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12 January 2017 

 

Dr. Mark F. P. Bierkens  

Special Eric Wood Issue 

Hydrology and Earth System Sciences 

 

Dear Dr. Bierkens: 

 

Thank you for your decision on our manuscript titled “Evaluating uncertainties in modelling the 

snow hydrology of the Fraser River Basin, British Columbia, Canada” by Siraj Ul Islam and 

Stephen J. Déry (Reference # HESS-2016-469). We fully appreciate the detailed and 

constructive comments provided by the anonymous Referees #1 and #2. We have carefully 

revised our manuscript by addressing all concerns and comments of the referees’ to the best of 

our ability. Our point-by-point response (in bold italic lettering) to each of the referees’ 

comment/suggestion is enumerated in the attached document.  

 

Please let us know if additional information or points of clarification are required.  

 

Thank you. 

 

Sincerely yours, 

 

Stephen Déry 
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Referee # 1: 

This manuscript provides an assessment of the uncertainties in hydrological modelling over the 

FRB, BC, Canada. The authors used four precipitation dataset and a calibration routine to 

quantify and characterize the uncertainties to related to meteorological and parameters estimates. 

The manuscript is well written and covers an interesting topic, however, I feel some issues have 

not been properly addressed. I suggest moderate revisions to the manuscript before publication. 

In general I think some of the procedures could be implemented more consistent to ensure that 

the conclusions of the paper are better. 

We recognize that there are complexities in our procedures that were not thoroughly 

addressed. In our revision process, we have paid special attention to ensure our results and 

discussions are more consistent. This is accomplished by means of additional hydrological 

model simulations and analyses. 

Page 11 Line 19-20 The authors want to study the impact of different forcing dataset and their 

related uncertainties in hydrological simulations. They mention a couple of times that the errors 

in mountainous precipitation might cause significant discrepancies between dataset and therefore 

they use four different datasets to study that impact. Although the datasets all have their own 

resolution, the authors decide to bilinear interpolate all of them to a common grid of 25km 

without taking into account elevation corrections. I believe this procedure will add to the forcing 

uncertainty, especially for the coarser resolution since they are downscaled to a resolution 

without including the high resolution elevation data to correct for orographic effects. I think it 

would be good if the authors could provide some estimate for the uncertainty added by the 

bilinear interpolation without conditioning on the elevation profile. 

We agree that the elevation correction should be explicitly accounted for in the interpolation 

methodology to correct for orographic effects. Such correction is highly important when 

interpolating from coarser to higher spatial resolutions, especially in mountainous terrain 

(Dodson and Marks, 1997). However, in our interpolation methodology the NARR (32 km) 

dataset is interpolated from coarse resolution, curvilinear grids to slightly higher (25 km) 

resolution, rectilinear grids. On the other hand, both the PCIC (6 km) and ANSUPLIN (10 km) 

datasets are interpolated to a coarser resolution (25 km). Interpolating the NARR dataset from 

a 32 km to a 25 km resolution does not induce much elevation dependent uncertainties since 

the change in orography remains minimal between mean elevations at 25 km and 32 km grid 

resolutions (Figure A). Thus the relationship of atmospheric variables such as air temperature 

with elevation remains nearly identical at both resolutions. In the revision, we have 

nonetheless highlighted this source of uncertainty at Page 11, Lines 15-21 and Page 12, Lines 

1-2 along with the details of the interpolation process. 
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Figure A: Comparison of mean elevation (m) at 25 km and 32 km resolutions over the part of 

British Columbia covering the Fraser River Basin (black outlines).   

Section 2.4.1 Why did the authors select these parameters? Is there sensitivity information that 

could be used to identify the most sensitive parameters? Maybe the impact of the routing model 

is more prominent, while it is not calibrated and doesn’t account for the reservoirs and lakes 

present in the FRB. In addition, none of the snow parameters is calibrated, while the authors 

mention the importance of snow throughout the manuscript. Maybe a calibration on the snow 

processes (compaction, sublimation or just simple degree day factor), would further benefit the 

discharge simulation at the outlet and for the sub-catchments. 

We selected these parameters for calibration based on the manual calibration experience from 

previous studies by Nijssen et al. (1997), Su et al. (2005), Shi et al. (2008), Kang et al. (2014, 

2016) and Islam et al. (2016), among others. VIC is a physically based hydrologic model that 

has many (about 20, depending on how the term “parameter” is defined) parameters that must 

be specified. However, the usual implementation approach involves the calibration of only six 

soil parameters. Such parameters have the largest effects on the hydrograph shape and are the 

most sensitive parameters in the water balance components (Nijssen et al. 1997; Su et al. 

2005). These parameters must be estimated from observations, via a trial and error procedure 

that leads to an acceptable match of simulated discharge with observations.  
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For the snow calibration, we have fixed the value of thresholds for maximum (at which snow 

can fall) and minimum (at which rain can fall) air temperature as 0.5°C and -0.5°C, 

respectively. These values were adjusted based on the region’s climatology and are kept 

constant for all the simulations in the global control file. Parameters related to the snow 

albedo are adjusted using the traditional VIC algorithm based on the US Army Corps of 

Engineers empirical snow albedo decay curves for transitions from snow accumulation to 

ablation. We have added this detail in Section 2.3.2 at Page 14, Line 20 and Page 15, Lines 1-

13 of the revised paper. 

Page 15, why is on the PCIC forcing data used for the optimizer. This almost ensures that the 

PCIC will have the best performance in the following evaluation sections. It might be more 

interesting (and more work), to calibrate for every forcing dataset individual and then use these 

four parameter sets for the validation with every unique forcing dataset leading to sixteen 

combinations. This also gives you four simulations per forcing dataset as a result of the different 

calibrations. I know this is some work, but it is feasible. I feel it would lift the quality of the 

overall uncertainty analysis and thereby better support the conclusions of the paper. 

As discussed in our manuscript, the VIC model is quite sensitive to the meteorological forcing 

data, most notably precipitation. This means that if the forcing data change, the soil 

parameters that result in reproducing simulated streamflow will change accordingly. Our 

comparison of hydrological simulations driven by four forcing datasets revealed that PCIC 

and UW driven VIC simulations are noticeably better with high NSE values and reproduce 

hydrographs similar to that from observations. We only used PCIC forcing data for VIC model 

simulations to investigate the uncertainties in the model calibration process. Our primary goal 

is to evaluate optimizer sensitivity to a unique set of parameter limits. We want to see how the 

MOCOM optimizer results in different optimized parameters and change the overall simulated 

hydrograph in the calibration process. Evaluating the same sensitivity for each dataset is 

beyond the scope of this paper. However, we have repeated our methodology with the UW 

dataset with new set of parameters limits. Instead of three, we have run five different 

experiments. As expected, the optimized final values of calibration parameters are different for 

each set of initial parameter range producing different hydrographs for the main stem Fraser 

River at Hope, BC. In the revised manuscript, we only used the UW dataset to force VIC model 

as this dataset along with our VIC model implementation is examined extensively over the 

FRB in Kang et al, (2014) and (2016). We have updated the text in section 3.3 of our revised 

manuscript and have modified Figure 8 and Table 3 accordingly. Thank you again for your 

thoughtful review and for highlighting these difficult but important questions.  

Minor comments: 

I have discussed the ANUSPLIN acronym with some colleagues over the lunch break. We 

believe the authors could maybe come up with a better name.  

This dataset is based on the statistical models generated by the Australian National University 

Spline (ANUSPLIN), which are the thin-plate smoothing spline-based climate interpolation 

algorithms (Hutchinson et al., 2009; Hopkinson et al., 2011). In studies such as Eum et al. 

(2014), Curry et al. (2016) and Irwin et al. (2017), ANSUPLIN is used as the standard name 



5 

 

for this dataset. We have therefore retained the same name to remain consistent with common 

usage in the literature. 

Page 3 Line 13-14: measurement of the response metric -> objective function and the calibration 

variable 

We have modified this line by replacing “measurement of the response metric” with “objective 

function and the calibration variable”. 

Page 7 Line4: Why did the author select the PDO rather than the more influential ENSO signal 

for Western Canada. 

We agree that the FRB is strongly teleconnected to both PDO and ENSO phases. However, we 

only focused our attention on the PDO teleconnections as the hydrological model calibration 

is usually performed over many years (minimum of 5 to 10 years) rather than a few individual 

years. As ENSO teleconnections are short term (a season or two), it is not feasible to evaluate 

its influence on the total calibration period. We have discussed this issue in detail in response 

to Referee #2.  

Page 11 Line 8: The PGF is not really high temporal resolution, it uses satellite observations, 

which are corrected with gauges at monthly temporal resolution. I think it would be good to 

provide the reader with the data sources of the PGF. This is important to understand the 

performance of the WU dataset. 

Thank you for your suggestion. The monthly precipitation data are sourced from the 

University of Delaware. The gauge undercatch is first applied on the monthly data and are 

then interpolated to daily values based on the work by Sheffield et al. (2006). We have 

extended this discussion by including the following detail at Page 10, Lines 20-21 and Page 11, 

Lines 1-3 in our revised manuscript. 

“To improve the precipitation estimates, the monthly data are adjusted to account for gauge 

undercatch by using the methods outlined by Adam and Lettenmaier (2008). Such adjustment 

is important since gauge-based precipitation measurements may underestimate solid 

precipitation in winter by 10%–50% (Adam and Lettenmaier 2003).” 

Section 2.2 and 2.4, maybe combine these sections since they both cover VIC and could be 

easily combined into on VIC section. Otherwise move section 2.3 forward to have the two VIC 

sections following one another. 

We have combined VIC model related discussions as section 2.3 in our revised manuscript.  

Page 12 Line 19, maybe remove the number of columns and rows, the domain would be 

sufficient 

We have modified the sentence at Page 14, Line 2 by removing “composed of 34 rows and 42 

columns”. 

Page 13 Line 3 Citation, year could be without the brackets 
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Correction is made at Page 14, Line 6. 

Page 14 Line 18 Why not loop over the year 1979 rather than no spin-up. If the forcing of 1979 

were to be recycled for five year and the stabilized ICs could then be used rather than no spin-up. 

This would ensure that the NARR simulation is more equal to the others and therefore the 

difference can be really attributed to the difference in forcing rather than a cold model start. 

We agree that the VIC model spin up period should be the same for all four forcing datasets. 

Except for the NARR driven VIC simulations, the PCIC, UW and ANUSPLIN driven 

simulations are integrated using a five-year spin up period prior to 1979. In our revised 

manuscript, we have looped recursively the NARR driven simulation for five years using the 

year 1979 as the forcing data and have re-run the model to ensure our methodology is 

consistent with the other three sets of simulations. However the results and conclusions of the 

manuscript do not change as there is little difference in the outcome of the NARR simulations. 

We have revised the text at Page 16, Lines 16-19 accordingly. 

Page 14 Line 18-20 Once calibration. . .(Table 1) -> please clarify. It is not entirely clear what 

you want to do here. 

We have revised the text as follows at Page 16, Lines 19-20. 

“After calibration, the model validation runs were initialized with five different state files to 

produce five ensemble members.” 

Page 18 Line 9-12 Do you have estimates of the cross-correlation between the precipitation 

products. Up to what extend are they derived from the same input data. 

The cross correlation of the ANUSPLIN, UW and PCIC datasets (being driven by the different 

number of station observations) could be high but the bias in precipitation magnitude makes 

these datasets different. This is due to the different methodologies used in their development. 

Page 22 Line 15 mentions a VIC sensitivity experiment, it would be great to show some of these 

results to get a better understanding of the model parameter uncertainty. 

We have now included the SWE and hydrograph of the NARR sensitivity experiments as 

Figure 5 in the supplementary document. 

Page 24 Line 13-14 “air temperatures are more crucial for hydrological simulations”, I would 

argue that this is true for the timing, but not so much for the total streamflow volume (at least not 

for the FRB, where evap is low). Maybe rephrase to “are crucial for the runoff timing in 

hydrological simulations” 

We have modified the text at Page 27, Line 4-5 as suggested. 

Figure 2 When does the water year start? October 1st? Please clarify the captions of the figures, 

they could be more self-explaining 

Caption of Figure 2 is revised accordingly. 

Figure 7, What is a,b,c,d,e,f? No explanation, also not in the caption of Figure 6 
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Caption of Figure 7 is revised as:  

“Same as Figure 6 but for the FRB’s six major sub-basins (a) Fraser-Shelley (UF), (b) Stuart 

(SU), (c) Nautley (NA), (d) Quesnel (QU), (e) Chilko (CH) and (f) Thompson-Nicola (TN). 
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Referee # 2:  

The objectives of this study, which focuses on the modelling of snow hydrology of the Fraser 

River Basin (FRB) of British Columbia (BC), Canada, using the Variable Infiltration Capacity 

(VIC) model forced with several high‐resolution gridded climate datasets (i.e., ANUSPLIN, 

NARR, UW, and PCIC), were to comprehensively assess uncertainties related to: (i) driving 

datasets, (ii) optimization of model parameters, and (iii) model calibration during cool and warm 

phases of the Pacific Decadal Oscillation (PDO). 

This is a very well‐written paper that deals with relevant subject matters to the hydrological 

modelling community. The paper delivers sound results with respect to objective (i), however, I 

believe those associated with objectives (ii) and (iii) are somewhat incomplete. All the results are 

discussed with respect to mean values. I believe the strength of the paper would be increased if 

the interannual variability was discussed as well. Moreover, at the end of the paper, the reader is 

left with an incomplete take‐home message; which begs the following question: how could we 

use the outcomes of the paper if we were asked to run the model to answer questions related to 

hydroelectric development or other water resources management issue in the FRB? Something is 

missing here, like a solid recommendation. Here are a few suggestions I can take from the paper: 

whenever hydrological modelling is performed one should: (i) analyse the stream flow record 

with respect to previously identified teleconnection correlations? (ii) perform various calibrations 

in order to find the optimal set of parameter values? (iii) have several snow elevation bands, may 

be every 100 m? The readers want a clear take‐home message from the authors on how to use 

their findings. Incidentally, the authors made such a reference in the introduction of the paper, 

but did follow through in their conclusion (last sentence on p. 4, lines 18‐20). 

We agree with the referee’s concerns for objectives (ii) and (iii). We have therefore revised our 

results and discussion with the set of additional VIC simulations. This is to improve the 

discussion and the overall take home message of our findings. To address and compare 

interannual variability of VIC simulations driven by four different datasets, we have analyzed 

the simulated runoff coefficient of variation (CV) for the Fraser River at Hope, BC for each 

simulation. We have also expanded the conclusion section of our manuscript with 

recommendations for applications of hydrological modelling and uncertainties in water 

resource management.  

I have made suggestions in the following list of specific comments below on how to fulfill what I 

perceive as shortcomings. As a side note, I found a bit difficult the exercise of jumping back and 

forth between the content of the main manuscript and that of the Supplemental File. Perhaps, the 

introduction of the content of the Supplement File and the content of Section 3.1 could be 

transformed into a useful technical note. 

To limit number of figures, we have only presented core results in the manuscript and have 

moved all the extra figures to the supplementary document. We expect that the online version 

of the article in HESS will provide a direct link to the supplementary document to facilate the 

reader going back and forth between documents.Further to this, it is important the reader has 

immediate access to the supplementary results as publishing this as a technical note would 

require considerable time and effort leading to a separate publication, which would inhibit 
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understanding of the current effort. As such, we maintain the use of a supplementary 

document for this paper. 

That being said, I strongly encourage the authors to address these comments as I feel the paper 

could certainly be a significant contribution to the community. 

Specific comments: 

To my knowledge several researchers have conducted studies related to objective (i) of this paper 

and, thus, the authors should consult the following references and relate their work accordingly: 

 Essou, G.R.C., R. Arsenault, R., F.P. Brissette. 2016. Comparison of climate datasets for 

lumped hydrological modeling over the continental United States. J.of Hydrology, 537: 

334‐345. 

 Essou, G.R.C., F. Saberly, P. Lucas‐Picher, F.P. Brissette, A. Poulin. 2016. Can 

Precipitation and Temperature from Meteorological Reanalyses Be Used for 

Hydrological Modeling? J. of Hydrometeorology, DOI: 10.1175/JHM‐D‐15‐0138.1 

 Arsenault, R., F.P. Brissette. 2014. Continuous streamflow prediction in ungauged basins: 

the effects of equifinality and parameter set selection on uncertainty in regionalization 

approaches. Water Resour. Res., 50 (7): 6135-6153 

 Sabarly, F., G. Essou, P. Lucas‐Picher, A. Poulin, F. Brissette, 2016: Use of Four 

Reanalysis Datasets to Assess the Terrestrial Branch of the Water Cycle over Quebec, 

Canada. Journal of Hydrometeorology, 17, 1447‐1466 

Thank you for providing a list of useful studies related to our work. In our revised manuscript, 

we have included them and relate these studies to our results.  

To my knowledge, two other studies have dealt with the problem of using calibration and 

validation series that have different climatological characteristics (objective (iii) of the paper), 

those of Klemeš (1986. Operational testing of hydrological simulation models. Hydrolog. Sci. 

Journal 31(1): 13‐24) and Seiller et al. (2012. Multimodel evaluation of twenty lumped 

hydrological models under contrasted climate conditions. Hydrology and Earth System Sciences, 

European Geosciences Union, 16 (4): 1171‐1189.). 

 In the introductory section of the manuscript, I invite the authors to relate objective (iii) 

of the study with the content of the aforementioned papers. 

All these studies are now cited in the introduction at Page 7, Line 10. 

P. 5, line 19: the authors refer to Islam et al. (2016), but it is missing from the list of references. 

This citation is now included in the list of references. 

P. 14, lines 4‐6, it is written: « The VIC model calibration is applied to the Fraser River’s main 

stem at Hope, BC and the FRB’s major sub‐basins, namely the Upper Fraser at Shelley (UF), 
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Stuart (SU), 5 Nautley (NA), Quesnel (QU), Chilko (CH) and Thompson‐Nicola (TN) Rivers 

(Fig. 1a and Supplementary Table 1). » 

 Does this mean there is a set of parameter values different for each sub‐basin and one for 

the drainage area between Hope and the outlet of each sub‐basin? It is common practice 

to do so with many distributed models, but I do not see anywhere in the paper the 

performance of the model with respect to each subbasin outlet. Have I missed something? 

In our manuscript, we focused on the Fraser River’s main stem at Hope, BC for analysis. 

However, we have calibrated the VIC model for all the major sub-basins of the FRB using 

each different forcing datasets and results are already presented in Figure 7 of the 

manuscript. In response to this comment, we have added a new table (Table A) reporting NSE 

scores of the model forced with the PCIC data for all the sub-basins in the supplementary 

document as Supplementary Table 2. 

Table A: The Nash–Sutcliffe coefficient of efficiency (NSE) for the PCIC driven VIC 

calibration (1979–1990) and validation (1991–2006) periods for six major sub-basins of the 

FRB. 

Basins 

1979-1990 Calibration 1991-2006 Validation 

Daily NSE Daily NSE 

Fraser-Shelley  (UF) 0.77 0.76 

Stuart (SU) 0.70 0.86 

Nautley (NA) 0.23 0.15 

Quesnel (QU) 0.89 0.83 

Chilko (CH) 0.69 0.65 

Thompson- Nicola (TN) 0.86 0.80 

 

P. 14, lines 16‐18: to be consistent, should not the five‐year spin up period been applied to all 

gridded datasets; that is from 1979 to 1985; or loop over at least a couple of years until 

convergence is achieved and then undertake the calibration exercise? 

We agree that the VIC model spin up period should be the same for all four forcing datasets. 

Except for the NARR driven VIC simulations, the PCIC, UW and ANUSPLIN driven 

simulations are integrated using a five-year spin up period prior to 1979. In our revised 

manuscript, we have looped recursively the NARR driven simulation for five years using the 
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year 1979 as the forcing data and have re-run the model to ensure our methodology is 

consistent with the other three sets of simulations. We have revised the text at Page 16, Lines 

16-19 accordingly. 

P. 15, lines 4‐11: Why using the PCIC gridded dataset for the optimizer uncertainty runs? Why 

modifying the parameter space? Why not conducting several optimizer uncertainty runs and look 

at the various local optima? That is what is usually done. By reducing the parameter space, the 

authors are restricting, in theory, the number of local optima, yet there could still be several of 

them in this modified space. At the end we get three sets of local optima, yet there are multiple 

other sets. This is an interesting twist, but: 

 Please provide more details on this calibration strategy. The outcome of this work is 

incomplete as I believe there should have been multiple calibrations for each experiment 

in order to fully illustrate the equifinality. Please discuss. 

The comparison of hydrological simulations driven by four forcing datasets revealed that the 

PCIC and UW simulations are noticeably better with high NSE values and reproduce 

hydrographs similar to that from observations. Therefore, we only used PCIC forcing data for 

VIC model simulations to investigate objective (ii). We agree that in the literature (e.g., 

Lindenschmidt et al. 2007; Shen et al. 2008; Sudheer et al. 2011, etc.), different methodologies 

and several optimizer uncertainty runs are used to address overall uncertainty in calibration 

parameters without modifying the parameter space. However our primary goal is to evaluate 

optimizer sensitivity to a unique set of parameters limits. We want to see how the MOCOM 

optimizer results in different optimized parameters and changes the overall simulated 

hydrograph during the calibration process. One can see from our analysis that within a broad 

range of parameter limits, only one particular subset of parameter range is optimally 

converging and produces more reliable calibration results (Figure 8) with high NSE values 

(Table 3). In the revision process, we have repeated our methodology with the UW dataset with 

new set of parameters limits. Instead of three, we have run five different experiments. As 

expected, the optimized final values of calibration parameters are different for each set of 

initial parameter range producing different hydrographs for the main stem Fraser River at 

Hope, BC. In the revised manuscript, we only used the UW dataset to force VIC model as this 

dataset along with our VIC model implementation is examined extensively over the FRB in 

Kang et al, (2014) and (2016). We have updated the text in section 3.3 of our revised 

manuscript and have modified Figure 8 and Table 3 accordingly. The overall conclusion of 

this analysis is that the automated optimizers used to converge calibration parameters still rely 

on the hydrologist’s experience and some manual adjustment of initial calibration parameter 

ranges. We have added this discussion in our revised manuscript at Page 28, Lines 9-11. 

P. 15, lines 12‐21: why not six (6) experiments to fully explore the question (2 cool phases x 3 

warm phases)? 

 This is an interesting experiment, yet I believe it is incomplete as not all possibilities 

were explored (see Seiller et al., 2012). 

 Are not there any other highly‐impacting teleconnection that affect the basin hydrology 

(e.g., ENSO)? 



12 

 

We agree with the referee’s suggestion. We have now extended our experiments by adding two 

additional PDO runs (Table B). As per the availability of forcing data, we can only evaluate 

PDO phases within the 1950-2006 time period. For each calibration experiment in one 

particular phase of the PDO, the automated MOCOM optimizer is used to optimize calibration 

parameters. The NSE is calculated for the calibration and validation periods using the daily 

observed streamflow data for the Fraser River at Hope, BC. While evaluating additional PDO 

experiments, our conclusion remains the same, i.e. the calibration is biased toward the cold or 

warm phase of the PDO and therefore it is necessary to avoid PDO phase shifts in the 

hydrological model calibration and validation process. In essence, it is better to run multiple 

calibration experiments within the required time period. We have updated Table 4 and the text 

at Page 29, Lines 18-20 and Page 30, Lines 1-2 accordingly. 

Table B: UW driven VIC PDO runs and their performance metrics (NSE coefficient) in the 

calibration and validation time period evaluated for Fraser River at Hope, BC.  

 

Calibration Validation 

NSE  

(Time slice) 

PDO Phase 

(Flows) 

NSE  

(Time slice) 

PDO Phase 

(Flows) 

PDO1 
0.84 

(1981-1990) 

Warm 

(low flows) 

0.84 

(1991-2001) 

Warm 

(low flows) 

PDO2 
0.84 

(1956-1965) 

Cool 

 (high flows) 

0.85 

(1966-1976) 

Cool 

 (high flows) 

PDO3 
0.84 

(1967-1976) 

Cool 

(high flows) 

0.79 

(1977-1987) 

Warm 

(low flows) 

PDO4 
0.86 

(1977-1987) 

Warm 

(low flows) 

0.80 

(1967-1976) 

Cool 

(high flows) 

PDO5 
0.89 

(1991-2001) 

Warm 

(low flows) 

0.87 

(1981-1990) 

Warm 

(low flows) 

 

The FRB is strongly teleconnected to PDO and ENSO phases (Thorne and Woo, 2011). Our 

VIC implementation has been tested for its response to warm and cool phases of the PDO and 

ENSO. The model realistically simulates anomalies of runoff, SWE, and snowcover under 

these climatic conditions. In Figure B (Supplementary Figure 8), the effects of the PDO on 

annual time series of air temperature, precipitation, SWEmelt and runoff are shown for the 

FRB.  

Figures C and D represent the response of VIC simulated snowcover (SC) composite 

anomalies to warm (Figure C) and cool (Figure D) phases of ENSO. ENSO phases are 

identified in the observation to estimate composites. Consistent with the findings reported in 

other studies such as Mantua et al. (1997), Fleming et al. (2007) and Shrestha et al. (2016), 

the anomalies are below (above) normal in warm (cool) ENSO phases.  

In our uncertainty analysis, we only focused our attention on the PDO teleconnections as the 

hydrological model calibration is usually performed over many years (more than 5 to 10 years) 
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rather than a few individual years. As ENSO teleconnections are short term (a season or two), 

it is not feasible to evaluate its influence on the total calibration period.  

 

Figure B: Annual variation of mean (a) air temperature, (b) precipitation, (c) SWEmelt and (d) 

runoff in cool (blue line) and warm (red line) phases of the PDO. Air temperature and 

precipitation are extracted from the UW forcing dataset whereas SWEmelt and runoff are the 

UW-VIC simulation output. (a), (b) and (c) shows areally-averaged values over all FRB’s grid 

cells whereas runoff is calculated using external routing model for Fraser River at Hope.  
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Figure C: Seasonal composite of precipitation (Pr ~ mm day
-1

) and snowcover (SC ~ fraction) 

anomalies (1949-2006) in El Niño years. Seasons are based on averaging Dec-Jan-Feb (DJF), 

Mar-Apr-May (MAM), Jun-Jul-Aug (JJA) and Sep-Oct-Nov (SON) months. 

 

Figure D: Seasonal composite of precipitation (Pr ~ mm day
-1

) and snowcover (SC ~ fraction) 

anomalies (1949-2006) in La Niña years. Seasons are based on averaging Dec-Jan-Feb (DJF), 

Mar-Apr-May (MAM), Jun-Jul-Aug (JJA) and Sep-Oct-Nov (SON) months. 
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P. 16, lines 2‐3: Perhaps the three regions mentioned here should be depicted on the related 

Figures, that those figures where knowledge of the region is warranted to follow what is 

presented and discussed in the paper (Figure 4 in the manuscript and Figures 1‐3 and 6 in the 

Supplement File). 

The boundaries of three subregions are already shown in Figure 1b representing the model 

gridcells and mean elevations. Drawing these boundaries on each spatial panel will render the 

figures much too crowded. For clarity and easier interpretation of the results, we have 

therefore not drawn these boundaries on each spatial plot.   

Given the results introduced in Section 3.1, I think it would have been interesting to have the 

following calibration parameters: snow‐to‐rainfall temperature threshold and a vertical 

temperature gradient. 

 Does the VIC model have such parameters? If that is the case, why not calibrating them? 

 Is there a publication that has introduced a formal sensitivity analysis of the VIC model? 

 Why focusing on soil‐related parameters solely and not others as well? In other words, 

the authors should first introduce to the readers all the model parameters and provide a 

rationale for their choice. 

We selected these parameters for calibration based on the manual calibration experience from 

previous studies by Nijssen et al. (1997), Su et al. (2005), Shi et al. (2008), Kang et al. (2014, 

2016) and Islam et al. (2016), among others. VIC is a physically based hydrologic model that 

has many (about 20, depending on how the term “parameter” is defined) parameters that must 

be specified. However, the usual implementation approach involves the calibration of only six 

soil parameters. Such parameters have the largest effects on the hydrograph shape and are the 

most sensitive parameters in the water balance components (Nijssen et al. 1997; Su et al. 

2005). These parameters must be estimated from observations, via a trial and error procedure 

that leads to an acceptable match of simulated discharge with observations.  

For the snow calibration, we have fixed the value of thresholds for maximum (at which snow 

can fall) and minimum (at which rain can fall) air temperature as 0.5°C and -0.5°C, 

respectively. These values were adjusted based on the region’s climatology and are kept 

constant for all the simulations in the global control file. Parameters related to the snow 

albedo are adjusted using the traditional VIC algorithm based on the US Army Corps of 

Engineers empirical snow albedo decay curves for transitions from snow accumulation to 

ablation. We have added this detail in Section 2.3.2 at Page 14, Line 20 and Page 15, Lines 1-

13 of the revised paper. 

P. 19, lines 12‐15: « The lower SWE in the NARR‐VIC simulation is probably due to the 

warmer air temperature during winter and spring (Fig. 2b). Winter temperatures being warmer in 

the NARR dataset may alter the phase of precipitation partitioning with more rainfall than 

snowfall, and hence less SWE in the NARR‐VIC simulation. » 

 This is formulated as a hypothesis, but do not the authors have the input precipitation 

dataset to validate this hypothesis? 
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We have validated this result by a VIC model sensitivity experiment where the air temperature 

was perturbed by 2°C while keeping the precipitation unchanged. The simulated SWE and 

runoff decreased (a nearly 25% decrease in peak runoff) with 2°C rises in air temperature 

forcings. The detail of this experiment is already mentioned in the manuscript at Page 25, 

Lines 1-4. We did not alter the phase of precipitation in this experiment considering that the 

VIC model automatically partitions the precipitation type (solid versus liquid) during its 

simulation. We have now included Supplementary Figure 5 to respresent the result of  NARR 

sensitivity run for daily SWE and discharge. 

P.20, line 4: what about a sensitivity analysis of the impact of the number of elevation bands on 

the output variables of interest? Why ten in other words, why not twenty? 

The VIC model is mostly configured using 1 to 5 elevation bands in many studies focusing 

different regions (Haddeland at al. 2002; Shrestha et al. 2012, 2016; Oubeidillah et al. 2014 

and many more). Depending on the required research question and the available resources, a 

suitable number of elevation bands can be generated in the VIC model. In our implementation 

of the VIC model, we have used 10 elevation bands by utilizing a high resolution digital 

elevation model. Considering the complex terrain, computational time and 25 km resolution 

grid, 10 elevation bands are sufficient to investigate elevation dependent changes. Increasing 

elevation bands to 20 will add substantially more computational time without contributing 

much to the elevation dependent changes due to model coarse resolution.    

P.22, Section 3.2.2: for each gridded dataset – VIC simulation what about calculating a runoff to 

precipitation coefficient to make inferences about model robustness? 

The VIC model robustness is thoroughly evaluated in studies such as Kang et al. (2014, 2016) 

using the UW forcing data for the period 1949-2006 over the FRB and it subbasins. In this 

manuscript, we are mainly focusing on the comparison of different datasets. Evaluating the 

runoff to precipitation coefficient is beyond the scope of this paper. However such analysis is 

already used for evaluating the UW driven VIC simulation over the FRB. For example,  

Figure E shows the time series of the ratio of water year runoff to precipitation (R/P). There is 

clearly a declining trend in R/P over the 1949-2006 period, indicating less runoff productivity 

as the climate warms across the FRB. This is a result of the transition of precipitation from 

snowfall to rainfall, and a tendency towards greater evapotranspiration. 
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Figure E: Annual ratio of UW driven simulated runoff to precipitation (R/P) in the FRB, 

water years 1949-2006. 

P.24, line 5: « …(Troin et al., 2015, 2016)…» Please check as there is only one Troin et al. in 

the list of reference! 

Reference for Troin et al. (2016) is now included in the reference list as: 

Troin, M., Poulin, A., Baraer, M. and Brissette, F.: Comparing snow models under current 

and future climates: Uncertainties and implications for hydrological impact studies, J. 

Hydrol., 540, 588–602, doi:10.1016/j.jhydrol.2016.06.055, 2016. 

P.26, lines 17‐19: « For each set of calibration experiments, the calibration parameters are 

different, which affects the air temperature lapse rates and thus evapotranspiration, the formation 

of the snowpack, and the timing of snowmelt. » 

 I thought the temperature lapse rate was not a calibration parameter or is it? 

The temperature lapse rate is not a calibration parameter. In the VIC model, mean grid 

temperature is lapsed to each elevation band. Precipitation falls as snow or rain depending on 

the lapsed temperature. The model defines the lapse rate based on the elevation and number of 

elevations bands during its simulation. We have modified this sentence at Page 29, Line 11-12 

in our revised manuscript. 

P.28, lines 5‐6: « The trend analysis further highlighted uncertainties of the NARR Dataset. » 
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 Uncertainties in terms of what...I am not sure I follow well the authors here. Please 

provide additional details. 

We have revised this sentence at Page 30, Lines 19-20 as “The monthly trend analysis 

distinguished the NARR dataset by showing decreased trends in air temperature and increased 

trends in precipitation and its VIC driven runoff.” 

P29, line 3‐4: is not the following sentence « Improving the quality of precipitation data may 

thus lead to more accurate hydrological responses in the FRB. » contradicting this other sentence 

« Thus uncertainties in air temperatures are more crucial for hydrological simulations over the 

FRB rather than those in precipitation» on page , lines 13‐14? 

 Please help me here! 

Thanks for highlighting this issue. We have revised the first sentence at Page 31, Lines 17-19 

as: 

“While the air temperature plays a dominant role in the hydrological simulations, improving 

the quality of precipitation data can lead to more accurate hydrological responses in the FRB. 

Considerable precipitation bias can substantially degrade the model performance.” 

P.29, line 12: not being familiar with the FRB, I was a bit surprise to learn here that the authors 

had never mentioned in the description of the basin that there are glaciers in the study area! 

In Alberta and British Columbia, glaciers account for an estimated area of 26,700 km
2
 (Bolch 

et al. 2010). There are more than 1000 glaciers in the northern and central Rockies spanning 

a total area of 838 km
2
. However these glaciers contribute relatively little to the annual 

streamflow to rivers of western Canada. For example, Comeau et al. (2009) studied the glacier 

contributions to streamflow generation by applying a hydrological model at 9 km resolution to 

the North and South Saskatchewan Rivers originating in the Canadian Rocky Mountains. 

They separate the mean annual streamflow contributions from glacier retreat and summer 

melting of the seasonal snowpack. For the period 1975-1998, they estimate that glacier melt 

(ice volume losses) made up only 2.0% of mean annual discharge of the Bow River in Calgary.  

In our study, the dynamics of glaciers cannot be simulated in the current version of the VIC 

model as glaciers and their dynamics are not included in the model physics. Nonetheless the 

effects of glaciers may not change our results significantly as we have used the VIC model on 

~25 km grid cell resolution (625 km
2
 area per grid cell) in our study. Furthermore, glaciers 

cover only 1.5% of the FRB (Shrestha et al. 2012) and provide only a modest contribution to 

streamflow, primarily in late summer (August/early September). Although glacier dynamics 

are not simulated in the VIC model there are some cells where there is a perennial snowpack. 

Year after year this water does not melt out. This is a recognized challenge with the VIC model 

and is dealt with differently in each implementation, ranging from eliminating these cells from 

analysis (as in our study) to introducing a simple, conceptual representation of glacier mass 

balance into VIC, modelled using perennial snow in combination with VIC built in snow 

routines where a portion of VIC grid cells are identified as glacier cells and used to form a 

glacier mask (Schnorbus et al. 2011). In this study, we compared those cells with perennial 

snowpack to Baseline Thematic Mapping (BTM) and found that the glaciating cells match the 
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location of observed glaciers. However there were very few grid cells with a perennial 

snowpack due to the low resolution and were therefore masked in the analysis. We have 

included this detail at Page 9, Lines 3-5 and Page 18, Lines 18-20 in the revised manuscript. 

P.29, lines 14‐15: « Such structural uncertainties need to be evaluated by examining multiple 

hydrological models over the same region. » 

 That is fine to mention that, but this statement does not have anything to do with what 

was presented in the paper...why bring this issue and others up at this point, on top of it in 

the conclusion...maybe there should be a subsection untitled recommendations for future 

work. 

We have revised the manuscript by removing these lines.  

Figures: 

Figures 2, 3, 6 & 7 

 What about producing a graph illustrating the daily values of the coefficient of variation 

so the readers can appreciate the interannual variability for each data set? 

As suggested, we have calculated the daily CV of routed runoff for each dataset for the Fraser 

River at Hope (Figure F). We have added this graph as panel (b) in Figure 6 of the 

manuscript. 

 

Figure F: The observed and simulated daily runoff coefficient of variation (CV) for Fraser at 

Hope over water years 1979-2006. An external routing model is used to calculate runoff for 

the ANUSPLIN-VIC, NARR-VIC, UW-VIC and PCIC-VIC simulations. 
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Figure 2 

 Days with January 1st as Julian day 1? In other words, what are the actual Julian days 

defining the water Year (1 October to 30 September of the following calendar year)? This 

comment apply to all relevant graphs introduced in the paper and supplement file. 

The water year is defined in the text at Page 18, Line 16. It starts on 1 October and ends on 30 

September of the following calendar year. To assist the reader, we have included the start and 

end dates of the water year in the figure captions (where required). 

Figure 5 

 Boxplots would have been useful to highlight the interannual variability. 

Each panel of Figure 5 represents four different datasets and 10 elevation bands. Including 

the interannual variability on these plots will make these results more complex by making the 

different datasets indistinguishable.   

Other comments 

Other specific comments are all related to verb tense can be found in the annotated manuscript. 

That is, to improve the reading and understanding I suggest using the past tense instead of the 

present tense. This may be viewed as an old fashion way of reporting scientific work. Now, I am 

also open to a strong argument to refute my point of view. 

We have revised the manuscript by using past tense as suggested. 
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Abstract. This study evaluates predictive uncertainties in the snow hydrology of the Fraser River Basin 

(FRB) of British Columbia (BC), Canada, using the Variable Infiltration Capacity (VIC) model forced 

with several high-resolution gridded climate datasets. These datasets include the Canadian Precipitation 10 

Analysis and the thin-plate smoothing splines (ANUSPLIN), the North American Regional Reanalysis 

(NARR), University of Washington (UW) and Pacific Climate Impacts Consortium (PCIC) gridded 

products. Uncertainties are evaluated at different stages of the VIC implementation starting with the 

driving datasets, optimization of model parameters, and model calibration during cool and warm phases 

of the Pacific Decadal Oscillation (PDO).  15 

The inter-comparison of the forcing datasets (precipitation and air temperature) and their VIC 

simulations (snow water equivalent (SWE) and runoff) reveal widespread differences over the FRB, 

especially in mountainous regions. The ANUSPLIN precipitation shows a considerable dry bias in the 

Rocky Mountains whereas the NARR winter air temperature is 2C warmer than the other datasets over 

most of the FRB. In the VIC simulations, the elevation-dependent changes in the maximum SWE 20 

(maxSWE) are more prominent at higher elevations of the Rocky Mountains where the PCIC-VIC 

simulation accumulates too much SWE and ANUSPLIN-VIC yields an underestimation. Additionally, 

at each elevation range, the day of maxSWE varies 10 to 20 days between the VIC simulations. The 



2 

 

snow melting season begins early in the NARR-VIC simulation whereas the PCIC-VIC simulation 

delays the melting indicating seasonal uncertainty in SWE simulations. When compared with the 

observed runoff for the Fraser River main stem at Hope, BC, the ANUSPLIN-VIC simulation shows 

considerable underestimation of runoff throughout the water year owing to reduced precipitation in the 

ANUSPLIN forcing dataset. The NARR-VIC simulation yields more winter and spring runoff and 5 

earlier decline of flows in summer due to a nearly 15-day earlier onset of the FRB springtime snowmelt. 

Analysis of the parametric uncertainty in the VIC calibration process shows that the choice of the initial 

parameter range plays a crucial role in defining the model hydrological response for the FRB. 

Furthermore, the VIC calibration process is biased toward cool and warm phases of the PDO and the 

choice of proper calibration and validation time periods is important for the experimental setup. Overall 10 

the VIC hydrological response is prominently influenced by the uncertainties involved in the forcing 

datasets rather than those in its parameters optimization and experimental setups.  

 

Keywords: Uncertainties, hydrological modelling, climate datasets, runoff, calibration, Fraser River 

  15 
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1 Introduction 

While advances in computational power and ongoing developments in hydrological modelling have 

increased the reliability of hydrologic simulations, the issue of adequately addressing the associated 

uncertainty remains challenging (Liu and Gupta, 2007). There is a growing need for proper estimation 

of uncertainties associated with hydrological models and the observations required to drive and evaluate 5 

their outputs. Hydrological simulations of snow processes and related hydrology depend critically on 

the input climate forcing datasets, particularly the precipitation and air temperature (Reed et al., 2004; 

Mote et al., 2005; Tobin et al., 2011). Both of these input forcings regulate the quantity and phase of 

modelled precipitation and affect the response of simulated snow accumulation and runoff. The model 

results therefore rely heavily on the quality of these forcings as the uncertainty (measurement errors, 10 

etc.) in such data will propagate through all hydrological processes during simulations (Wagener and 

Gupta, 2005; Anderson et al., 2007; Tapiador et al., 2012). Studies such as Essou et al. (2016a) 

compared hydrological simulations of different observed datasets over the continental United States 

(US). They reported that there are significant differences between the datasets, although all the datasets 

were essentially interpolated from almost the same climate databases. Furthermore  in Essou et al. 15 

(2016b), they compared the hydrological response of three reanalysis datasets over the US and found 

precipitation biases in all reanalyses, especially in summer and winter in the southeastern US. The 

uncertainties in hydrological simulations also arise from the model parameters, its structure and in the 

objective function and the calibration variable measurement of the response metric that is used for 

model calibration. Hence the reliability of input forcings along with the capability of the hydrological 20 
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model and the experimental setup ultimately determine the fate of hydrological variables essential for 

water resource management. 

Several observed gridded climate datasets of precipitation and air temperature (Mesinger et al., 2006; 

Hopkinson et al., 2011), based on available observational data, post-processing techniques and, in some 

cases, climate modelling, are currently available over the Canadian landmass to facilitate climate and 5 

hydrological simulations. These datasets provide long term gridded precipitation and air temperature 

records on hourly and daily bases making them especially useful for hydrological simulations, 

particularly over areas where in situ station densities are low. However, these datasets, being spatially 

interpolated or assimilated to gridcells, rely mainly on the spatial density of the observational network, 

which is often quite low in mountainous regions (Rinke et al., 2004). Observational data incorporated 10 

into gridded datasets may also contain measurement errors and missing records that translate into the 

data interpolation and contribute to the overall uncertainty in gridded data products. Such uncertainties 

are assessed in many studies focusing on the forcing data (Horton et al., 2006; Graham et al., 2007; Kay 

et al., 2009; Eum et al., 2014).  

The quality of hydrological modelling depends on how well a model simulates the regional detail and 15 

topographic characteristics of the region, especially in mountainous regions. However, most 

mountainous regions exhibit higher errors in gridded datasets because they are usually based on an 

uneven number of stations that are mostly located at lower elevations (Eum et al., 2012). This is true for 

most large basins in western Canada that exhibit highly variable elevation ranges and strong 

climatological heterogeneity. One such large basin is British Columbia’s (BC’s) Fraser River Basin 20 

(FRB), which is vital for Canada’s environment, economy and cultural identity. Its mountainous 
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snowpack serves as a natural reservoir for cold-season precipitation, providing snowmelt driven flows 

in summer. Evaluating uncertainties in modelling the FRB’s hydrology is crucial for informed decision-

making and water resources management. This includes the communication of the uncertainties, 

propagated into the model predictions, in an appropriate manner to decision makers or stakeholders, 

thereby allowing confidence in the model results.  5 

Although the currently available gridded datasets (reanalysis and interpolated) over the FRB are derived 

from observational stations using various interpolation and assimilation techniques, they may still have 

systematic biases because of their grid resolution, the density of the surface station network used for 

data assimilation, and the topographic characteristics of the FRB. In the FRB, 23% of the basin exceeds 

1500 m in elevation whereas roughly 5% of the in situ meteorological stations surpasses this elevation 10 

(Shrestha et al., 2012). Such mismatch between station densities at different elevations makes the 

precipitation interpolation at higher elevations excessively influenced from the lower elevation stations 

(Stahl et al., 2006; Rodenhuis et al., 2009; Neilsen et al., 2010). Therefore, despite extensive 

implementation of hydrologic modelling with single observed forcings (e.g. Shrestha et al., 2012; Kang 

et al., 2014, 2016, etc.), evaluation of the uncertainties in forcing datasets remains a critical and 15 

challenging issue for the FRB. As such, the first step is to evaluate available observation-based forcing 

datasets for their suitability to be used in hydrological modelling over the FRB.   

In Canada, numerous studies have assessed the performance of the hydrologic simulations driven by 

only one particular driving dataset (Pietroniro et al., 2006; Choi et al., 2009; Bennett et al., 2012; Kang 

et al., 2014). Sabarly et al. (2016) haveused four reanalysis datasets to assess the terrestrial branch of the 20 

water cCycle over Quebec with satisfactory results over 1979-2008. Eum et al. (2014) recently 
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compared hydrological simulations driven by several high-resolution gridded climate datasets over 

western Canada’s Athabasca watershed and found significant differences across the simulations. While 

BC’s snowpacks and hydrology are well studied in the literature (Danard and Murty, 1994; Choi et al., 

2010; Thorne and Woo, 2011; Déry et al., 2012; Shrestha et al., 2012; Kang et al., 2014, 2016; Islam et 

al., 20162017; Trubilowicz et al., 2016), detailed inter-comparisons of available observational forcing in 5 

terms of their hydrological response is not thoroughly analysed, particularly over the FRB’s complex 

topography. In this study, we therefore investigate the simulated hydrological response of uncertainties 

associated with air temperature and precipitation forcing on the FRB’s mountainous snowpack and 

runoff. To achieve this, four forcing datasets, namely the Canadian Precipitation Analysis and the thin-

plate smoothing splines (ANUSPLIN hereafter; Hopkinson et al., 2011), the North American Regional 10 

Reanalysis (NARR hereafter; Mesinger et al., 2006), University of Washington (UW hereafter; Shi et 

al., 2013) and Pacific Climate Impacts Consortium (PCIC hereafter; Shrestha et al., 2012) gridded 

products are applied to the FRB. These datasets are explored across three different regions and multiple 

elevation ranges. Over the FRB region, while Tthe PCIC and UW datasets are individually used byin 

Shrestha et al. (2012) and Kang et al. (2014, 2016), respectively to drive the VIC hydrological model 15 

over the FRB whereas, tthe NARR and ANUSPLIN datasets are not yet evaluated over this region. 

However, the NARR dataset is used in studies focusing on other regions of Canada (Woo and Thorne, 

2006; Choi et al, 2009; Ainslie and Jackson, 2010; Eum et al., 2014; Trubilowicz et al., 2016). To our 

knowledge, this is the first comprehensive study that collectively examines the spatial and elevation 

dependent hydrological response of these datasets for the FRB.these datasets collectively based on the 20 

spatial and elevation dependent hydrological response.  
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Along with forcing datasets, many studies have focused their attention either on model structure (Wilby 

and Harris, 2006; Jiang et al., 2007; Ludwig et al., 2009; Poulin et al., 2011; Velazquez et al., 2013) or 

on calibration parameters (Teutschbein et al., 2011; Bennett et al., 2012). Arsenault et al. (2014) 

estimated the uncertainty due to parameter set selection using the hydrological model over theseveral 

basins in Quebec. They showed that parameter set selection can play an important role in model 5 

implementation and predicted flows. For parameter uncertainty, a hydrological model can have many 

equivalent local optima within a realistic parameter space (Poulin et al., 2011). Therefore, several 

different parameter sets may be available for the same ‘‘optimal’’ measure of efficiency during the 

optimization process (i.e. parameter non-uniqueness; Beven, 2006). Here we evaluate the parameter 

uncertainties involved in the model calibration process, i.e. calibration optimizer sensitivity to 10 

parameter initial limits. Moreover we focus on another unique aspect of modelling uncertainty related to 

the selection of time periods for model calibration and validation under changing climatic conditions on 

decadal time scales. Studies such Klemeš (1986) and Seiller et al. (2012) highlighted the issue of 

calibration and validation of hydrological modelling under different climatological conditions. In this 

study, we estimate In this case, the hydrological model sensitivity to different climatological conditions 15 

by first analysingfocusing on the FRB’s air temperature and precipitation teleconnections with cool and 

warm phases of the Pacific Decadal Oscillation (PDO).  

Overall, the main goals of this study are: (i) to compare and identify the most reliable available gridded 

forcing datasets for the hydrological simulations over the FRB region; (ii) to evaluate hydrological 

modelling responses of different driving datasets over a range of FRB elevations; (iii) to assess the 20 

http://onlinelibrary.wiley.com/doi/10.1002/hyp.8043/full#bib60
http://onlinelibrary.wiley.com/doi/10.1002/hyp.8043/full#bib24
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uncertainty involved in the model calibration process by focusing on the optimizer used for parameter 

optimization; and (iv) to evaluate the calibration process under changing climatic conditions.  

To analyse the FRB’s snowmelt-driven hydrologyachieve these four objectives, the macroscale 

Variable Infiltration Capacity (VIC) hydrological model (Liang et al., 1994, 1996) is used as the 

simulation tool. The VIC model conserves surface water and energy balances for large-scale watersheds 5 

such as the FRB (Cherkauer et al., 2003). It has been successfully implemented, calibrated and 

evaluated over the FRB (Shrestha et al., 2012; Kang et al., 2014; Islam et al., 20162017).  

The remainder of this paper is structured as follows. Section 2 discusses the FRB, the VIC model, the 

driving datasets, the VIC model and experimental setup. Section 3 describes the forcings inter-

comparison, hydrological simulations, parameter sensitivity and uncertainly related to the PDO. Section 10 

4 summarizes and concludes this study. 

2. Study Area, Model and Methodology 

2.1 Fraser River Basin (FRB) 

The FRB is one of the largest basins of western North America spanning 240,000 km
2
 of diverse 

landscapes with elevations varying from sea level to Mount Robson, its tallest peak at 3954 m above sea 15 

level at Mt. Robson, its tallest peak (Benke and Cushing, 2005). It covers the mountainous terrain of the 

Coast and Rocky Mountains along with dry central plateaus (Fig. 1). The FRB’s headwaters are in the 

Rocky Mountains with its major tributaries the Stuart, Nechako, Quesnel, Chilcotin, Thompson, and 

Harrison Rivers. The Fraser River runs 1400 km through the Fraser Canyonwhole basin before reaching 
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Hope, BC, where it veers westward to drain into the Salish Sea and the Strait of Georgia at Vancouver, 

BC (Benke and Cushing, 2005; Schnorbus et al., 2010).  

In winter, considerable amounts of snow normally usually accumulate at higher elevations, except in 

coastal areas. In late spring and early summer, snowmelt from higher elevations induce peak flows in 

the main stem of the Fraser River and its many tributaries (Moore and Wondzell, 2005), which rapidly 5 

decline in late summer following the depletion of snowmelt. Owing to its complex mountainous ranges, 

the FRB’s hydrologic response varies considerably across the basin, differentiating it into snow-

dominant, hybrid (rain and snow), or rain-dominant regimes (Wade et al., 2001). The glaciers cover 

only 1.5% of the FRB (Shrestha et al., 2012) and provide only a modest contribution to streamflow, 

primarily in late summer (August/early September). 10 

 

2.2 Variable Infiltration Capacity (VIC) Model  

The VIC model resolves energy and water balances and therefore requires a large number of parameters, 

including soil, vegetation, elevation, and daily meteorological forcings, at each gridcell. To evaluate 

hydrological responses over complex terrain, the model simulates the subgrid variability in topography 15 

and precipitation by dividing each gridcell into a number of snow elevation bands (Nijssen et al., 2001b). 

The model utilizes a mosaic-type representation by partitioning elevation bands into a number of 

topographic tiles that are based on high-resolution spatial elevations and fractional area. The snow model 

embedded in the VIC model is then applied to each elevation tile separately (Gao et al., 2009).  
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The VIC model is widely used in many hydrological applications including water availability estimation 

and climate change impacts assessment in North America (Maurer et al., 2002; Christensen and 

Lettenmaier, 2007; Adam et al., 2009; Cuo et al., 2009; Elsner et al., 2010; Gao et al., 2010; Wen et al., 

2011; Oubeidillah et al., 2014;) and around the world (Nijssen et al., 2001a,b; Haddeland et al., 2007; 

Zhou et al., 2016). It is also commonly used to simulate hydrologic responses in snowmelt-dominated 5 

basins (Christensen and Lettenmaier, 2007; Hidalgo et al., 2009; Cherkauer and Sinha, 2010; Schnorbus 

et al., 2011). 

2.3 2 Datasets 

Along with recent developments in hydrological models, several observation-based gridded datasets are 

now available to drive the models such as ANUSPLIN, NARR, UW and PCIC. These meteorological 10 

forcing datasets are developed using high-resolution, state-of-the-art data interpolation and (for NARR 

only) assimilation techniques. This is to improve the quality of forcing data to analyse a model’s 

hydrological response over of any particular basin.   

The ANUSPLIN dataset, developed by Natural Resources Canada (NRCan), contains gridded data of 

daily maximum and minimum air temperature (°C), and total daily precipitation (mm) for the Canadian 15 

landmass south of 60°N at ~10 km resolution (NRCan, 2014). This Canadian dataset uses a trivariate 

thin-plate smoothing spline technique referred to as ANUSPLIN (Hutchinson et al., 2009) with recent 

modifications (Hopkinson et al., 2011). Eum et al. (2014) used the ANUSPLIN dataset for hydrological 

modelling over Alberta’s Athabasca watershed and reported underestimations in simulated runoff, 

owing to a dry bias in ANUSPLIN precipitation.  20 
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NARR was developed at 32 km spatial and 3-hourly temporal resolution to improve the National 

Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) 

global reanalysis data by employing the Eta Data Assimilation system for the North American domain 

for the period from 1979 to the current year. The interannual variability of the NARR seasonal 

precipitation and accuracy of its temperature and winds are found superior to earlier versions of the 5 

NCEP/NCAR reanalysis datasets (Mesinger et al., 2006; Nigam and Ruiz-Barradas, 2006). Choi et al. 

(2009) investigated the applicability of air temperature and precipitation data from NARR for 

hydrological modelling of selected watersheds in northern Manitoba. They found that NARR air 

temperature and precipitation data are in much better agreement with observations than the NCEP–

NCAR Global Reanalysis-1 dataset (Kalnay et al., 1996; Kistler et al., 2001) dataset. Woo and Thorne 10 

(2006) used air temperature precipitation and precipitation air temperature data from two global 

reanalysis datasets and from NARR as input to a hydrological model for the Liard River Basin in 

western subarctic Canada and reported significant improvement in its hydrological simulations. NARR 

output has also been used in regional water budget calculations (Luo et al., 2007; Ruane, 2010; 

Sheffield et al., 2012). Choi et al. (2009) and Keshta and Elshorbagy (2011) reported that NARR output 15 

isare suitable for hydrologic purposesmodelling, especially when other observations are unavailable. 

However, they focused on the Canadian Prairies, where the topography is not complex. 

The UW dataset of daily precipitation, maximum and minimum air temperature, and average wind 

speed are based on the extended gridded UW dataset (Shi et al., 2013; Adam et al., 2006; Adam and 

Lettenmaier, 2008). Monthly precipitation originates from the University of Delaware observed land 20 

surface precipitation product (Matsuura and Willmott, 2009), which was adjusted to account for gauge 
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undercatch and was converted to daily data using the high temporal precipitation dataset from Sheffield 

et al. (2006). To improve the precipitation estimates, the monthly data were adjusted to account for 

gauge undercatch by using the methods outlined by Adam and Lettenmaier (2008). Such adjustment is 

important since gauge-based precipitation measurements may underestimate solid precipitation in 

winter by 10%–50% (Adam and Lettenmaier 2003). Daily wind speeds are extracted from the 5 

NCEP/NCAR reanalysis datasets (Kalnay et al., 1996).  

The PCIC dataset of precipitation, maximum and minimum temperature, and wind speed was derived 

primarily from Environment and Climate Change Canada (ECCC) climate station observations, with 

additional inputs from the United States Co-operative Station Network, the BC Ministry of Forests, 

Lands and Natural Resource Operations, the BC Ministry of Environment’s Automated Snow Pillow 10 

network, and BC Hydro’s climate network (Schnorbus et al., 2011; Shrestha et al., 2012).  These data 

are available at ~6 km resolution and were corrected for point precipitation biases and elevation effects 

(Schnorbus et al., 2011).  

 The ANUSPLIN, NARR, UW and PCIC datasets are available at 10 km, 32 km, 25 km and 6 km 

spatial resolution, respectively, and at a daily time scale. To facilitate comparison, the ANUSPLIN, 15 

NARR and PCIC datasets are were regridded to 25 km resolution using bilinear interpolation to match 

the scale of the current VIC implementation. The NARR (32 km) dataset iswas interpolated from coarse 

resolution curvilinear grids to slightly higher (25 km) resolution rectilinear grids. On the other hand, 

both the PCIC (6 km) and ANSUPLIN (10 km) datasets arewere interpolated to a coarser resolution (25 

km). The elevation correction, which is important when interpolating from coarser to higher spatial 20 

resolutions (Dodson and Marks, 1997), iswas not used to correct the orographic effects for the NARR 
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dataset. Interpolating the NARR dataset from a 32 km to a 25 km resolution does not induce much 

elevation dependent uncertainties since the change in orography remains minimal between mean 

elevations at 25 km and 32 km grid resolutions. Thus the relationship of atmospheric variables such as 

air temperature with elevation remains nearly identical at both resolutions.  

The dDaily wind speeds variable, which is one of thea required VIC input variable forcing, are is not 5 

available for the ANUSPLIN dataset. We therefore used the PCIC based wind speeds in the 

ANUSPLIN driven VIC simulations. The PCIC wind speeds are sourced from the Environment Canada 

and Climate Change Canada station product (Schnorbus et al., 2011). 

To calibrate and validate the VIC model simulated flows, we used daily streamflow data from ECCC’s 

Hydrometric Dataset (HYDAT; Water Survey of Canada 2014). These data are were extracted and 10 

compiled into a comprehensive streamflow dataset for the FRB spanning 1911–2010 (Déry et al., 2012).  

In addition, we compared the simulated SWE with observations from the BC River Forecast Centre’s  

network of snow pillow sites (BC Ministry of Forests, Lands and Natural Resource Operations, 2014). 

The snow pillow stations record the weight of the accumulated snowpack (SWE) on a daily basis. Based 

on the availability of data, we used SWE observations from four sites located at Yellowhead (ID: 15 

1A01P) and McBride (ID: 1A02P) in the upper Fraser and at Mission Ridge (ID: 1C18P) and Boss 

Mountain Mine (ID: 1C20P) in the middle Fraser. Due to datathe availability of data, we used the 1996-

2006 time period for the Yellowhead, Mission Ridge and Boss Mountain Mine snow pillows and 1980-

1986 for the McBride location. Detailed information about these sites is available in Kang et al. (2014) 

and Déry et al. (2014). 20 
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2.23 Variable Infiltration Capacity (VIC) Model  

The VIC model resolves energy and water balances and therefore requires a large number of parameters, 

including soil, vegetation, elevation, and daily meteorological forcings, at each gridcell. To evaluate 

hydrological responses over complex terrain, the model simulates the subgrid variability in topography 

and precipitation by dividing each gridcell into a number of snow elevation bands (Nijssen et al., 5 

2001ab). The model utilizes a mosaic-type representation by partitioning elevation bands into a number 

of topographic tiles that are based on high-resolution spatial elevations and fractional area. The snow 

model embedded in the VIC model is then applied to each elevation tile separately (Gao et al., 2009).  

The VIC model is widely used in many hydrological applications including water availability estimation 

and climate change impacts assessment in North America (Maurer et al., 2002; Christensen and 10 

Lettenmaier, 2007; Adam et al., 2009; Cuo et al., 2009; Elsner et al., 2010; Gao et al., 2010; Wen et al., 

2011; Oubeidillah et al., 2014;) and around the world (Nijssen et al., 2001a,b; Haddeland et al., 2007; 

Zhou et al., 2016). It is also commonly used to simulate hydrologic responses in snowmelt-dominated 

basins (Christensen and Lettenmaier, 2007; Hidalgo et al., 2009; Cherkauer and Sinha, 2010; Schnorbus 

et al., 2011). 15 

2.4 3.1 The VIC Implementation  

The VIC model, as set up by Kang et al. (2014) and Islam et al. (20162017) for the FRB, is employed 

for evaluating the model’s ability to simulate the FRB’s hydrological response when driven by different 

observational forcings. The model was previously applied to the FRB to investigate its observed and 
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projected changes in snowpacks and runoff. In this study, we performed model integrations over the 

entire FRB using gridcells composed of 34 rows and 42 columns spanning 48°– 55°N and 119°–131°W. 

The model is configured at 0.25° spatial resolution using a daily time step, three soil layer depths and 

ten vertical snow elevation bands. Once an individual VIC simulation is completed, the runoff for the 

basin is extracted at an outlet point of the given sub-basin, using an external routing model that 5 

simulated a channel network (adapted from Wu et al., (2011)) with several nodes (Lohmann et al., 

1996; 1998a, b). Streamflow is converted to areal runoff by dividing it by the corresponding sub-basin 

area. Daily runoff at the outlet cell is integrated over time to obtain total water yearannual  runoff for a 

selected basin. Other than the calibration parameters, the soil and vegetation parameters, leaf area index 

(LAI) and albedo data are kept identical as per the Kang et al. (2014)the VIC model implementation to 10 

the FRB reported in Kang et al. (2014). 

2.43.1 2 Calibration 

To explore the feasible parameter space, we used the University of Arizona multi-objective complex 

evolution (MOCOM-UA) optimizer for the VIC calibration process (Yapo et al., 1998; Shi et al., 2008). 

MOCOM-UA searches a set of VIC input parameters using the population method to maximize the 15 

Nash–Sutcliffe efficiency (NSE) coefficient (Nash and Sutcliffe, 1970) between observed and simulated 

runoff. Six soil parameters are used in the optimization process, i.e. b_infilt (a parameter of the variable 

infiltration curve), Dsmax (the maximum velocity of base flow for each gridcell), Ws (the fraction of 

maximum soil moisture where nonlinear base flow occurs), D2 and D3 (the depths of the second and 

third soil layers), and Ds (the fraction of the Dsmax parameter at which nonlinear base flow occurs). 20 
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These calibration parameters weare selected based on the manual calibration experience from previous 

studies by Nijssen et al. (1997), Su et al. (2005), Shi et al. (2008), Kang et al. (2014, 2016) and Islam et 

al. (20167). VIC is a physically based hydrologic model that has many (about 20, depending on how the 

term “parameter” is defined) parameters that must be specified. However, the usual implementation 

approach involves the calibration of only these six soil parameters. Such parameters have the largest 5 

effects on the hydrograph shape and are the most sensitive parameters in the water balance components 

(Nijssen et al., 1997; Su et al., 2005). These parameters must be estimated from observations, via a trial 

and error procedure that leads to an acceptable match of simulated discharge with observations.  

For the snow calibration, the value of thresholds for maximum (at which snow can fall) and minimum 

(at which rain can fall) air temperature were fixed as 0.5°C and -0.5°C, respectively. These values were 10 

adjusted based on the region’s climatology and were kept constant for all simulations in the global 

control file. Parameters related to the snow albedo were adjusted using the traditional VIC algorithm 

based on the US Army Corps of Engineers empirical snow albedo decay curves for transitions from 

snow accumulation to ablation. 

Final values of these six calibrated parameters are were estimated for each forcing dataset by a number 15 

of simulation iterations minimizing the difference between the simulated and observed monthly flow.  

While the MOCOM-UA automated optimization process utilizes monthly streamflow in during 

calibration, we evaluated the overall model performance on daily time scales using NSE and correlation 

performance metrics.  
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The VIC model calibration is applied to the Fraser River’s main stem at Hope, BC and the FRB’s major 

sub-basins, namely the Upper Fraser at Shelley (UF), Stuart (SU), Nautley (NA), Quesnel (QU), Chilko 

(CH) and Thompson-Nicola (TN) rRiversbasins (Fig. 1a and Supplementary Table 1). These sub-basins 

contribute 75% of the annual observed Fraser River discharge at Hope, BC with the largest 

contributions from the TN, UF and QU sub-basins (Déry et al., 2012).  5 

2.43.2 3 Experiments 

A series of different VIC experiments werareas performed to (i) compare the VIC model’s response 

when driven by different forcings, (ii) evaluate the uncertainties related to the VIC optimizer, and (iii) 

investigate the effect of PDO teleconnections on the VIC calibration and validation time periods. For 

objective (i), we used all the four datasets to run VIC simulations to facilitate detailed comparison of 10 

different datasets and their hydrological response. In objectives (ii) and (iii), rather than the 

intercomparison of datasets, our goal is to evaluate the uncertainties in the model implementation 

particularly in its calibration process. We therefore only used the UW dataset to force the VIC model as 

this dataset along with our VIC model implementation is thoroughly examined extensively over the 

FRB region in Kang et al., (2014) and (2016). These detail of all the experiments are wereareis 15 

categorized as below follows: 

1) Inter-comparison runs:  The VIC model wasis driven by each forcing dataset for 28 years (1979 to 

2006) with 1979-1990 as the calibration period and 1991-2006 as the validation period using the 

MOCOM-UA optimizer (Table 1). The VIC simulations driven by ANUSPLIN, UW and PCIC 

forcings are initiated five years prior to the year 1979 to allow model spin-up time. Since NARR is 20 
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not available until 1979, its VIC simulations were recursively looped for five years using the year 

1979 as the forcing datathe model spin up time is not considered. After calibration, the model 

validation runs were initialized with five different state files to produce five ensemble members 

(Table 1)Once calibration is completed, validation runs are initiated with five different initial 

conditions (lagged by 24-hour intervals) to avoid any random uncertainties such as those in initial 5 

conditions (Table 1). The ANUSPLIN, NARR, UW and PCIC driven ensemble mean VIC 

simulations are named referred as to ANUSPLIN-VIC, NARR-VIC, UW-VIC and PCIC-VIC, 

respectively. These ensemble simulations are were run for the whole FRB and its UF, SU, NA, QU, 

CH and TN sub-basins. 

2) Optimizer uncertainty runs:  Our comparison of hydrological simulations driven by four forcing 10 

datasets revealed that PCIC and UW driven VIC simulations are noticeably better with high NSE 

values and reproduce hydrographs similar to that from observations. Here we only used the 

PCICUW forcing data for VIC model simulations to investigate the uncertainties in the model 

calibration process for the 1979-1990 time period. Our primary goal is to evaluate optimizer 

sensitivity to a unique set of parameter limits. We want to see how the MOCOM optimizer results in 15 

different optimized parameters and change the overall simulated hydrograph in the calibration 

process. Here the VIC model is driven only by the PCIC dataset for the 1979-1990 calibration time 

period using the MOCOM-UA optimizer. We performed the optimization of six soil parameters, i.e. 

b_infilt, Dsmax, Ws, D2, D3 and Ds in three five experimental setups using different initial ranges 

of parameter limits. The VIC calibration experiments (OPT1, OPT3, OPT4 and OPT53) are were 20 

run using two four narrow ranges selected from the maximum limits of calibration parameters. The 
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same experiment is then run with maximum limits of the calibration parameters (OPT2). Calibration 

parameters, their initial ranges and final optimized values for all threethe experiments are given in 

Table 3. The OPT1, OPT2, OPT3, OPT4 and OPT3 OPT5 simulations are were run over the whole 

FRB only. 

3) PDO uncertainty runs:  Both We used the the UW and PCIC datasets are used to drive long term 5 

(1950-2006) VIC simulations. This is to capture the decadal variability of cool and warm phases of 

the PDO. Along with this, tFivehree different experiments, namely PDO1, PDO2, PDO3, PDO4 and 

PDO3 PDO5 are were performed with calibration periods of 1981-1990, 1956-1965, and  1967-

1976, 1977-1987 and 1991-2001 and with corresponding validation periods of 1991-2001, 1966-

1976,  and 1977-1987, 1967-1976 and 1981-1990, respectively (Table 4). Each time period is was 10 

selected to capture cool or warm PDO phases, i.e. its cool (1956-1965 and 1967-1976) and warm 

(1981-1990, 1991-2001 and 1977-1987) phases. For each calibration experiment in one particular 

phase of the PDO, the MOCOM-UA is was used to optimize calibration parameters. The NSE is 

was calculated for the calibration and validation periods using the daily observed streamflow data 

for the Fraser River at Hope. All PDO simulations are were run over the whole FRB only. 15 

2.5 4 Analysis Strategy 

The analyses are were performed for three FRB hydro-climatic regimes: the Interior Plateau, the Rocky 

Mountains and the Coast Mountains (Moore, 1991). These three regions are were chosen given their 

distinct physiography and hydro-climatic conditions. The gridcell partitioning of these three regions and 

their elevations are shown in Fig. 1b. Results in this study mainly focused on the Fraser River main 20 

stem at Hope, BC since it covers 94% of the basin’s drainage area and has a continuous streamflow 
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record over the study periods. However, the inter-comparison runs are were also compared over the 

FRB’s major sub-basins. The total runoff is was calculated using the sum of baseflow and runoff. 

Seasonal variations are were assessed by averaging Dec-Jan-Feb (DJF), Mar-Apr-May (MAM), Jun-Jul-

Aug (JJA) and Sep-Oct-Nov (SON) months for winter, spring, summer and autumn, respectively.  

In the SWE analysis, the snowmelt  is was calculated by taking the difference between maximum and 5 

minimum SWE over the water year (1 October to 30 September
 
of the following calendar year). The 

corresponding day of the water year having maximum SWE (maxSWE) is referred to named as 

maxSWE-day.  

Although glacier dynamics are not included in the VIC model physics, the model produce a perennial 

snowpack in few gridcells in its output. We compared those cells to Baseline Thematic Mapping (BTM) 10 

and found that the glaciating cells match the location of observed glaciers. We therefore masked those 

gridcell in the SWE analysis considering that the effects of glaciers may not change our results 

significantly due to the ~25 km model grid cell resolution (625 km
2
 area per grid cell) used in this study.  

The Mann–Kendall test (Mann, 1945; Kendall, 1970) is was used to estimate monotonic trends in the 

input forcing data and the simulated hydrological variables. This non-parametric trend test has been 15 

used in several other studies to detect changing hydrological regimes (Lettenmaier et al., 1994; Ziegler 

et al., 2003; Déry et al., 2005, 2016; Kang et al., 2014). Trends are were considered to be statistically-

significant when p < 0.05 with a two-tailed test. 
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3 Results and Discussion 

We first examine the ANUSPLIN, NARR, UW and PCIC datasets to investigate how substantial are the 

differences in precipitation and air temperature at several temporal and spatial scales across the FRB and 

its sub-regions. The VIC simulations, driven by these forcing datasets, are then discussed to evaluate 

uncertainties in simulated SWE and runoff. This is followed by the discussion of uncertainty in the VIC 5 

calibration process. 

3.1 Forcings Datasets Inter-comparison  

The daily mean air temperature of ANUSPLIN, NARR, UW and PCIC datasets remains below 0°C 

from November to March and rises above 0°C in early spring over all three FRB sub-regions (Fig. 2). 

While the inter-datasets seasonal variability of air temperature is quite similar, the winter in NARR is 10 

~2°C warmer compared to the remaining datasets. The grid scale seasonal differences (PCIC minus 

ANUSPLIN, NARR and UW) of mean air temperature (Supplementary Fig. 1) spatially quantify the 

inter-datasets disagreements (Supplementary Fig. 1). While the PCIC˗ANUSPLIN and PCIC˗UW 

differences are within ±1°C, the PCIC-NARR difference exceeds 2°C over most of the FRB in DJF and 

SON, revealing NARR air temperatures to be quite warmer than in the PCIC dataset.  15 

The magnitudes of daily mean precipitation vary markedly amongst datasets. Winter precipitation, 

which begins in November and persists until April, shows greater inter-datasets differences, particularly 

over the Rocky and Coast Mountains. Compared to the PCIC and UW datasets, the ANUSPLIN 

precipitation is underestimated in all three regions with nearly 2.0 mm day
-1

 to 5.0 mm day
-1

 differences 

in the Rocky and Coast Mountains, respectively. This underestimation is more evident in the 20 
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PCIC˗ANUSPLIN spatial difference (Supplementary Fig. 2) revealing up to 5 mm day
-1

 difference over 

the mountainous regions (Supplementary Fig. 2). The precipitation differences in the Interior Plateau 

remain nearlyapproach zero for all the  datasets. The maximum intraseasonal variability arises in the 

Coast Mountains ranging from 10.0 mm day
-1

 of precipitation in winter and nearly zero in summer. The 

range of inter-datasets spread for peak precipitation varies from 5.0 mm day
-1

 to 10.0 mm day
-1

 during 5 

winter for the Coast Mountains. Precipitation in the Coast Mountains is more variable due to its 

proximity to the Pacific Ocean where the interaction between steep elevations and storm track positions 

is quite complex. In the Coast Mountains, the NARR precipitation is underestimated and is comparable 

to ANUSPLIN.  

The underestimation of the ANUSPLIN mountainous precipitation is probably due the thin plate 10 

smoothing spline surface fitting method used in its preparation. For NARR, air temperature and 

precipitation uncertainties may have been induced by the climate model used to assimilate and produce 

the reanalysis product. 

3.2 Hydrological Simulations  

The ANUSPLIN-VIC, NARR-VIC, UW-VIC and PCIC-VIC simulation performance is was evaluated 15 

using the NSE and correlation coefficients by calibrating and validating against observed daily 

streamflow for the Fraser River at Hope (Table 2). The NSE scores are much higher for the PCIC-VIC 

and UW-VIC simulations compared to the ANUSPLIN-VIC and NARR-VIC. The lower NSE score in 

the ANUSPLIN-VIC simulation reflects a dry precipitation bias in the ANUSPLIN dataset. As the 

model configuration, resolution, and soil data are were identical for all VIC simulations, different NSE 20 
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values reveal uncertainty associated only with each observational forcing dataset. Despite the low NSE 

score of the ANUSPLIN-VIC simulation, the correlation coefficient is significantly high. The bias in 

the simulated streamflow is contributing to the lower NSE coefficient whereas the phase of seasonal 

flow is quite similar to the observed flow in the ANUSPLIN-VIC simulation. There may be additional 

sources of uncertainty due to the method used to assess simulation accuracy. For example, instead of 5 

using NSE, other model evaluation metrics such as the Kling-Gupta Efficiency (KGE) coefficient 

(Gupta et al., 2009) may produce different levels of model accuracy.  

The ANUSPLIN-VIC, NARR-VIC, UW-VIC and PCIC-VIC simulated SWE and snowmelt, areally-

averaged over the FRB’s three sub-regions, show similar seasonal variability but considerably different 

magnitudes, especially over mountainous regions. Figure 3a shows these differences for the Rocky 10 

Mountains revealing the range of peak SWE from 400 mm for ANUSPLIN to  >600 mm for PCIC. The 

dry bias in ANUSPLIN precipitation forcing induces lower SWE magnitudes in the ANUSPLIN-VIC 

simulation. The lower SWE in the NARR-VIC simulation is probably due to the warmer air temperature 

during winter and spring (Fig. 2b). Winter temperatures being warmer in the NARR dataset may alter 

the phase of precipitation partitioning with more rainfall than snowfall, and hence less SWE in the 15 

NARR-VIC simulation. Such differences in SWE are reflected in the associated snowmelt (Fig. 3b) 

where the NARR-VIC simulation shows earlier snowmelt. This is further investigated by VIC 

sensitivity experiments and is discussed later in the text. Grid-scale differences in simulated SWE (Fig. 

4) and runoff (Supplementary Fig. 3) arise most notably over the mountainous regions. In the interior 

FRB, the simulation differences between PCIC-VIC and ANUSPLIN-VIC means SWE are within a 10 20 
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mm range whereas such differences exceed 50 mm to 100 mm range  for the NARR-VIC and UW-VIC 

simulations.    

In the FRB’s mountainous regions, the VIC model can lead to inaccurate snowpack estimates if the 

elevation dependence on snow accumulation and ablation are is not modelled properly. As mentioned in 

section 2.43, we used ten elevation bands in our VIC implementation so that each band's mean elevation 5 

is was used to lapse the gridcell average air temperature and precipitation to produce more reliable 

estimates. We clustered the elevation distribution within 10 bands into different elevation ranges. This 

alloweds in-depth analysis of the elevation dependent variation of mean SWE that is of particular 

importance for the Rocky and Coast Mountains regions of the FRB. We examined the magnitude of 

maxSWE and corresponding maxSWE-day of the water year between all simulations and elevation 10 

ranges (Fig. 5). The difference in maxSWE between all VIC simulations increases with elevations, 

particularly the Rocky Mountains where higher elevations (>1400 m) show large disagreement between 

simulated maxSWE (Fig. 5a). In the Interior Plateau, the NARR-VIC simulated maxSWE exceeds 300 

mm whereas all other simulations are within 200 mm. The maxSWE elevation dependent variation is 

quite complex in the Coast Mountains. However the simulations differences at elevations >1400 m are 15 

smaller compared to the lower elevations below 1000 m. Apart from maxSWE magnitude, the 

maxSWE-day variation differs considerably across the VIC simulations. Generally, the maxSWE-day 

varies by nearly~2  two months between lower and higher elevations as snow onset occurs later in 

autumn. While the maxSWE-day variation is quite complex within each elevation range, the NARR-

VIC maxSWE-day is earliest whereas PCIC-VIC delays the snow accumulation over the 600-2000 m 20 

elevation range in the Rocky Mountains. There is nearly 20 days of simulatedions variation in 
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maxSWE-day at the Rocky Mountains highest elevation range. Such variation highlights the 

uncertainties in seasonality of the VIC simulated snowpacks. For the Interior Plateau and the Coast 

Mountains, no consistent pattern of maxSWE-day variation exists for any particular simulation.  

3.2.1 Comparison of observed versus sSimulated SWE comparison with observations 

As mentioned earlier, all gridded climate forcing datasets are based on station observations. The density 5 

of stations in the FRB’s mountainous regions remains quite low and therefore induces higher 

uncertainties in the observational gridded products. It is important to quantify the spatial discrepancy 

between the simulated (0.25° gridcell) and observed (snow pillow station dataset) SWE that may lead to 

an uncertainty in snow estimations by models (Elder et al., 1991; Tong et al., 2010). We used observed 

SWE from BC snow pillow sites and the VIC simulated SWE data over the same elevation and 10 

overlapping continuous time periods at four different locations in the upper and middle Fraser where a 

high volume of SWE accumulates seasonally. 

The daily time series of VIC simulated SWE (Supplementary Fig. 4) follows the observed interannual 

variability in snow accumulation but with considerable differences across simulations. The PCIC-VIC 

simulation accumulates too much SWE compared to observations in the gridcell corresponding to the 15 

Yellowhead location. This overestimation is further explored for this siteYellowhead by expanding the 

time series back to 1979 (not shown), which reveals issues with PCIC precipitation data only during 

1996-2004 exhibiting with considerable above normal anomalies at Yellowhead. While ANUSPLIN-

VIC shows lower SWE amounts, the NARR-VIC and UW-VIC simulations reproduce the observed 

variation quite reasonably for Yellowhead. For McBride, all simulations are more or less comparable 20 
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except ANUSPLIN-VIC showing a SWE underestimation compared to observations. In the middle 

Fraser, the UW-VIC simulation is quite comparable to observations whereas the PCIC-VIC simulation 

underestimates SWE at Mission Ridge. Both ANUSPLIN-VIC and NARR-VIC underestimate SWE in 

the middle Fraser locations. The observed SWE values in the lower Fraser locations are not well 

captured by VIC, perhaps owing to the region’s coastal influence and strong sensitivity to air 5 

temperatures (not shown). These results highlight the importance of accurate precipitation forcings to 

simulate SWE. Along with this, even small perturbations in air temperature can change the phase of 

precipitation, which directly contributes to changes in SWE accumulation.  

3.2.2 Comparison of observed versus simulated Simulated rRunoff comparison with observations 

The VIC simulated flows are routed to produce hydrographs for the Fraser River at Hope, BC (Fig. 6a). 10 

Comparison of simulated runoff with observations shows the highly consistent model performance for 

PCIC-VIC and UW-VIC simulations whereas the runoff is considerably lower for the ANUSPLIN-VIC 

simulation. The NARR-VIC hydrograph is comparable in magnitude with observations but the runoff 

timing is considerably shifted (~15 days) yielding more winter and spring runoff and earlier decline of 

flows in summer. The shift in the hydrograph is probably caused by the 2°C warmer air temperatures 15 

causing earlier snowmelt. This finding is was confirmed by a VIC sensitivity experiment where the air 

temperature is was perturbed by 2°C while keeping the precipitation unchanged (Supplementary Fig. ). 

Similar to the case of NARR-VIC results, the simulated SWE, snowmelt and runoff decreases with 2°C 

rises in air temperature forcings (Supplementary Fig. 5). The coefficient of variation for all four datasets 

reveals that variability in the PCIC-VIC and UW-VIC simulations is similar to observations (Fig. 6b).  20 

We  further produced the hydrographs for the FRB’s six major sub-basins to compare VIC simulation 
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runs of each basin. Similar to the hydrograph of the Fraser River at Hope, the ANUSPLIN-VIC runoff 

shows considerable disagreement with the observed hydrograph, especially in the UF, QU and TN basin 

owing to the dry bias in its precipitation forcing. Moreover, NARR-VIC runoff is overestimated in the 

SU, NA and CH sub-basins whereas for UF, QU and TN, the simulated runoff underestimates observed 

flows. Consistent with spatial differences of mean air temperature and runoff (Supplementary Figs. 1 5 

and 3), the warmer NARR air temperatures (compared to PCIC) over the SU, NA and CH sub-basins in 

winter and spring induce more snowmelt and hence overestimate runoff. In contrast, over the UF, QU 

and TN, the NARR air temperature is comparatively cooler in winter. This may reduce the snowmelt 

driven runoff causing underestimation over these sub-basins. The PCIC-VIC hydrographs are better in 

most of the basins with high NSE scores (Supplementary Table 2).      10 

Differences seen in the FRB’s flow magnitude and timing clarify the impact of forcing uncertainties on 

the simulations. Such variation in simulated runoff especially during the snow-melting period (Apr-Jul) 

is either due to the uncertain amount of precipitation or the magnitude of air temperature in the forcing 

datasets.  

We further investigated differences in forcings and their VIC simulation based on their climatic trends. 15 

The monthly climate trends in air temperature, precipitation and simulated runoff (Supplementary Fig. 

56) shows relatively similar that the warm air temperatures warming during winter (up to 3°C in 

December) and the with the declined  of precipitation (mainly snowfall) during winter for all the four is 

relatively similar between different forcing datasets. The magnitude of trends in the NARR dataset is 

somewhat lower for air temperature and higher for precipitation compared to the other three datasets. In 20 

the simulated runoff, the monthly variation of trends generally agrees among simulations, but the trends 
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are weak in the ANUSPLIN-VIC and UW-VIC simulations whereas the PCIC-VIC and NARR-VIC 

simulations exhibit strong trends. In the NARR-VIC simulations, runoff trends are affected by lower air 

temperature and higher precipitation trends yielding increasing runoff. Grid-scale trends show 

widespread differences in the NARR-VIC runoff, particularly in the interior of the FRB when compared 

to ANUSPLIN-VIC, UW-VIC and PCIC-VIC monthly trends (Supplementary Fig. 67). All the four 5 

simulations exhibit strong positive runoff trends in April followed by declining trends in May in the 

Rocky Mountains (the UF and TN sub-basins).  

The inter-comparison analysis shows that the uncertainties in forcing datasets contribute substantially to 

the performance of the VIC model. This is consistent with studies reporting that the uncertainties in 

model structure contribute less to snowpack and runoff simulations (Troin et al., 2015, 2016), whereas 10 

the uncertainties in forcing datasets are the predominant sources of uncertainties (Kay et al., 2009; Chen 

et al., 2011). Using the NARR dataset, the systematic biases in simulations and the substantial effect of 

lateral boundary conditions on the performance of the regional model have also been identified in many 

other studies (de Elia et al., 2008; Eum et al., 2012).  

While the small differences in precipitation are acceptable, the air temperature uncertainties play an 15 

especially important role in the hydrological simulations. In the FRB, air temperature controls summer 

water availability, making regional snowpacks more vulnerable to temperature-induced effects, rather 

than precipitation. Thus uncertainties in air temperatures are crucial for the runoff timing in 

hydrological simulations are more crucial for hydrological simulations over the FRB rather than those 

in precipitation.  20 
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3.3 Uncertainty in Calibration Optimizer  

We further investigated the uncertainty in the optimization of parameters during the calibration process. 

Many studies have evaluated the parameter uncertainties by adding random noise to the calibration 

parameters. We used a different approach by estimating the uncertainty in the MOCOM-UA optimizer 

used in the calibration of parameters. This is was to estimate the optimizer uncertainty during the VIC 5 

calibration process using different values of initial parameters limits. The optimization process for the 

OPT1, OPT2, OPT3, OPT4 and OPT53 experiments required 39, 89, 61, 52, and 56  82, 115 and 45 

iterations, respectively, to optimize the b_inf, Ds, Ws, D2, D3 and Dsmax parameters to their final 

values (Fig. 8a-f, Table 3). The corresponding mean monthly (as the optimizer cannot utilize daily data) 

runoff for the Fraser River at Hope in the OPT1, OPT2, OPT3, OPT4 and OPT5 OPT1, OPT2 and 10 

OPT3 experiments are quite different when compared to observations (Fig. 8g). The NSE scores reveal 

different accuracy for the three five simulations even when the parameters’ initial range in the OPT1, 

OPT3, OPT4 and OPT53 experiments is a subset of the OPT2 experiment. The optimization process for 

parameter calibration would require an expert’s experience to set the initial parameter range to converge 

them to their optimal values. Note that if the initial parameter uncertainty distribution is set as wide as it 15 

is physically meaningful, then the optimization will require more computational time to converge 

toward the Pareto optimum. However, to set the initial parameter limits, the subjective judgement and 

skill based on experience is needed.  

While we performed many sets of experiments with different initial parameters, only OPT1’s initial 

limits produced higher NSE and utilized less computational time. The estimation of hydrologic model 20 
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parameters depends significantly on the availability and quality of the precipitation and observed 

streamflow data along with the accuracy of the routing model used. It is therefore important to consider 

bias correction of forcing datasets as part of automatic calibration. The observed streamflow data used 

to calibrate the model are often based on water levels that are converted to discharge by the use of a 

rating curve, which can also induce uncertainty in the observed discharge data. The overall conclusion 5 

of this analysis is that the automated optimizers used to converge calibration parameters still rely on the 

hydrologist’s experience and some manual adjustment of initial calibration parameter ranges. 

3.4 Uncertainty in calibration due to PDO Phases 

The FRB’s streamflow varies from year to year as well on decadal timescales depending on the timing 

and magnitude of precipitation and air temperatures during the preceding winter and spring. Given that 10 

the FRB air temperature and precipitation is are influenced by cool and warm phases of the PDO 

(Mantua et al., 1997; Fleming et al., 20072010; Whitfield et al., 2010; Thorne and Woo, 2011), the 

choice of VIC calibration and validation periods may induce uncertainty in calibration. The influence of 

PDO phases in the forcing dataset can produce different snowpack and runoff levels in the hydrological 

simulation (Supplementary Fig. 7). The long term UW-VIC simulations (1949-2006) show higher mean 15 

SWE and runoff levels in a cool PDO phase (1949-1976) and lower mean values in a warm PDO phase 

(1979-2006) (Supplementary Fig. 8). The interannual variations show earlier peak flows characterized 

by a warm PDO, in response to warmer basin conditions, increased rainfall, and earlier snowmelt. The 

VIC model calibrations may be biased towards hydrologic conditions of the warm and cold PDO phases 

and may induce uncertainties in the results. The model performance could be improved by calibrating 20 

and validating the model in the same PDO phase (experiments PDO1, PDO2 and PDO52), i.e. the NSE 
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coefficient is similar in the calibration and validation periods (Table 34). If the calibration is performed 

in the cool PDO phase and validation in the warm PDO phase (experiment PDO3), the NSE score 

decreases to 0.79 for the validation period since the model calibration is biased towards the cool 

conditions, simulating higher flows for the Fraser River at Hope owing to more snow and later 

snowmelt. The same is true if the calibration and validation is performed in the warm and cool PDO 5 

phases respectively (experiment PDO4). For each set of calibration experiments, the calibration 

parameters are different, which affects the air temperature lapse rates and thus evapotranspiration, the 

formation of the snowpack, and the timing of snowmelt. Figure 9 shows observed and simulated runoff 

for the Fraser River at Hope revealing lower observed peak flows ~2.70 mm day
-1

 in a warm PDO 

phase (PDO1) and higher peak flows ~3.30 mm day
-1 

in a cool PDO phase (PDO2). Interestingly the 10 

UW driven PDO simulations underestimate peak flows in the warm PDO phase and overestimate them 

in the cool PDO phase whereas the NSE coefficient for both the cool and warm PDO phases is almost 

equivalent (Table 4). PDO 4 and PDO 5 experiments further support these findings. 

This analysis reveals that the hydrological model performance changes considerably changes with 

different climatic conditions and the choice of the calibration and validation time periods, an important 15 

factor in hydrological simulations. The proper implementation of a hydrological model does need a 

requires a careful calibration strategy to produce reliable hydrological information important for water 

resource management. . 

We repeated the PDO experiments using the PCIC forcing dataset to compare UW and PCIC 

simulations under PDO phases. The PCIC PDO simulation shows better agreement with observed data 20 

in both cool and warm phases of the PDO compared to the UW PDO simulations. Consistent with UW 
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PDO3 simulation, PCIC PDO3 simulation shows poor performance during validation periods if the 

calibration is performed in a cool PDO phase (Fig. 9 e, f). 

4. Conclusions 

This study utilized ANUSPLIN, NARR, UW and PCIC observation-based gridded datasets to evaluate 

systematic inter-datasets uncertainties and their VIC simulated hydrological response over the FRB. The 5 

uncertainties involved in the optimization of model parameters and model calibration under cool and 

warm phases of the PDO are were also examined. 

The air temperature in the PCIC and UW datasets were comparable while the PCIC precipitation 

remains quite high in the Rocky Mountains compared to the UW and NARR datasets. The ANUSPLIN 

precipitation forcing had a considerable dry bias over mountainous regions of the FRB compared to the 10 

NARR, UW and PCIC datasets. The NARR winter air temperature was 2C warmer than the other 

datasets over most of the FRB. The PCIC-VIC and UW-VIC simulations had higher NSE values and 

more reasonable hydrographs compared with observed flows for the Fraser River at Hope. Their 

performance for many of the FRB’s major sub-basins remained satisfactory. The PCIC-VIC simulation 

revealed higher SWE compared to other datasets, probably due to its higher precipitation amounts. The 15 

ANUSPLIN-VIC simulation had considerably lower runoff and NSE values along with less SWE and 

snowmelt amounts owing to its reduced precipitation. The NARR dataset showed warm winter air 

temperatures, which influenced its hydrological response by simulating less SWE and decreased 

snowmelt, and hence lower runoff. The monthly trend analysis distinguished the NARR dataset by 
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showing decreased trends in air temperature and increased trends in precipitation and its VIC driven 

runoff. The trend analysis further highlighted uncertainties of the NARR dataset. 

The elevation dependence of maxSWE showed disagreements over the higher elevations of the Rocky 

Mountains between simulations where the PCIC-VIC simulation overestimated SWE and ANUSPLIN-

VIC resulted in underestimation. Furthermore the elevation dependent variation of the maxSWE-day 5 

fluctuates fluctuated considerably between simulations. 

The parametric uncertainty in the VIC calibration process revealeds that the choice of the initial 

parameter range plays a crucial role in defining the model performance. During the PDO phases, choice 

of the calibration and validation time periods play a crucial role in defining the model hydrological 

response for the FRB. Model calibration was biased towards hydrologic conditions of the warm and 10 

cold PDO phases. The UW-VIC PDO simulations underestimated and overestimated the peak flows in 

the warm and cool PDO phases, respectively.     

This study’s inter-comparison revealed spatial and temporal differences amongst the ANUSPLIN, 

NARR, UW and PCIC datasets over the FRB, which is essential to capture the uncertainties in 

modelling hydrologic responses. Overall, the PCIC and UW datasets had reliable results for the FRB 15 

snow hydrology whereas the ANUSPLIN and NARR datasets had issues with either precipitation or 

with air temperature. The FRB’s snow-dominated hydrology and its complex elevation profile require 

highly accurate meteorological station densities to increase the reliability of the high resolution gridded 

datasets. While the air temperature plays a dominant role in the hydrological simulations, improving the 

quality of precipitation data can lead to more accurate hydrological responses in the FRB. Considerable 20 
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precipitation bias can substantially degrade the model performance.Improving the quality of 

precipitation data may thus lead to more accurate hydrological responses in the FRB. There is the need 

for concrete methods to deal with the increasing uncertainty associated with the models themselves, and 

with the observations required for driving and evaluating the models. 

In this study, the FRB hydrological response varied considerably varied under different forcing datasets, 5 

modelling parameters and remote teleconnections. However there are other sources of uncertainties not 

discussed here that may establish a range of possible impacts on hydrological simulations. First, the 

hydrological model used in this study runs at a daily time step, which can be increased to hourly to 

refine the model performance. The uncertainties in the VIC model structure include here tThe lack of 

the representation of glaciers in the current version of the VIC model. The lack of glacier’s dynamics in 10 

the current version of the VIC model may may also induce uncertainties in model results. Along with 

these, the VIC simulations are also affected by intrinsic uncertainties in its parameterizations such as, 

for example, the representation of cold processes (e.g., snowpacks and soil freezing). Such structural 

uncertainties need to be evaluated by examining multiple hydrological models over the same region. 

The lack of glacier’s dynamics in the current version of the VIC model may also induce uncertainties in 15 

model results. The in situ soil moisture observations that are not necessarily representative of the model 

grid scale may also contribute to the overall uncertainties in the results. Finally, hydrological 

simulations are mainly validated using comparisons between simulated and observed flows, which 

depend on routing models that may contain structural uncertainties. Our future work will investigate 

such uncertainties using high temporal and spatial resolution hydrological models over the FRB. 20 
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Table 1: Description of VIC inter-comparison experiments performed using observational forcings.    

VIC model Driving data Time Span 
Ensemble 

Runs 
VIC configuration Description 

The Canadian Precipitation Analysis and the 

thin-plate smoothing splines 

(ANUSPLIN, Hopkinson et al., 2011) 

1979-1990 (Cal.) 

1991-2006 (Val.) 
5 

Domain =  48°– 55°N and 119°–

131°W 

Resolution = 25 km ×  25 km, 

Time Step = Daily 

Soil Layers = 3 

Vertical elevation bands = 10 

Validation runs 

are initiated 5 

times with 

different initial 

conditions. 

 

North American Regional Reanalysis 

(NARR, Mesinger et al., 2006) 

Pacific Climate Impacts Consortium 

(PCIC, Shrestha et al., 2012) 

University of Washington 

(UW, Shi et al., 2013) 
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Table 2: Daily pPerformance metrics for the VIC inter-comparison runs. Calibration (1979–1990) and validation (1991–2006) for 

Fraser River main stem at Hope, BC is evaluated using the Nash–Sutcliffe Efficiency (NSE) coefficient and correlation coefficient 

(r, all statistically-significant at p < 0.05).   

Experiments 1979-1990 

Daily Calibration 

1991-2006 

Daily Validation 

NSE r  NSE r  

ANUSPLIN-VIC 0.54 0.91 0.55 0.94 

NARR-VIC 0.67 0.85 0.81 0.90 

PCIC-VIC 0.90 0.96 0.90 0.95 

UW-VIC 0.82 0.94 0.80 0.92 

 

5 
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Table 3: Parameters used to optimize during the calibration process for mean daily runoff for the Fraser River at Hope. OPT1, 

OPT2, OPT3, OPT4 and OPT53 are different experiments using same forcing data but with different initial range for each 

calibration parameter.  

VIC model  

Calibration  

Parameters (units) 

Description 

Initial Range 

(Final Optimized Parameters) 

Experiment 

OPT1 

Experiment 

OPT2 

Experiment 

OPT3 

Experiment 

OPT4 

Experiment 

OPT5 

b_inf Controls the partitioning of 

precipitation (or snowmelt) 

into surface runoff or 

infiltration 

0.2-0.00001 

(0.07) 

0.3-0.00001 

(0.16) 

0.25-0. 10 

(0.10) 

0.1-0.0001 

(0.08) 

0.16-0.12 

(0.12) 

Ds 
Fraction of maximum 

baseflow velocity 

0.1-0.000001 

(0.05) 

0.9-0.00001 

(0.09) 

0.30-0.04 

(0.05) 

0.6-0.0001 

(0.19) 

0.09-0.03 

(0.05) 

Ws Fraction of maximum soil 

moisture content of the third 

soil layer at which nonlinear 

baseflow occurs 

0.6-0.20 

(0.33) 

1.0-0.1 

(0.49) 

0.65-0.20 

(0.50) 

0.5-0.3 

(0.42) 

0.35-0.20 

(0.31) 

D2 (m) The second soil layer 

thicknesses, which affect the 

water available for 

transpiration 

1.0-0.7 

(0.82) 

3.0-0.7 

(1.02) 

0.80-0.70 

(0.76) 

2.8-1.0 

(1.07) 

0.80-0.70 

(0.78) 

D3 (m) The third soil layer 

thicknesses, which affect the 

water available for baseflow 

2.5-0. 7 

(1.66) 

5.5-0.7 

(2.70) 

2.00-1.00 

(1.82) 

3.0-1.0 

(1.38) 

1.8-1.2 

(1.76 ) 

Dsmax (mm day-

1) Maximum baseflow velocity 

18.0-12.0 

(16.0) 

30.0-12.0 

(22.71) 

23.0-12.0 

(14.28) 

18-12 

(16.22) 

16-13 

(14.11) 

Monthly NSE - 0.93 0.84 0.92 0.89 0.91 

 

5 
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Table 4: Daily Pperformance metrics for the UW forcing driven PDO runs. Calibration and validation for Fraser River main stem 

at Hope, BC is evaluated using the NSE coefficient using the dataset. See text for the detail of PDO experiments. 

Experiment Name 

Calibration Validation 

NSE 

(Time period) 

PDO Phase 

(Flows) 

NSE 

(Time period) 

PDO Phase 

(Flows) 

PDO1 
0.84 

(1981-1990) 

Warm 

(low flows) 

0.84 

(1991-2001) 

Warm 

(low flows) 

PDO2 
0.84 

(1957-1966) 

Cool 

(high flows) 

0.85 

(1967-1976) 

Cool 

(high flows) 

PDO3 
0.84 

(1967-1976) 

Cool 

(high flows) 

0.79 

(1977-1987) 

Warm 

(low flows) 

PDO4 
0.86 

(1977-1987) 

Warm 

(low flows) 

0.80 

(1967-1976) 

Cool 

(high flows) 

PDO5 
0.89 

(1991-2001) 

Warm 

(low flows) 

0.87 

(1981-1990) 

Warm 

(low flows) 
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Figure 1: (a) High-resolution digital elevation map of the FRB with identification of major sub-basins including the Fraser River 

main stem at Hope, BC. (b) FRB mean elevation (m) per VIC model gridcell. The location of the hydrometric gauge on the Fraser 

Rivers’ main stem at Hope is highlighted in both plots with as black circles. 
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Figure 2: Area-averaged time series of mean daily air temperature (dotted lines) and daily precipitation (solid lines) over the (a) 

Rocky Mountains, (b) Interior Plateau, and (c) Coast Mountains for the ANUSPLIN, NARR, UW and PCIC forcing datasets, 

water years 1979-2006. Water year starts on 1 October and ends on 30 September of the following calendar year. 
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Figure 3: Area-averaged time series of daily mean (a) SWE and (b) SWEmelt for the ANUSPLIN-VIC, NARR-VIC, UW-VIC and 

PCIC-VIC simulations averaged over the Rocky Mountains, water years 1979-2006. Water year starts on 1 October and ends on 

30 September of the following calendar year. 
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Figure 4: Spatial differences of mean seasonal SWE (mm) based on PCIC-VIC minus ANUSPLIN-VIC (1st row), NARR -VIC (2nd 

row) and UW (3rd row) simulations, water years 1979-2006. DFJ, MAM, JJA and SON correspond to winter, spring, summer and 

autumn,  respectively.  
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Figure 5: Variation of (a, c, e) maxSWE and corresponding (b, d, e) maxSWE-day for the ANUSPLIN-VIC, NARR-VIC, UW-VIC 

and PCIC-VIC simulations averaged over the (a, b) Rocky Mountains, (c, d) Interior Plateau and (e, f) Coast Mountains, water 

years 1979-2006.   
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Figure 6: The simulated and observed daily (a) runoff and (b) coefficient of variation (CV) for the Fraser River at Hope averaged 

over water years 1979-2006. An external routing model is used to calculate runoff for the ANUSPLIN-VIC, NARR-VIC, UW-VIC 

and PCIC-VIC simulations. Water year starts on 1 October and ends on 30 September of the following calendar year. 
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Figure 7: Same as Figure 6a but for the FRB’s six major sub-basins (a) Fraser-Shelley (UF), (b) Stuart (SU), (c) Nautley (NA), (d) 

Quesnel (QU), (e) Chilko (CH) and (f) Thompson-Nicola (TN).  
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Figure 8: UW-VIC simulations using five different parameter sets (labelled as OPT1, OPT2, OPT3, OPT4 and OPT5, see text and 

Table 3 for details) are compared for mean monthly discharge for the Fraser River at Hope during calibration period 1979-1990. 

The black curve represents observed monthly discharge.Figure 8: UW-VIC simulations using five different parameter sets 5 

(labelled as OPT1, OPT2, OPT3, OPT4 and OPT5, see text and Table 3 for details) are compared for mean monthly runoff for the 

Fraser River at Hope. 
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Figure 9: UW-VIC simulated daily runoff during calibration (cal.) and validation (val.) for the Fraser River at Hope, BC.  PDO1, 

PDO2, PDO3, PDO4 and PDO5 refer to the VIC experiments performed during different experimental setups (see text and Table 

4 for details). Water year starts on 1 October and ends on 30 September of the following calendar year. 5 
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Figure 9: UW-VIC simulated daily runoff during calibration (cal.) and validation (val.) under different PDO phases for the 

Fraser River main stem at Hope, BC. PDO1 (cal. 1981-1990 val.1991-2001), PDO2 (cal. 1956-1965 val.1966-1976) and PDO3 (cal. 

1967-1976 val.1977-1987) refer to VIC experiments performed during warm, cool and cool/warm PDO phases (see text and Table 

4 for details). Water year starts on 1 October and ends on 30 September of the following calendar year. 
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