography remains minimal between mean 
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elevations at 25 km and 32 km grid resolutions. Thus the relationship of atmospheric variables such as 

air temperature with elevation remains nearly identical at both resolutions.  

Daily wind speeds, a required VIC input variable, are not available for the ANUSPLIN dataset. We 

therefore used the PCIC based wind speeds in the ANUSPLIN driven VIC simulations. The PCIC wind 

speeds are sourced from the Environment and Climate Change Canada station product (Schnorbus et al., 5 

2011). 

To calibrate and validate the VIC model simulated flows, we used daily streamflow data from ECCC’s 

Hydrometric Dataset (HYDAT; Water Survey of Canada 2014). These data were extracted and 

compiled into a comprehensive streamflow dataset for the FRB spanning 1911–2010 (Déry et al., 2012).  

In addition, we compared the simulated SWE with observations from the BC River Forecast Centre’s 10 

network of snow pillow sites (BC Ministry of Forests, Lands and Natural Resource Operations, 2014). 

The snow pillow stations record the weight of the accumulated snowpack (SWE) on a daily basis. Based 

on the availability of data, we used SWE observations from four sites located at Yellowhead (ID: 

1A01P) and McBride (ID: 1A02P) in the upper Fraser and at Mission Ridge (ID: 1C18P) and Boss 

Mountain Mine (ID: 1C20P) in the middle Fraser. Due to data availability, we used the 1996-2006 time 15 

period for the Yellowhead, Mission Ridge and Boss Mountain Mine snow pillows and 1980-1986 for 

the McBride location. Detailed information about these sites is available in Kang et al. (2014) and Déry 

et al. (2014). 
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2.3 Variable Infiltration Capacity (VIC) Model  

The VIC model resolves energy and water balances and therefore requires a large number of parameters, 

including soil, vegetation, elevation, and daily meteorological forcings, at each gridcell. To evaluate 

hydrological responses over complex terrain, the model simulates the subgrid variability in topography 

and precipitation by dividing each gridcell into a number of snow elevation bands (Nijssen et al., 2001a). 5 

The model utilizes a mosaic-type representation by partitioning elevation bands into a number of 

topographic tiles that are based on high-resolution spatial elevations and fractional area. The snow model 

embedded in the VIC model is then applied to each elevation tile separately (Gao et al., 2009).  

The VIC model is widely used in many hydrological applications including water availability estimation 

and climate change impacts assessment in North America (Maurer et al., 2002; Christensen and 10 

Lettenmaier, 2007; Adam et al., 2009; Cuo et al., 2009; Elsner et al., 2010; Gao et al., 2010; Wen et al., 

2011; Oubeidillah et al., 2014) and around the world (Nijssen et al., 2001a,b; Haddeland et al., 2007; 

Zhou et al., 2016). It is also commonly used to simulate hydrologic responses in snowmelt-dominated 

basins (Christensen and Lettenmaier, 2007; Hidalgo et al., 2009; Cherkauer and Sinha, 2010; Schnorbus 

et al., 2011). 15 

2.3.1 The VIC Implementation  

The VIC model, as set up by Kang et al. (2014) and Islam et al. (2017) for the FRB, is employed for 

evaluating the model’s ability to simulate the FRB’s hydrological response when driven by different 

observational forcings. The model was previously applied to the FRB to investigate its observed and 
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projected changes in snowpacks and runoff. In this study, we performed model integrations over the 

entire FRB using gridcells spanning 48°– 55°N and 119°–131°W. The model is configured at 0.25° 

spatial resolution using a daily time step, three soil layer depths and ten vertical snow elevation bands. 

Once an individual VIC simulation is completed, the runoff for the basin is extracted at an outlet point 

of the given sub-basin, using an external routing model that simulated a channel network (adapted from 5 

Wu et al., 2011) with several nodes (Lohmann et al., 1996; 1998a, b). Streamflow is converted to areal 

runoff by dividing it by the corresponding sub-basin area. Daily runoff at the outlet cell is integrated 

over time to obtain total water year runoff for a selected basin. Other than the calibration parameters, 

the soil and vegetation parameters, leaf area index (LAI) and albedo data are kept identical as per the 

Kang et al. (2014) VIC model implementation to the FRB . 10 

2.3.2 Calibration 

To explore the feasible parameter space, we used the University of Arizona multi-objective complex 

evolution (MOCOM-UA) optimizer for the VIC calibration process (Yapo et al., 1998; Shi et al., 2008). 

MOCOM-UA searches a set of VIC input parameters using the population method to maximize the 

Nash–Sutcliffe efficiency (NSE) coefficient (Nash and Sutcliffe, 1970) between observed and simulated 15 

runoff. Six soil parameters are used in the optimization process, i.e. b_infilt (a parameter of the variable 

infiltration curve), Dsmax (the maximum velocity of base flow for each gridcell), Ws (the fraction of 

maximum soil moisture where nonlinear base flow occurs), D2 and D3 (the depths of the second and 

third soil layers), and Ds (the fraction of the Dsmax parameter at which nonlinear baseflow occurs). 

These calibration parameters were selected based on the manual calibration experience from previous 20 
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studies by Nijssen et al. (1997), Su et al. (2005), Shi et al. (2008), Kang et al. (2014, 2016) and Islam et 

al. (2017). VIC is a physically based hydrologic model that has many (about 20, depending on how the 

term “parameter” is defined) parameters that must be specified. However, the usual implementation 

approach involves the calibration of only these six soil parameters. Such parameters have the largest 

effects on the hydrograph shape and are the most sensitive parameters in the water balance components 5 

(Nijssen et al., 1997; Su et al., 2005). These parameters must be estimated from observations, via a trial 

and error procedure that leads to an acceptable match of simulated discharge with observations.  

For the snow calibration, the value of thresholds for maximum (at which snow can fall) and minimum 

(at which rain can fall) air temperature were fixed as 0.5°C and ˗0.5°C, respectively. These values were 

adjusted based on the region’s climatology and were kept constant for all simulations in the global 10 

control file. Parameters related to the snow albedo were adjusted using the traditional VIC algorithm 

based on the US Army Corps of Engineers empirical snow albedo decay curves for transitions from 

snow accumulation to ablation. 

Final values of these six calibrated parameters were estimated for each forcing dataset by a number of 

simulation iterations minimizing the difference between the simulated and observed monthly flow.  15 

While the MOCOM-UA automated optimization process utilizes monthly streamflow during 

calibration, we evaluated the overall model performance on daily time scales using NSE and correlation 

performance metrics.  

The VIC model calibration is applied to the Fraser River’s main stem at Hope, BC and the FRB’s major 

sub-basins, namely the Upper Fraser at Shelley (UF), Stuart (SU), Nautley (NA), Quesnel (QU), Chilko 20 
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(CH) and Thompson-Nicola (TN) basins (Fig. 1a and Supplementary Table 1). These sub-basins 

contribute 75% of the annual observed Fraser River discharge at Hope, BC with the largest 

contributions from the TN, UF and QU sub-basins (Déry et al., 2012).  

2.3.3 Experiments 

A series of different VIC experiments was performed to (i) compare the VIC model’s response when 5 

driven by different forcings, (ii) evaluate the uncertainties related to the VIC optimizer, and (iii) 

investigate the effect of PDO teleconnections on the VIC calibration and validation time periods. For 

objective (i), we used all the four datasets to run VIC simulations to facilitate detailed comparison of 

different datasets and their hydrological response. In objectives (ii) and (iii), rather than the 

intercomparison of datasets, our goal is to evaluate the uncertainties in the model implementation 10 

particularly in its calibration process. We therefore only used the UW dataset to force the VIC model as 

this dataset along with our VIC model implementation is examined extensively over the FRB in Kang et 

al. (2014) and (2016). The experiments are categorized as follows: 

1) Inter-comparison runs:  The VIC model was driven by each forcing dataset for 28 years (1979 to 

2006) with 1979-1990 as the calibration period and 1991-2006 as the validation period using the 15 

MOCOM-UA optimizer (Table 1). The VIC simulations driven by ANUSPLIN, UW and PCIC 

forcings are initiated five years prior to the year 1979 to allow model spin-up time. Since NARR is 

not available until 1979, its VIC simulations were recursively looped for five years using the year 

1979 as the forcing data. After calibration, the model validation runs were initialized with five 

different state files to produce five ensemble members. The ANUSPLIN, NARR, UW and PCIC 20 
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driven ensemble mean VIC simulations are referred to as ANUSPLIN-VIC, NARR-VIC, UW-VIC 

and PCIC-VIC, respectively. These ensemble simulations were run for the whole FRB and its UF, 

SU, NA, QU, CH and TN sub-basins. 

2) Optimizer uncertainty runs:  Here we only used the UW forcing data for VIC model simulations 

to investigate the uncertainties in the model calibration process for the 1979-1990 time period. Our 5 

primary goal is to evaluate optimizer sensitivity to a unique set of parameter limits. We want to see 

how the MOCOM optimizer results in different optimized parameters and change the overall 

simulated hydrograph in the calibration process. We performed the optimization of six soil 

parameters, i.e. b_infilt, Dsmax, Ws, D2, D3 and Ds in five experimental setups using different 

initial ranges of parameter limits. The VIC calibration experiments (OPT1, OPT3, OPT4 and OPT5) 10 

were run using four narrow ranges selected from the maximum limits of calibration parameters. The 

same experiment is then run with maximum limits of the calibration parameters (OPT2). Calibration 

parameters, their initial ranges and final optimized values for all the experiments are given in Table 

3. The OPT1, OPT2, OPT3, OPT4 and OPT5 simulations were run over the whole FRB only. 

3) PDO uncertainty runs:  We used the UW dataset to drive long term (1950-2006) VIC simulations. 15 

This is to capture the decadal variability of cool and warm phases of the PDO. Five different 

experiments, namely PDO1, PDO2, PDO3, PDO4 and PDO5 were performed with calibration 

periods of 1981-1990, 1956-1965, 1967-1976, 1977-1987 and 1991-2001 and with corresponding 

validation periods of 1991-2001, 1966-1976, 1977-1987, 1967-1976 and 1981-1990, respectively 

(Table 4). Each time period was selected to capture cool or warm PDO phases, i.e. its cool (1956-20 

1965 and 1967-1976) and warm (1981-1990, 1991-2001 and 1977-1987) phases. For each 



18 

 

calibration experiment in one particular phase of the PDO, the MOCOM-UA was used to optimize 

calibration parameters. The NSE was calculated for the calibration and validation periods using the 

daily observed streamflow data for the Fraser River at Hope. All PDO simulations were run over the 

whole FRB only. 

2.4 Analysis Strategy 5 

The analyses were performed for three FRB hydro-climatic regimes: the Interior Plateau, the Rocky 

Mountains and the Coast Mountains (Moore, 1991). These three regions were chosen given their 

distinct physiography and hydro-climatic conditions. The gridcell partitioning of these three regions and 

their elevations are shown in Fig. 1b. Results in this study mainly focused on the Fraser River main 

stem at Hope, BC since it covers 94% of the basin’s drainage area and has a continuous streamflow 10 

record over the study periods. However, the inter-comparison runs were also compared over the FRB’s 

major sub-basins. The total runoff was calculated using the sum of baseflow and runoff. Seasonal 

variations were assessed by averaging Dec-Jan-Feb (DJF), Mar-Apr-May (MAM), Jun-Jul-Aug (JJA) 

and Sep-Oct-Nov (SON) months for winter, spring, summer and autumn, respectively.  

In the SWE analysis, the snowmelt was calculated by taking the difference between maximum and 15 

minimum SWE over the water year (1 October to 30 September
 
of the following calendar year). The 

corresponding day of the water year having maximum SWE (maxSWE) is referred to as maxSWE-day.  

Although glacier dynamics are not included in the VIC model physics, the model produce a perennial 

snowpack in few gridcells in its output. We compared those cells to Baseline Thematic Mapping (BTM) 

and found that the glaciating cells match the location of observed glaciers. We therefore masked those 20 



19 

 

gridcell in the SWE analysis considering that the effects of glaciers may not change our results 

significantly due to the ~25 km model grid cell resolution (625 km
2
 area per grid cell) used in this study.  

The Mann–Kendall test (Mann, 1945; Kendall, 1970) was used to estimate monotonic trends in the 

input forcing data and the simulated hydrological variables. This non-parametric trend test has been 

used in several other studies to detect changing hydrological regimes (Lettenmaier et al., 1994; Ziegler 5 

et al., 2003; Déry et al., 2005, 2016; Kang et al., 2014). Trends were considered to be statistically-

significant when p < 0.05 with a two-tailed test. 

3 Results and Discussion 

We first examine the ANUSPLIN, NARR, UW and PCIC datasets to investigate how substantial are the 

differences in precipitation and air temperature at several temporal and spatial scales across the FRB and 10 

its sub-regions. The VIC simulations, driven by these forcing datasets, are then discussed to evaluate 

uncertainties in simulated SWE and runoff. This is followed by the discussion of uncertainty in the VIC 

calibration process. 

3.1 Forcings Datasets Inter-comparison  

The daily mean air temperature of ANUSPLIN, NARR, UW and PCIC datasets remains below 0°C 15 

from November to March and rises above 0°C in early spring over all three FRB sub-regions (Fig. 2). 

While the inter-datasets seasonal variability of air temperature is quite similar, the winter in NARR is 

~2°C warmer compared to the remaining datasets. The grid scale seasonal differences (PCIC minus 

ANUSPLIN, NARR and UW) of mean air temperature spatially quantify the inter-datasets 
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disagreements (Supplementary Fig. 1). While the PCIC˗ANUSPLIN and PCIC˗UW differences are 

within ±1°C, the PCIC-NARR difference exceeds 2°C over most of the FRB in DJF and SON, revealing 

NARR air temperatures to be quite warmer than in the PCIC dataset.  

The magnitudes of daily mean precipitation vary markedly amongst datasets. Winter precipitation, 

which begins in November and persists until April, shows greater inter-datasets differences, particularly 5 

over the Rocky and Coast Mountains. Compared to the PCIC and UW datasets, the ANUSPLIN 

precipitation is underestimated in all three regions with nearly 2.0 mm day
-1

 to 5.0 mm day
-1

 differences 

in the Rocky and Coast Mountains, respectively. This underestimation is more evident in the 

PCIC˗ANUSPLIN spatial difference revealing up to 5 mm day
-1

 difference over the mountainous 

regions (Supplementary Fig. 2). The precipitation differences in the Interior Plateau approach zero for 10 

all datasets. The maximum intraseasonal variability arises in the Coast Mountains ranging from 10.0 

mm day
-1

 of precipitation in winter and nearly zero in summer. The range of inter-datasets spread for 

peak precipitation varies from 5.0 mm day
-1

 to 10.0 mm day
-1

 during winter for the Coast Mountains. 

Precipitation in the Coast Mountains is more variable due to its proximity to the Pacific Ocean where 

the interaction between steep elevations and storm track positions is quite complex. In the Coast 15 

Mountains, the NARR precipitation is underestimated and is comparable to ANUSPLIN.  

The underestimation of the ANUSPLIN mountainous precipitation is probably due the thin plate 

smoothing spline surface fitting method used in its preparation. For NARR, air temperature and 

precipitation uncertainties may have been induced by the climate model used to assimilate and produce 

the reanalysis product. 20 
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3.2 Hydrological Simulations  

The ANUSPLIN-VIC, NARR-VIC, UW-VIC and PCIC-VIC simulation performance was evaluated 

using the NSE and correlation coefficients by calibrating and validating against observed daily 

streamflow for the Fraser River at Hope (Table 2). The NSE scores are much higher for the PCIC-VIC 

and UW-VIC simulations compared to the ANUSPLIN-VIC and NARR-VIC. The lower NSE score in 5 

the ANUSPLIN-VIC simulation reflects a dry precipitation bias in the ANUSPLIN dataset. As the 

model configuration, resolution, and soil data were identical for all VIC simulations, different NSE 

values reveal uncertainty associated only with each observational forcing dataset. Despite the low NSE 

score of the ANUSPLIN-VIC simulation, the correlation coefficient is significantly high. The bias in 

the simulated streamflow is contributing to the lower NSE coefficient whereas the phase of seasonal 10 

flow is quite similar to the observed flow in the ANUSPLIN-VIC simulation. There may be additional 

sources of uncertainty due to the method used to assess simulation accuracy. For example, instead of 

using NSE, other model evaluation metrics such as the Kling-Gupta Efficiency (KGE) coefficient 

(Gupta et al., 2009) may produce different levels of model accuracy.  

The ANUSPLIN-VIC, NARR-VIC, UW-VIC and PCIC-VIC simulated SWE and snowmelt, areally-15 

averaged over the FRB’s three sub-regions, show similar seasonal variability but considerably different 

magnitudes, especially over mountainous regions. Figure 3a shows these differences for the Rocky 

Mountains revealing the range of peak SWE from 400 mm for ANUSPLIN to  >600 mm for PCIC. The 

dry bias in ANUSPLIN precipitation forcing induces lower SWE magnitudes in the ANUSPLIN-VIC 

simulation. The lower SWE in the NARR-VIC simulation is probably due to the warmer air temperature 20 

during winter and spring (Fig. 2b). Winter temperatures being warmer in the NARR dataset may alter 



22 

 

the phase of precipitation partitioning with more rainfall than snowfall, and hence less SWE in the 

NARR-VIC simulation. Such differences in SWE are reflected in the associated snowmelt (Fig. 3b) 

where the NARR-VIC simulation shows earlier snowmelt. This is further investigated by VIC 

sensitivity experiments and is discussed later in the text. Grid-scale differences in simulated SWE (Fig. 

4) and runoff (Supplementary Fig. 3) arise most notably over the mountainous regions. In the interior 5 

FRB, the simulation differences between PCIC-VIC and ANUSPLIN-VIC mean SWE are within a 10 

mm range whereas such differences exceed 50 mm to 100 mm for the NARR-VIC and UW-VIC 

simulations. 

In the FRB’s mountainous regions, the VIC model can lead to inaccurate snowpack estimates if the 

elevation dependence on snow accumulation and ablation is not modelled properly. As mentioned in 10 

section 2.3, we used ten elevation bands in our VIC implementation so that each band's mean elevation 

was used to lapse the gridcell average air temperature and precipitation to produce more reliable 

estimates. We clustered the elevation distribution within 10 bands into different elevation ranges. This 

allowed in-depth analysis of the elevation dependent variation of mean SWE that is of particular 

importance for the Rocky and Coast Mountains regions of the FRB. We examined the magnitude of 15 

maxSWE and corresponding maxSWE-day of the water year between all simulations and elevation 

ranges (Fig. 5). The difference in maxSWE between all VIC simulations increases with elevation, 

particularly the Rocky Mountains where higher elevations (>1400 m) show large disagreement between 

simulated maxSWE (Fig. 5a). In the Interior Plateau, the NARR-VIC simulated maxSWE exceeds 300 

mm whereas all other simulations are within 200 mm. The maxSWE elevation dependent variation is 20 

quite complex in the Coast Mountains. However the simulation differences at elevations >1400 m are 
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smaller compared to the lower elevations below 1000 m. Apart from maxSWE magnitude, the 

maxSWE-day variation differs considerably across the VIC simulations. Generally, the maxSWE-day 

varies by nearly two months between lower and higher elevations as snow onset occurs later in autumn. 

While the maxSWE-day variation is quite complex within each elevation range, the NARR-VIC 

maxSWE-day is earliest whereas PCIC-VIC delays the snow accumulation over the 600-2000 m 5 

elevation range in the Rocky Mountains. There is nearly 20 days of simulated variation in maxSWE-day 

at the Rocky Mountains highest elevation range. Such variation highlights the uncertainties in 

seasonality of the VIC simulated snowpacks. For the Interior Plateau and the Coast Mountains, no 

consistent pattern of maxSWE-day variation exists for any particular simulation.  

3.2.1 Comparison of observed versus simulated SWE 10 

As mentioned earlier, all gridded climate forcing datasets are based on station observations. The density 

of stations in the FRB’s mountainous regions remains quite low and therefore induces higher 

uncertainties in the observational gridded products. It is important to quantify the spatial discrepancy 

between the simulated (0.25° gridcell) and observed (snow pillow station dataset) SWE that may lead to 

an uncertainty in snow estimations by models (Elder et al., 1991; Tong et al., 2010). We used observed 15 

SWE from BC snow pillow sites and the VIC simulated SWE data over the same elevation and 

overlapping continuous time periods at four different locations in the upper and middle Fraser where a 

high volume of SWE accumulates seasonally. 

The daily time series of VIC simulated SWE (Supplementary Fig. 4) follows the observed interannual 

variability in snow accumulation but with considerable differences across simulations. The PCIC-VIC 20 
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simulation accumulates too much SWE compared to observations in the gridcell corresponding to the 

Yellowhead location. This overestimation is further explored for this site by expanding the time series 

back to 1979 (not shown), which reveals issues with PCIC precipitation data only during 1996-2004 

with considerable above normal anomalies at Yellowhead. While ANUSPLIN-VIC shows lower SWE 

amounts, the NARR-VIC and UW-VIC simulations reproduce the observed variation quite reasonably 5 

for Yellowhead. For McBride, all simulations are more or less comparable except ANUSPLIN-VIC 

showing a SWE underestimation compared to observations. In the middle Fraser, the UW-VIC 

simulation is quite comparable to observations whereas the PCIC-VIC simulation underestimates SWE 

at Mission Ridge. Both ANUSPLIN-VIC and NARR-VIC underestimate SWE in the middle Fraser 

locations. The observed SWE values in the lower Fraser locations are not well captured by VIC, 10 

perhaps owing to the region’s coastal influence and strong sensitivity to air temperatures (not shown). 

These results highlight the importance of accurate precipitation forcings to simulate SWE. Along with 

this, even small perturbations in air temperature can change the phase of precipitation, which directly 

contributes to changes in SWE accumulation.  

3.2.2 Comparison of observed versus simulated runoff 15 

The VIC simulated flows are routed to produce hydrographs for the Fraser River at Hope, BC (Fig. 6a). 

Comparison of simulated runoff with observations shows the highly consistent model performance for 

PCIC-VIC and UW-VIC simulations whereas the runoff is considerably lower for the ANUSPLIN-VIC 

simulation. The NARR-VIC hydrograph is comparable in magnitude with observations but the runoff 

timing is considerably shifted (~15 days) yielding more winter and spring runoff and earlier decline of 20 

flows in summer. The shift in the hydrograph is probably caused by the 2°C warmer air temperatures 
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causing earlier snowmelt. This finding was confirmed by a VIC sensitivity experiment where the air 

temperature was perturbed by 2°C while keeping the precipitation unchanged. Similar to the case of 

NARR-VIC results, the simulated SWE and runoff decreases with 2°C rises in air temperatures 

(Supplementary Fig. 5). The coefficient of variation in daily runoff for all four datasets reveals that 

variability in the PCIC-VIC and UW-VIC simulations is similar to observations (Fig. 6b). We further 5 

produced the hydrographs for the FRB’s six major sub-basins to compare VIC simulation runs of each 

basin. Similar to the hydrograph of the Fraser River at Hope, the ANUSPLIN-VIC runoff shows 

considerable disagreement with the observed hydrograph, especially in the UF, QU and TN basin owing 

to the dry bias in its precipitation forcing. Moreover, NARR-VIC runoff is overestimated in the SU, NA 

and CH sub-basins whereas for UF, QU and TN, the simulated runoff underestimates observed flows. 10 

Consistent with spatial differences of mean air temperature and runoff (Supplementary Figs. 1 and 3), 

the warmer NARR air temperatures (compared to PCIC) over the SU, NA and CH sub-basins in winter 

and spring induce more snowmelt and hence overestimate runoff. In contrast, over the UF, QU and TN, 

the NARR air temperature is comparatively cooler in winter. This may reduce the snowmelt driven 

runoff causing underestimation over these sub-basins. The PCIC-VIC hydrographs are better in most of 15 

the basins with high NSE scores (Supplementary Table 2).      

Differences seen in the FRB’s flow magnitude and timing clarify the impact of forcing uncertainties on 

the simulations. Such variation in simulated runoff especially during the snow-melting period (Apr-Jul) 

is either due to the uncertain amount of precipitation or the magnitude of air temperature in the forcing 

datasets.  20 
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We further investigated differences in forcings and their VIC simulation based on their climatic trends. 

The monthly climate trends in air temperature, precipitation and simulated runoff (Supplementary Fig. 

6) shows relatively similar warm air temperatures (up to 3°C in December) and the declined 

precipitation (mainly snowfall) during winter for all the four forcing datasets. The magnitude of trends 

in the NARR dataset is somewhat lower for air temperature and higher for precipitation compared to the 5 

other three datasets. In the simulated runoff, the monthly variation of trends generally agrees among 

simulations, but the trends are weak in the ANUSPLIN-VIC and UW-VIC simulations whereas the 

PCIC-VIC and NARR-VIC simulations exhibit strong trends. In the NARR-VIC simulations, runoff 

trends are affected by lower air temperature and higher precipitation trends yielding increasing runoff. 

Grid-scale trends show widespread differences in the NARR-VIC runoff, particularly in the interior of 10 

the FRB when compared to ANUSPLIN-VIC, UW-VIC and PCIC-VIC monthly trends (Supplementary 

Fig. 7). All four simulations exhibit strong positive runoff trends in April followed by declining trends 

in May in the Rocky Mountains (the UF and TN sub-basins).  

The inter-comparison analysis shows that the uncertainties in forcing datasets contribute substantially to 

the performance of the VIC model. This is consistent with studies reporting that the uncertainties in 15 

model structure contribute less to snowpack and runoff simulations (Troin et al., 2015, 2016), whereas 

the uncertainties in forcing datasets are the predominant sources of uncertainties (Kay et al., 2009; Chen 

et al., 2011). Using the NARR dataset, the systematic biases in simulations and the substantial effect of 

lateral boundary conditions on the performance of the regional model have also been identified in many 

other studies (de Elia et al., 2008; Eum et al., 2012).  20 
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While the small differences in precipitation are acceptable, the air temperature uncertainties play an 

especially important role in the hydrological simulations. In the FRB, air temperature controls summer 

water availability, making regional snowpacks more vulnerable to temperature-induced effects, rather 

than precipitation. Thus uncertainties in air temperatures are crucial for the runoff timing in 

hydrological simulations over the FRB rather than those in precipitation.  5 

3.3 Uncertainty in Calibration Optimizer  

We further investigated the uncertainty in the optimization of parameters during the calibration process. 

Many studies have evaluated the parameter uncertainties by adding random noise to the calibration 

parameters. We used a different approach by estimating the uncertainty in the MOCOM-UA optimizer 

used in the calibration of parameters. This was to estimate the optimizer uncertainty during the VIC 10 

calibration process using different values of initial parameters limits. The optimization process for the 

OPT1, OPT2, OPT3, OPT4 and OPT5 experiments required 39, 89, 61, 52, and 56 iterations, 

respectively, to optimize the b_inf, Ds, Ws, D2, D3 and Dsmax parameters to their final values (Table 

3). The corresponding mean monthly (as the optimizer cannot utilize daily data) runoff for the Fraser 

River at Hope in the OPT1, OPT2, OPT3, OPT4 and OPT5 experiments are quite different when 15 

compared to observations (Fig. 8). The NSE scores reveal different accuracy for the five simulations 

even when the parameters’ initial range in the OPT1, OPT3, OPT4 and OPT5 experiments is a subset of 

the OPT2 experiment. The optimization process for parameter calibration would require an expert’s 

experience to set the initial parameter range to converge them to their optimal values. Note that if the 

initial parameter uncertainty distribution is set as wide as it is physically meaningful, then the 20 
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optimization will require more computational time to converge toward the Pareto optimum. However, to 

set the initial parameter limits, the subjective judgement and skill based on experience is needed.  

While we performed many sets of experiments with different initial parameters, only OPT1’s initial 

limits produced higher NSE and utilized less computational time. The estimation of hydrologic model 

parameters depends significantly on the availability and quality of the precipitation and observed 5 

streamflow data along with the accuracy of the routing model used. It is therefore important to consider 

bias correction of forcing datasets as part of automatic calibration. The observed streamflow data used 

to calibrate the model are often based on water levels that are converted to discharge by the use of a 

rating curve, which can also induce uncertainty in the observed discharge data. The overall conclusion 

of this analysis is that the automated optimizers used to converge calibration parameters still rely on the 10 

hydrologist’s experience and some manual adjustment of initial calibration parameter ranges. 

3.4 Uncertainty in calibration due to PDO Phases 

The FRB streamflow varies from year to year as well on decadal timescales depending on the timing 

and magnitude of precipitation and air temperatures during the preceding winter and spring. Given that 

the FRB air temperature and precipitation are influenced by cool and warm phases of the PDO (Mantua 15 

et al., 1997; Fleming et al., 2010; Whitfield et al., 2010; Thorne and Woo, 2011), the choice of VIC 

calibration and validation periods may induce uncertainty in calibration. The influence of PDO phases 

in the forcing dataset can produce different snowpack and runoff levels in the hydrological simulation. 

The long term UW-VIC simulations (1949-2006) show higher mean SWE and runoff levels in a cool 

PDO phase (1949-1976) and lower mean values in a warm PDO phase (1979-2006) (Supplementary 20 
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Fig. 8). The interannual variations show earlier peak flows characterized by a warm PDO, in response to 

warmer basin conditions, increased rainfall, and earlier snowmelt. The VIC model calibrations may be 

biased towards hydrologic conditions of the warm and cold PDO phases and may induce uncertainties 

in the results. The model performance could be improved by calibrating and validating the model in the 

same PDO phase (experiments PDO1, PDO2 and PDO5), i.e. the NSE coefficient is similar in the 5 

calibration and validation periods (Table 4). If the calibration is performed in the cool PDO phase and 

validation in the warm PDO phase (experiment PDO3), the NSE score decreases to 0.79 for the 

validation period since the model calibration is biased towards the cool conditions, simulating higher 

flows for the Fraser River at Hope owing to more snow and later snowmelt. The same is true if the 

calibration and validation is performed in the warm and cool PDO phases, respectively (experiment 10 

PDO4). For each set of calibration experiments, the calibration parameters are different, which affects 

the formation of the snowpack, and the timing of snowmelt. Figure 9 shows observed and simulated 

runoff for the Fraser River at Hope revealing lower observed peak flows ~2.7 mm day
-1

 in a warm PDO 

phase (PDO1) and higher peak flows ~3.3 mm day
-1 

in a cool PDO phase (PDO2). Interestingly the UW 

driven PDO simulations underestimate peak flows in the warm PDO phase and overestimate them in the 15 

cool PDO phase whereas the NSE coefficient for both the cool and warm PDO phases is almost 

equivalent (Table 4). PDO 4 and PDO 5 experiments further support these findings. 

This analysis reveals that the hydrological model performance changes considerably with different 

climatic conditions and the choice of the calibration and validation time periods, an important factor in 

hydrological simulations. The proper implementation of a hydrological model requires a careful 20 
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calibration strategy to produce reliable hydrological information important for water resource 

management. 

4. Conclusions 

This study utilized ANUSPLIN, NARR, UW and PCIC observation-based gridded datasets to evaluate 

systematic inter-datasets uncertainties and their VIC simulated hydrological response over the FRB. The 5 

uncertainties involved in the optimization of model parameters and model calibration under cool and 

warm phases of the PDO were also examined. 

The air temperature in the PCIC and UW datasets were comparable while the PCIC precipitation 

remains quite high in the Rocky Mountains compared to the UW and NARR datasets. The ANUSPLIN 

precipitation forcing had a considerable dry bias over mountainous regions of the FRB compared to the 10 

NARR, UW and PCIC datasets. The NARR winter air temperature was 2C warmer than the other 

datasets over most of the FRB. The PCIC-VIC and UW-VIC simulations had higher NSE values and 

more reasonable hydrographs compared with observed flows for the Fraser River at Hope. Their 

performance for many of the FRB’s major sub-basins remained satisfactory. The PCIC-VIC simulation 

revealed higher SWE compared to other datasets, probably due to its higher precipitation amounts. The 15 

ANUSPLIN-VIC simulation had considerably lower runoff and NSE values along with less SWE and 

snowmelt amounts owing to its reduced precipitation. The NARR dataset showed warm winter air 

temperatures, which influenced its hydrological response by simulating less SWE and decreased 

snowmelt, and hence lower runoff. The monthly trend analysis distinguished the NARR dataset by 

showing decreased trends in air temperature and increased trends in precipitation and its VIC driven 20 
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runoff. The elevation dependence of maxSWE showed disagreements over the higher elevations of the 

Rocky Mountains between simulations where the PCIC-VIC simulation overestimated SWE and 

ANUSPLIN-VIC resulted in underestimation. Furthermore the elevation dependent variation of the 

maxSWE-day fluctuated considerably between simulations. 

The parametric uncertainty in the VIC calibration process revealed that the choice of the initial 5 

parameter range plays a crucial role in defining the model performance. During the PDO phases, choice 

of the calibration and validation time periods play a crucial role in defining the model hydrological 

response for the FRB. Model calibration was biased towards hydrologic conditions of the warm and 

cold PDO phases. The UW-VIC PDO simulations underestimated and overestimated the peak flows in 

the warm and cool PDO phases, respectively. 10 

This study’s inter-comparison revealed spatial and temporal differences amongst the ANUSPLIN, 

NARR, UW and PCIC datasets over the FRB, which is essential to capture the uncertainties in 

modelling hydrologic responses. Overall, the PCIC and UW datasets had reliable results for the FRB 

snow hydrology whereas the ANUSPLIN and NARR datasets had issues with either precipitation or 

with air temperature. The FRB snow-dominated hydrology and its complex elevation profile require 15 

highly accurate meteorological station densities to increase the reliability of the high resolution gridded 

datasets. While the air temperature plays a dominant role in the hydrological simulations, improving the 

quality of precipitation data can lead to more accurate hydrological responses in the FRB. Considerable 

precipitation bias can substantially degrade the model performance. There is the need for concrete 

methods to deal with the increasing uncertainty associated with the models themselves, and with the 20 

observations required for driving and evaluating the models. 
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In this study, the FRB hydrological response varied considerably under different forcing datasets, 

modelling parameters and remote teleconnections. However there are other sources of uncertainties not 

discussed here that may establish a range of possible impacts on hydrological simulations. First, the 

hydrological model used in this study runs at a daily time step, which can be increased to hourly to 

refine the model performance. The lack of the representation of glaciers in the current version of the 5 

VIC model may induce uncertainties in model results. Along with these, the VIC simulations are also 

affected by intrinsic uncertainties in its parameterizations such as, for example, the representation of 

cold processes (e.g., snowpacks and soil freezing). The in situ soil moisture observations that are not 

necessarily representative of the model grid scale may also contribute to the overall uncertainties in the 

results. Finally, hydrological simulations are mainly validated using comparisons between simulated 10 

and observed flows, which depend on routing models that may contain structural uncertainties. Our 

future work will investigate such uncertainties using high temporal and spatial resolution hydrological 

models over the FRB. 

Acknowledgments 

This work was supported by the NSERC-funded Canadian Sea Ice and Snow Evolution (CanSISE) 15 

Network. This manuscript was motivated by the Eric Wood Symposium held at Princeton University on 

2-3 June 2016. The authors are grateful to colleagues from the Pacific Climate Impacts Consortium 

(PCIC) for providing ongoing assistance with this research and to Dennis Lettenmaier at UCLA for 

providing assistance in the VIC model implementation. The authors are thankful to Michael Allchin 

(UNBC) for plotting Fig. 1a, Xiaogang Shi (Xi'an Jiaotong-Liverpool University) for development and 20 



33 

 

improvements of the UW dataset, and Do Hyuk Kang (NASA GSFC) for helping in setting up the VIC 

model over the FRB. Thanks to the anonymous referees and the handling editor for constructive 

comments that greatly improved the paper.  



34 

 

References 

Adam, J. C., Hamlet, A. F. and Lettenmaier, D. P.: Implications of global climate change for snowmelt 

hydrology in the twenty-first century, Hydrol. Process., 23, 962–972, doi:10.1002/hyp, 2009. 

Adam, J. C. and Lettenmaier, D. P.: Application of new precipitation and reconstructed streamflow 

products to streamflow trend attribution in Northern Eurasia, J. Clim., 21(8), 1807–1828, 5 

doi:10.1175/2007JCLI1535.1, 2008. 

Adam, J. C., Clark, E. A., Lettenmaier, D. P. and Wood, E. F.: Correction of global precipitation 

products for orographic effects, J. Clim., 19(1), 15–38, doi:10.1175/JCLI3604.1, 2006. 

Adam, J. C. and Lettenmaier, D. P: Adjustment of global gridded precipitation for systematic bias, J. 

Geophys. Res., 108(D9), 1–15, doi:10.1029/2002JD002499, 2003. 10 

Ainslie, B. and Jackson, P. L.: Downscaling and bias correcting a cold season precipitation climatology 

over coastal southern British Columbia using the regional atmospheric modeling system (RAMS), 

J. Appl. Meteorol. Climatol., 49(5), 937–953, doi:10.1175/2010JAMC2315.1, 2010.  

Anderson, J., Chung, F., Anderson, M., Brekke, L., Easton, D., Ejeta, M., Peterson, R. and Snyder, R.: 

Progress on incorporating climate change into management of California’s water resources, Clim. 15 

Change, 87(1 SUPPL 1):91, doi:10.1007/s10584-007-9353-1, 2007. 

Arsenault, R. and Brissette, F. P.: Continuous streamflow prediction in ungauged basins: The effects of 

equifinality and parameter set selection on uncertainty in regionalization approaches, Water Resour. 

Res., 50(7), 6135–6153, doi:10.1002/2013WR014898, 2014. 

BC Ministry of Forests, Lands and Natural Resource Operations: Automated Snow Pillow Data. 20 

[Available online at http://bcrfc.env.gov.bc.ca/data/asp/.], 2014. 

Benke, A. C. and Cushing, C. E.: Rivers of North America, Elsevier Press, New York, 607-732, 2005. 

Bennett, K. E., Werner, A. T. and Schnorbus, M.: Uncertainties in hydrologic and climate change 

impact analyses in headwater basins of British Columbia, J. Clim., 25(17), 5711–5730, 

doi:10.1175/JCLI-D-11-00417.1, 2012. 25 

Beven, K.: A manifesto for the equifinality thesis, J. Hydro., 320, 18–36, 2006. 

Chen, J., Brissette, F. P., Poulin, A. and Leconte, R.: Overall uncertainty study of the hydrological 

impacts of climate change for a Canadian watershed, Water Resour. Res., 47(12), W12509, 

doi:10.1029/2011WR010602, 2011. 

Cherkauer, K. A. and Sinha, T.: Hydrologic impacts of projected future climate change in the Lake 30 

Michigan region, J. Great Lakes Res., 36(SUPPL. 2), 33–50, doi:10.1016/j.jglr.2009.11.012, 2010. 



35 

 

Cherkauer, K. A., Bowling, L. C. and Lettenmaier, D. P.: Variable infiltration capacity cold land 

process model updates, Glob. Planet. Change, 38(1–2), 151–159, doi:10.1016/S0921-

8181(03)00025-0, 2003. 

Choi, G., Robinson, D. A. and Kang, S.: Changing northern hemisphere snow seasons, J. Clim., 23(19), 

5305–5310, doi:10.1175/2010JCLI3644.1, 2010.  5 

Choi, W., Kim, S. J., Rasmussen, P. F. and Moore, A. R.: Use of the North American Regional 

Reanalysis for hydrological modelling in Manitoba, Can. Water Resour. J., 34(1), 17–36, 

doi:10.4296/cwrj3401017, 2009.  

Christensen, N. S. and Lettenmaier, D. P.: A multimodal ensemble approach to assessment of climate 

change impacts on the hydrology and water resources of the Colorado River Basin, Hydrol. Earth 10 

Syst. Sci., 11, 1417–1434, 2007. 

Cuo, L., Lettenmaier, D. P., Alberti, M. and Richey, J. E.: Effects of a century of land cover and climate 

change on the hydrology of the Puget Sound basin, Hydrol. Process., 23(6), 907–933, 

doi:10.1002/hyp.7228, 2009.  

Danard, M. and Murty, T. S.: On recent climate trends in selected salmon-hatching areas of British 15 

Columbia, J. Clim., 7(11), 1803–1808, doi:10.1175/1520-

0442(1994)007<1803:ORCTIS>2.0.CO;2, 1994. 

de Elía, R., Caya, D., Côté, H., Frigon, A., Biner, S., Giguère, M., Paquin, D., Harvey, R. and Plummer, 

D.: Evaluation of uncertainties in the CRCM-simulated North American climate, Clim. Dyn., 30(2), 

113–132, doi:10.1007/s00382-007-0288-z, 2008. 20 

Déry S. J., Hernández-Henríquez, M.., Owens P. N., Parkes M. W. and Petticrew E. L.: A century of 

hydrological variability and trends in the Fraser River Basin, Environ. Res. Lett., 7(2), 24019, 

doi:10.1088/1748-9326/7/2/024019, 2012. 

Déry, S. J., Stieglitz, M., McKenna, E. C. and Wood, E. F.: Characteristics and trends of river discharge 

into Hudson, James, and Ungava Bays, 1964-2000, J. Clim., 18(14), 2540–2557, 25 

doi:10.1175/JCLI3440.1, 2005. 

Déry, S. J., Knudsvig, H. K., Hernández-Henríquez, M. A. and Coxson, D. S.: Net snowpack 

accumulation and ablation characteristics in the Inland Temperate Rainforest of the Upper Fraser 

River Basin, Canada, Hydrology, 1(1), 1–19, doi:10.3390/hydrology1010001, 2014.  

Déry, S. J., Stadnyk, T. A., MacDonald, M. K., and Gauli-Sharma, B.: Recent trends and variability in 30 

river discharge across northern Canada, Hydrol. Earth Syst. Sci., 20, 4801-4818, doi: 10.5194/hess-

20-1-2016, 2016. 



36 

 

Dodson R., Marks, D.: Daily air temperature interpolated at high spatial resolution over a large 

mountainous region, Clim. Research, 8:1−20, 1997. 

Elder, K., Dozier, J. and Michaelsen, J.: Snow accumulation and distribution in an Alpine Watershed, 

Water Resour. Res., 27(7), 1541–1552, doi:10.1029/91WR00506, 1991.  

Elsner, M. M., Cuo, L., Voisin, N., Deems, J. S., Hamlet, A. F., Vano, J. A., Mickelson, K. E. B., Lee, 5 

S. Y. and Lettenmaier, D. P.: Implications of 21st century climate change for the hydrology of 

Washington State, Clim. Change, 102(1–2), 225–260, doi:10.1007/s10584-010-9855-0, 2010. 

Environment Canada: Climate database. [Available online at http://climate.weather.gc.ca.], cited 2014. 

Essou, G. R. C., Arsenault, R. and Brissette, F. P.: Comparison of climate datasets for lumped 

hydrological modeling over the continental United States, J. Hydrol., 537, 334–345, 10 

doi:http://dx.doi.org/10.1016/j.jhydrol.2016.03.063, 2016a.  

Essou, G. R. C., Sabarly, F., Lucas-Picher, P., Brissette, F. and Poulin, A.: Can precipitation and 

temperature from meteorological reanalyses be used for hydrological modeling?, J. 

Hydrometeorol., 17(7), 1929–1950, doi:10.1175/JHM-D-15-0138.1, 2016b. 

Eum, H. Il, Dibike, Y., Prowse, T. and Bonsal, B.: Inter-comparison of high-resolution gridded climate 15 

data sets and their implication on hydrological model simulation over the Athabasca Watershed, 

Canada, Hydrol. Process., 28(14), 4250–4271, doi:10.1002/hyp.10236, 2014.  

Eum, H. Il, Gachon, P., Laprise, R. and Ouarda, T.: Evaluation of regional climate model simulations 

versus gridded observed and regional reanalysis products using a combined weighting scheme, 

Clim. Dyn., 38(7–8), 1433–1457, doi:10.1007/s00382-011-1149-3, 2012.  20 

Fleming, S. W. and Whitfield, P. H.: Spatiotemporal mapping of ENSO and PDO surface 

meteorological signals in British Columbia, Yukon, and southeast Alaska, Atmosphere-Ocean, 

48(2), 122–131, doi:10.3137/AO1107.2010, 2010.  

Foreman, M. G. G., Lee, D. K., Morrison, J., Macdonald, S., Barnes, D. and Williams, I. V.: 

Simulations and retrospective analyses of Fraser watershed flows and temperatures, Atmosphere-25 

Ocean, 39(2), 89–105, doi:10.1080/07055900.2001.9649668, 2001.  

Fowler, H. J., Blenkinsop, S. and Tebaldi, C.: Linking climate change modelling to impacts studies: 

Recent advances in downscaling techniques for hydrological modelling, Int. J. Climatol., 27(12), 

1547–1578, doi:10.1002/joc.1556, 2007.  

Gao, H., Tang, Q., Shi, X., Zhu, C., Bohn, T. J., Su, F., Sheffield, J., Pan, M., Lettenmaier, D. P. and 30 

Wood, E. F.: Water Budget Record from Variable Infiltration Capacity (VIC) Model. In Algorithm 

Theoretical Basis Document for Terrestrial Water Cycle Data Records (unpublished), 2009.  



37 

 

Gao, H., Tang, Q., Ferguson, C. R., Wood, E. F. and Lettenmaier, D. P.: Estimating the water budget of 

major US river basins via remote sensing, Int. J. Remote Sens., 31(14), 3955–3978, 

doi:10.1080/01431161.2010.483488, 2010. 

Graham, L. P., Hagemann, S., Jaun, S. and Beniston, M.: On interpreting hydrological change from 

regional climate models, Clim. Change, 81, 97–122, doi:10.1007/s10584-006-9217-0, 2007. 5 

Gupta, H. V., Kling, H., Yilmaz, K. K. and Martinez, G. F.: Decomposition of the mean squared error 

and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 

377(1–2), 80–91, doi:10.1016/j.jhydrol.2009.08.003, 2009.  

Haddeland, I., Skaugen, T. and Lettenmaier, D. P.: Hydrologic effects of land and water management in 

North America and Asia: 1700-1992, Hydrol. Earth Syst. Sci., 11(2), 1035–1045, doi:10.5194/hess-10 

11-1035-2007, 2007. 

Hidalgo, H. G., Das, T., Dettinger, M. D., Cayan, D. R., Pierce, D. W., Barnett, T. P., Bala, G., Mirin, 

A., Wood, A. W., Bonfils, C., Santer, B. D. and Nozawa, T.: Detection and attribution of 

streamflow timing changes to climate change in the western United States, J. Clim., 22(13), 3838–

3855, doi:10.1175/2009JCLI2470.1, 2009. 15 

Hopkinson, R. F., Mckenney, D. W., Milewska, E. J., Hutchinson, M. F., Papadopol, P. and Vincent, L. 

A.: Impact of aligning climatological day on gridding daily maximum-minimum temperature and 

precipitation over Canada, J. Appl. Meteorol. Climatol., 50(8), 1654–1665, 

doi:10.1175/2011JAMC2684.1, 2011.  

Horton, P., Schaefli, B., Mezghani, A., Hingray, B. and Musy, A.: Assessment of climate-change 20 

impacts on alpine discharge regimes with climate model uncertainty, Hydrol. Process., 20, 2091–

2109, 2006.  

Hutchinson, M. F., McKenney, D. W., Lawrence, K., Pedlar, J. H., Hopkinson, R. F., Milewska, E. and 

Papadopol, P.: Development and testing of Canada-wide interpolated spatial models of daily 

minimum–maximum temperature and precipitation for 1961–2003, J. Appl. Meteorol. Climatol., 25 

48(4), 725–741, doi:10.1175/2008JAMC1979.1, 2009. 

Islam, S. U., Déry, S. J., Werner, A. T.: Future climate change impacts on snow and water resources of 

the Fraser River Basin, British Columbia, J. Hydrometeorol., JHM-D-16-0012.1, doi:10.1175/JHM-

D-16-0012.1, 2017. 

Jiang, T., Chen, Y. D., Xu, C., Chen, X., Chen, X. and Singh, V. P.: Comparison of hydrological 30 

impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South 

China, J. Hydrol., 336(3–4), 316–333, doi:10.1016/j.jhydrol.2007.01.010, 2007.  



38 

 

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., 

White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., 

Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R. and Joseph, D.: The NCEP/NCAR 

40-year reanalysis project, Bull. Am. Meteorol. Soc., 77(3), 437–471, doi:10.1175/1520-

0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.  5 

Kang, D. H., Gao, H., Shi, X., Islam, S. U. and Déry, S. J.: Impacts of a rapidly declining mountain 

snowpack on streamflow timing in Canada’s Fraser River Basin, Sci. Rep., 6, 19299, 

doi:10.1038/srep19299, 2016. 

Kang, D. H., Shi, X., Gao, H. and Déry, S. J.: On the changing contribution of snow to the hydrology of 

the Fraser River Basin, Canada, J. Hydrometeorol., 15(4), 1344–1365, doi:10.1175/JHM-D-13-10 

0120.1, 2014. 

Kay, A. L., Davies, H. N., Bell, V. A. and Jones, R. G.: Comparison of uncertainty sources for climate 

change impacts: Flood frequency in England, Clim. Change, 92(1–2), 41–63, doi:10.1007/s10584-

008-9471-4, 2009.  

Kendall, M. G.: Rank Correlation Methods. 4th ed. Griffin, 202 pp., 1970. 15 

Keshta, N. and Elshorbagy, A.: Utilizing North American Regional Reanalysis for modeling soil 

moisture and evapotranspiration in reconstructed watersheds, Phys. Chem. Earth, 36(1–4), 31–41, 

doi:10.1016/j.pce.2010.12.001, 2011.  

Klemeš, V.: Operational testing of hydrological simulation models, Hydrol. Sci. J., 31(1), 13–24, 

doi:10.1080/02626668609491024, 1986. 20 

Kistler, R., Collins, W., Saha, S., White, G., Woollen, J., Kalnay, E., Chelliah, M., Ebisuzaki, W., 

Kanamitsu, M., Kousky, V., van den Dool, H., Jenne, R. and Fiorino, M.: The NCEP–NCAR 50–

Year Reanalysis: Monthly Means CD–ROM and Documentation, Bull. Am. Meteorol. Soc., 82(2), 

247–267, doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2, 2001.  

Lettenmaier, D. P., Wood, E. F. and Wallis, J. R.: Hydro-climatological trends in the continental United 25 

States, 1948-88, J. Clim., 7(4), 586–607, doi:10.1175/1520-

0442(1994)007<0586:HCTITC>2.0.CO;2, 1994. 

Liang, X., Lettenmaier, D. P., Wood, E. F. and Burges, S. J.: A simple hydrologically based model of 

land surface water and energy fluxes for general circulation models, J. Geophys. Res. Atmos., 

99(D7), 14415–14428, doi:10.1029/94JD00483, 1994.  30 

Liang, X., Wood, E. F. and Lettenmaier, D. P.: Surface soil moisture parameterization of the VIC-2L 

Model: Evaluation and modifications, Glob. Planet. Chang., 13, 195–206, 1996.  



39 

 

Liu, Y. and Gupta, H. V.: Uncertainty in hydrologic modeling: Toward an integrated data assimilation 

framework, Water Resour. Res., 43(7), W07401, doi:10.1029/2006WR005756, 2007.  

Lohmann, D., Nolte-Holube, R. and Raschke, E.: A large-scale horizontal routing model to be coupled 

to land surface parametrization schemes, Tellus, Ser. A Dyn. Meteorol. Oceanogr., 48(5), 708–721, 

doi:10.1034/j.1600-0870.1996.t01-3-00009.x, 1996.  5 

Lohmann, D., Raschke, E., Nijssen, B. and Lettenmaier, D. P.: Regional scale hydrology: I. 

Formulation of the VIC-2L model coupled to a routing model, Hydrol. Sci. J., 43(1), 131–141, 

doi:10.1080/02626669809492107, 1998a. 

Lohmann, D., Raschke, E., Nijssen, B. and Lettenmaier, D. P.: Regional scale hydrology: II. 

Application of the VIC-2L model to the Weser River, Germany, Hydrol. Sci. J., 43(1), 143–158, 10 

doi:10.1080/02626669809492108, 1998b.  

Luo, Y., Berbery, E. H., Mitchell, K. E. and Betts, A. K.: Relationships between land surface and near-

surface atmospheric variables in the NCEP North American Regional Reanalysis, J. 

Hydrometeorol., 8, 1184–1203, doi:10.1175/2007JHM844.1, 2007.  

Mann, H. B.: Nonparametric tests against trend, Econom., 245–259, 15 

doi:10.1017/CBO9781107415324.004, 1945.  

Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. and Francis, R. C.: A Pacific interdecadal climate 

oscillation with impacts on salmon production, Bull. Am. Meteorol. Soc., 78(6), 1069–1079, 

doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2, 1997.  

Matsuura, K., and Willmott C. J.: Terrestrial precipitation: 1900–2008 gridded monthly time series 20 

(version 2.01). Center for Climatic Research, Department of Geography, University of Delaware, 

Newark, DE, digital media. [Available online at http://climate.geog.udel.edu/~climate/.], 2009. 

Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P. and Nijssen, B.: A long-term 

hydrologically based dataset of land surface fluxes and states for the conterminous United States, J. 

Clim., 15(22), 3237–3251, doi:10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2, 2002.  25 

Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W., Jović, D., Woollen, 

J., Rogers, E., Berbery, E. H., Ek, M. B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., 

Manikin, G., Parrish, D. and Shi, W.: North American regional reanalysis, Bull. Am. Meteorol. 

Soc., 87(3), 343–360, doi:10.1175/BAMS-87-3-343, 2006.  

Moore, R. and Wondzell, S. M.: Physical hydrology and the effects of forest harvesting in the Pacific 30 

Northwest: A review, J. Am. Water Resour. Assoc., 41(4), 763–784, doi:10.1111/j.1752-

1688.2005.tb03770.x, 2005. 



40 

 

Moore, R. D.: Hydrology and Water Supply in the Fraser River Basin. In Water in Sustainable 

Development: Exploring Our Common Future in the Fraser River Basin, AHJ Dorcey, JR Griggs 

(eds). Wastewater Research Centre, The University of British Columbia: Vancouver, British 

Columbia, Canada; 21–40, 1991. 

Mote, P. W., Hamlet, A. F., Clark, M. P. and Lettenmaier, D. P.: Declining mountain snowpack in 5 

western North America, Bull. Am. Meteorol. Soc., 86(1), 39–49, doi:10.1175/BAMS-86-1-39, 

2005.  

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I - A discussion 

of principles, J. Hydrol., 10(3), 282–290, doi:10.1016/0022-1694(70)90255-6, 1970. 

Neilsen, D., Duke, G., Taylor, B., Byrne, J., Kienzle, S. and der Gulik, T. Van: Development and 10 

verification of daily gridded climate surfaces in the Okanagan Basin of British Columbia, Can. 

Water Resour. J., 35(2), 131–154, doi:10.4296/cwrj3502131, 2010.  

Nigam, S. and Ruiz-Barradas, A.: Seasonal hydroclimate variability over North America in global and 

regional reanalyses and AMIP simulations: Varied representation, J. Clim., 19(5), 815–837, 

doi:10.1175/JCLI3635.1, 2006.  15 

Nijssen, B., Schnur, R. and Lettenmaier, D. P.: Global retrospective estimation of soil moisture using 

the Variable Infiltration Capacity land surface model, 1980–93, J. Clim., 14(8), 1790–1808, 

doi:10.1175/1520-0442(2001)014<1790:GREOSM>2.0.CO;2, 2001a. 

Nijssen, B., O’Donnell, G. M., Lettenmaier, D. P., Lohmann, D. and Wood, E. F.: Predicting the 

discharge of global rivers, J. Clim., 14(15), 3307–3323, doi:10.1175/1520-20 

0442(2001)014<3307:PTDOGR>2.0.CO;2, 2001b.  

Nijssen, B., Lettenmaier, D. P., Liang, X., Wetzel, S. W., Wood, E. F.: Streamflow  simulation  for  

continental-scale river basins. Water Resour. Res., 33, 711–724, 1997. 

NRCan.: Regional, national and international climate modeling. Retrieved from 

http://cfs.nrcan.gc.ca/projects/3?lang=en_CA, 2014. 25 

Oubeidillah, A. A., Kao, S. C., Ashfaq, M., Naz, B. S. and Tootle, G.: A large-scale, high-resolution 

hydrological model parameter data set for climate change impact assessment for the conterminous 

US, Hydrol. Earth Syst. Sci., 18(1), 67–84, doi:10.5194/hess-18-67-2014, 2014.  

Pietroniro, A., Leconte, R., Toth, B., Peters, D. L., Kouwen, N., Conly, F. M. and Prowse, T. D.: 

Modelling climate change impacts in the Peace and Athabasca catchment and delta: III - Integrated 30 

model assessment, Hydrol. Process., 20(19), 4231–4245, doi:10.1002/hyp.6428, 2006. 



41 

 

Poulin, A., Brissette, F., Leconte, R., Arsenault, R. and Malo, J. S.: Uncertainty of hydrological 

modelling in climate change impact studies in a Canadian, snow-dominated river basin, J. Hydrol., 

409(3–4), 626–636, doi:10.1016/j.jhydrol.2011.08.057, 2011.  

Reed, S., Koren, V., Smith, M., Zhang, Z., Moreda, F. and Seo, D. J.: Overall distributed model 

intercomparison project results, J. Hydrol., 298, 27–60, 2004.  5 

Rinke, A., Marbaix, P. and Dethloff, K.: Internal variability in Arctic regional climate simulations: Case 

study for the SHEBA year, Clim. Res., 27(3), 197–209, doi:10.3354/cr027197, 2004.  

Rodenhuis, D., Bennett, K. and Werner, A., Murdock, Q. and Bronaugh,:  Hydro-climatology and future 

climate impacts in British Columbia.  Pacific Climate Impacts Consortium, University of Victoria, 

Victoria, BC, 132 pp., 2009 10 

Ruane, A. C.: NARR’s atmospheric water cycle components. Part I: 20-year mean and annual 

interactions, J. Hydrometeorol., 11(6), 1205–1219, doi:10.1175/2010JHM1193.1, 2010.  

Sabarly, F., Essou, G., Lucas-Picher, P., Poulin, A. and Brissette, F.: Use of four reanalysis datasets to 

assess the terrestrial branch of the water cycle over Quebec, Canada, J. Hydrometeorol., 17(5), 1447–

1466, doi:10.1175/JHM-D-15-0093.1, 2016. 15 

Schnorbus, M., Bennett, K. and Werner, A.: Quantifying the water resource impacts of mountain pine 

beetle and associated salvage harvest operations across a range of watershed scales : Hydrologic 

modelling of the Fraser River Basin,. Information Report:  BC-X-423, Natural Resources Canada, 

Canadian Forestry Service, Pacific Forestry Centre, Victoria, BC, 79 pp, 2010. 

Schnorbus, M., Bennett, K., Werner, A. and Berland, A. J.: Hydrologic Impacts of Climate Change in 20 

the Peace, Campbell and Columbia Sub-basins, British Columbia, Canada. Pacific Climate Impacts 

Consortium, University of Victoria: Victoria, BC, 157 pp., 2011 

Seiller, G., Anctil, F., and Perrin, C.: Multimodel evaluation of twenty lumped hydrological models 

under contrasted climate conditions, Hydrol. Earth Syst. Sci., 16, 1171-1189, doi:10.5194/hess-16-

1171-2012, 2012. 25 

Sheffield, J., Goteti, G., and Wood, E. F.: Development of a 50-yr high-resolution global dataset of 

meteorological forcings for land surface modeling, J. Clim., 19(13), 3088 – 3111, 2006. 

Sheffield, J., Livneh, B. and Wood, E. F.: Representation of terrestrial hydrology and large-scale 

drought of the continental United States from the North American Regional Reanalysis, J. 

Hydrometeorol., 13, 856–876, doi:10.1175/JHM-D-11-065.1, 2012. 30 



42 

 

Shi, X., Déry, S. J., Groisman, P. Y. and Lettenmaier, D. P.: Relationships between recent pan-arctic 

snow cover and hydroclimate trends, J. Clim., 26(6), 2048–2064, doi:10.1175/JCLI-D-12-00044.1, 

2013. 

Shi, X., Wood, A. W. and Lettenmaier, D. P.: How essential is hydrologic model calibration to seasonal 

streamflow forecasting?, J. Hydrometeorol., 9(6), 1350–1363, doi:10.1175/2008JHM1001.1, 2008. 5 

Shrestha, R. R., Schnorbus, M. A., Werner, A. T. and Berland, A. J.: Modelling spatial and temporal 

variability of hydrologic impacts of climate change in the Fraser River basin, British Columbia, 

Canada, Hydrol. Process., 26(12), 1841–1861, doi:10.1002/hyp.9283, 2012.  

Stahl, K., Moore, R. D., Floyer, J. A., Asplin, M. G. and McKendry, I. G.: Comparison of approaches 

for spatial interpolation of daily air temperature in a large region with complex topography and 10 

highly variable station density, Agric. For. Meteorol., 139(3–4), 224–236, 

doi:10.1016/j.agrformet.2006.07.004, 2006.  

Su, F. G., et al.: Streamflow simulations of the terrestrial Arctic domain, J. Geophys. Res.-Atmos., 

110(D8), 2005. 

Tapiador, F. J., Turk, F. J., Petersen, W., Hou, A. Y., García-Ortega, E., Machado, L. A. T., Angelis, C. 15 

F., Salio, P., Kidd, C., Huffman, G. J. and de Castro, M.: Global precipitation measurement: 

Methods, datasets and applications, Atmos. Res., 104–105, 70–97, 

doi:10.1016/j.atmosres.2011.10.021, 2012.  

Teutschbein, C., Wetterhall, F. and Seibert, J.: Evaluation of different downscaling techniques for 

hydrological climate-change impact studies at the catchment scale, Clim. Dyn., 37(9), 2087–2105, 20 

doi:10.1007/s00382-010-0979-8, 2011.  

Thorne, R. and Woo, M. K.: Streamflow response to climatic variability in a complex mountainous 

environment: Fraser River Basin, British Columbia, Canada, Hydrol. Process., 25(19), 3076–3085, 

doi:10.1002/hyp.8225, 2011.  

Tobin, C., Nicotina, L., Parlange, M. B., Berne, A. and Rinaldo, A.: Improved interpolation of 25 

meteorological forcings for hydrologic applications in a Swiss Alpine region, J. Hydrol., 401(1–2), 

77–89, doi:10.1016/j.jhydrol.2011.02.010, 2011.  

Tong, J., Déry, S. J., Jackson, P. L. and Derksen, C.: Testing snow water equivalent retrieval algorithms 

for passive microwave remote sensing in an alpine watershed of western Canada, Can. J. Remote 

Sens., 36, S74-S86, doi:10.5589/m10-009, 2010.  30 

Troin, M., Arsenault, R. and Brissette, F.: Performance and uncertainty evaluation of snow models on 

snowmelt flow simulations over a Nordic catchment (Mistassibi, Canada), Hydrology, 2(4), 289–

317, doi:10.3390/hydrology2040289, 2015. 



43 

 

Troin, M., Poulin, A., Baraer, M. and Brissette, F.: Comparing snow models under current and future 

climates: Uncertainties and implications for hydrological impact studies, J. Hydrol., 540, 588–602, 

doi:10.1016/j.jhydrol.2016.06.055, 2016. 

Trubilowicz, J. W., Shea, J. M., Jost, G. and Moore, R. D.: Suitability of North American Regional 

Reanalysis (NARR) output for hydrologic modelling and analysis in mountainous terrain, Hydrol. 5 

Process., 30(13), 2332–2347, doi:10.1002/hyp.10795, 2016.  

Velazquez, J. A., Schmid, J., Ricard, S., Muerth, M. J., Gauvin St-Denis, B., Minville, M., Chaumont, 

D., Caya, D., Ludwig, R. and Turcotte, R.: An ensemble approach to assess hydrological models’ 

contribution to uncertainties in the analysis of climate change impact on water resources, Hydrol. 

Earth Syst. Sci., 17(2), 565–578, doi:10.5194/hess-17-565-2013, 2013. 10 

Wade, N. L., Martin, J. and Whitfield, P. H.: Hydrologic and climatic zonation of Georgia Basin, 

British Columbia, Can. Water Resour. J., 26(1), 43–70, doi:10.4296/cwrj2601043, 2001.  

Wagener, T. and Gupta, H. V.: Model identification for hydrological forecasting under uncertainty, 

Stoch. Environ. Res. Risk Assess., 19(6), 378–387, doi:10.1007/s00477-005-0006-5, 2005. 

Water Survey of Canada: HYDAT database. [Available online at http://www.ec.gc.ca/rhc-wsc/.], 2014. 15 

Wen, L., Lin, C. A., Wu, Z., Lu, G., Pomeroy, J. and Zhu, Y.: Reconstructing sixty year (1950-2009) 

daily soil moisture over the Canadian Prairies using the Variable Infiltration Capacity model, Can. 

Water Resour. J., 36(1), 83–102, doi:10.4296/cwrj3601083, 2011. 

Whitfield, P. H., Moore, R. D., Fleming, S. W. and Zawadzki, A.: Pacific Decadal Oscillation and the 

hydroclimatology of Western Canada—Review and prospects, Can. Water Resour. J., 35(1), 1–28, 20 

doi:10.4296/cwrj3501001, 2010.  

Wilby, R. L. and Harris, I.: A framework for assessing uncertainties in climate change impacts: Low-

flow scenarios for the River Thames, UK, Water Resour. Res., 42(2), W02419, 

doi:10.1029/2005WR004065, 2006.  

Woo, M. K. and Thorne, R.: Snowmelt contribution to discharge from a large mountainous catchment 25 

in subarctic Canada, Hydrol. Process., 20, 2129–2139, 2006.  

Wu, H., Kimball, J. S., Mantua, N. and Stanford, J.: Automated upscaling of river networks for 

macroscale hydrological modeling, Water Resour. Res., 47(3), W03517, 

doi:10.1029/2009WR008871, 2011.  

Yapo, P. O., Gupta, H. V. and Sorooshian, S.: Multi-objective global optimization for hydrologic 30 

models, J. Hydrol., 204(1–4), 83–97, doi:10.1016/S0022-1694(97)00107-8, 1998.  



44 

 

Zhou, T., Nijssen, B., Gao, H. and Lettenmaier, D. P.: The contribution of reservoirs to global land 

surface water storage variations, J. Hydrometeorol., 309–325, doi:10.1175/JHM-D-15-0002.1, 

2016.  

Ziegler, A. D., Sheffield, J., Maurer, E. P., Nijssen, B., Wood, E. F. and Lettenmaier, D. P.: Detection 

of intensification in global- and continental-scale hydrological cycles: Temporal scale of 5 

evaluation, J. Clim., 16(3), 535–547, doi:10.1175/1520-0442(2003)016<0535:DOIIGA>2.0.CO;2, 

2003. 
  



45 

 

Table 1: Description of VIC inter-comparison experiments performed using observational forcings.    

VIC model Driving data Time Span 
Ensemble 

Runs 
VIC configuration Description 

The Canadian Precipitation Analysis and the 

thin-plate smoothing splines 

(ANUSPLIN, Hopkinson et al., 2011) 

1979-1990 (Cal.) 

1991-2006 (Val.) 
5 

Domain =  48°– 55°N and 119°–

131°W 

Resolution = 25 km ×  25 km, 

Time Step = Daily 

Soil Layers = 3 

Vertical elevation bands = 10 

Validation runs 

are initiated 5 

times with 

different initial 

conditions. 

 

North American Regional Reanalysis 

(NARR, Mesinger et al., 2006) 

Pacific Climate Impacts Consortium 

(PCIC, Shrestha et al., 2012) 

University of Washington 

(UW, Shi et al., 2013) 
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Table 2: Daily performance metrics for the VIC inter-comparison runs. Calibration (1979–1990) and validation (1991–2006) for 

Fraser River main stem at Hope, BC is evaluated using the Nash–Sutcliffe Efficiency (NSE) coefficient and correlation coefficient 

(r, all statistically-significant at p < 0.05).   

Experiments 1979-1990 

Daily Calibration 

1991-2006 

Daily Validation 

NSE r  NSE r  

ANUSPLIN-VIC 0.54 0.91 0.55 0.94 

NARR-VIC 0.67 0.85 0.81 0.90 

PCIC-VIC 0.90 0.96 0.90 0.95 

UW-VIC 0.82 0.94 0.80 0.92 

 

5 
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Table 3: Parameters used to optimize during the calibration process for mean daily runoff for the Fraser River at Hope. OPT1, 

OPT2, OPT3, OPT4 and OPT5 are different experiments using same forcing data but with different initial range for each 

calibration parameter.  

VIC model  

Calibration  

Parameters (units) 

Description 

Initial Range 

(Final Optimized Parameters) 

Experiment 

OPT1 

Experiment 

OPT2 

Experiment 

OPT3 

Experiment 

OPT4 

Experiment 

OPT5 

b_inf Controls the partitioning of 

precipitation (or snowmelt) 

into surface runoff or 

infiltration 

0.2-0.00001 

(0.07) 

0.3-0.00001 

(0.16) 

0.25-0. 10 

(0.10) 

0.1-0.0001 

(0.08) 

0.16-0.12 

(0.12) 

Ds 
Fraction of maximum 

baseflow velocity 

0.1-0.000001 

(0.05) 

0.9-0.00001 

(0.09) 

0.30-0.04 

(0.05) 

0.6-0.0001 

(0.19) 

0.09-0.03 

(0.05) 

Ws Fraction of maximum soil 

moisture content of the third 

soil layer at which nonlinear 

baseflow occurs 

0.6-0.20 

(0.33) 

1.0-0.1 

(0.49) 

0.65-0.20 

(0.50) 

0.5-0.3 

(0.42) 

0.35-0.20 

(0.31) 

D2 (m) The second soil layer 

thicknesses, which affect the 

water available for 

transpiration 

1.0-0.7 

(0.82) 

3.0-0.7 

(1.02) 

0.80-0.70 

(0.76) 

2.8-1.0 

(1.07) 

0.80-0.70 

(0.78) 

D3 (m) The third soil layer 

thicknesses, which affect the 

water available for baseflow 

2.5-0. 7 

(1.66) 

5.5-0.7 

(2.70) 

2.00-1.00 

(1.82) 

3.0-1.0 

(1.38) 

1.8-1.2 

(1.76 ) 

Dsmax (mm day-

1) Maximum baseflow velocity 

18.0-12.0 

(16.0) 

30.0-12.0 

(22.71) 

23.0-12.0 

(14.28) 

18-12 

(16.22) 

16-13 

(14.11) 

Monthly NSE - 0.93 0.84 0.92 0.89 0.91 

 

5 
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Table 4: Daily performance metrics for the UW forcing driven PDO runs. Calibration and validation for Fraser River main stem 

at Hope, BC is evaluated using the NSE coefficient using the dataset. See text for the detail of PDO experiments. 

Experiment Name 

Calibration Validation 

NSE 

(Time period) 

PDO Phase 

(Flows) 

NSE 

(Time period) 

PDO Phase 

(Flows) 

PDO1 
0.84 

(1981-1990) 

Warm 

(low flows) 

0.84 

(1991-2001) 

Warm 

(low flows) 

PDO2 
0.84 

(1957-1966) 

Cool 

(high flows) 

0.85 

(1967-1976) 

Cool 

(high flows) 

PDO3 
0.84 

(1967-1976) 

Cool 

(high flows) 

0.79 

(1977-1987) 

Warm 

(low flows) 

PDO4 
0.86 

(1977-1987) 

Warm 

(low flows) 

0.80 

(1967-1976) 

Cool 

(high flows) 

PDO5 
0.89 

(1991-2001) 

Warm 

(low flows) 

0.87 

(1981-1990) 

Warm 

(low flows) 
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Figure 1: (a) High-resolution digital elevation map of the FRB with identification of major sub-basins including the Fraser River 

main stem at Hope, BC. (b) FRB mean elevation (m) per VIC model gridcell. The location of the hydrometric gauge on the Fraser 

Rivers’ main stem at Hope is highlighted in both plots with black circles. 

   



50 

 

 

Figure 2: Area-averaged time series of mean daily air temperature (dotted lines) and daily precipitation (solid lines) over the (a) 

Rocky Mountains, (b) Interior Plateau, and (c) Coast Mountains for the ANUSPLIN, NARR, UW and PCIC forcing datasets, 

water years 1979-2006. Water year starts on 1 October and ends on 30 September of the following calendar year. 
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Figure 3: Area-averaged time series of daily mean (a) SWE and (b) SWEmelt for the ANUSPLIN-VIC, NARR-VIC, UW-VIC and 

PCIC-VIC simulations averaged over the Rocky Mountains, water years 1979-2006. Water year starts on 1 October and ends on 

30 September of the following calendar year. 
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Figure 4: Spatial differences of mean seasonal SWE (mm) based on PCIC-VIC minus ANUSPLIN-VIC (1st row), NARR -VIC (2nd 

row) and UW (3rd row) simulations, water years 1979-2006. DFJ, MAM, JJA and SON correspond to winter, spring, summer and 

autumn,  respectively.  
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Figure 5: Variation of (a, c, e) maxSWE and corresponding (b, d, e) maxSWE-day for the ANUSPLIN-VIC, NARR-VIC, UW-VIC 

and PCIC-VIC simulations averaged over the (a, b) Rocky Mountains, (c, d) Interior Plateau and (e, f) Coast Mountains, water 

years 1979-2006.   
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Figure 6: The simulated and observed daily (a) runoff and (b) coefficient of variation (CV) for the Fraser River at Hope averaged 

over water years 1979-2006. An external routing model is used to calculate runoff for the ANUSPLIN-VIC, NARR-VIC, UW-VIC 

and PCIC-VIC simulations. Water year starts on 1 October and ends on 30 September of the following calendar year. 
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Figure 7: Same as Figure 6a but for the FRB’s six major sub-basins (a) Fraser-Shelley (UF), (b) Stuart (SU), (c) Nautley (NA), (d) 

Quesnel (QU), (e) Chilko (CH) and (f) Thompson-Nicola (TN).  
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Figure 8: UW-VIC simulations using five different parameter sets (labelled as OPT1, OPT2, OPT3, OPT4 and OPT5, see text and 

Table 3 for details) are compared for mean monthly discharge for the Fraser River at Hope during calibration period 1979-1990. 

The black curve represents observed monthly discharge. 
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Figure 9: UW-VIC simulated daily runoff during calibration (cal.) and validation (val.) for the Fraser River at Hope, BC.  PDO1, 

PDO2, PDO3, PDO4 and PDO5 refer to the VIC experiments performed during different experimental setups (see text and Table 

4 for details). Water year starts on 1 October and ends on 30 September of the following calendar year. 


