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Abstract. Daily streamflows are often represented by flow duration curves (FDCs), which 
illustrate the frequency with which flows are equaled or exceeded. FDCs have had broad 
applications across both operational and research hydrology for decades; however, modeling 
FDCs has proven elusive. Daily streamflow is a complex time series with flow values ranging 
over many orders of magnitude.  Nevertheless, the identification of a probability distribution 10 
that can approximate daily streamflows should enhance our understanding of the behavior of 
daily streamflow and our ability to estimate FDCs at ungaged river locations. Comparisons of 
modeled and empirical FDCs at nearly 400 unregulated, perennial streams illustrates that the 
four-parameter kappa distribution provides a very good representation of daily streamflow 
across the majority of physiographic regions in the conterminous United States (US). Further, 15 
for some regions of the US, the three-parameter generalized Pareto and lognormal 
distributions also provide a good approximation to FDCs.  Similar results are found for both 
period of record FDCs, representing the long-term hydrologic regime at a site, and median 
annual FDCs, representing the behavior of flows in a typical year. 

1 Introduction 20 

Daily streamflows are often represented by flow duration curves (FDCs), which 
illustrate the frequency with which flows are equaled or exceeded. FDCs have important 
applications including water allocation, wastewater management, hydropower assessments, 
sediment transport, protection of ecosystem health, and the generation of time series of daily 
streamflows (Archfield and Vogel, 2010; Castellarin et al., 2013; Smatkin, 2001; Vogel and 25 
Fennessey, 1995). Broad regions of the world have insufficient records of streamflow and, 
despite a decade of work focused on such ungaged and partially gaged basins, accurate 
prediction of streamflow in these locations remains a challenge (Sivapalan et al., 2003; 
Hrachowitz et al., 2013). Identification of a probability distribution of daily streamflows 
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would be instrumental to the prediction of flows in ungaged basins. The goal of this study is 
to assess whether a single probability distribution can adequately approximate, across very 
broad hydroclimatic regimes, the distribution of daily streamflows, as represented by a 
period-of-record FDC (FDCPOR), which reflects the long-term or steady-state hydrologic 
regime at a site. Our assessment is performed at the sub-continental scale to enable 5 
consideration of a broad range of hydrologic conditions that may be experienced in practice.  

Methods to predict the FDCPOR in ungaged basins generally fall into one of two 
categories: process-based or statistical. For an extensive review of these methods, refer to 
Chapter 7 in the book “Runoff prediction in ungaged basins” (Castellarin et al., 2013). 
Process-based models are an increasingly popular method of estimating FDCs at ungaged 10 
basins because they offer the ability to relate physical watershed characteristics to streamflow 
regimes. While promising for regions without any streamflow data, process-based FDCPOR 
models require numerous assumptions regarding runoff and climate mechanisms (Basso et 
al., 2015, Botter et al., 2008; Doulatyari et al., 2005, Müller and Thompson, 2016; Schaefli et 
al., 2013; Yokoo and Sivapalan, 2011).  15 

Historically, most studies predicting FDCPOR at ungaged sites have used statistical 
methods, such as regression and index-flow methods,  due to their parsimony and relative 
ease of use in operational hydrology (Castellarin et al., 2013). Yet, daily streamflow 
observations exhibit a very high degree of serial correlation, seasonality and other 
complexities and are thus neither independent nor identically distributed. Klemeš (2000) 20 
warned that ignoring these complexities can be problematic, particularly if the FDCPOR is 
used to extrapolate upper tails of the distribution. Furthermore, the fact that daily streamflows 
often range over many orders of magnitude presents a considerable challenge to the 
identification of an appropriate distribution. While multiple parameters are needed to describe 
the complex distribution of daily streamflows, it is also important that the model be 25 
parsimonious, because each additional parameter can hinder estimation, parameter 
identifiability and interpretation (Castellarin et al., 2007).  

Despite these theoretical and practical challenges, there is a relatively large literature 
which has sought to approximate the distribution of daily streamflow with a single 
probability distribution for very practical purposes. The main motivations have been 30 
estimation of FDCs at ungaged sites, often based on an index-flow method (Castellarin et al., 
2004, 2007; Fennessey and Vogel, 1990; Li et al., 2010; Mendicino and Senatore, 2013; 
Rianna, 2011; Viola et al., 2011) or for estimation of time series of daily streamflow at 
ungaged sites (Fennessey, 1994; Smatkin and Masse, 2000; Archfield and Vogel, 2010). A 
number of distributions have been proposed to describe daily streamflow.  Li et al (2010) 35 
found that the three-parameter lognormal distribution (LN) adequately represented the 
FDCPOR for the southeastern Australia region. In Italy, both the four-parameter kappa (KAP) 
and the generalized Pareto (GPA), a special case of KAP, have been used to described 
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FDCPOR in index-flow studies (Castellarin et al., 2004, 2007; Mendicino and Senatore, 2013). 
Similarly, both GPA and KAP  provided a good approximation for FDCPOR in the 
northeastern United States (US) (Archfield, 2009; Fennessey, 1994; Vogel and Fennessey, 
1993). However, Archfield (2009) highlighted challenges in fitting both KAP and GPA to 
tails of the FDCPOR, noting these fitted distributions often exhibit lower bounds that can result 5 
in the generation of negative flows. Multiple authors have noted that a complex distribution 
with at least four parameters is needed to approximate the probability distribution of daily 
streamflows (Archfield, 2009; Castellarin et al., 2004; LeBoutillier and Waylen, 1993). 

Given the challenge of selecting a single distribution to approximate the probabilistic 
behavior of daily streamflows, some studies have focused on only a portion of the FDCPOR, 10 
such as flows below the median (Fennessey and Vogel, 1990) or above the mean (Segura et 
al., 2013). Others have studied the distribution of streamflows by season. For eight rivers 
across the US, Bowers et al. (2012) developed a method to identify wet and dry season FDCs 
and found discharge data in wet seasons to be well-approximated by a lognormal distribution, 
but dry season flows sometimes better fit with a power law distribution. That study also 15 
illustrated the challenges of conducting comprehensive seasonal analyses; the authors found 
differences between the behavior of rivers depending on how seasons were defined as well as 
which distributions best fit flows in each season, suggesting that seasonal analysis of this 
kind may be highly site-specific. A couple of papers have documented attempts to fit a 
probability distribution to a mean annual FDC or a median annual FDC (FDCMED), both 20 
hypothetical FDCs that express the likelihood of daily streamflow being exceeded during a 
typical year (Fennessey, 1994; LeBoutillier and Wayland, 1993). The FDCMED, introduced by 
Vogel and Fennessey (1994), has a number of applications from ecology to hydropower 
(Lang et al., 2004; Müller et al., 2014; Kroll et al. 2015).  FDCMED, are increasingly common 
and enable the computation of tolerance or uncertainty intervals along with associated 25 
hypothesis tests for flow alteration (see Kroll et al. 2015).    

To address the practical goal of estimating FDCs, this study aims to determine 
whether or not an existing probability distribution is capable of approximating the 
distribution of daily streamflows for nearly 400 perennial rivers with near-natural streamflow 
across the conterminous US. Differences in the performance of the probability distributions 30 
in approximating FDCPOR are compared across physiographic regions of the US to illustrate 
where these methods might be most successful. In addition, this study also considers the 
ability of a single probability distribution to represent the FDCMED. 

The paper is organized as follows. First, the method to construct an FDCPOR is 
described and the goodness-of-fit (GOF) metrics and study region are introduced. The results 35 
are then presented including L-moment ratio diagrams, and quantitative GOF comparisons 
among the fitted probability distributions. These GOF results are then compared by 
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physiographic region within the US and the FDCMED results are shown. Finally, the 
conclusion summarizes study findings and provides directions for future research.  

 

2 Methods 

2.1 FDC estimation 5 

An empirical FDCPOR  is constructed by ranking daily streamflows from all recorded 
years and plotting them against an estimate of  their exceedance probability, known as a 
plotting position (Vogel and Fennessey, 1994).  An FDC is defined as the complement of the 
cumulative distribution function: 

1 − F$ q , where	F$(q) 	= 	P Q ≤ q       (1) 10 
where q represents observed streamflow and F$(q)	is the empirical cumulative distribution 
function of observed streamflow. The first step in constructing an FDCPOR is to rank the 
flows, qi, in ascending order as in q(1)…q(365n) where n is the number of years of record. For 
leap years, flows from February 29 were removed to maintain consistent sample sizes across 
years. To obtain the probability with which each flow is exceeded, the Weibull plotting 15 
position was used, as it provides an unbiased estimate of exceedance probability, regardless 
of the underlying probability distribution of the ranked observations (Vogel and Fennessey, 
1994): 

P Q > q = 1 −	 3
456789

       (2) 
where i represents the rank. Vogel and Fennessey (1994) review several alternative 20 
nonparameteric plotting positions for constructing empirical FDCs at a gaged site, some of 
which are preferred for smaller samples. The Weibull plotting position is selected here given 
the large sample sizes considered (at least 40 years of daily data leading to sample sizes 
greater than 40x365=14600). 

2.2 Selection of candidate distributions  25 

As an initial assessment, L-moment ratio diagrams were used to narrow the pool of 
potential candidate probability distributions. L-moments are linear combinations of 
probability-weighted moments (Hosking and Wallis 1997), and estimates of L-moment ratios   
exhibit substantially less bias than moment ratio estimators, and are resistant to the influence 
of data outliers (Hosking and Wallis, 1997). The advantages of using L-moment diagrams in 30 
distribution identification are described in Vogel and Fennessey (1993) and Hosking and 
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Wallis (1997). L-moments can be directly related to ordinary product moments of a 
probability distribution.  

Theoretical relationships between L-moment ratios have been determined for a wide 
class of probability distributions (Hosking and Wallis, 1997). These relations can be plotted 
on an L-moment ratio diagram with L-moment ratios estimated from the daily streamflows to 5 
provide a visual method of comparing various probability distributions to observed data. 
Vogel and Fennessey (1993) demonstrate that L-moment ratio diagrams are often superior to 
ordinary moment ratio diagrams,  even for extremely long records of highly skewed samples 
of daily streamflows, as is the focus of this study. Even when parent distributions are 
complex, L-moment ratio diagrams are useful in identifying simpler distributions that fit the 10 
observed data sufficiently well (Stedinger et al., 1993). For a description of the theory of L-
moments, see Hosking (1990).  

2.3 Goodness of fit evaluation 

To evaluate the suitability of a model to reproduce observations, a measure of the 
standardized mean square error commonly referred to as Nash-Sutcliffe Efficiency (NSE) is 15 
used. The most common estimator of NSE at each site is: 

𝑁𝑆𝐸 = 1 − 	 (=>?@
>AB =>

CDEF)G

(=>?=>@
>AB )G

		      (3)	

where Qx represents observed flow at quantile x, 𝑄I
JKLM predicted flow at quantile x, 𝑄I =

=>
N

N
IO9   the mean value of the observed flows, and X the total number of daily flows (and 

therefore number of quantiles). NSE values range from -∞ to a maximum of 1, which here 20 
would indicate that the estimated flows matched observed flows exactly. Because NSE are 
heavily influenced by the highest flows, the natural logarithms of the flows are used in the 
computation of NSE and herein referred to as LNSE. 

Visual comparisons of the estimated and observed FDCPOR for candidate distributions 
are also presented to relate LNSE values to visual depictions of the GOF. Part of the reason 25 
why FDCPOR are so widely used in practice is that they provide a graphical illustration of the 
complete relationship between the magnitude and frequency of streamflow. Lastly, error 
duration curves (as in Müller and Thompson, 2016) are given for each candidate distribution 
to illustrate how the error is distributed across exceedance probabilities. Error is measured by 
calculating the ratio of observed to predicted flows across all sites. 30 
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3 Study region and streamgages 

Only gages considered to represent near-natural streamflow conditions  (as identified 
by the U.S. Geological Survey Hydro-Climatic Data Network) were included in the analysis, 
bcause modifications to streamflows could have substantial impacts on FDCs (Castellarin et 
al., 2013; Kroll et al., 2015). In addition to near-natural conditions, streamgages in this study 5 
have at least 40 years of daily mean streamflow records since 1950 to minimize impacts due 
to differences in sampling variability between sites (Vogel et al., 1998). Previous studies have 
focused on fitting a probability distribution to daily streamflows at small and/or intermittent 
streams (Croker et al., 2003; Mendicino and Senatore, 2013; Pumo et al., 2014; Rianna et al., 
2011). Here, sites having an average daily flow value of zero (flows below 0.01 feet3/second) 10 
were omitted from analysis because such intermittent sites require additional methodological 
considerations. These criteria resulted in 398 gages (Fig. 1) with mean daily streamflows 
obtained from the USGS National Water Information System (U.S. Geological Survey, 
2001). Physiographic regions, which differentiate between areas of the US with similar 
physical and climate characteristics (Fenneman and Johnson, 1946), are also shown in Fig. 1. 15 
These regions were used to assess whether GOF metrics are related to the physiographic 
setting. The periods of record for the study streamgages range from 40-61 years between 
1950 through 2010, and drainage areas vary from 2 to over 5,000 km2.  

4 Results 

4.1 Graphical identification of candidate distributions 20 

To identify candidate probability distributions, theoretical L-moment ratios are 
compared to sample L-moment ratios in Fig. 2a. The four-parameter kappa (KAP) 
distribution is represented by the area below the generalized logistic curve and above the 
theoretical L-moment limits. The lower bound of the five-parameter Wakeby (WAK) 
distribution is also plotted as a curve. Sample estimates of L-moment ratios computed from 25 
empirical FDCPOR at study sites are shown as points.  

Empirical L-moment ratios mostly fall below the generalized logistic and generalized 
extreme value curves and above the Pearson type III and WAK lower bound curves (Fig. 2a). 
The points are clustered around the three-parameter generalized Pareto (GPA), and lognormal 
(LN) curves, thus these two distributions are identified as possible parent distributions. The 30 
empirical L-moment ratios are also consistent with both KAP and WAK distributions, 
resulting in the identification of four candidate distributions. 
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The clustering of points around the GPA or LN distribution curves could, in theory, 
be due to sampling variability. However, given a sufficiently long record, empirical L-
moment ratios would be expected to fall directly on the theoretical curves if the probability 
distribution of daily streamflows truly arose from GPA or LN. The very large sample sizes 
here suggest this is unlikely, nevertheless synthetic daily streamflows were generated to test 5 
this hypothesis. The method of L-moments (Hosking and Wallis, 1997) was used to estimate 
distribution parameters from the ranked observed daily streamflows, or the empirical 
FDCPOR, for each study gage. FDCPOR led to parameters that were inconsistent with KAP at 
35 sites (9%) and with WAK distributions at 244 sites (61%). Because WAK could not be fit 
at over half of the study streamgages, a finding encountered previously for new England 10 
(Archfield, 2009), WAK was removed from further consideration. 

Based on distribution parameters for GPA, LN and KAP, data of the same record 
length as the daily streamflow observations at a given site were simulated and L-moment 
ratios computed. These synthetic L-moment ratios are plotted in Fig. 2b-d. As expected given 
the very large samples, the synthetic L-moment ratios for GPA and LN fall on the empirical 15 
curves representing these distributions. Thus, the scatter in L-moment ratios does not appear 
to be due to sampling variability, but rather reflects the complexity of the true distribution(s) 
from which the daily streamflows arise. Compared to GPA and LN, simulated L-moment 
ratios from KAP (Fig. 2d) appear more consistent with L-moment ratios estimated from 
empirical FDCs. Thus, KAP appears to provide the best fit among the probability 20 
distributions considered, yet given the benefits of fewer parameters in practice and the 
observation that some gages plot on the theoretical L-moment ratio curves, the GPA and LN 
hypotheses, are retained for future analyses. 

4.2 National goodness of fit comparisons 

In this section, we consider additional measures of the GOF of the GPA, LN and KAP 25 
models for approximation of FDCPOR. One complication involves the generation of negative 
streamflows, when the fitted lower bound of a distribution is less than zero.  Negative 
streamflows were predicted at 98 sites for GPA, 159 sites for LN and 40 sites for KAP. 
Others have also encountered problems with the generation of negative streamflow 
(Archfield, 2009; Castellarin et al., 2007). To prevent infeasible negative flow predictions, 30 
distributions were constrained to ensure a theoretical lower bound of zero at study sites for 
which negative flows were generated. Both GPA and LN include parameters that represent 
the theoretical lower bounds of the distribution (Hosking and Wallis, 1997). Constraining 
both of these lower bound parameters to zero was relatively simple as this is equivalent to 
fitting two-parameter versions of GPA and LN distributions. For the KAP, the lower bound is 35 
a function of all four parameters. Therefore, enforcing a theoretical lower bound for KAP 
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requires solving for the four parameters simultaneously while enforcing the lower bound 
constraint. The same approach as Castellarin et al. (2007) in constraining the KAP lower 
bound to zero was followed here. KAP parameters were infeasible at 42 sites (11%).  

Figure 3a gives boxplots showing the range of values of LNSE across sites 
corresponding to the GPA, LN and KAP hypotheses. To ensure fair comparison across the 5 
three distributions, only LNSE values for sites for which KAP could be estimated (356 sites), 
are shown, however, the figure appears nearly identical when the additional 42 sites are 
included for GPA and LN. KAP shows the highest GOF, which is not surprising given that 
the distribution includes an additional parameter. GPA and LN both also have quite high 
values of LNSE (note that the y-axis ranges from 0.8 to 1). To illustrate how these LNSE 10 
values translate into GOF, example FDCPOR are given for three sites with varying GOF (Fig. 
3b-d.) It is important to note that there was substantial variability in how FDCPOR appear 
across similar LNSE values and these are only three limited examples. First, in Fig3b, 
empirical and fitted FDCPOR with LNSE values above 0.99 for all three distributions is given. 
For this site, nearly the entire FDCPOR is captured except for the very lowest flows. A site 15 
with “good” fits, all with LNSE values between 0.93 and 0.99 is shown in in Fig3c. For this 
site, GPA over-estimates the highest flows and under-estimates the lowest flows. LN and 
KAP do a very good job with the upper tail but KAP doesn’t accurately predict the lower tail. 
Finally, Fig3d illustrates a site where all three distributions show poor fits (LNSE values 
below 0.93). 20 

To assess the magnitude of errors across exceedance probabilities, error duration 
curves are shown in Fig. 4. These plots illustrate how the error (represented by the ratio of 
predicted to observed flows) is distributed across the quantiles for GPA, LN and KAP.  
Values of 1 would indicate no error and above one indicates that predicted flows are greater 
than observed flows for a given quantile. Each grey line represents the error for a given study 25 
site given the exceedance probability. These error duration plots illustrate that there are some 
errors for the very highest flows (exceedances close to zero), with all three distributions 
dramatically over predicting the highest flows for some sites. Although far from smooth, 
error generally increases for the lower flows (exceedance probabilities closer to 1). This 
highlights the challenge of having one distribution represent the tail behavior of both low and 30 
high flows.  While GPA and LN errors appear relatively comparable, errors for KAP are 
generally smaller across all quantiles.  
 

4.3 Goodness of fit by physiographic region 

Perhaps the challenges encountered above for sites with poor fits to FDCPOR are primarily 35 
driven by certain regions within the US. Focusing on such a large study region presents a 
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particularly difficult challenge but also a unique opportunity to compare GOF of candidate 
distributions across regions within the US. Figure 5a shows boxplots of LNSE by probability 
distribution for the eight physiographic regions in the US which included at least 20 study 
sites. Sample sizes are given as well as the number of sites within each region FDCPOR that 
could not be estimated with KAP. (This appears to be a particular problem in the Piedmont 5 
region where only 8 of the 24 sites had feasible KAP parameters.) These boxplots illustrate 
that there are some regions in the US in which all three distributions provide a very good fit, 
such as new England, the Appalachian and the valley and ridge regions. Perhaps a three-
parameter distribution such as GPA or LN might be adequate to describe FDCs in these 
region, as Fennessey (1994) found to be the case for the mid-Atlantic region. For most 10 
regions, KAP provides the best fit, which is not surprising given that it has an additional 
parameter compared to GPA and LN. The Cascade-Sierra mountain region does not have 
very high GOF for any of the three candidate distributions.  
 Maps of the US illustrating LNSE for GPA, LN and KAP are given in Fig. 5b. For 
GPA (left), nearly all “poor fits” (LNSE<0.93) are at sites in the western half of the country.  15 
Very good fits (LNSE>0.99) are found throughout the US, but are primarily clustered in new 
England and the mid-Atlantic regions. For LN (middle), more sites have LNSE values above 
0.99 compared to GPA3, particularly in the eastern half of the country and there are fewer 
sites on the west coast with LNSE values below 0.93. Finally, the map of KAP LNSE (right) 
illustrates that, of the 356 sites which could be fit with KAP, the majority are well-20 
approximated by KAP with LNSE values above 0.99. However, a limitation of KAP is that it 
could not be used to estimate FDCPOR at 42 sites in the study region. Martinez and Gupta 
(2010) found somewhat similar geographic patterns in GOF for a monthly water balance 
model applied across the conterminous US. 

4.4 Median annual flow duration curves 25 

The FDCPOR reflects the steady-state or long-term behavior of the frequency-
magnitude relationship for streamflow. Alternatively, if one’s interest is in the frequency-
magnitude relationship in a typical year, median annual FDCs (FDCMED) are useful (Vogel 
and Fennessey, 1994). Less dependent upon the specific period of record than FDCPOR, 
FDCMED are increasingly applied in practice in situations which focus on hydrologic 30 
conditions for a typical year.  For example, FDCMED have recently been used to predict 
hydropower production (Mohor et al., 2015; Müller et al., 2014), evaluate regional similarity 
between streams under different flow conditions (Patil and Stieglitz, 2011), and characterize 
baseflow variability (Hamel et al., 2015). FDCMED are also used to compare streamflow 
regimes in different catchments (Hrachowitz et al., 2009), to assess before and after 35 
watershed land-use changes (Kinoshita and Hogue, 2014) and to quantify fish passage delays 
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(Lang et al., 2004).  More generally, FDCMED are useful in testing hypotheses regarding any 
form of flow alteration (Kroll et al. 2015). 

A few studies have attempted to fit a probability distribution to FDCs in a typical 
year. LeBoutillier and Wayland (1993) found a five-parameter mixed lognormal distribution 
to be superior to two- and three-parameter lognormal, Gamma, and generalized extreme value 5 
distributions for fitting probability distributions to mean annual FDCs of four rivers in 
Canada. For the mid-Atlantic U.S., Fennessey (1994) identified the GPA as a suitable 
distribution for both FDCPOR and FDCMED, developed regional regression models to relate 
GPA model parameters to basin characteristics, and then used those models to predict FDCs 
at ungaged locations. FDCMED can also be estimated seasonally, and seasonal FDCMED have 10 
been used to evaluate impacts on ecological flow regimes (Gao et al., 2009; Lin et al., 2014; 
Vogel et al., 2007). 

The procedure for constructing an FDCMED is similar to the FDCPOR, but rather than 
ranking all recorded flows, flows are ranked within each calendar year resulting rankings 1-
365 for each of the n years. Then, the median flow at each ranking is selected for inclusion 15 
FDCMED. The majority of the FDCPOR and FDCMED curves are generally very similar, only 
differing at the lowest and highest exceedance probailities. This is because the most extreme 
flows on record are included in FDCPOR, but are not included in FDCMED, as the median 
estimator is insensitive to outliers. See Vogel and Fennessey (1994) for a more detailed 
discussion of the relationship between FDCPOR and FDCMED. 20 

Figure 6a shows the relationship between empirical L-skew and L-kurtosis for 
FDCMED at study sites. These L-moment ratios appear quite similar to those found for 
FDCPOR (Fig. 2a), as do the LNSE values shown in boxplots (Fig. 6b). As for FDCPOR, 
distributions were constrained to ensure no negative streamflows are predicted, and KAP 
appears to provide the best fit to FDCMED. Fig. 6c shows error duration curves for FDCMED. 25 
The main difference with the error duration plots for FDCPOR (Fig. 4) is the errors are smaller 
at the lowest and highest exceedances (close to 0 and 1). This is not surprising given that 
FDCMED curves are generally quite similar to FDCPOR, but lack the most extreme high and 
low flows. 

5 Discussion and conclusions 30 

Due to the complexity associated with time series of daily streamflows, the challenge 
set forth in this study—to identify a single probability distribution that could approximate the 
distribution of daily flows—was an ambitious one. Based upon multiple goodness of fit 
(GOF) assessments, three candidate probability distributions were identified which can 
approximate period-of-record (FDCPOR) and median annual (FDCMED) flow duration curves 35 
at perennial, unregulated stream gage sites in much of the conterminous United States (US). 



11 
 

Many assumptions were made which should be evaluated before applying these results to a 
practical application, as is the case for any model. Previous work on this subject has 
identified the need for at least four-parameters to describe the complex distribution of daily 
streamflows; however, this study is unique in that the suitability of a probability distribution 
for streamflow is investigated at the sub-continental scale with streamgages in widely-5 
varying physiographic and hydroclimatic settings. For these study streamgages, four-
parameter kappa (KAP) was found to provide a very good fit to the distribution of daily 
streamflows across most of the US (at the 89% of sites with valid KAP parameters). A 
special case of the KAP distribution, three-parameter generalized Pareto (GPA) can provide 
an acceptable fit for certain regions of the US, particularly new England, Appalachian and the 10 
valley and ridge regions. Compared to GPA, three-parameter log normal (LN) was found to 
result in predictions with better GOF compared to GPA, particularly the pacific border and 
the cascade-sierra regions. To prevent the prediction of infeasible negative streamflows, all 
three distributions required lower bound constraints for some sites. More work on parameter 
estimation that enforces the conditions that observed streamflows be both non-negative and 15 
exceed theoretical distributional lower bounds is needed. 

Few previous studies have sought to evaluate theoretical probability distributions for 
modelling FDCMED, however, their growing use suggests that our findings relating to 
FDCMED could have broad applications. We caution users of FDCMED to be aware that the 
FDCMED can only provide a window into the behavior of streamflow in a typical year, thus 20 
we recommend that whenever FDCMED are used that users also illustrate the entire family of 
annual FDCs which gave rise to the computation of the FDCMED. 

 There are many limitations of this work. First, daily streamflows are not independent, 
and thus exhibit an extremely high level of serial correlation which will impact the 
confidence intervals or any other form of uncertainty analysis associated with the modeled 25 
FDCs. Furthermore, daily streamflows exhibit seasonality so that they are far from being 
identically distributed, which is assumed whenever one attempts to fit a single distribution to 
a random variable. In addition, this study included only perennial and unregulated streams. 
While there is some existing literature on intermittent regimes (Mendicino and Senatore, 
2013; Pumo et al., 2014; Rianna et al., 2011), and the impacts of human regulation on flow 30 
duration curves (Gao et al., 2009; Kroll et al., 2015), additional research on these topics 
would improve our understanding of flows across a wider range of streams. Finally, the 
seasonality of daily streamflows suggests that distributional analyses of this nature should be 
done at a seasonal level, as was recently carried out on a broad scale for daily precipitation 
(see Papalexiou and Koutsoyiannis, 2016). The definition of seasons, as well as the parent 35 
distributions which can approximate streamflows within those seasons, has been shown to 
vary across sites (Bowers et al., 2012). Given that gages varied over a large range of 
hydroclimatic conditions, a seasonal analysis was beyond the scope of this study, but we 
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recommend that future studies consider the impact of seasonality on the GOF of FDCs.  Daily 
streamflow varies over four or five orders of magnitude and is subject to seasonality and 
serial correlation. When viewed though this lens, the finding of any reasonable candidate 
distribution that provides some explanatory power - such as those explored here - is 
somewhat remarkable. Future research on intermittent sites, differences across seasons, lower 5 
bound constraints, and additional distributional types, such as mixed-distributions, should 
help to improve prediction of daily streamflows at ungaged sites across the globe. 
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Figure 1. Map of the conterminous United States showing physiographic regions and the stream gages 
included in the study. Boxplots on the lower left show the range of drainage areas and record lengths 

represented by study stream gages. 
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Figure 2. L-moment diagrams for (a) daily streamflows and flows simulated from (b) generalized Pareto, 

(c) lognormal and (d) kappa distributions. 
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Figure 3. (a) Boxplots showing the range of stream gage Nash-Sutcliffe efficiencies for natural logarithms 

of daily streamflows (LNSE) based on hypothesized generalized Pareto, lognormal and kappa 
distributions; and example stream gage sites with (b) very good fits (LNSE above 0.99); (c) good fits 

(LNSE between 0.93 and 0.99); and (d) poor fits (LNSEs below 0.93). 5 
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Figure 4. Error duration plots illustrating the range of errors (ratio of estimated to observed streamflows) 
across exceedance probabilities for generalized Pareto, lognormal and kappa hypotheses. Each grey line 
represents the estimated relative error for a study stream gage and the black horizontal line at 1 shows a 

benchmark for no error. 5 
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Figure 5. (a) By physiographic region, boxplots of stream gage Nash-Sutcliffe efficiencies of natural 

logarithms of daily streamflows (LNSE) based on hypothesized generalized Pareto (GPA), lognormal 
(LN) and kappa (KAP) distributions. Below the region name, the number of study gages located in that 

region is listed as N. Only regions with at least 20 study gages are shown to facilitate relatively fair 5 
comparisons across regions. (b) Maps of the conterminous United States illustrating stream gage LNSE 

values for GPA, LN and KAP hypotheses. 
 

LN
SE

GPA LN KAP

KAP
infeasible 
at 6 sites

[0.75]

KAP
infeasible 
at 2 sites

KAP
infeasible 
at 2 sites

KAP
infeasible 
at 16 sites

A

[0.58, 0.71] 

 

GPA LN KAP GPA LN KAP GPA LN KAP GPA LN KAP GPA LN KAP GPA LN KAP GPA LN KAP

APPALACIAN
(N = 39)

VALLEY
AND RIDGE

(N = 30)
PIEDMONT

(N = 24)

PACIFIC
BORDER
(N = 39)

NEW
ENGLAND

(N = 28)

COASTAL
PLAIN

(N = 47)

CENTRAL
LOWLAND
(N = 39)

CASCADE-
SIERRA
(N = 36)

0.80

0.85

0.90

0.95

1.00

Generalized Pareto (GPA)

Poor fit (LNSE<0.93)
Good fit (.93<=LNSE<0.99)
Excellent fit (LNSE>=0.99)

Kappa (KAP)
B

Log-normal (LN) 

Infeasible parameters



22 
 

 
Figure 6. (a) L-moment diagram with empirical L-moment ratios of the median annual flow duration 

curves (FDCMED) estimated at study stream gages; (b) boxplots of stream gage Nash-Sutcliffe efficiencies 
for natural logarithms of FDCMED (LNSE) based on hypothesized generalized Pareto (GPA), lognormal 

(LN) and kappa (KAP) distributions; (c) Error duration plots for FDCMED illustrating the range of errors 5 
(ratio of estimated to observed FDCMED) across exceedance probabilities for GPA, LN and KAP 

hypotheses. Each grey line represents the estimated relative error for a study stream gage and the black 
horizontal line at 1 shows a benchmark for no error. 
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