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Abstract. The accuracy-base mode pe oTNSEcS meﬁ'lgs ﬂnlot A ect the qualitative correspondence between

 simulated and measured streamflow time series. The objective of this work Qg to use ;he/ information theory-based metrics

to see whether they can be used as complementary toolgi‘or hydrologic model evaluation and selection. We simulated 10-year

15 streamflow time series in five watersheds located in Texas, North Carolina, Mississippi, and West Virginia. Eight modelhof
different complexity were applied. The information theory based metrics were obtained after representing the time series es
strings of symbols where different symbols corresponded to different quantiles of the probability distribution of streamflow.

The symbol alphabet was used. Three metrics were computed for those strings — mean information gain that measures the

randomness of the signal, effective measure complexity that characterizes predlctablllty and fluctuation complexlty that
20 characterizes the presence of a pattern in the signal. The observee) eal w time senes has smaller mfo wzcontent e bt
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1 1
v\a:nr based-parameters-irsimutated-and-measured-streasr flow-time-series-ean provide an additional criterion for the evaluation of

hydrologic model performance. Seaf Seort ~ Al f ?
o SpdlogomulPTIIS g0 vefrbng o el fBcEes Hhad alter e prec pinte sl

1 Introduction o \,W;G,;ﬁ 3‘ oy e /—ga?mlus\,\m[ Qué hewnee v & Ny MQ&V Yamt-

Hydrologic modeling plays th critical role in hydrologic response prediction for t}le" applications sucha® water resources
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30 management activities, flood control, and water quality evaluation (Singh and Woolhiser, 2002; Pechlivanidis et al., 2011,
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Wagener et al., 2010). Over the last few decades, lumped—and physics-based distributed hydrologic models have been

developed and widely applied to simulate the hydrologic processes for understanding of watershed behaviors. Lumped

models are represented, for example, by Stanford Watershed Model (SWM) (Crawford and Linsley, 1966), the Tank Model
(Sugawara et al., 1976), and Xinanjiéng Model (Zhao et al., 1980) etc. With the rapid development of computational power,
5 applications of distributed models have become feasible. The family of such models include Systeme Hydrologique
Europeen (SHE) (Abbott et al., 1986a, b), Physically Based Runoff Production Model (TOPMODEL) (Beven and Kirkby,
1979), Soil Water Assessment Tool (SWAT) (Arnold et al., 1998), Hydrologic Model System (Yu et al., 1999), and Variable
Infiltration Capacity (VIC) model (Liang et al., 1994). The evaluation of model performance is indispensable to examine
both accuracy and reliability of models.
10 %@mmon model evaluation metrics in hydrology include the Nash-Sutcliffe efficiency NSE (Nash and Sutcliffe,
1970; Krause et al., 2005; Bai et al.,, 2009), the root-mean-squared error, the coefficient of determination, the Akaike
X information criterion 4IC (Akaike, 1973), the Bayesian information criterion BIC (Schwarz, 1978), and the Kashyap
information criterion KIC (Kashyap, 1982). Recently, new approaches have been proposed to evaluate the performance of
hydrologic models, such as maximum likelihood Bayesian model averaging MLBMA (Ye et al., 2004), a wavelet-based
15 -multiscale performance metric (Rathinasamy et al., 2014), a data-reduction method based on self-organizing maps (Reusser
e et al., 2009), an interval-deviation approach (Chen et al., 2014), and a top-down methodology (Bai et al., 2009) among
others. Although these metrics/approaches can evaluate the correspondence between the simulation results and observed
data, they cannot capture all the features reproduced by the hydrologic models such as information content of data and model
complexity under uncertainty (Gupta et al., 1998; Reusser et al., 2009; Pachepsky et al., 2006; Weijs et al., 2010).

20§ Information theory has been recently applied to develop additional metrié to characterize the patterns of observed and

. . S . s
simulated data sets to provide thé insighi"and complementary knowledge on the evaluation of model perfgmﬂ:e
(4N

(Pachepsky et al., 2006; Pan et al., 2011, 2012; Li et al., 2012; Gong et al.,, 2013; Pechlivani_@is et 5val., 2014; Beven and
Smith, 2015). The predictive performance of hydrologic models was evaluated by fully exploiting the available information
in the data set using the information-based indices (Gong et al., 2013). Li et al. (2012) propoged an entropy-based criterion

25 npamed maximum information minimum redundancy (MIMR) to evaluate and opﬁmige the, design of the hydrometric
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performance (Pechlivanidis et al, 2014; Beven and Smith, 2015). The complexity and information content metrics have been
employed by Pachepsky et al. (2006) to discriminate the different soil water flow models that gave the same accuracy of soil

water flux estimates, and by Pan et al. (2011) to evaluate the ability of the model to reproduce the temporal trends of soil

moisture content in variably saturated soil.

*0 “
The objectives of this study are (1) t’r( characterize the patterns of observed precipitation and streamflow time series

in arid and humid watersheds; (2) t7§~ evaluate gm/p’erf}tma/n'ce of cight hydrologic models in five watersheds using
) \ Lanrbo J M
S ) \nAprnadion - basedmo

;/compare the results of thiS perfguﬁance evaluation with the results of

con:yleﬁy }n{ informationfcm metricéxand’\ J
O Er!bmow\ _
pe ance evaludtion based on the W&Mme&ics. he eight hydrologic model structures have been L.
Og\mﬁ s

LANVY
developed by Bai et al. (2009) including two evapotranspiration modules, four soil moisture accounting modules, and three MOE

"
routing modules. The details of model structure are referred to Bai et al. (2009). The five watersheds selected in this study ¢
include two dry watersheds, Guadalupe River and San Marcos River catchments in Texas, and three wet watersheds, Tygart

Valley River in West Virginia, French Broad River in North Carolina, and Leaf River in Mississippi. l
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?égre watersheds were selected in Texas, North Carolina, Mississippi, and West Virginia to represent a range of
hydro-climatic conditions. Mvm:year—dmaﬁmmf,mﬂy precipitation (P), streamflow (Q) and potential
axpe giotlale_dor Yat eciod ) 260- 1910,

evapotranspiration (PE) in-the - The characteristics of the five watersheds are listed in

Table 1.

The Guadalupe River and San Marcos River catchments located in Texas are two dry watersheds with mean annual
1
e
precipitation of around 800 mm and mean annual PE of 1500 mm.,\ygart Valley River in West Virginia, French Broad
River in North Carolina, and Leaf River in Mississippi are three wet watersheds with mean annual precipitation of about

1300 mm and mean annual PE of around/?(%?l 000 mm. Phe gbre detailed information of the watersheds can be found in

Bai et al. (2009).
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}J@ht hydrologic model structures have been selected t(l,\ ry@sﬁt differences in hydylofw model complexity
forthe-model-evaluation-with-different-metries: The eight models, which are briefly described in Table 2, were derived from
the/ different combination of three modules, sc()il moisture accounting, actual evapotranspiration, and routing (Bai et al.,
2009). Models S1 and M1 estimated streamflow as a surface runoff resulting from the saturation excess, models S2 and M2
added subsurface flow to the streams appearing after soil reached filed capacity, models S3 and M3 added subsurface flow
from saturated zone, and models S4 and M4-added the deep storage recharge. The difference between S model_s and M
models consisted in the treatment of soil moisture accounting. S models used the single-layer models (Atkinson et al., 2002;
Farmer et al., 2003), and M models used the multi-layer formulation (Son and Sivapalan, 2007). The ET module included
two options with the estimation from the moisture storage as one zone, and from the unsaturated zone and shallow saturated
zone (Bai et al., 2009). The routing modules were deployed to simulate flow release from storages (e.g., saturated zone, deep
storage). The eight models were formed with the combination of the three modules with the increase in complex1ty (Bai et al cj

N )efre

2009). The streamflow in the five watersheds was simulated with each ’9{’ '{gﬁt model;/for ten years. The Nash-Sutchffe
O o8gRSS

efficiency index (NSE, Nash and Sutcliffe, 1970) was used as lthﬁ model performance an
2.3 Information Content and Complexity Metrics
The general idea of information theory-based metrics in this work is to %,
O~
(a) replace the time series by )% string of symbols from some (small) alphabet; each letter denotes a particular range
within the overall range of data variation

O~
(b) define the number of points in B;e} data window; for each data window, the replacement of numerical data with

letters creates the
\ w e/ L . .
(c) 1es probabilities of changes in words as the data window moves over the time series; \

@ denve metrics of mformatlon content and complexity based on those probabilities

‘ _study) as symbohc strmgs followmg Lange (1999) and Wolf (1999) methodologies. To do so, we chose a blnary encodlng

using the median value of each st;&ef';véhle as a threshold; all the observations above the threshold were cogjed as one and
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all the observations at the mciteigm value or below were coded as zero. The alphabet, therefore, had two letters — ‘0’ and “1°.

PO . 2
Both megsufed and §ir/ryls@ time series were encoded. Within the encoded strings we could analyze words of length L

(L € N) composed of L consecutive symbols. Assuming that each word characterizes the state of the studied system, we

have 2" different words or states; the base ‘2* in this equation corresponds to the number of letters in the alphabet. For the
5 binary encoding. we have the four (2% different words 11, 10, 01, 10. The first word shows the state in which the variable
exceeds the median value at both times in the data window, the second word shows the transition from that state (11) to that
in which the second observation falls below the median value (10), etc. For any particular string, we can compute various
empirical probabilities to the occurrence and transition of states for words of length L such as:
Py, probability for the word “/” to appear in the symbolic string %> (,)M hr< b O(MG) :3 7 D) 83 akas
10 Py, probability for the sequence of words “i” and “J” to appear © MAJ i’—?-
PL,i-; conditional probability of the occurrence of the j* word after /" word

_ After defining this set of probabilities we can compute two information-based metrics, namely as the metric entropy and

mean information gain. The metric entropy (ME), is a normalized version of Shannon's entropy (H, Shannon, 1948):

AN N . . ’.
ME =12 TS voule 006S kot meesgow;, ho whadk Qd\—\yo@ij ‘& Bebhec
15 where Yo GDJ\\ o votwad “lfs@) ant YO’\’\\S U Q*"ﬁc
H(L) = _2%21 pL,i 1032 PLi» (2)

Shannon's entropy is a measure in bits of the average information content per code or unpredictability of the
information contained in the time series. Its normalized version, ME, gives a measure independent of the word length. While

it has a value of zero for constant strings it increases with the randomness of the string up to a value of 1 for uniformly

& \ \ A ‘\ . ) \ .
20 random sequences.(% ?QQL‘“\‘M‘("S d‘ ol W 5)
A

The mean information gain (MIG), measures the-average amount of new information obtained by knowing the next
* symbol. Given that the MIG includes the-transition’ probability and the occiirrence of the-sequence of words, knowing the

symbol that follows a word increases the. local information: Therefore, the larger the MIG is the less predictable and more

random is the time series. oy sorinainownat D
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The complexity in the time series under study was assessed with the fluctuation complexity (FC; measure and the
effective measure of complexity (EMC, Eq. 5). These two metrics allowed us to quantify the internal structure and the

presence of patterns in the encoded symbolic strings.

2= Zl,'u By (lOQ! ',!‘f—:)’ ' (D“-@?«\QQ) &3{\)0\*\\0%3 @

4!,!_.!’ (5)

]
iy

= Z:IH ! %1" log,

The fluctuation complexity considers vaguely the ordering of, and relationship between, words in a sequence. It is
obtained as the mean square deviation of the differences between information gained associated with the transition from the
state “i” to the state “j” and the information lost associated with that 'transition. Strings that show a high degree of fluctuation
in their symbols give larger fluctuation complexity values (Bates and Shepard, 1993). Grassberger (1986) defined the
effective measure complexity (EMC) as “the minimal information that Mould have to be stored for optimal predictions if
it could be used with 100% efficiency”. Time series of random data or periodic sequences I}Oélt are simple and show low
values of FC and EMC. On the contrary, time series that present more structure and less raI;domness require a larger number
of parameters to describe their behavior and show high values of FC and EMC (Pachepsky et al., 2006; Wolf, 1999).

One.way._of thinking—about rmation theory-based metrics 1@%&&5%% characterizj%{ the
presence of patterns in time series. The comparison of these metrics for two time series informs about the similarity in
shapes found in graphs representing the time series.

We computed the ME, MIG, FC and EMC with the SYMDYN software (Wolf, 1999). The length of words L was
set as maximal word length, which guarantees the precision for the information content and complexity metrics at the worst

random case. The fluctuation complexity metric usually required the largest number of time series for the same word length

(Pachepsky et al., 2006). The word length was set to two in this work as in the work of Pachepsky et al. (2006).

‘observed streamflow time series were calculated in the two-dimensional spaces of information metrics coordinates: . ... . .

& gyr g t= LMIG vy =MIG ) 1+ HEMC + 4 =EMG o)’ /4 ©6.
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Here subscripts “mod” and “obs” denote information metrics computed from simutated and observed streamflow,

&
8_

respectively, The differences of FC values are normalized by division by two.

()
Significance of differences between Nash-Sutcliffe efficiency (NSE, Nash and Sutcliffe, 1970) values was

5 estimated based on the approximate NSE distributions developed by McCuen et al. (2006) .
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3. RESULTS and DISCUSSION \ Ste et ‘
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3.1 Watersheds Data Overview. e °’\,@3:) \ % here o8 Wuckoe- 3(’4“*} woed S
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Frgure 1 plot§ observed daily time senes of pre ipitation and streamflow from Oct. 2 1961 to Oct. 1 1971. The
elandy w ¥a WCI
10 s /ed’ watersheds vary yth/ave?ge/elev fon gmﬁ 98 pi §6 594 m, average annual precipitation from 765 n}uﬁo 1383 mm,
average annual streamflow from 116 rgn(to 800 mm, and average annual potential evaporation from 711 rpx{ to 1528 mm
A J\\m‘t‘

(Table 2). Since the watersheds rygl%g/ from dry to wet represent ql%te different hydro-climatic condltrons, th

€ patterns)pf | §reS e
ok o Q\C
/\\A\ S sl \ Streamﬂow vary significantly among the watersheds. The daily precipitation and streamflow in the three wet watersheds Mwﬁo&

' c O
Yoo \s! (Tygart Valley River, French Broad River, and Leaf River) are larger than the ones in the two dry watersheds (Guadalupe w 3 N \\ﬁ”

GOARON
15 \and San Marcos). Prolonged and frequent periods with streamflow below the detection limit can be found in the dry\)\m }@ Yo

‘ cove M pPeS
watersheds as a consequence of prolonged dry periods. Yoos\ne,

3. 2 Information Content and Complexity Metrics of Precipitation and Streamflow
Information content and complexity metrics for the five watersheds studied are presented in Fig. 2 and in the Table
Supp! in Supplementary material. Since there is no definite recommendation on the word length that has appeared to be an :‘\,\
‘20 ad hoc value in prevmus publications (e.g., Lange, 1999; Pachepsky et al., 2006 Engelhardt et al., 2009; Pan et al, 2011, \0:};‘,\2

. 2012) the research of the effect of the word length on the efﬁcrency of 1nformat10n theory based metrrc needs a separate o Do

. research and presents an mterestmg avenue to explore.

The mean mformatron gain and metric entropy of daily precrprtatron data are larger than 0 78 for all ﬁve watersheds

(Table Sl), mdxcatmg the high randomness of the daily precipitation time series and a relatrvely umform drstnbutlon of the

7
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system states. Similar metric entropy values were found among the wetter (0.91-0.96, Tygart, French broad and Leaf river)
and among the drier watersheds (0.83, Guadalupe and San Marcos) showing the ability of the information theory-based
metrics to differentiate and group precipitation time series in terms of the frequency and depth of rainfall.

Streamflow MIG values are about 0.5 less than precipitation MIGs, and the difference is approximately the same for

5 wet and dry watersheds. High values of MIG in precipitation reflect high randomness in time series. The randomness is
slightly less 11¥’precipitation in d;y watersheds than inycvle/t ones. The much lower values of streamflow MIG reflect the fact
e Qasical qroceses . : Mo . ,
that vgtmhé%gs\ work as information filters that remove substantial random noise from precipitation signal while converting
it in the streamflow signal. Streamflow time series are not only less noisy, but also more complex. In particular, streamflow
EMC values are substantially higher than precipitation EMC values (Fig. 2). This indicates that, as water is d&%ed to
10 streams, not only noise is removed but also additional structure is/'m/mtroduced in the signal, which improves chances of
predictions (higher EMC) and makes fluctuations less random (higher FC). Physical processes of canopy interception,
evapotranspiration, infiltration, soil water flow, etc. control the information filtering and these controlf/impose structure and
dampen randomness in the streamflow generation (Pan et al., 2012; Roberts, 2015). Similar behavior has been described for
soil water flow with the soil acting as an information filter between rainfall and the resulting soil water content (Pachepsky et
15 al, 2006; Pan et al., 2011; Mishra et al., 2015).

Complexity metrics of precipitation appear to be inversely related to their information content (Fig. 2a, 2b). The
larger iszi);:fgo'rmation content andhjigaﬁarent randomness of precipitatim} the smaller is the complexity of the time series, and
less structure is found in the )his/ time series. Wet watersheds are affected with rainfall with the visibly higher randomness
(Fig. 1), and this is reflected in the higher MIG values. Values of the precipitation MIG are somewhat lower in’dry

20 watersheds than in wet ones. Apparently, dry watersheds receive precipitation that exhibits higher complexity that wet ones.
This indicates the presence of structure and better-expressed patterns in precipitation received in dry watersheds.

‘Measured streamflow time series .also demonstrate dependencies between ‘ infqrma’;ion content and complexity

>measures (Fig. 2c, 2d). The character of these depcndqt;gies is different for two cqmplexity measures ’f}iat reflect different

- *aspects. of streamflow patterns. The EMC values reflect the presence of patterns. m timg_ sepes gl;lpwing predictability.

e e
7. 25 /Streamflow EMC values for wet watersheds are also lower than for dry ones. It isA;_got clear if this happens because

-
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precipitation EMC is lower in wet watersheds, or because the watershed has fewer mechanisms to impose the structure on

'x\"”/precipitation signal. The latter suggestion may be supported b;%lts on the dependence of FC on streamflow.

Q,:)Lsu }\d OJ

3. 3 Model Performance Evaluation Using Nash- Sutcliffe efficiency and Information Theory-based Metrics — ‘ 1dea 0} l‘uq
Values of the Nash-Sutcliffe efficiency for eight mode‘s applied at five watersheds are presented in Table 3. Model S, (y o {Tﬁé
5 S1 and M1 perform in unsatisfactory manner. Their values of NSE are close to zero ix):(l\ﬁ'fy watersheds, and negative in wé
watersheds. The latter means that model predictions are worse than prediction using simply average. These results indicate
that one cannot assume that the role of subsurface flows is insignificant and knowing runoff is sufficient to predict
streamflow dynamics.
According to the classification of Moriasi et al. (2007), performance of models is very good, good, satisfactory, and
10 unsatisfactory if the NSE statistic is larger than 0.75, between 0.65 and 0.75, between 0.5 and 0.65 and less than 0.5,
respectively. Based in this classification, performance of all models appears to be unsatisfactory for the Guadalupe
watershed. Only S4 and M4 perform satisfactorily in San Marcos watershed, Only S3, S4, M3 and M4 perform satisfactorily
in the Tygard Valley watershed. The French Broad and Leaf watersheds have good or very good performance of S3, §3, M3
and M4. Overall, performance of models is better in wet watersheds. The significant improvement occurred for’\ Efersheds
15 French Broad, Guadalupe and San Marcos after recharge was added as a mechanism affecting streamflow, i.e. when one
changes models S3 and M3 to S4 and M4 respectively (Table 3).
NSE values increase as the conceptual complexity of models increases (see Table 2). It can be seen that the NSE
values of S2 models are very close to NSE values of M2 models, NSE values of S3 models are close to NSE values of M3
models, and NSE values of S4 models are very close to the NSE values of M4 models for all watersheds except the San
20 Marcos watershed where M2, M3, and M4)4/Qgéllsiave la¥\ \,I:IZS/I(E than S2, §3, and S4 models respectively o
Inspectlon of s1gmﬁcance of dlfferences between NSE of different models (Table 3) shows that no significant
differences are found between average values of NSE of S4 and M4 and among 83, S2, M3, and M2 for the French Broad

among 83, S4 M3 and M4 for the Tygard Valley and Leaf River, between S4 and M4 and between 83 and M3 for the

Guadalupe. The absence of s1gmﬁcant dlfferences mdlcates the opportunity of using other mdlcators of model performance

e

25 for model selections.
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Performance of models in terms of information content and complexity of simulated streamflow is compared with
(the information content and complexity of measured streamflow in Fig. 3 and 4. The corresponding distances between
measured and simulated streamfows in coordinates of information-based metrics are shown in the Table Su§p2 in the
Supplemental materials. Inspection of graphs in Fig. 3 and 4 shows that, although there is some similarity between ranking
5 models by NSE and by information-based metrics, the latter can provide additional insight in the model performance. In
i particular, the information content and complexity of the French Broad watershed are best simulated by models S2, M2 and
M3 (Fig.-3 and 4) although NSE of those models is lower than the one of M4 and S4. The M4 and S4 models seem to
generate simulated streamflows that are more complex than megasured ones. Ranking of models by the two complexity
metrics — EMC and FC — can be quite different since these metrics reflect different aspects of the complexity in time series.

10 The French Broad watershed provides a good example of that with regard to the model M1. It is almost perfect based on the

fluctuation complexity but a very poor result based on effective complexity measyre (Fig. 3 and 4). . .
P W‘\j‘ lge ’&r\/\‘l 1,53 tn fre s%wo\uﬁlbd seneg \i{}i a
In the Tygard Valley watershed there is no disagr?evment between NSE-based and information theory based tops) o s

ranked model, both methods point to the model M4, We note that whereas the NSE-based ranking does not discriminate

between S4, and M4, the information theory based metrics clearly indicate that the multi-layer soil modeling (M4) I@er/
15 ‘reﬂectéh%i%maﬁon content and complexity of this watershed’s streamflow than the “single layer soil model” S4 does. A

similar situation is observed for the Leaf River watershed where the values NSE for S4 and I:SI4 are indistinguishable, and yet

\
wio
M4 provides much more similarity in information content and complexity between siEuM%d and measured streamflows

than S4 does. Models S3 and S4 generate streamflows with substantially smaller information content than M3 and M4. This
may indicate that what looks as a noise is actually the result of soil layering.
%p/\b(b@\lo(\ e cuagua o2
20 The Guadalupe watershed gives an example o '@odel ' ellt- Models S4 and M4 give the
performance borderline with satisfactory. The information based metrics indicate that M4 is nyxc{l more preferable, since the.
single layer models S2, S3, and S4 do not create enough variation to get the information content 4ri_g‘};rt., More complexity is.
“'needed and this is provided by multi-layer soil models M2, M3, and M4. The example of the Guadalupe River shows also . . - .
" that using two complexity metrics '—‘.'E'MC-'.Lahd FC — can be more efficient than using only one. Model M2, for example, . .

N T L T T Ll T e ~ . . N . . .
25 provides values of FC that are very similar to measured ones, i.e. it generates a hidden structure in streamflow time series ;. .7 -

10
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that is close to that in measured ones. However, this model fails to generate a correct metric EMC, which reflects the
predictability of chang; in the time series. The same is also true for the San Marcos watershed. The situation here is
somewhat similar to the case of the French Broad watershed; the NSE values point to the preferability of S4 and M4 models,
but the information content and complexity metrics show that S4 and M4 indeed perform reasonably well, but the best
performance is shown by the M3 model which has the third rank in its NSE at this watershed. This indicates that although
NSE values are helpful in modelgjiscrimination, they are far from capable of i?tegra\\te qualitative aspects of corrf:spondence _
between measured and sir\‘gﬂa;%e\/d time series (Schaefli and Gupta, 200‘7’5.{\)@\“‘,0\“\6\ € ek od 01 ’ mU“\S eh&l\ s
The simple notion of squared error (Eq. 5) is the first attempt to define the distance between time series in the
coordinates of complexity and information content metrics. Weights may be needed to account for the different roles that
information content metrics and complexity metrics may play in the evaluation of models. It is possible that these weights
can be found from the comparative evaluation of predictive capability of the models. We note that other recently suggested
information theory-based methods, such as the so-called Hodrick-Prescott filter (Arias-Hidalgo, 2012), Jensen—Shannon
Eoudtioned B0y
di Prgence and phas\e space rec ns{ructig called complexity—entropy causality plane (Serinaldi et al., 2013), can be used to
tronce. wedne  {Pechvmnote el o) .qQo\0
find series patterns and identify recurrent changes in hydrogtaphs. Also, methods of this work may be applied with different
word lengths dependent on the length of available time series (Wolf, 1999). Further search for information theory-based

metrics to complement accuracy-based metrics presents an interesting research avenue to explore.

o J wok USe fel s \ere e Nee dexd

5
5. CONCLUSIONS < ke A\eose e consishont,

The information theory-based metrics were applied in this study to characterize the patterns of observed

precipitation and streamflow time seﬁe@de wal
— . ; wek
model structures in five watersheds using both traditional Nash-Sutcliffe efficiency (NSE) stati 1cc:§md usability of

s\wdweS

heds and to evaluate the performance of eight hydrologic

o We found that:

« patterns of precipitation and streamflow in humid Whtérsheds were more random and less complex than the ones in

arid watersheds;

11
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. Ws served as information filters and the streamflow time series were much less random and much more

complex than the precipitation time series, ;
p precip: v N O Qo@(: (%
W (-1
o information content and complexity were substantially different in watersheds with wet and dry climate; Ao Whad !

W (R~
*  in pairs of models that differed only by the use of the single-layer or 9uﬁ?ayered soil model, the multi-layer model

simulated information content and complexity better than the single-layer model in majority of cases;

« values of NSE appeared to be not significantly different for two or more models for each watersheds; in all these
cases the information-theory based metrics provided a clear distinction between models and the best models could
be selected.
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Table 1. Selected properties of watersheds in this study.

Basin name and | Area [km’] | Mean Mean Mean Mean

sampling location - elevation annual P | annual Q | annual PE
[m] [mm] [mm] [mm]

French Broad River | 2448 594 1383 800 819

near Asheville, NC

Tygart Valley River | 2372 390 1166 736 711

near Pipestem, WV

Leaf River near | 1950 11 1346 415 1052

Collins, MS

Guadalupe River near | 3406 289 765 116 1528

Spring Branch, TX

San Marcos River near | 2170 98 827 179 1449

Luling, TX
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Table 2. General description of the models used (after Bai et al., 2009). '@)( M A) €A Omo} @@0 T »

ID | General description

S1 [ Single-layer model with single store. Runoff generation controlled by maximum soil water storage

82 | Single-layer model with single store. Runoff generation by saturation excess and subsurface flow controlled by

threshold storage

S3 | Single-layer model with two stores (unsaturated and saturated zones). Evaporation and transpiration from both stores.

Runoff generation by saturation excess and subsurface flow from the saturated zone
S4 | Single-layer model with three stores (unsaturated and saturated zones and deep store). Evaporation and transpiration

from saturated and saturated zones. Base flow losses from deep store. Runoff generation by saturation excess and

subsurface flow from the saturated zone

M1 | Mutti-layer (10 layers to represent a soil moisture profile that fits the Xinanjiang model distribution) model with single

store. Runoff generation controlled by maximum soil water storage

M2 | Multi-layer model with single store. Runoff generation by saturation excess and subsurface flow controlled by

threshold storage
M3 | Multi-layer model with two stores (unsaturated and saturated zones). Evaporation and transpiration from both stores.

Runoff generation by saturation excess and subsurface flow from the saturated zone
M4 | Multi-layer model with three stores (unsaturated and saturated zones and deep store). Evaporation and transpiration

from saturated and saturated zones. Recharge of the deep store. Runoff generation by saturation excess and subsurface

flow from the saturated zone
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Taﬁle 3. The Nash-Sutcliffe efficiency values for eight models in five watersheds.

\“\N)(\‘ e X\uc 50‘05‘0(\\?‘\5 '@)\-’ O

French Tygard

Model ' Leaf River Guadalupe San Marcos
Broad Village
-~ 81 -1.499 -0.231 -0.227 0.205 ; 0.076
S2 0.590° 0.477° 0.643° 0.407° 0.378°
S3 0.608° 0.541° 0.682° 0.389°
S4 ggeat GRel 0.700° 0.548°
— Ml -1.236 -0.198 -0.130 0.114
M2 0.589° 0.476 0.448°
M3 0.609° 0.545°
M4 0.754° 0.559°
The same superscript indicates that NSE values are not significantly different at the 0.05 significance level.
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Figure 1. Daily observed precipitation and streamflow time series from Oct. 2 1961 to Oct. 1 1971 at five different
watersheds across US.

Figure 2. Relationships between the mean information content (MIG) and complexity metrics — effective complexity
measure (EMC) and fluctuation complexity (FC) in precipitation time series of watersheds in this study: ! - French Broad
river, " - Tygard Valley river, # - Leafriver, ! - Guadalupe river, " - San Marcos river.

Figure 3. Relationships between mean information content (MIG) and effective measure of complexity (EMC) in measured
(Q) and simulated (numbers) streamflow time series. Blue symbols 1, 2, 3, 4 correspond to single-layer soil models S1, S2,
§3, and S4, red symbols 1, 2, 3, 4 correspond to multi-layer soil models M1, M2, M3, M4.

Figure 4. Relationships between mean information content (MIG) and fluctuation complexity (EMC) in measured (Q) and
simulated (numbers) streamflow time series. Blue symbols 1,2,3,4 correspond to single-layer soil models S1, S2, s3, and S4,
red symbols 1,2,3,4 correspond to multi-layer soil models M1, M2, M3, and M4.

20



Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-46, 2016 Hydrology and §
Manuscript under review for journal Hydrol. Earth Syst. Sci. Earth System 3. {¢
Published: 15 February 2016 Sciences §
© Author(s) 2016. CC-BY 3.0 License. T Discussions

Figure 1. Daily observed precipitation and streamflow time series from Oct. 2 1961 to Oct. 1 1971 at five different

watersheds across US.
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Figure 2. Relationships between the mean information content (MIG) and complexity metrics — effective complexity

measure (EMC) and fluctuation complexity (FC) in precipitation time series of watersheds in this study: ! - French Broad

river, " - Tygard Valley river, # - Leafriver, ! - Guadalupe river, " - San Marcos river.
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Figure 3. Relationships between mean information content (MIG) and effective measure of complexity (EMC) in measured
(Q) and simulated (numbers) streamflow time series. Blue symbols 1, 2, 3, 4 correspond to single-layer soil models S1, S2,
s3, and S4, red symbols 1, 2, 3, 4 correspond to multi-layer soil models M1, M2, M3, M4.
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Figure 4. Relationships between mean information content (MIG) and fluctuation complexity (EMC) in measured (Q) and
simulated (numbers) streamflow time series. Blue symbols 1,2,3,4 correspond to single-layer soil models S1, S2, s3, and S4,
red symbols 1,2,3,4 correspond to multi-layer soil models M1, M2, M3, and M4.
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