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Abstract. Parametric distribution functions are commonly used to model precipitation amounts corresponding to different du-

rations. Precipitation amounts themselves are crucial for stochastic rainfall generators or weather generators. Non-parametric

kernel density estimates (KDEs) offer a more flexible way to model precipitation amounts. As it is already stated in their name,

these models do not exhibit parameters which can easily be regionalized to run rainfall generators at ungauged locations as

well as at gauged locations. To overcome this deficiency we present a new interpolation scheme for non-parametric models and5

evaluate it for different temporal resolutions ranging from hourly to monthly. During the evaluation the non-parametric meth-

ods are compared to commonly used parametric models like the two-parameter gamma and the mixed exponential distribution.

As water volume is considered to be an essential parameter for applications like flood modeling, a Lorenz-curve based criterion

is also introduced. To add value to the estimation of data at sub-daily resolutions, we incorporated the plentiful daily measure-

ments in the interpolation scheme, and this idea was evaluated. The study region is the federal state of Baden-Württemberg in10

the southwest of Germany with more than 500 rain gauges. The validation results show that the newly proposed non-parametric

interpolation scheme provides reasonable results and that the incorporation of daily values in the regionalization of sub-daily

models is very beneficial.

1 Introduction

Rainfall time series of differing temporal resolutions are needed for various applications like water engineering design, flood15

modeling, risk assessments or ecosystem and hydrological impact studies (Wilks and Wilby, 1999; Burton et al., 2008). As

many precipitation records are too short and contain erroneous measurements, stochastic precipitation models can be used to

generate synthetic time series instead. Starting from single-site models (summarized in Wilks and Wilby, 1999), multi-site

models for simultaneous time series at various sites (e.g., Wilks, 1998; Buishand and Brandsma, 2001; Bárdossy and Plate,

1992) and finally models which allow for gridded simulations are developed (e.g., Wilks, 2009; Burton et al., 2008).20

For modeling precipitation one crucial variable is the precipitation amount, which follows a certain distribution. Distributions

of daily precipitation amounts are strongly right skewed, with many small values and few large values (Wilks and Wilby, 1999;

Li et al., 2012; Chen and Brissette, 2014). This also holds true for different temporal resolutions with increasing skewness

for higher temporal resolutions and vice versa. This means that rainfall intensity distributions depend on the temporal scale of
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the observed values. Applying single-site or multi-site precipitation models at ungauged locations requires regionalization of

precipitation amount distributions. This can be done in two different ways:

1. Interpolate precipitation amounts from observation points for every time step to the target location(s) and set up a

distribution with the interpolated values.

2. Fit a distribution function to the precipitation amounts separately for each gauge and interpolate the distribution functions5

to the target location(s).

The first approach seems more straightforward, but exhibits several deficiencies such as overestimation of the rainfall probabil-

ity, underestimation of the variance and underestimation of the maximum rainfall value. In supplement section S1 an example

demonstrates these problems. Due to the relative inefficiency of the first interpolation approach, the second is preferred.

In most stochastic rainfall models theoretical parametric distribution functions are fitted to the empirical values using, e.g.,10

the exponential distribution or the two parametric gamma distribution (Wilks and Wilby, 1999; Papalexiou and Koutsoyiannis,

2012). It is possible to either interpolate the parameters of the theoretical distribution or to interpolate the moments (e.g. mean

and standard deviation) of the rainfall intensities (Wilks, 2008; Haberlandt, 1998). Lall et al. (1996) introduced a more flexible

non-parametric single-site rainfall model, where they used non-parametric KDEs with a prior logarithmic transformation to

model daily rainfall intensities. They mentioned the problem of regionalization by using non-parametric estimates of distribu-15

tion functions. However, a different interpolation scheme is required for non-parametric estimations, as they do not use any

parameter that can be simply interpolated.

In the present work we introduce a regionalization strategy for non-parametric distributions and compare it to the tradi-

tional regionalization of parametric distributions for varying temporal resolutions from hourly to monthly scale. The common

procedure to interpolate parametric distribution functions is:20

1. Fit a parametric distribution (e.g., a gamma or exponential distribution) at each sampling site to the empirical distribution

function (EDF).

2. Interpolate the moment(s) or parameter(s) of the fitted parametric distribution.

3. Set up the theoretical cumulative distribution function (CDF) at every interpolation target with the interpolated mo-

ment(s) or parameter(s).25

The newly proposed procedure for non-parametric distribution functions is:

1. Fit a non-parametric distribution to log-transformed rainfall values using a Gaussian kernel.

2. Estimate the interpolation (kriging) weights with the precipitation values of a certain quantile.

3. Apply these weights to the values of certain discrete quantiles.

4. Linearly interpolate the remaining quantile values to receive a continuous CDF for all target locations.30
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In Arns et al. (2013) a similar approach is used to interpolate quantile value differences of water levels for a bias correction

between empirical distributions of observed and modeled values at the German North Sea Coast. In contrast to their work,

entire theoretical distribution functions through interpolation are estimated in our work. Goulard and Voltz (1993) introduced

a curve kriging procedure to regionalize fitted functions, which was further developed by Giraldo et al. (2011). Based on their

work Menafoglio et al. (2013) developed a universal kriging approach for the non-stationary interpolation of functional data,5

which was applied in Menafoglio et al. (2016) for the simulation of soil particle distribution functions. As CDF curves are

special functions, which are monotonically non-decreasing between 0 and 1, the curve kriging procedure additionally needs to

be constrained to these conditions. Our approach can deal with these conditions directly.

After describing the study region Baden-Württemberg in section 2, the concept of precipitation amount models is introduced

in section 3. The data selection in section 4 is followed by an investigation of the spatial dependence of the precipitation10

amount models in section 5. The theory of precipitation amount models is addressed in section 6 and the basis of the proposed

interpolation procedure for non-parametric models is established in section 7. The application of different regionalization

procedures for precipitation amount models is explained in section 8. The implementation of daily rainfall observations within

the interpolation of sub-daily distribution functions is outlined in section 9. The resulting performance of different precipitation

amount models at point locations and their regionalization is depicted in section 10.15

2 Study region and data

The study region is the federal state of Baden-Württemberg, which is located in the southwest of Germany. The mountain

range Black Forest in the western part and the mountain range Swabian Alps extending from southwest to northeast exhibit

the highest elevations in Baden-Württemberg. The rising of large scale moist air masses across mountainous regions causes

higher rainfall amounts on the windward side and lower amounts on the leeward side. In the summer months, slopes with20

differing inclinations lead to a warming of the air triggering convection currents, leading to a greater number of showers and

thunderstorms over mountainous regions. This shows a dependence of rainfall on elevation with seasonal differences. The

rain-bearing westerly winds lead to high rainfall amounts in the Black Forest. The relatively lower altitude of the Swabian

Alps results in lower rainfall amounts as they lie in the shadow of the Black Forest (Landesanstalt für Umwelt, Messungen und

Naturschutz Baden-Württemberg (LUBW), 2006).25

The years from 1997 to 2011 are chosen as investigation period, as the German Meteorological Service (DWD) set up many

new rain gauges in 1997. A relatively homogeneous dataset is obtained by only choosing gauges with observation periods

greater than or equal to five years providing rainfall measurements for at least 80 % of the time steps within their observation

period. It turned out that we had access to (i) 242 hourly and 5 min resolution and (ii) 347 daily gauges available in the study

region, with 80 sites having both high and daily resolution instruments. The observations are provided by the DWD and the30

Environmental Agency of Baden-Württemberg (LUBW). The high resolution rain gauges are mostly equipped with tipping

buckets and gravimetric measurement devices (Beck, 2013). Fig. 1 shows the study region with the locations of the two sets of

rain gauges.
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3 Modeling precipitation amounts at point locations

Modeling precipitation amounts in our context means estimating distribution functions. The usage of these distribution func-

tions includes the implicit assumption of temporally independent and identically distributed (i.i.d.) variables. This assumption

is generally accepted for daily rainfall as the autocorrelation of consecutive nonzero daily precipitation is relatively small and

usually of less importance. For higher temporal resolutions, such as hourly, autocorrelation needs to be incorporated in the5

model (Wilks and Wilby, 1999). In practice different methods exist to take such a correlation into account. One approach is to

include autocorrelation prior to the sampling procedure by using conditional distributions. Conditions may be event statistics

like the duration of a rainfall event (e.g., Acreman, 1990) or varying statistical moments depending on the hour of the day (e.g.,

Katz and Parlange, 1995). Another approach is introducing autocorrelation after the sampling procedure. Bárdossy (1998) uses

empirical distributions of hourly rainfall intensities to sample values whose random order is subsequently changed within a10

Simulated Annealing scheme to consider autocorrelation. In Bárdossy et al. (2000) theoretical representations (CDFs) of the

empirical distributions are used to allow for regionalization of the distributions and enable simulations at ungauged locations.

The non-exceedance probabilities of a CDF are referred to as quantiles in this work and their corresponding rainfall values are

called quantile values.

4 Data selection15

For applications of rainfall estimates, like hydrological or hydraulic modeling, the correct representation of small rainfall values

is not necessary as their contribution to decisive high discharge rates is rather small. Furthermore, tipping bucket gauges lead to

wrong estimates especially for low rainfall values (Habib et al., 2001). Relative estimation errors are increasing for decreasing

rainfall rates (Nystuen et al., 1996; Ciach, 2003) and they only represent a small part of the total water volume, but the number

of smaller rainfall values is rather high. To avoid the negative effect of this high number of inaccurate values and due to their20

minor importance for further applications, this study focuses on medium and high rainfall values.

Therefore, the quantile threshold (Qth) for hourly (1H) values is set to 0.95. This means, that values smaller than the quantile

value atQth=0.95 are excluded. To investigate the total water volume represented by rainfall values above this quantile at point

locations, the Lorenz-curve (Lorenz, 1905) is used. We considered a water volume analysis for varying quantiles as important,

to show that high quantiles not only represent the decisive higher rainfall intensities, but also a large proportion of the total25

water volume. So focusing on these quantiles during the model setup is likely to lead to a better model, as lower quantiles

would disturb the model estimation due to measurement errors and the higher quantiles already represent a great percentage of

the total water volume. The volume of the lower quantiles can then be modeled by simple and robust methods as they do not

require a very precise estimation due to their high inaccuracy and minor importance.

After arranging the n observations xi in non-decreasing order, the Lorenz-curve Li can be calculated from a population (in30

our case rainfall values at a single gauge) with the following formula:

L(i) =

∑i
j=1xj∑n
j=1xj

(1)
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The hourly threshold quantile values (QVth) range between 0.2 and 1.6 mm for Qth = 0.95 depending on the location of the

gauge (see Table 1). The Lorenz curve in Fig. 2 (a) shows that hourly values above Qth = 0.95 represent between 70 and 95 %

of the total water volume (1 - cumulative share of water volume).

Based on hourly values (1H) of the high resolution data set, aggregated rainfall values of different temporal resolutions are

obtained: 2 hourly (2H), 3 hourly (3H), 6 hourly (6H) and 12 hourly (12H). Through aggregation of daily values (1D) of the5

daily data set, 5-daily (5D) and monthly (M) values are obtained. In order to exclude small values and still consider the values

producing a high percentage of the water volume, the Qth for sub-daily resolutions are defined with the mean Lorenz-curves

in Fig. 2 (b). The mean hourly Lorenz-curve yields 0.15 as cumulative share of water volume for Qth = 0.95 (85 % of the total

water volume is represented by larger values), which is also defined as target share for the remaining sub-daily resolutions.

This target share of 0.15 results in the following values of Qth for sub-daily resolutions: 0.93, 0.92, 0.9, 0.86 (see Table 1). For10

aggregations greater or equal to one day, the number of values is rather small and there estimation errors are lower due to an

increasing accumulation time (Ciach, 2003; McMillan et al., 2012). Nevertheless, only values above the highest quantile of 1

mm in the study region are used for the daily (1D) and 5-daily (5D) resolution (see Table 1), as smaller values may still exhibit

measurement errors.

For the estimation of basic statistics in Table 1 and for following calculations, rain values of the investigated aggregations15

smaller than 0.1 mm are set to 0 mm. The reason is to achieve homogenization of the data sets of different years and gauges,

as the discretization ranges from 0.01 mm to 0.1 mm depending on the gauge.

5 Probability distributions of precipitation amounts in a spatial context

This section focuses on the spatial dependence of precipitation amount distributions, as the applied interpolation technique of

ordinary kriging (OK) is based on the assumption that the variable of interest (the CDF) is more likely to be dissimilar with20

increasing distances. For the purpose of describing the development of the distribution functions in space, the test statistic T

of the two-sample Cramér–von Mises criterion is used (Anderson, 1962). It evaluates the similarity of two CDFs, in our case

the similarity of CDFs from observations of two different point locations. The test statistic T is defined according to Anderson

(1962) as:

T =
U

NM(N +M)
− 4MN − 1

6(M +N)
(2)25

where

U =N ·
N∑
i=1

(ri− i)2 +M ·
M∑
j=1

(sj − j)2 (3)

withN as number of observations of the first sample andM as number of observations of the second sample. Both observations

are joined together in one pooled dataset and the ranks are determined in ascending order of all observations in the pooled

dataset. ri are the ranks of the N observations of the first sample in the pooled dataset and sj are the sorted ranks of the M30

observations of the second sample in the pooled dataset. T can be interpreted as the mean difference of CDF values (quantiles)
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of observed rainfall intensities between both data sets. So, if T increases for increasing distances, the CDFs are less similar for

increasing distances.

For the calculations of T , only rainfall values above the different Qth (see Table 1) are used. The graphs in Fig. 3 show a

decreasing similarity of the distribution functions with increasing distances over all temporal resolutions, as the values of T

are increasing with increasing distances. Note that the average T-values of the hourly (1H) data in Fig. 3 (a) are shown as the5

highest dashed line in 3 (b). So the continuity of the whole distribution changes in space, not only the continuity of values of a

single quantile. This shows the applicability of interpolation techniques like OK.

6 Precipitation amount models

In the following subsections non-parametric and parametric models for precipitation amounts at single sites are introduced.

Before estimating the non-parametric or parametric distributions at each observation gauge, observations smaller than QVth10

are censored from the sample of each gauge and QVth is subtracted from the values above them to fit to the support of the

theoretical distribution functions [0,∞). QVth varies from gauge to gauge for different temporal resolutions (see Table 1).

After estimating the theoretical CDFs, the quantiles F are scaled with Qth

Fsc = F · (1−Qth) +Qth (4)

and QVth is added to the quantile values. Only the monthly resolution is excluded from the whole scaling procedure, as all15

monthly rainfall values are used.

6.1 Non-parametric models

Non-parametric KDEs for precipitation amount distributions were previously used and are described for daily precipitation

amounts in Rajagopalan et al. (1997) and Peel and Wilson (2008). By using this non-parametric method no theoretical distri-

bution needs to be preassigned, only a kernel and its bandwidth needs to be chosen. That is why they are assumed to be more20

flexible. A kernel in this context is a function which is centered over each observation value and is itself a probability density

function whose variance is controlled by its bandwidth (Bowman and Azzalini, 1997). The probability density function (PDF)

or KDE f(x) of every data set is then constructed through a linear superposition of these kernels (Peel and Wilson, 2008),

where n is the number of observed values, K is the kernel function, h is the bandwidth of the kernel, x are discrete kernel

supporting points, and xi are observed rainfall values:25

f(x) =
1

n

n∑
i=1

K (x−xi;h) (5)

The estimation of f(x) is performed with an R (R Core Team, 2015) implementation of Wand (2015). However, since our

non-parametric interpolation scheme is based on CDFs and not on PDFs, the CDF is needed. In order to obtain a CDF from

the KDEs an integration is required, which is done numerically with the composite trapezoidal rule (e.g., Atkinson, 1989). For
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numerical reasons quantiles slightly greater than 1 are sometimes obtained, which are simply set to 1 to remain in the correct

range.

To model right skewed precipitation amounts with their bounded support on [0,∞), either an asymmetric kernel like the

Gamma kernel (Chen, 2000) or a symmetric kernel with a prior logarithmic transformation of the values (Rajagopalan et al.,

1997) can be used to avoid boundary bias. A boundary bias occurs when kernels with infinite support are used for data with5

bounded support, as this would lead to a leakage of probability mass (Rajagopalan et al., 1997).

In this work the symmetric Gaussian kernel with a prior transformation of data to logarithms is chosen, as this is an implicit

adaptive kernel method with increasing bandwidths for increasing values and therefore alleviates the need to choose variable

bandwidths with skewed data (Lall et al., 1996; Charpentier and Flachaire, 2014). The Gaussian kernel is chosen as it is

straightforward and its application is facilitated through several software implementations (Sheather, 2004). The Gaussian10

kernel K(t) is described in Eq. 6:

K(t) =
1

h
√

2π
· exp

(
−t2

2h2

)
(6)

If the density of the logarithmically transformed observed values y = log(x) is fY and a Gaussian kernel is used for this

density estimation, the density estimation fX of the original values x according to Charpentier and Flachaire (2014) is:

fX(x) = fY (log(x))
1

x
(7)15

Finally, the bandwidth h needs to be chosen, which is commonly indicated as the key step for KDEs (e.g., Bowman, 1984;

Harrold et al., 2003; Sheather, 2004; Charpentier and Flachaire, 2014) as a poor bandwidth selection may result in a peakedness

or an over smoothing of the density estimation. Due to this great importance of the bandwidth selection, the performances of

different selection methods are investigated.

1. The simplest and most widely used selection method is Silverman’s rule of thumb (Silverman, 1986), which is defined20

as

hopt,SRT = 0.9 ·min
(
s;
q3− q1
1.349

)
n−1/5 (8)

to obtain the optimal kernel bandwidth hopt,SRT with n sample values, where s is the standard deviation and q3− q1
is the interquartile range. Silverman’s rule of thumb (SRT) is deduced from minimizing an approximation of the mean

integrated squared error between the estimated and the true densities, where the Gaussian distribution is referred to as25

the true distribution (Charpentier and Flachaire, 2014).

2. The second method is a plug-in approach developed by Sheather and Jones (1991), which is widely recommended due

to its good performance (Jones et al., 1996; Rajagopalan et al., 1997; Sheather, 2004). Instead of using a Gaussian

reference distribution it uses a prior non-parametric estimate in the approximation of the mean integrated square error

and, therefore, requires numerical calculation (Charpentier and Flachaire, 2014) to find the optimal bandwidth hopt,SJ ,30

which is performed with the R implementation of Wand (2015) within this work.
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Instead of minimizing the mean integrated squared error, Bowman (1984) recommended minimizing the integrated squared

error through a least squares cross validation (LSCV), which is applied using the R package of Duong (2015). Another common

cross validation method is the maximum likelihood cross validation (MLCV). Cross validation methods tend to produce small

bandwidths and therefore tend to produce peakedness of the density (Rajagopalan et al., 1997; Sheather, 2004; Peel and Wilson,

2008), which we also observed in our applications. Due to this deficiency both cross validation methods are not considered in5

what follows.

6.2 Parametric Models

Within the parametric procedure five different parametric distributions are used to model the precipitation amounts of all

aggregations in this study. Commonly used models are the exponential distribution and the two-parameter gamma distribution

(Wilks and Wilby, 1999). The mixed exponential distribution was recommended in Wilks and Wilby (1999) and was firstly10

used for daily precipitation amounts by Woolhiser and Pegram (1979). Another common and efficient distribution to model

precipitation amounts, especially with daily temporal resolution, is the generalized Pareto distribution (Chen and Brissette,

2014; Li et al., 2012, e.g.). In addition to these models the Weibull distribution, which showed good performance for modeling

monthly precipitation amounts in Baden-Württemberg (Beck, 2013), is used. The CDF F (x) and the PDF f(x) of each used

parametric distribution are listed in the following.15

1. For the exponential distribution with the parameter λ these functions are:

f(x;λ) = λe−λx (9)

F (x;λ) = 1− e−λx (10)

2. For the two-parameter gamma distribution they are:

f(x;θ,k) =
xk−1e−

x
θ

Γ(k)θk
(11)20

F (x;θ,k) =
γ
(
k, xθ

)
Γ(k)

(12)

where Γ is the gamma function and γ is the incomplete gamma function.

3. For the two-parameter Weibull distribution F (x) and f(x) are:

f(x;λ,k) =
k

λ

(x
λ

)(k−1)

e−(x/λ)k (13)

F (x;λ,k) = 1− e−(x/λ)k (14)25

4. The mixed exponential distribution exhibits the following functions:

f(x;λ1,λ2,α) = αλ1e
−λ1x + (1−α)λ2e

−λ2x (15)

F (x;λ1,λ2,α) = 1−αe−λ1x− (1−α)e−λ2x (16)
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5. The generalized Pareto distribution exhibits the following PDF

f(x;k,α) = α−1(1 + kx/α)−1− 1
k , k 6= 0

= α−1e−x/α, k = 0
(17)

and CDF:

F (x;k,α) = 1− (1 + kx/α)−1/k, k 6= 0

= 1− e−x/α, k = 0.
(18)

Parametric distributions with more than two parameters are not considered, as this would complicate the regionalization5

of the distributions due to dependencies among the parameters. For the three parameter mixed exponential distribution the

parameter α is fixed for the whole study region (Wilks, 2008) transforming it into a two-parameter distribution.

In order to estimate the optimal parameter sets of the presented parametric distributions for each rainfall gauge and temporal

resolution the maximum likelihood method (MLM) using numerical maximization via a Simplex algorithm and the method of

moments (MOM) are applied. The MLM is applied to all mentioned parametric distributions. In the special case of the mixed10

exponential distribution the parameter α is varied between 0.01 and 0.5 within the parameter estimation. For each value of

α the sum of the log-transformed likelihoods is calculated over all gauges with varying values of the remaining parameters,

while the maximum sum defines the parameter set. To apply MOM, the mean x̄ and standard deviation sx of the sample values

need to be calculated for the gamma and generalized Pareto (Hosking and Wallis, 1987) distribution. In order to use MOM

for the Weibull distribution, the method described in Cohen (1965) is applied. For the estimation of the mixed exponential15

distribution parameters, MOM is not applied due to its shortcomings described in Rider (1961). MOM is neither applied to the

one parameter exponential distribution, as it would yield the same results as those from MLM.

7 Non-parametric distributions in a spatial context

In order to establish the basis of the proposed regionalization procedure for non-parametric models and to get a more detailed

idea of the spatial relationship of distribution functions, the EDFs of hourly and monthly rainfall intensities of the gauge20

Stuttgart / Schnarrenberg and its five closest gauges are plotted in Fig. 4. It is therefore not of importance which EDF belongs

to which gauge, but rather the relationship that the EDFs have with each other. These two graphs show that the order of the

EDFs stays quite persistent over different quantiles for both aggregations, as the EDFs do not cross each other very often. In

other words, if one gauge exhibits the highest rainfall values for a certain quantile it also exhibits the highest rainfall values for

other quantiles and vice versa. The red and purple EDFs on the left graph illustrate this quite nicely.25

A more global look at the spatial relation between different EDFs can be obtained with Spearman’s rank correlation ρxy of

quantile values of all gauges for different quantile pairs. As we want to investigate the persistence of EDFs for the whole study

region, we are only interested in the ranks or rather the order of different quantile values for differing quantiles, which can be

done by calculating ρxy . In our application the two input datasets for calculating ρxy represent quantile values of two different

pairs of quantiles over all gauges in the study region. These pairwise rank correlations of quantile values of all gauge pairs are30

9



calculated starting from Qth until 1 in 0.001 steps for sub-daily aggregations and in 0.005 steps for aggregations greater than

or equal to one day. This procedure is repeated until the rank correlation of every quantile with every other quantile is obtained.

Finally the mean values of the rank correlation belonging to each quantile are calculated (see the dotted gray lines in Fig. 5).

The greatest mean rank correlation is indicated with a red cross in this figure, which also defines the control quantile (Qc) with

the highest mean rank correlation. Rank correlations of Qc with the remaining quantiles lead to the dashed lines in Fig. 5.5

Fig. 5 demonstrates that most of the rank correlations are greater than 0.85, indicating a persistence of quantile values over

a great interval of quantiles as well as over the whole study region for hourly through monthly data. Lower correlations can be

observed for the highest and lowest quantiles, which indicates a non persistent behavior for these quantiles. This behavior is

similar for all temporal resolutions. Therefore, quantile values of Qc can be used to set up the interpolation weights. Applying

these weights to the remaining quantiles from Qth until 1 should lead to good regionalization results for non-parametric CDFs.10

In Table 2 the control quantiles Qc with the highest mean correlations are summarized for all temporal resolutions. As the

precipitation mechanisms are different in summer and winter in Baden-Württemberg, the rainfall data sets are also analyzed

separately for summer (from May to August) and winter (from September to April). Qc is mostly close to the center of the

considered quantile ranges, which are also shown in Table 2. Nevertheless, it is worth noting the strong similarity of winter

and summer control quantiles Qc. The proposed procedure to interpolate non-parametric distribution functions using the same15

interpolation weights for different quantiles seems feasible as the persistence of the order for quantile values of spatially

distributed rain gauges is evident. Only values of very high and low quantiles show a non-persistent behavior. Therefore,

quality measures, which focus on the difference of these values, will be introduced.

8 Regionalizing of precipitation amount models

In the following, the regionalization of point models in order to obtain precipitation amount models at ungauged locations is20

described. The used regionalization method OK is introduced first. Then the approaches to regionalize parametric and non-

parametric distributions are explained.

As only a short overview of OK will be given, the interested reader is referred to the common geostatistical literature, like

Kitanidis (1997), for further information. The empirical variogram γe(h) is calculated using Eq. 19

γe(h) =
1

2n(h)

n(h)∑
i=1

(z(xi)− z(xi +h))2 (19)25

where n(h) is the number of gauge pairs for distance h, xi represents the position of gauge i and z(xi) is the variable value

at gauge i. As the distances between rainfall gauges never provide a continuous set of distances, the h in Eq. 19 represents

different distance intervals. For following applications the width of the interval of h is 10 km and the maximum distance is

100 km. For the theoretical variogram γt(h) one single model out of the following four is chosen based on the least squares

criterion. The s parameters represent the sills, the r parameters the ranges of the variograms.30
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1. Gauss model:

γt(h) = s1

(
1− e

−h2

r21

)
(20)

2. Spherical model:

γt(h) = s2

(
1.5

h

r2
− 0.5

(
h

r2

)3
)

(21)

3. Exponential model:5

γt(h) = s3

(
1− e−

h
r3

)
(22)

4. Matern model (Pardo-Iguzquiza and Chica-Olmo (2008), Kv is the modified bessel function of second kind):

γt(h) = s4

(
1− 1

2v−1Γ(v)

(
h

r4

)v
Kv

(
h

r4

))
(23)

The next step within OK is solving the corresponding equation system to estimate an interpolated value at an unobserved

location x0:10

n∑
j=1

φjγt(xi−xj) +µ= γt(xi−x0) i= 1, ...,n,

n∑
j=1

φj = 1.

(24)

where n is the number of gauges included in the interpolation (10 within this work) and µ is the Lagrange multiplier.

As already outlined in the introduction, either the parameters (Kleiber et al., 2012) or the moments (Haberlandt, 1998;

Wilks, 2008) of parametric distributions can be interpolated to regionalize parametric models. Within this work the moments

are interpolated, when MOM is used for fitting the parametric distributions. If MLM is used, the parameters are interpolated.15

Since only rainfall values aboveQVth (see Table 1) are used,QVth also needs to be interpolated within the parametric approach.

Kernel smoothed distribution functions do not provide a parameter that can be interpolated, thus a procedure other than that

for parametric distributions needs to be applied. By analyzing the spatial relation of rainfall EDFs in section 7, a persistent

order of quantile values over a wide range of quantiles is observed. Therefore, the interpolation weights of quantile values for

the control quantile Qc (see Table 2) can be applied to the remaining quantiles.20

For all gauges the quantile valuesQVc of the control quantileQc are estimated with the inverse of the gauge-wise numerically

integrated non-parametric CDF Fnp:

QVc = F−1
np (Qc) (25)

With these QVc at the observation points, the interpolation weights φj for the target locations are estimated with OK (see

Eq. 24). Then, these weights are applied to the quantile values of quantiles between Qth and 1 in 0.0001 steps and, finally,25
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the remaining quantile values are linearly interpolated to receive a continuous CDF for all target locations. In order to assure a

monotonically increasing CDF only positive interpolation weights are allowed. This makes the use of OK problematic. It can

only be used if the equation system (see Eq. 24) is solved with positive weights, which leads to additional constraints:

φj ≥ 0 j = 1, ...,n. (26)

Considering these additional constraints the OK equation system is solved with a SCIPY implementation (Jones et al.,5

2001) of a FORTRAN algorithm by Lawson and Hanson (1987), which solves the Karush-Kuhn-Tucker conditions for the

non-negative least squares problem. In the following, this kriging procedure will be called positive kriging (PK). Another way

to solve this extended optimization problem with an application of the Lagrange method is presented in Szidarovszky et al.

(1987). The persistence of quantile values described in section 7 also implies the persistence of quantiles. The interpolation of

quantiles for discrete rainfall values would therefore also be an option. However, this would complicate the regionalization as10

not only monotonicity needs to be preserved, but also the value range of quantiles from 0 to 1.

9 Dependence of sub-daily on daily values

As the high resolution rain gauge monitoring network in the study area is quite sparse and the corresponding time series are

often incomplete, it would be useful to include more dense and complete secondary information in the interpolation of the

sub-daily distributions. Therefore, the applicability of daily values to improve their interpolation is investigated, as the daily15

monitoring network has a higher density. A simple disaggregation strategy (rescaled nearest neighbor) of Bárdossy and Pegram

(2016) is applied to all days to obtain distributions of sub-daily resolutions at the locations of the daily gauges, allocating sub-

daily values from the closest high resolution gauge to the daily target gauge. The procedure to incorporate daily values in the

interpolation of sub-daily values should be the following:

1. Choose a daily target gauge and allocate sub-daily rainfall values of the closest (concerning horizontal distance) high20

resolution gauge to it.

2. Aggregate sub-daily values of the high resolution gauge to daily values psub−daily(t) and calculate a scaling factor for

every day t by additionally using the values of the daily target gauge pdaily(t) :

sc(t) =
pdaily(t)

psub−daily(t)
(27)

3. Multiply all sub-daily values of the nearest gauge with this scaling factor. The scaling factor changes from day to day25

and simply assures that daily sums of disaggregated sub-daily values at the target gauge equal the daily values measured

at the target.

4. Repeat steps 1. to 3. for all daily gauges.

5. Calculate the sub-daily statistic of interest from these scaled values at every daily gauge and incorporate them in the

interpolation procedure.30
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The applicability of this procedure is tested with a cross validation, which is described in section S3 of the supplement. For

the incorporation of daily values within the regionalization of parametric and non-parametric sub-daily distributions a special

regionalization technique is not needed. The rescaling method (NNS) is applied to all available daily gauges. If for a certain

day no hourly values are available for the closest gauge, the next closest gauge is used for the rescaling of that certain day in

order to increase the sub-daily sample size at the daily gauge. After obtaining the sub-daily values at the daily gauges, they are5

simply treated as additional control points for the regionalization.

10 Performance

This section is divided into three parts. In 10.1 the quality measures are introduced, in 10.2 the performance of the precipitation

amount models for point wise estimations are compared for all temporal resolutions. The regionalization of the precipitation

amount models is addressed in 10.3. The precipitation amount models are fitted and regionalized separately for winter (from10

September to April) and summer (from May to August) months, as the rain-producing weather processes are different in these

two seasons.

10.1 Quality measures

The validation of the precipitation amount models at point locations and their regionalization is evaluated with two different

quality measures. These quality measures need to be measures considering the CDF and not the PDF, as the interpolation of15

the non-parametric distributions only provides CDFs for ungauged locations.

The most common goodness of fit test to estimate the quality of fitted distributions is the Kolmogorov–Smirnov test. As

distributions of precipitation amounts are positively skewed, the greatest part of the values are small or medium values, which

leads to the highest gradient of the CDF for these values. Therefore, a greater difference of the corresponding CDF quantiles

would be more likely and would govern the Kolmogorov–Smirnov test. However, these medium values are less important than20

the greater precipitation amounts for most of the precipitation model applications.

For this reason the Cramér–von Mises criterion as a more integral measure and a Lorenz-curve based measure - which

allows for conclusions about the representation of the water volume - are used. The Cramér–von Mises criterion W 2 for single

samples is (Stephens, 1974):

W 2 =
1

12n

n∑
i=1

(
2i− 1

2n
−F (xi)

)2

(28)25

where F (xi) represents the theoretical distribution (non-parametric or parametric) of the observed values xi in ascending order.

For sub monthly resolutions the Cramér–von Mises criterion is slightly modified, as only quantiles above Qth (see Table 1) are

used:

W 2 =
1

12n

n∑
i=1

((
2i− 1

2n
· (1−Qth) +Qth

)
−F (xi)

)2

(29)
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As already mentioned in section 7, a quality measure, which describes the representation of high quantiles, is needed. For

Lorenz-curves, high vertical differences are supposed to appear more frequently for high quantiles as the slope increases with

increasing quantiles. Therefore, a measure respecting the vertical differences of the Lorenz-curves is suitable. In section 4 the

estimation of the Lorenz-curve with observed rainfall values was described. However, the Lorenz-curve L(F (x)) can also be

estimated from the theoretical CDF F (x), which is a preferable approach, as random rainfall values do not need to be generated5

from the CDF previous to the Lorenz-curve estimation:

L(F (x)) =

∫ F
0
x(F )dF∫ 1

0
x(F )dF

(30)

where x(F ) is the gauge wise quantile function (the inverse of the CDF). The integrals of the quantile functions are estimated

numerically, because the non-parametrically estimated distribution functions are not invertible analytically. The Lorenz-curve

criterion Ld used here is the squared difference of the observed L(Fn(x)) and modeled Lorenz-curve L(F (x)):10

Ld =

n∑
i=1

(L(Fn(x))−L(F (x)))2 (31)

The differences of the Lorenz-curves are only estimated for values greater than QVth (see Table 1). Within the validation

of the regionalization only values above the highest QVth among the observed and regionalized values for each gauge are

evaluated, as they may differ for the different techniques.

10.2 Point models15

To determine an overall performance ranking for the remaining models, at first the arithmetic mean and the median over the

number of gauges of both measures of quality - the Cramér–von Mises criterion W 2 and the Lorenz-curve criterion Ld - are

calculated for each precipitation amount model. This leads to four different measures, which are shown for hourly values of

the winter season in Table 3. Note that the mean values reflect the robustness and the median values represent a good average

performance of one precipitation model for the whole study region.20

To combine the four statistics (mean and median of W 2 and Ld respectively) in one single performance measure, every

value in Table 3 is then divided by the smallest (best) value (bold numbers) of its corresponding quality measure, indicating the

relative performance with respect to the best model. This leads to one number for each statistic and precipitation model starting

from 1 for the best performing model of each statistic. The bigger this number, the worse its relative performance. These four

numbers are then combined by adding them together, which results in a single number for each precipitation amount model to25

define the performance ranking for each temporal resolution. A ranking number of 4 is the lowest possible number and implies

that the related model shows the best performance for all four quality measures. In Table 4 the ranking numbers for all temporal

resolutions and both seasons are shown.

With the ranking numbers the best performing precipitation amount model is estimated for each season and temporal resolu-

tion. Among the non-parametric methods (NP) Silverman’s rule of thumb (SRT) and the plug-in approach of Sheather and Jones30

(1991) (SJ) show very similar results. The generalized Pareto distribution with a MLM parameter estimation (Pareto-MLM)
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exhibits the best performance among the (P) parametric models for the hourly resolution. The mixed exponential distribution

with a MLM parameter estimation (Mixed-Exp-MLM) leads to the best results for the remaining sub-daily and the daily reso-

lutions. For temporal resolutions greater than 1D the Weibull distribution with a MOM parameter estimation (Weibull-MOM)

leads to the best results, except for the daily resolution in the winter season, where the Pareto-MOM combination is better. The

best performance of the Weibull distribution for monthly values coincides with the results of Beck (2013) for the same study5

region.

The performance ranking of the different methods is quite similar in winter and summer. The non-parametric methods always

lead to better performances concerning the Cramér–von Mises criterion W 2. The parametric estimations lead to better results

regarding the Lorenz-curve criterion Ld (for details see Table S2 and S3 in the supplement). Fig. 6 may provide an explanation

for the differences in performance regarding these two quality measures. The graphs show the CDFs and Lorenz-curves for10

the hourly (1H) and 12 hourly (12H) resolution for a chosen gauge. For the hourly resolution the non-parametric SRT method

leads to better results for both measures. An equally good performance regarding theW 2 for the parametric and non-parametric

method can be observed for the 12 hourly resolution. However, the non-parametric method performs worse regarding the Ld

measure, as it overestimates the water volume represented by the higher quantiles. The reason can already be observed in the

CDF, where the non-parametric method systematically overestimates the values of high quantiles. The parametric method can15

lead to over- and underestimations. This influences the W 2 criterion in the same way as a constant overestimation (see squared

differences in Eq. 28), but it seems to lead to better results regarding the Ld criterion.

Parameter estimation through MOM in combination with the Weibull distribution performs better for higher aggregations,

which exhibit more symmetric distributions. For daily and sub-daily aggregations MLM parameter estimation in combination

with the mixed exponential distribution mostly leads to the best results.20

The overall performance is best with the mixed exponential distribution for temporal resolutions between two hours (2H) and

one day (1D) in both seasons. For the hourly distribution (1H) the non-parametric models show the best overall performance in

the summer season, and the third-best performance after the generalized Pareto (Pareto-MLM and Pareto-MOM) distribution

in the winter season. For the monthly resolution (M) the Weibull distribution exhibits the best overall performance in both

seasons. For the five daily resolution the MOM estimation provides the best result in winter (Pareto-MOM) and summer25

(Weibull-MOM).

10.3 Regionalization

In order to estimate the quality of the regionalized precipitation amount models, a 2-fold cross validation (split sampling)

is used. Two equally sized samples of observation points are randomly generated (Fig. 7). The most simple regionalization

method is using the estimates of the nearest neighbor (NN) of the calibration set, which are therefore used as benchmarks for30

the quality of the regionalization procedure. Additionally, the daily rescaled nearest neighbors (NNS) are used as a benchmark.

In this case all daily gauges are used for the rescaling except for the daily observations at the locations of the respective

validation sample.
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Following the results of the point-wise estimation in the previous section only the Weibull-MOM and the Mixed-Exp-MLM

models among the parametric models are investigated for the regionalization, as they show good performance for differing

aggregations. They are both investigated for all aggregations to test the difference of interpolating moments or parameters,

except for the monthly aggregation, for which only the Weibull distribution is investigated. In order to regionalize the Weibull-

MOM model, the mean and standard deviation are spatially interpolated, and for the regionalization of the Mixed-Exp-MLM5

model, the parameters λ1 and λ2 are interpolated while its parameter α is kept constant for the whole study region.

As the two non-parametric approaches SRT and SJ show very similar results during the point wise estimation, only the SRT

approach is interpolated. For the regionalization of the non-parametric models QVc (see Table 2 and Eq. 25) values are used to

estimate the interpolation weights, which are further applied to the remaining quantiles. Following the conclusions in section 9,

daily gauges can be used to set up distribution functions for sub-daily values with a scaled nearest neighbor approach (NNS).10

10.3.1 Variogram estimation

The first step during the regionalization procedure is the estimation of the theoretical variograms. The interpolation variables

of the three precipitation amount models for which theoretical variograms need to be estimated for the two seasons and eight

temporal resolutions are:

1. P-Mixed-Exp-MLM: λ1, λ115

2. P-Weibull-MOM: mean, standard deviation

3. NP-SRT: QVc values (see Table 2 and Eq. 25)

During the estimation of the parameters of the Weibull distribution with MOM, QVth is subtracted from the rainfall values

prior to the estimation of the mean and the standard deviation. As the mean of these values show lower spatial dependencies

than the mean of the censored values without subtraction, QVth is added to the mean values of the parameter estimation before20

the regionalization. After the regionalization, they are subtracted again to determine the parameters of the Weibull distribution.

Variogram models are also fitted to QVth, as the corresponding values serve as starting points for the parametric models at

the ungauged locations. Fig. S4 to S7 in the supplement show exemplary theoretical variograms of different parameters for

temporal resolutions of 1H and 12H for the winter and summer season of calibration sample 2.

It is difficult to compare the spatial persistence of T (see Fig. 3) with the spatial persistence of the different distribution25

parameters, as T considers the whole distribution function and the distribution parameters only describe properties of the

distribution. However, the range of T was about 35 km, which can also be observed for some of the parameters, especially the

mean of P-Weibull-MOM, QVc of NP-SRT and QVth.
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10.3.2 Precipitation amount models

The regionalization of the precipitation amount models is evaluated with the same quality measures as the point wise estimation,

the Cramér–von Mises criterion W 2 and the Lorenz-curve criterion Ld. The investigated interpolation approaches for the

parametric distributions are:

1. OK - MOM: OK of the Weibull distribution, fitted with MOM.5

2. OK - MLM: OK of the mixed exponential distribution, fitted with MLM.

3. OK - MOM Daily: OK of the Weibull distribution including scaled NNS values of daily gauges (only for sub-daily

aggregations).

4. OK - MLM Daily: OK of the mixed exponential distribution including scaled NNS values of daily gauges (only for

sub-daily aggregations).10

The interpolation approaches for the non-parametric models are:

1. PK - NP: PK of the non-parametric models, which are estimated using SRT.

2. PK - NP Daily: PK of the non-parametric models including scaled NNS values of daily gauges (only for sub-daily

aggregations).

In Fig. 8, parts of the interpolation procedure for PK - NP are shown for the daily aggregation, where the non-parametric15

QVc at the calibration gauges and three interpolation fields are shown.

In Table 5 and Table 6 the performance ranking numbers of the regionalized precipitation amount models are summarized

for the winter season and for the summer season respectively. The differences between the two cross validation samples are

quite small, so the performances are not just resulting from the positioning of the gauges in the samples but from the interpo-

lation approaches. Among the parametric methods the MOM approaches mostly perform better than the MLM approaches for20

aggregations greater than or equal to one day during the winter season. In the summer season the MOM approaches perform

mostly worse than the MLM approaches for aggregations smaller than 6H and vice versa for higher aggregations. Interpolating

moments, therefore, seems to be more robust than interpolating parameters of distributions as the performance ranking changed

in favor of the MOM approaches compared to the point wise results (see Table 4). Only for stronger skewed distributions of

smaller aggregations, the MLM approach still outperforms the MOM approach.25

Comparing the non-parametric interpolation approaches with the parametric interpolation approaches shows that the non-

parametric approach performs best for hourly (1H) values for both calibration samples and seasons. This is in line with the

point wise estimations, where the non-parametric approaches also produced very good results for the hourly resolution in both

seasons.

It is obvious that using scaled values of the daily gauges is very beneficial as approaches incorporating these values almost30

always include the best performing method, except for the 12H aggregation in the summer season.
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As a benchmark, the interpolation results are also shown for parametric and non-parametric estimates of nearest neighbors

(NN) and additionally using scaled daily gauges for sub-daily aggregations (NNS). Among the benchmark methods the NNS

approaches perform better than the simpler NN approaches for the sub-daily aggregations, except for the twelve hourly (12H)

resolution in summer. Since the best interpolation approach almost always - with only two exceptions - performs better than

the best nearest neighbor approach, the regionalization of distributions seems to be worthwhile.5

11 Conclusions

Comparing different modeling schemes for precipitation amounts at point locations (see Table 4) over different temporal

resolutions has revealed several findings. The non-parametric estimates only perform better for the hourly resolution in the

summer season. They have problems especially in reproducing the volume correctly, as they seem to have difficulties with

high quantiles. Causes for this deficiency could be the numeric interpolation or the small number of rainfall values at high10

quantiles. For temporal resolutions between two hours and a month the parametric distributions outperform the non-parametric

distributions for both seasons. Among the parametric methods MLM parameter estimation (Mixed-Exp-MLM and Pareto-

MLM) performs better for sub-daily and daily aggregations, whereas the MOM parameter estimation (Weibull-MOM and

Pareto-MOM) has the advantage for higher aggregations.

The regionalization of the precipitation amount models showed (see Table 5 and 6) that the proposed interpolation scheme15

for non-parametric distributions is useful as it does not worsen its performance ranking compared to the estimation at point

locations. Among the parametric methods the interpolation of moments turned out to be more robust than the interpolation of

parameters. The proposed regionalization scheme for non-parametric models could also be tested in different research fields,

whenever non-parametric distributions may provide good representations of point wise models and the order of the quantiles

is persistent over spatially distributed locations. Especially for applications where multimodal distributions are common, this20

interpolation scheme may be of great interest, because kernel density estimates, in contrast to parametric models, can easily

model multimodal distributions.

As auxiliary variables the use of daily gauges for sub-daily resolutions is very beneficial, as was suggested by our data

analysis in section S3 in the supplement and is also proven by the evaluation of the regionalization.

In general, the regionalization of distributions seems to be worthwhile as it nearly always performs better than the nearest25

neighbor (horizontal distance) approaches, which would be the most simple estimate. As lower rainfall values were excluded

in this study due to their minor importance and measurement errors, the results are not directly comparable to those of most of

the other publications within this research field.

The difficulty of non-parametric distributions in representing water volumes may be reduced by using the Epanechnikov

kernel with finite support as proposed by Rajagopalan et al. (1997). However, in return the use of an Epanechnikov kernel30

instead of a Gaussian kernel reduces the ability of modeling precipitation beyond the range of historical data. Additionally,

ways of incorporating elevation within the regionalization of non-parametric distributions need to be tested. Mamalakis et al.

(2017) used kriged two-component parametric distributions (a generalized Pareto distribution for higher, and an exponential
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distribution for lower daily precipitation amounts) for the bias correction and downscaling of climate model rainfall. They ap-

plied a parameter estimation through probability weighted moments, which could also be compared to the presented estimation

approaches for the regionalization of distributions on varying temporal resolutions. Finally, the non-parametric interpolation

approach could also be applied to parametric or empirical distributions and should be tested for various study regions.
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Table 1. Basic rainfall information of the study region for different aggregations (agg): P0 is the probability of 0 mm rainfall, Qth stands for

the defined quantile thresholds or threshold ranges and QVth represents the corresponding quantile values (rainfall) for the defined Qth.

agg P0 (-) Qth (-) QVth (mm)

1H 0.82 - 0.93 0.95 0.2 - 1.6

2H 0.76 - 0.9 0.93 0.3 - 2.3

3H 0.71 - 0.87 0.92 0.4 - 3.1

6H 0.61 - 0.81 0.9 0.7 - 5.1

12H 0.46 - 0.72 0.86 1.2 - 7.7

1D 0.38 - 0.6 0.72 1.0 - 6.4

5D 0.1 - 0.22 0.29 1.0 - 7.2

M 0.0 - 0.02 0.0 - 0.02 0

Table 2. Control quantiles (Qc) which exhibit the highest mean pair wise rank correlations with other quantiles. They are shown for different

temporal aggregations (agg) and separately for summer and winter. Additionally, the (center) quantile in the middle of the investigated

quantile range is shown.

season

agg winter summer center quantile

1H 0.977 0.979 0.975

2H 0.963 0.967 0.965

3H 0.959 0.966 0.96

6H 0.949 0.953 0.95

12H 0.924 0.922 0.93

1D 0.835 0.865 0.86

5D 0.615 0.575 0.645

M 0.545 0.46 0.5
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Table 3. Mean and median of the two quality measures W 2 and Ld for the ten precipitation amount models over the study region for hourly

values (1H) in the winter season. The bold numbers indicate the lowest (best) value of the corresponding measure.

W 2 Ld

mean median mean median

P-Exp-MLM 0.009718 0.008104 0.2399 0.2004

P-Gamma-MLM 0.00263 0.002146 0.0752 0.04835

P-Mixed-Exp-MLM 0.0007967 0.0004331 0.02026 0.007648

P-Pareto-MLM 0.0006701 0.0003277 0.008036 0.001959

P-Weibull-MLM 0.001578 0.0012 0.03891 0.02249

P-Gamma-MOM 0.03089 0.01897 0.1656 0.04182

P-Pareto-MOM 0.001074 0.0005668 0.004482 0.002213

P-Weibull-MOM 0.01418 0.00827 0.08677 0.04182

NP-SRT 0.0003752 0.0001995 0.01815 0.01448

NP-SJ 0.0003485 0.0001954 0.01492 0.01156
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Table 4. Performance ranking numbers of the precipitation amount models for point wise estimations. The underlined numbers indicate the

best parametric (P) and non-parametric (NP) models. The bold numbers indicate the overall best model.

Winter Season

1H 2H 3H 6H 12H 1D 5D M

P-Exp-MLM 225.18 145.85 129.44 69.16 37.67 41.63 14.60 742.32

P-Gamma-MLM 59.99 30.67 22.79 10.43 6.98 11.51 9.03 13.23

P-Mixed-Exp-MLM 12.93 5.72 5.38 5.09 4.79 5.15 15.65 742.67

P-Pareto-MLM 6.39 6.12 7.29 7.09 6.38 6.40 6.19 978.92

P-Weibull-MLM 30.83 14.01 9.74 5.75 4.93 7.51 6.45 24.33

P-Gamma-MOM 265.89 138.15 94.77 41.47 20.24 23.48 6.64 5.50

P-Pareto-MOM 8.11 8.8 10.23 9.25 7.96 8.08 5.71 51.16

P-Weibull-MOM 123.72 61.72 44.64 21.28 12.37 13.71 5.82 5.11

NP-SRT 13.54 22.06 35.43 42.16 36.22 31.21 17.33 12.40

NP-SJ 11.23 22.12 33.82 43.21 38.15 29.15 16.77 17.35

Summer Season

1H 2H 3H 6H 12H 1D 5D M

P-Exp-MLM 245.24 233.50 188.82 70.63 26.14 25.83 21.67 850.52

P-Gamma-MLM 51.51 40.53 30.14 12.82 7.43 7.98 10.00 7.22

P-Mixed-Exp-MLM 10.37 5.93 5.31 4.71 4.77 4.79 23.10 850.52

P-Pareto-MLM 7.58 13.44 12.79 7.13 5.55 5.58 6.67 709.69

P-Weibull-MLM 21.08 13.92 10.42 6.63 5.48 6.02 6.61 25.62

P-Gamma-MOM 289.15 145.27 87.73 33.09 15.51 13.44 6.45 7.27

P-Pareto-MOM 16.48 14.46 11.55 7.28 5.99 6.08 5.82 47.81

P-Weibull-MOM 98.40 51.03 35.23 16.38 9.91 8.48 5.46 5.05

NP-SRT 6.15 19.05 31.54 37.41 36.15 30.76 19.00 9.27

NP-SJ 6.91 22.09 36.11 46.41 41.17 33.14 17.64 12.32
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Table 5. Performance ranking numbers for the 2-fold cross validation of regionalized precipitation amount models in the winter season. The

underlined numbers indicate the best parametric (P) and non-parametric (NP) models. The bold numbers indicate the best overall model for

each validation sample and temporal resolution.

Calibration Sample 1

1H 2H 3H 6H 12H 1D 5D M

OK - MOM 10.08 9.85 9.62 6.95 6.36 4.56 4.37 4.14

OK - MLM 7.04 7.22 7.11 10.52 6.70 7.60 6.35 -

OK - MOM DAILY 7.45 5.97 5.72 4.21 5.32 - - -

OK - MLM DAILY 4.46 4.05 4.02 4.07 4.39 - - -

PK - NP 7.18 8.21 8.94 8.98 9.21 5.56 7.24 6.94

PK - NP DAILY 4.09 5.74 6.00 5.68 10.09 - - -

NNS - MOM 7.59 6.76 6.73 5.79 7.01 - - -

NN - MOM 13.78 13.27 13.68 10.45 9.85 6.05 6.09 6.48

NNS - MLM 6.48 5.88 6.44 5.61 5.69 - - -

NN - MLM 10.04 9.81 10.39 10.19 10.51 5.41 7.40 288.07

NNS - NP 5.82 7.09 7.75 7.27 11.53 - - -

NN - NP 10.65 12.22 13.19 13.10 13.81 7.65 9.03 9.76

Calibration Sample 2

1H 2H 3H 6H 12H 1D 5D M

OK - MOM 9.82 9.81 9.41 7.46 6.59 4.00 4.69 4.14

OK - MLM 5.19 6.19 6.87 10.29 6.73 5.45 6.85 -

OK - MOM DAILY 5.90 5.83 6.39 4.58 6.26 - - -

OK - MLM DAILY 4.33 4.16 4.39 5.62 4.38 - - -

PK - NP 5.67 8.37 10.86 11.70 9.54 6.37 9.73 7.59

PK - NP DAILY 4.14 6.00 7.49 8.49 11.15 - - -

NNS - MOM 6.24 7.06 7.09 5.51 7.42 - - -

NN - MOM 11.37 13.40 12.31 11.44 9.17 5.10 5.91 5.23

NNS - MLM 4.94 5.08 4.90 4.67 5.62 - - -

NN - MLM 7.25 9.25 9.52 9.78 8.47 4.82 6.90 283.64

NNS - NP 4.80 6.96 8.52 8.52 12.37 - - -

NN - NP 8.36 11.34 12.90 14.37 11.81 7.35 11.12 8.96
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Table 6. Performance ranking numbers for the 2-fold cross validation of regionalized precipitation amount models in the summer season.

The underlined numbers indicate the best parametric (P) and non-parametric (NP) models. The bold numbers indicate the best overall model

for each validation sample and temporal resolution.

Calibration Sample 1

1H 2H 3H 6H 12H 1D 5D M

OK - MOM 34.02 13.42 10.23 7.15 4.73 4.22 4.00 4.14

OK - MLM 10.96 7.15 7.00 17.75 9.54 4.49 11.24 -

OK - MOM DAILY 22.16 13.63 10.57 5.74 9.48 - - -

OK - MLM DAILY 10.46 4.19 4.22 7.10 13.18 - - -

PK - NP 5.37 10.40 12.16 11.70 9.71 9.83 11.34 5.89

PK - NP DAILY 4.30 8.27 9.97 10.42 18.88 - - -

NNS - MOM 20.70 12.94 10.29 6.39 10.29 - - -

NN - MOM 30.16 19.43 16.53 11.26 7.72 6.18 6.41 5.55

NNS - MLM 10.37 4.36 4.48 4.41 7.51 - - -

NN - MLM 11.29 11.69 11.80 9.98 7.35 5.19 11.57 269.85

NNS - NP 4.10 8.79 10.26 10.72 20.24 - - -

NN - NP 6.26 14.98 16.41 15.95 12.41 11.59 12.70 7.84

Calibration Sample 2

1H 2H 3H 6H 12H 1D 5D M

OK - MOM 29.60 9.95 8.78 6.61 4.11 4.05 4.05 4.10

OK - MLM 6.42 5.66 5.99 83.02 7.01 5.56 24.15 -

OK - MOM DAILY 24.89 11.54 9.23 6.02 7.11 - - -

OK - MLM DAILY 4.58 4.00 4.00 61.46 5.66 - - -

PK - NP 5.67 6.82 8.11 8.53 6.62 9.63 9.79 6.99

PK - NP DAILY 4.27 7.01 8.30 9.75 13.60 - - -

NNS - MOM 24.66 12.74 10.38 6.98 8.54 - - -

NN - MOM 27.71 14.10 11.90 9.10 5.81 5.81 4.82 4.90

NNS - MLM 5.53 5.09 4.91 4.43 6.30 - - -

NN - MLM 8.90 8.15 7.94 7.63 5.63 5.25 8.69 261.23

NNS - NP 5.41 7.80 9.35 10.34 14.38 - - -

NN - NP 9.18 10.34 11.78 9.90 7.90 10.83 10.41 8.03
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Figure 1. Locations of high resolution (hourly and 5 min, left) and daily rain gauges (right) in Baden-Württemberg.
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Figure 2. In (a) the range of the Lorenz-curves and the mean Lorenz-curve for hourly rainfall values of all rainfall gauges inside the study

region are shown, in (b) the mean Lorenz-curves are shown for different temporal resolutions.
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Figure 3. T statistic over distance: (a) shows the results for hourly distribution functions of all gauge pairs (grey crosses) and their mean

calculated for 5 km classes. (b) shows mean values of the T statistic for different temporal resolutions (for more detail on the temporal

resolutions of 1D, 5D and M see Fig. S2 in the supplement).

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Precipitation (mm)

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

F
(-

)

(a)

0 50 100 150 200

Precipitation (mm)

0.0

0.2

0.4

0.6

0.8

1.0

F
(-

)

(b)

Figure 4. EDFs of hourly (a) and monthly (b) precipitation amounts for the gauge Stuttgart / Schnarrenberg and its five closest gauges for a

quantile interval. It shows that the order of the EDFs is quite persistent over a wide quantile range for low and high resolutions. Note: As the

daily and hourly data set are not the same, the colors in the two graphs do not correspond to the same gauges.
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Figure 5. The mean rank correlations ρxy of (a) hourly (1H) and (b) monthly (M) quantile values for all gauge pairs of discrete quantiles

in 0.001 (1H) and 0.005 steps (M) ranging from Qth to 1 (gray dotted line). They are calculated to define the control quantile (Qc) which

exhibits the greatest mean rank correlation ρxy (red cross). The black dashed line shows the (single) rank correlations ρxy of quantile values

at Qc (red cross) with quantile values of the remaining quantiles.
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Figure 6. Exemplary empirical (data), non-parametric (SRT) and parametric (Mixed-Exp) CDF (left) and Lorenz-curve (right) for hourly

(1H) and 12 hourly (12H) resolution of a chosen gauge. Also the values of the two quality measures Ld and W 2 are indicated.
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Figure 7. Locations of the two 2-fold cross validation samples for sub-daily (left) and daily gauges (right).
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(a) (b)

(c) (d)

Figure 8. Illustrations for the kriging procedure of non-parametric distributions with daily values (1D) of the summer season using calibration

sample 1 (see Fig. 7): In (a) the non-parametric QVc of Qc = 0.865 at the gauges are shown, which then lead to the interpolated values in

(b) using interpolation weights φj resulting from PK. The same interpolation weights φj are used for the remaining quantiles, for which

exemplary results are shown in (c) for the quantile = 0.72 and in (d) for the quantile = 0.98. An exponential variogram with a range of 41 km

and a sill of 2.2 mm2 is used.
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