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1 Response to Review # 2

We would like to thank the second reviewer for his comments. One of his major concerns was the exclusion of a Pareto-type
distribution. In the updated manuscript a Pareto-type distribution is included to complete the manuscript.

Our answers to the individual reviewer comments follow below (blue-colored text). :

Comment 1

Reviewer 2:

Major Comment 2: A second concern is the actual innovation and value of the presented work. Although the basis of the
proposed non parametric approach is new and of potential interest, according to the obtained results, the parametric models
are more effective, both in terms of point-wise estimation (Tables 4, 5 and 6) and regionalization (Tables 7 and 8). Evidently,
with the only exception being the hourly rainfall, where the non parametric approach is consistently the best performing one
for both samples 1 and 2, and both seasons, overall, the parametric models result in smaller distributional-related errors.
Moreover, even in the case where the non parametric and the parametric methods would be of the same overall performance,
the parametric approaches may again be preferred since they can be more effectively used for addressing risk and estimating
rainfall extremes in periods different than the control one (i.e. 1997-2011): contrary to the non-parametric approaches, the-
oretical distribution models allow for more robust rainfall estimates, with approximate validity also beyond the range of the
historical data in the considered control period (see Langousis et al., 2016a and references therein). That said, although the
idea presented in sections 7 and 8.3 is potentially important, the results and the associated discussion in the rest sections do
not support or indicate a substantial innovation or significance.

Authors:

1. Answer: We disagree with the first part of this comment, where the reviewer proposes not to publish this manuscript, because
the non parametric method only performed best for the hourly resolution. If we only had shown results for the hourly distribu-
tion, this statement would possibly have been vice versa. However, we presented the results for several temporal resolutions, as
we also wanted to present the deficiencies of the newly developed non-parametric method. Even if the method performed worse
over all temporal resolutions, we would consider it as important to publish the method. This may prevent the investigation of
this method by another hydrologist and further more the methodology could be applied to distributions corresponding to other
variables (where e.g. multi modal distributions are present). Additionally, we have shown that daily gauges are of great use for
the interpolation of sub-daily distributions. The philosophy of only allowing methods for publication, which always perform
best, may lead to cherry picking of the results and prevent an open discussion in science. Regarding the estimation of rainfall
extremes, non-parametric kernel density estimations may exhibit problems. However, using a Gaussian kernel also allows for
extrapolation beyond the range of the historical data, which still needs to be evaluated. The study mentioned from the reviewer
(Langousis et al., 2016a) investigates daily rainfall extremes, but not, how it is for different temporal resolutions? Also more
investigations are required to answer this question. In addition, depending on the application, rainfall extremes do not always
have such a decisive character. An example is real-time control of sewer systems, where average and larger values are more
important, as rainfall extremes cannot be controlled by the system anyway.

Reviewer 2:

I agree with some of the arguments stated in this paragraph. However, my official suggestion was not “rejection of the
manuscript”. I suggested “major revisions”. The reason for this is that although I had major concerns about the level of the
manuscript, in terms of innovation and presentation efficiency (see my nine comments in the first round of revisions), I rec-
ognized and also indicated the potential importance of authors’ results. With that being said, authors’ statement “We disagree
with the first part of this comment, where the reviewer proposes not to publish this manuscript...”, and more importantly their
whole discussion on my philosophy (towards what is worth publishing and what is not) are not based on my actual and official
suggestion. The authors should not so easily jump into conclusions and judge a reviewer’s judgment or philosophy based on
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their assumptions about reviewer’s opinion, and not based on his/her actual and official suggestion.

The authors also state: Even if the method performed worse over all temporal resolutions, we would consider it as important
to publish the method. This is only authors’ opinion. A reviewer needs to point out all possible shortcomings of a proposed
method. The final decision will be made by the handling Editor.

Concerning the technical part, in their response the authors state: The study mentioned from the reviewer (Langousis et al.,
2016a) investigates daily rainfall extremes, but not, how it is for different temporal resolutions? The study I mentioned refers
to daily rainfall but not only to rainfall extremes. Also, note that both references provided by the authors themselves (see their
conclusions) refer to daily rainfall (not to finer temporal scales), and consider the use of mixed Pareto-type distributions (see
also my next comment).

Authors:
2. Answer: A Pareto-type distribution is included in the updated manuscript. Additional comments on the usage of non-
parametric models are added to the conclusion.

Comment 2

Reviewer 2:

Major Comment 3: The parametric models used in this study (section 6.2), although four in number, do not include a Pareto
distribution. In their conclusions, Authors mention that Pareto distributions can be also tested in the future, however, in my
humble opinion, this is not sufficient. At least for the comparison section to be complete, one should include in the analysis
a Pareto model (e.g. Generalized Pareto Distribution) in this study, where the proposed approach is explained and compared
with other common methods. Pareto distributions have been indicated as a very efficient class for modeling daily rainfall,
while towards the latter, some studies have concluded that they outperform exponential models (see Papalexiou et al., 2013;
Langousis et al., 2016b and references therein).

Authors:

1. Answer: In the references mentioned by the reviewer, the focus lies on extremes of daily rainfall, whereas in our investiga-
tions we only exclude very small rainfall values for each aggregation due to measurement errors and minor importance (see
Table 1 in the manuscript). Additionally the focus of the manuscript lies on regionalization, which can influence the perfor-
mance of a theoretical distribution and was to our knowledge not yet investigated for the whole range of daily rainfall values
using Pareto type distributions. However, Pareto type distributions are very interesting and their regionalization performance
could be looked at in a different paper.

Reviewer 2:

In a recent study (see doi: 10.1002/2016WR019578) a parametric approach for simultaneous bias correction and regionaliza-
tion of climate model rainfall is proposed based on the use of GPD above a certain threshold (mixed type). It is proved that it
outperforms the nonparametric alternative. In any case though, since the authors themselves think that Pareto type distributions
are very interesting and their regionalization performance should be looked, I do not see the reason that they are unwilling to
add a Pareto type distribution in their analysis. Their current investigation may be regarded incomplete.

Authors:
2. Answer: A Pareto-type distribution is included in the updated manuscript.



2 Additional changes in the manuscript

The implementation of calculating the two performance measures was found to be incorrect. Therefore, the whole point wise

estimation and regionalization of the precipitation amount models was repeated. This led to different results with slightly

different conclusions (see corrections throughout the manuscript). The tables 3-6 and S2-S3 as well as the figures 6 and S4-S7
5 are changed accordingly.
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Regionalizing non-parametric precipitation amount models on
different temporal scales
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Abstract. Parametric distribution functions are commonly used to model precipitation amounts corresponding to different du-
rations. Precipitation amounts themselves are crucial for stochastic rainfall generators or weather generators. Non-parametric
kernel density estimates (KDEs) offer a more flexible way to model precipitation amounts. As it is already stated in their name,
these models do not exhibit parameters which can easily be regionalized to run rainfall generators at ungauged locations as
well as at gauged locations. To overcome this deficiency we present a new interpolation scheme for non-parametric models
and evaluate it for different temporal resolutions ranging from hourly to monthly. During the evaluation the non-parametric
methods are compared to commonly used parametric models like the two-parameter gamma and the mixed exponential dis-
tribution. As water volume is considered to be an essential parameter for applications like flood modeling, a Lorenz-curve
based criterion is also introduced. To add value to the estimation of data at sub-daily resolutions, we incorporated the plentiful
daily measurements in the interpolation scheme, and this idea was evaluated. The study region is the federal state of Baden-
Wiirttemberg in the southwest of Germany with more than 500 rain gauges. The validation results show that the newly proposed

non-parametric interpolation scheme w

sechemes;and-provides reasonable results and that the incorporation of daily values in the regionalization of sub-daily models

is very beneficial.

1 Introduction

Rainfall time series of differing temporal resolutions are needed for various applications like water engineering design, flood
modeling, risk assessments or ecosystem and hydrological impact studies (Wilks and Wilby, 1999; Burton et al., 2008). As
many precipitation records are too short and contain erroneous measurements, stochastic precipitation models can be used to
generate synthetic time series instead. Starting from single-site models (summarized in Wilks and Wilby, 1999), multi-site
models for simultaneous time series at various sites (e.g., Wilks, 1998; Buishand and Brandsma, 2001; Bardossy and Plate,
1992) and finally models which allow for gridded simulations are developed (e.g., Wilks, 2009; Burton et al., 2008).

For modeling precipitation one crucial variable is the precipitation amount, which follows a certain distribution. Distributions
of daily precipitation amounts are strongly right skewed, with many small values and few large values (Wilks and Wilby, 1999;
Li et al., 2012; Chen and Brissette, 2014). This also holds true for different temporal resolutions with increasing skewness

for higher temporal resolutions and vice versa. This means that rainfall intensity distributions depend on the temporal scale of
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the observed values. Applying single-site or multi-site precipitation models at ungauged locations requires regionalization of

precipitation amount distributions. This can be done in two different ways:

1. Interpolate precipitation amounts from observation points for every time step to the target location(s) and set up a

distribution with the interpolated values.

2. Fitadistribution function to the precipitation amounts separately for each gauge and interpolate the distribution functions

to the target location(s).

The first approach seems more straightforward, but exhibits several deficiencies such as overestimation of the rainfall probabil-
ity, underestimation of the variance and underestimation of the maximum rainfall value. In supplement section S1 an example
demonstrates these problems. Due to the relative inefficiency of the first interpolation approach, the second is preferred.

In most stochastic rainfall models theoretical parametric distribution functions are fitted to the empirical values using, e.g.,
the exponential distribution or the two parametric gamma distribution (Wilks and Wilby, 1999; Papalexiou and Koutsoyiannis,
2012). It is possible to either interpolate the parameters of the theoretical distribution or to interpolate the moments (e.g. mean
and standard deviation) of the rainfall intensities (Wilks, 2008; Haberlandt, 1998). Lall et al. (1996) introduced a more flexible
non-parametric single-site rainfall model, where they used non-parametric KDEs with a prior logarithmic transformation to
model daily rainfall intensities. They mentioned the problem of regionalization by using non-parametric estimates of distribu-
tion functions. However, a different interpolation scheme is required for non-parametric estimations, as they do not use any
parameter that can be simply interpolated.

In the present work we introduce a regionalization strategy for non-parametric distributions and compare it to the tradi-
tional regionalization of parametric distributions for varying temporal resolutions from hourly to monthly scale. The common

procedure to interpolate parametric distribution functions is:

1. Fit a parametric distribution (e.g., a gamma or exponential distribution) at each sampling site to the empirical distribution

function (EDF).
2. Interpolate the moment(s) or parameter(s) of the fitted parametric distribution.

3. Set up the theoretical cumulative distribution function (CDF) at every interpolation target with the interpolated mo-

ment(s) or parameter(s).
The newly proposed procedure for non-parametric distribution functions is:
1. Fit a non-parametric distribution to log-transformed rainfall values using a Gaussian kernel.
2. Estimate the interpolation (kriging) weights with the precipitation values of a certain quantile.
3. Apply these weights to the values of certain discrete quantiles.

4. Linearly interpolate the remaining quantile values to receive a continuous CDF for all target locations.
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In Arns et al. (2013) a similar approach is used to interpolate quantile value differences of water levels for a bias correction
between empirical distributions of observed and modeled values at the German North Sea Coast. In contrast to their work,
entire theoretical distribution functions through interpolation are estimated in our work. Goulard and Voltz (1993) introduced
a curve kriging procedure to regionalize fitted functions, which was further developed by Giraldo et al. (2011). Based on their
work Menafoglio et al. (2013) developed a universal kriging approach for the non-stationary interpolation of functional data,
which was applied in Menafoglio et al. (2016) for the simulation of soil particle distribution functions. As CDF curves are
special functions, which are monotonically non-decreasing between 0 and 1, the curve kriging procedure additionally needs to
be constrained to these conditions. Our approach can deal with these conditions directly.

After describing the study region Baden-Wiirttemberg in section 2, the concept of precipitation amount models is introduced
in section 3. The data selection in section 4 is followed by an investigation of the spatial dependence of the precipitation
amount models in section 5. The theory of precipitation amount models is addressed in section 6 and the basis of the proposed
interpolation procedure for non-parametric models is established in section 7. The application of different regionalization
procedures for precipitation amount models is explained in section 8. The implementation of daily rainfall observations within
the interpolation of sub-daily distribution functions is outlined in section 9. The resulting performance of different precipitation

amount models at point locations and their regionalization is depicted in section 10.

2 Study region and data

The study region is the federal state of Baden-Wiirttemberg, which is located in the southwest of Germany. The mountain
range Black Forest in the western part and the mountain range Swabian Alps extending from southwest to northeast exhibit
the highest elevations in Baden-Wiirttemberg. The rising of large scale moist air masses across mountainous regions causes
higher rainfall amounts on the windward side and lower amounts on the leeward side. In the summer months, slopes with
differing inclinations lead to a warming of the air triggering convection currents, leading to a greater number of showers and
thunderstorms over mountainous regions. This shows a dependence of rainfall on elevation with seasonal differences. The
rain-bearing westerly winds lead to high rainfall amounts in the Black Forest. The relatively lower altitude of the Swabian
Alps results in lower rainfall amounts as they lie in the shadow of the Black Forest (Landesanstalt fiir Umwelt, Messungen und
Naturschutz Baden-Wiirttemberg (LUBW), 2006).

The years from 1997 to 2011 are chosen as investigation period, as the German Meteorological Service (DWD) set up many
new rain gauges in 1997. A relatively homogeneous dataset is obtained by only choosing gauges with observation periods
greater than or equal to five years providing rainfall measurements for at least 80 % of the time steps within their observation
period. It turned out that we had access to (i) 242 hourly and 5 min resolution and (ii) 347 daily gauges available in the study
region, with 80 sites having both high and daily resolution instruments. The observations are provided by the DWD and the
Environmental Agency of Baden-Wiirttemberg (LUBW). The high resolution rain gauges are mostly equipped with tipping
buckets and gravimetric measurement devices (Beck, 2013). Fig. 1 shows the study region with the locations of the two sets of

rain gauges.
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3 Modeling precipitation amounts at point locations

Modeling precipitation amounts in our context means estimating distribution functions. The usage of these distribution func-
tions includes the implicit assumption of temporally independent and identically distributed (i.i.d.) variables. This assumption
is generally accepted for daily rainfall as the autocorrelation of consecutive nonzero daily precipitation is relatively small and
usually of less importance. For higher temporal resolutions, such as hourly, autocorrelation needs to be incorporated in the
model (Wilks and Wilby, 1999). In practice different methods exist to take such a correlation into account. One approach is to
include autocorrelation prior to the sampling procedure by using conditional distributions. Conditions may be event statistics
like the duration of a rainfall event (e.g., Acreman, 1990) or varying statistical moments depending on the hour of the day (e.g.,
Katz and Parlange, 1995). Another approach is introducing autocorrelation after the sampling procedure. Bardossy (1998) uses
empirical distributions of hourly rainfall intensities to sample values whose random order is subsequently changed within a
Simulated Annealing scheme to consider autocorrelation. In Bardossy et al. (2000) theoretical representations (CDFs) of the
empirical distributions are used to allow for regionalization of the distributions and enable simulations at ungauged locations.
The non-exceedance probabilities of a CDF are referred to as quantiles in this work and their corresponding rainfall values are

called quantile values.

4 Data selection

For applications of rainfall estimates, like hydrological or hydraulic modeling, the correct representation of small rainfall values
is not necessary as their contribution to decisive high discharge rates is rather small. Furthermore, tipping bucket gauges lead to
wrong estimates especially for low rainfall values (Habib et al., 2001). Relative estimation errors are increasing for decreasing
rainfall rates (Nystuen et al., 1996; Ciach, 2003) and they only represent a small part of the total water volume, but the number
of smaller rainfall values is rather high. To avoid the negative effect of this high number of inaccurate values and due to their
minor importance for further applications, this study focuses on medium and high rainfall values.

Therefore, the quantile threshold (Q);) for hourly (1H) values is set to 0.95. This means, that values smaller than the quantile
value at Q+,=0.95 are excluded. To investigate the total water volume represented by rainfall values above this quantile at point
locations, the Lorenz-curve (Lorenz, 1905) is used. We considered a water volume analysis for varying quantiles as important,
to show that high quantiles not only represent the decisive higher rainfall intensities, but also a large proportion of the total
water volume. So focusing on these quantiles during the model setup is likely to lead to a better model, as lower quantiles
would disturb the model estimation due to measurement errors and the higher quantiles already represent a great percentage of
the total water volume. The volume of the lower quantiles can then be modeled by simple and robust methods as they do not
require a very precise estimation due to their high inaccuracy and minor importance.

After arranging the n observations z; in non-decreasing order, the Lorenz-curve L; can be calculated from a population (in

our case rainfall values at a single gauge) with the following formula:

_ Ly (1)
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The hourly threshold quantile values (QQV;},) range between 0.2 and 1.6 mm for Qy;, = 0.95 depending on the location of the
gauge (see Table 1). The Lorenz curve in Fig. 2 (a) shows that hourly values above @, = 0.95 represent between 70 and 95 %
of the total water volume (1 - cumulative share of water volume).

Based on hourly values (1H) of the high resolution data set, aggregated rainfall values of different temporal resolutions are
obtained: 2 hourly (2H), 3 hourly (3H), 6 hourly (6H) and 12 hourly (12H). Through aggregation of daily values (1D) of the
daily data set, 5-daily (5D) and monthly (M) values are obtained. In order to exclude small values and still consider the values
producing a high percentage of the water volume, the (), for sub-daily resolutions are defined with the mean Lorenz-curves
in Fig. 2 (b). The mean hourly Lorenz-curve yields 0.15 as cumulative share of water volume for Q5 = 0.95 (85 % of the total
water volume is represented by larger values), which is also defined as target share for the remaining sub-daily resolutions.
This target share of 0.15 results in the following values of (), for sub-daily resolutions: 0.93, 0.92, 0.9, 0.86 (see Table 1). For
aggregations greater or equal to one day, the number of values is rather small and there estimation errors are lower due to an
increasing accumulation time (Ciach, 2003; McMillan et al., 2012). Nevertheless, only values above the highest quantile of 1
mm in the study region are used for the daily (1D) and 5-daily (5D) resolution (see Table 1), as smaller values may still exhibit
measurement errors.

For the estimation of basic statistics in Table 1 and for following calculations, rain values of the investigated aggregations
smaller than 0.1 mm are set to O mm. The reason is to achieve homogenization of the data sets of different years and gauges,

as the discretization ranges from 0.01 mm to 0.1 mm depending on the gauge.

5 Probability distributions of precipitation amounts in a spatial context

This section focuses on the spatial dependence of precipitation amount distributions, as the applied interpolation technique of
ordinary kriging (OK) is based on the assumption that the variable of interest (the CDF) is more likely to be dissimilar with
increasing distances. For the purpose of describing the development of the distribution functions in space, the test statistic 7'
of the two-sample Cramér—von Mises criterion is used (Anderson, 1962). It evaluates the similarity of two CDFs, in our case
the similarity of CDFs from observations of two different point locations. The test statistic 7" is defined according to Anderson

(1962) as:
U 4MN —1

= NMN T 6+ ) @
where
N M
U=N-Y (ri—i)>+M-Y (s;—3) (3)
=1 j:l

with IV as number of observations of the first sample and M as number of observations of the second sample. Both observations
are joined together in one pooled dataset and the ranks are determined in ascending order of all observations in the pooled
dataset. r; are the ranks of the N observations of the first sample in the pooled dataset and s; are the sorted ranks of the M

observations of the second sample in the pooled dataset. 7" can be interpreted as the mean difference of CDF values (quantiles)
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of observed rainfall intensities between both data sets. So, if 7" increases for increasing distances, the CDFs are less similar for
increasing distances.

For the calculations of 7T, only rainfall values above the different (¢, (see Table 1) are used. The graphs in Fig. 3 show a
decreasing similarity of the distribution functions with increasing distances over all temporal resolutions, as the values of T’
are increasing with increasing distances. Note that the average T-values of the hourly (1H) data in Fig. 3 (a) are shown as the
highest dashed line in 3 (b). So the continuity of the whole distribution changes in space, not only the continuity of values of a

single quantile. This shows the applicability of interpolation techniques like OK.

6 Precipitation amount models

In the following subsections non-parametric and parametric models for precipitation amounts at single sites are introduced.
Before estimating the non-parametric or parametric distributions at each observation gauge, observations smaller than QV;;,
are censored from the sample of each gauge and QV;;, is subtracted from the values above them to fit to the support of the
theoretical distribution functions [0,00). QVy, varies from gauge to gauge for different temporal resolutions (see Table 1).

After estimating the theoretical CDFs, the quantiles F' are scaled with Qyp,

FSC:F'(l_ch)+ch (4)

and QV;y, is added to the quantile values. Only the monthly resolution is excluded from the whole scaling procedure, as all

monthly rainfall values are used.
6.1 Non-parametric models

Non-parametric KDEs for precipitation amount distributions were previously used and are described for daily precipitation
amounts in Rajagopalan et al. (1997) and Peel and Wilson (2008). By using this non-parametric method no theoretical distri-
bution needs to be preassigned, only a kernel and its bandwidth needs to be chosen. That is why they are assumed to be more
flexible. A kernel in this context is a function which is centered over each observation value and is itself a probability density
function whose variance is controlled by its bandwidth (Bowman and Azzalini, 1997). The probability density function (PDF)
or KDE f(z) of every data set is then constructed through a linear superposition of these kernels (Peel and Wilson, 2008),
where n is the number of observed values, K is the kernel function, A is the bandwidth of the kernel, = are discrete kernel
supporting points, and x; are observed rainfall values:

n

1
@)= = K(z—wih) 5)
=1
The estimation of f(x) is performed with an R (R Core Team, 2015) implementation of Wand (2015). However, since our
non-parametric interpolation scheme is based on CDFs and not on PDFs, the CDF is needed. In order to obtain a CDF from

the KDEs an integration is required, which is done numerically with the composite trapezoidal rule (e.g., Atkinson, 1989). For
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numerical reasons quantiles slightly greater than 1 are sometimes obtained, which are simply set to 1 to remain in the correct
range.

To model right skewed precipitation amounts with their bounded support on [0, c0), either an asymmetric kernel like the
Gamma kernel (Chen, 2000) or a symmetric kernel with a prior logarithmic transformation of the values (Rajagopalan et al.,
1997) can be used to avoid boundary bias. A boundary bias occurs when kernels with infinite support are used for data with
bounded support, as this would lead to a leakage of probability mass (Rajagopalan et al., 1997).

In this work the symmetric Gaussian kernel with a prior transformation of data to logarithms is chosen, as this is an implicit
adaptive kernel method with increasing bandwidths for increasing values and therefore alleviates the need to choose variable
bandwidths with skewed data (Lall et al., 1996; Charpentier and Flachaire, 2014). The Gaussian kernel is chosen as it is
straightforward and its application is facilitated through several software implementations (Sheather, 2004). The Gaussian

kernel K (¢) is described in Eq. 6:

1 —t?
K(t)= Wors -exp <2h2> (6)

If the density of the logarithmically transformed observed values y = log(x) is fy and a Gaussian kernel is used for this

density estimation, the density estimation fx of the original values x according to Charpentier and Flachaire (2014) is:

(@) = v log(x)) - )

Finally, the bandwidth & needs to be chosen, which is commonly indicated as the key step for KDEs (e.g., Bowman, 1984;
Harrold et al., 2003; Sheather, 2004; Charpentier and Flachaire, 2014) as a poor bandwidth selection may result in a peakedness
or an over smoothing of the density estimation. Due to this great importance of the bandwidth selection, the performances of

different selection methods are investigated.

1. The simplest and most widely used selection method is Silverman’s rule of thumb (Silverman, 1986), which is defined

as

B o 43— q1 -1/5
hopt,srT = 0.9 - min <s, 1349 > n ()

to obtain the optimal kernel bandwidth k., srr With n sample values, where s is the standard deviation and g3 — ¢;
is the interquartile range. Silverman’s rule of thumb (SRT) is deduced from minimizing an approximation of the mean
integrated squared error between the estimated and the true densities, where the Gaussian distribution is referred to as

the true distribution (Charpentier and Flachaire, 2014).

2. The second method is a plug-in approach developed by Sheather and Jones (1991), which is widely recommended due
to its good performance (Jones et al., 1996; Rajagopalan et al., 1997; Sheather, 2004). Instead of using a Gaussian
reference distribution it uses a prior non-parametric estimate in the approximation of the mean integrated square error
and, therefore, requires numerical calculation (Charpentier and Flachaire, 2014) to find the optimal bandwidth A,y 57,

which is performed with the R implementation of Wand (2015) within this work.



Instead of minimizing the mean integrated squared error, Bowman (1984) recommended minimizing the integrated squared
error through a least squares cross validation (LSCV), which is applied using the R package of Duong (2015). Another common
cross validation method is the maximum likelihood cross validation (MLCV). Cross validation methods tend to produce small
bandwidths and therefore tend to produce peakedness of the density (Rajagopalan et al., 1997; Sheather, 2004; Peel and Wilson,

5 2008), which we also observed in our applications. Due to this deficiency both cross validation methods are not considered in

what follows.
6.2 Parametric Models

Within the parametric procedure four-five different parametric distributions are used to model the precipitation amounts of all
aggregations in this study. Commonly used models are the exponential distribution and the two-parameter gamma distribution
10 (Wilks and Wilby, 1999). The mixed exponential distribution was recommended in Wilks and Wilby (1999) and was firstly

used for daily precipitation amounts by Woolhiser and Pegram (1979). Another common and efficient distribution to model

recipitation amounts, especially with daily temporal resolution, is the generalized Pareto distribution (Chen and Brissette, 2014; Li et al., 2

In addition to these models the Weibull distribution, which showed good performance for modeling monthly precipitation
amounts in Baden-Wiirttemberg (Beck, 2013), is used. The CDF F'(z) and the PDF f(x) of each used parametric distribution

15 are listed in the following.
1. For the exponential distribution with the parameter A these functions are:
FlasA) = 2e™ ©)

Fz\)=1—e (10

2. For the two-parameter gamma distribution they are:

k—1

|8

20 Fl2:0,k) = % ()
k,
F(w;0,k) = 7&5’ ) (12)

where I' is the gamma function and + is the incomplete gamma function.

3. For the two-parameter Weibull distribution F'(x) and f(x) are:

k s\ (k=1) k
. _M(r —(=/A)
f(@A.k) A(A) e (13)
25 F(z;A k) =1—e @' (14)

4. The mixed exponential distribution exhibits the following functions:

Flz A, Ao, ) = adie™ % 4 (1 — a)dge 22" (15)
F(x;1,M2,0) =1 —ae™™% — (1 —a)e™*2® (16)
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5. The generalized Pareto distribution exhibits the following PDF

flzik,a)=a 11— k:x/oz)l/k_l, k#0

(17)
:oflefz/o‘, k=0
and CDFE:
F(z:k,0) =1—(1—kx/a)'*, k#0
( ) ( /a) as)

=1—e "/, k=0.

Parametric distributions with more than two parameters are not considered, as this would complicate the regionalization
of the distributions due to dependencies among the parameters. For the three parameter mixed exponential distribution the
parameter « is fixed for the whole study region (Wilks, 2008) transforming it into a two-parameter distribution.

In order to estimate the optimal parameter sets of the presented parametric distributions for each rainfall gauge and temporal
resolution the maximum likelihood method (MLM) using numerical maximization via a Simplex algorithm and the method of
moments (MOM) are applied. The MLM is applied to all mentioned parametric distributions. In the special case of the mixed
exponential distribution the parameter « is varied between 0.01 and 0.5 within the parameter estimation. For each value of
« the sum of the log-transformed likelihoods is calculated over all gauges with varying values of the remaining parameters,
while the maximum sum defines the parameter set. To apply MOM, the mean Z and standard deviation s, of the sample values
need to be calculated for the gamma and generalized Pareto (Hosking and Wallis, 1987) distribution. In order to use MOM
for the Weibull distribution, the method described in Cohen (1965) is applied. For the estimation of the mixed exponential
distribution parameters, MOM is not applied due to its shortcomings described in Rider (1961). MOM is neither applied to the

one parameter exponential distribution, as it would yield the same results as those from MLM.

7 Non-parametric distributions in a spatial context

In order to establish the basis of the proposed regionalization procedure for non-parametric models and to get a more detailed
idea of the spatial relationship of distribution functions, the EDFs of hourly and monthly rainfall intensities of the gauge
Stuttgart / Schnarrenberg and its five closest gauges are plotted in Fig. 4. It is therefore not of importance which EDF belongs
to which gauge, but rather the relationship that the EDFs have with each other. These two graphs show that the order of the
EDFs stays quite persistent over different quantiles for both aggregations, as the EDFs do not cross each other very often. In
other words, if one gauge exhibits the highest rainfall values for a certain quantile it also exhibits the highest rainfall values for
other quantiles and vice versa. The red and purple EDFs on the left graph illustrate this quite nicely.

A more global look at the spatial relation between different EDFs can be obtained with Spearman’s rank correlation p,, of
quantile values of all gauges for different quantile pairs. As we want to investigate the persistence of EDFs for the whole study

region, we are only interested in the ranks or rather the order of different quantile values for differing quantiles, which can be
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done by calculating p,,,. In our application the two input datasets for calculating p, represent quantile values of two different
pairs of quantiles over all gauges in the study region. These pairwise rank correlations of quantile values of all gauge pairs are
calculated starting from @ until 1 in 0.001 steps for sub-daily aggregations and in 0.005 steps for aggregations greater than
or equal to one day. This procedure is repeated until the rank correlation of every quantile with every other quantile is obtained.
Finally the mean values of the rank correlation belonging to each quantile are calculated (see the dotted gray lines in Fig. 5).
The greatest mean rank correlation is indicated with a red cross in this figure, which also defines the control quantile (Q).) with
the highest mean rank correlation. Rank correlations of (). with the remaining quantiles lead to the dashed lines in Fig. 5.

Fig. 5 demonstrates that most of the rank correlations are greater than 0.85, indicating a persistence of quantile values over
a great interval of quantiles as well as over the whole study region for hourly through monthly data. Lower correlations can be
observed for the highest and lowest quantiles, which indicates a non persistent behavior for these quantiles. This behavior is
similar for all temporal resolutions. Therefore, quantile values of (. can be used to set up the interpolation weights. Applying
these weights to the remaining quantiles from Q)¢ until 1 should lead to good regionalization results for non-parametric CDFs.

In Table 2 the control quantiles ). with the highest mean correlations are summarized for all temporal resolutions. As the
precipitation mechanisms are different in summer and winter in Baden-Wiirttemberg, the rainfall data sets are also analyzed
separately for summer (from May to August) and winter (from September to April). Q). is mostly close to the center of the
considered quantile ranges, which are also shown in Table 2. Nevertheless, it is worth noting the strong similarity of winter
and summer control quantiles (). The proposed procedure to interpolate non-parametric distribution functions using the same
interpolation weights for different quantiles seems feasible as the persistence of the order for quantile values of spatially
distributed rain gauges is evident. Only values of very high and low quantiles show a non-persistent behavior. Therefore,

quality measures, which focus on the difference of these values, will be introduced.

8 Regionalizing of precipitation amount models

In the following, the regionalization of point models in order to obtain precipitation amount models at ungauged locations is
described. The used regionalization method OK is introduced first. Then the approaches to regionalize parametric and non-
parametric distributions are explained.

As only a short overview of OK will be given, the interested reader is referred to the common geostatistical literature, like

Kitanidis (1997), for further information. The empirical variogram ~,(h) is calculated using Eq. 19

1) = 5 > (w2) = (i + )2 (19)

where n(h) is the number of gauge pairs for distance h, z; represents the position of gauge 7 and z(z;) is the variable value
at gauge i. As the distances between rainfall gauges never provide a continuous set of distances, the h in Eq. 19 represents
different distance intervals. For following applications the width of the interval of A is 10 km and the maximum distance is
100 km. For the theoretical variogram ~;(h) one single model out of the following four is chosen based on the least squares

criterion. The s parameters represent the sills, the r parameters the ranges of the variograms.

10



10

15

20

25

1. Gauss model:
_h2
7:(h) = 51 <1—e 'r%> (20)

2. Spherical model:

h h\?

3. Exponential model:
(h) =53 (1-e %) (22)
4. Matern model (Pardo-Iguzquiza and Chica-Olmo (2008), K, is the modified bessel function of second kind):

= (- gk (4) . (4)

The next step within OK is solving the corresponding equation system to estimate an interpolated value at an unobserved

location xq:

Z¢j'7t(xi*xj)+/i:%5(l‘i*l‘o) 1=1,...,n,
j=1

> bi=1.
j=1

where n is the number of gauges included in the interpolation (10 within this work) and g is the Lagrange multiplier.

(24)

As already outlined in the introduction, either the parameters (Kleiber et al., 2012) or the moments (Haberlandt, 1998;
Wilks, 2008) of parametric distributions can be interpolated to regionalize parametric models. Within this work the moments
are interpolated, when MOM is used for fitting the parametric distributions. If MLM is used, the parameters are interpolated.
Since only rainfall values above Q V%, (see Table 1) are used, QV;y, also needs to be interpolated within the parametric approach.

Kernel smoothed distribution functions do not provide a parameter that can be interpolated, thus a procedure other than that
for parametric distributions needs to be applied. By analyzing the spatial relation of rainfall EDFs in section 7, a persistent
order of quantile values over a wide range of quantiles is observed. Therefore, the interpolation weights of quantile values for
the control quantile Q. (see Table 2) can be applied to the remaining quantiles.

For all gauges the quantile values QV.. of the control quantile (). are estimated with the inverse of the gauge-wise numerically

integrated non-parametric CDF F},,,:

QV.=F,Q.) (25)

With these QQV, at the observation points, the interpolation weights ¢; for the target locations are estimated with OK (see

Eq. 24). Then, these weights are applied to the quantile values of quantiles between (Qy, and 1 in 0.0001 steps and, finally,
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the remaining quantile values are linearly interpolated to receive a continuous CDF for all target locations. In order to assure a
monotonically increasing CDF only positive interpolation weights are allowed. This makes the use of OK problematic. It can

only be used if the equation system (see Eq. 24) is solved with positive weights, which leads to additional constraints:
0; >0 j=1,...,n. (26)

Considering these additional constraints the OK equation system is solved with a SCIPY implementation (Jones et al.,
2001) of a FORTRAN algorithm by Lawson and Hanson (1987), which solves the Karush-Kuhn-Tucker conditions for the
non-negative least squares problem. In the following, this kriging procedure will be called positive kriging (PK). Another way
to solve this extended optimization problem with an application of the Lagrange method is presented in Szidarovszky et al.
(1987). The persistence of quantile values described in section 7 also implies the persistence of quantiles. The interpolation of
quantiles for discrete rainfall values would therefore also be an option. However, this would complicate the regionalization as

not only monotonicity needs to be preserved, but also the value range of quantiles from O to 1.

9 Dependence of sub-daily on daily values

As the high resolution rain gauge monitoring network in the study area is quite sparse and the corresponding time series are
often incomplete, it would be useful to include more dense and complete secondary information in the interpolation of the
sub-daily distributions. Therefore, the applicability of daily values to improve their interpolation is investigated, as the daily
monitoring network has a higher density. A simple disaggregation strategy (rescaled nearest neighbor) of Bardossy and Pegram
(2016) is applied to all days to obtain distributions of sub-daily resolutions at the locations of the daily gauges, allocating sub-
daily values from the closest high resolution gauge to the daily target gauge. The procedure to incorporate daily values in the

interpolation of sub-daily values should be the following:

1. Choose a daily target gauge and allocate sub-daily rainfall values of the closest (concerning horizontal distance) high

resolution gauge to it.

2. Aggregate sub-daily values of the high resolution gauge to daily values psup—daity (t) and calculate a scaling factor for

every day ¢ by additionally using the values of the daily target gauge pqqiry () :

SC(t) _ DPdaily (t)

=" (27)
Psub—daily (t)

3. Multiply all sub-daily values of the nearest gauge with this scaling factor. The scaling factor changes from day to day
and simply assures that daily sums of disaggregated sub-daily values at the target gauge equal the daily values measured

at the target.
4. Repeat steps 1. to 3. for all daily gauges.

5. Calculate the sub-daily statistic of interest from these scaled values at every daily gauge and incorporate them in the

interpolation procedure.

12
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The applicability of this procedure is tested with a cross validation, which is described in section S3 of the supplement. For
the incorporation of daily values within the regionalization of parametric and non-parametric sub-daily distributions a special
regionalization technique is not needed. The rescaling method (NNS) is applied to all available daily gauges. If for a certain
day no hourly values are available for the closest gauge, the next closest gauge is used for the rescaling of that certain day in
order to increase the sub-daily sample size at the daily gauge. After obtaining the sub-daily values at the daily gauges, they are

simply treated as additional control points for the regionalization.

10 Performance

This section is divided into three parts. In 10.1 the quality measures are introduced, in 10.2 the performance of the precipitation
amount models for point wise estimations are compared for all temporal resolutions. The regionalization of the precipitation
amount models is addressed in 10.3. The precipitation amount models are fitted and regionalized separately for winter (from
September to April) and summer (from May to August) months, as the rain-producing weather processes are different in these

two seasons.
10.1 Quality measures

The validation of the precipitation amount models at point locations and their regionalization is evaluated with two different
quality measures. These quality measures need to be measures considering the CDF and not the PDF, as the interpolation of
the non-parametric distributions only provides CDFs for ungauged locations.

The most common goodness of fit test to estimate the quality of fitted distributions is the Kolmogorov—Smirnov test. As
distributions of precipitation amounts are positively skewed, the greatest part of the values are small or medium values, which
leads to the highest gradient of the CDF for these values. Therefore, a greater difference of the corresponding CDF quantiles
would be more likely and would govern the Kolmogorov—Smirnov test. However, these medium values are less important than
the greater precipitation amounts for most of the precipitation model applications.

For this reason the Cramér—von Mises criterion as a more integral measure and a Lorenz-curve based measure - which
allows for conclusions about the representation of the water volume - are used. The Cramér—von Mises criterion W? for single
samples is (Stephens, 1974):

n

1 2 —1 2
W=y ( T F(m)) (28)

=1

where F'(z;) represents the theoretical distribution (non-parametric or parametric) of the observed values x; in ascending order.
For sub monthly resolutions the Cramér—von Mises criterion is slightly modified, as only quantiles above Q;, (see Table 1) are

used:

) 1 <& 2i—1 ’
w :12nz<< on '(1_ch)+ch>—F(xi)> )
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As already mentioned in section 7, a quality measure, which describes the representation of high quantiles, is needed. For
Lorenz-curves, high vertical differences are supposed to appear more frequently for high quantiles as the slope increases with
increasing quantiles. Therefore, a measure respecting the vertical differences of the Lorenz-curves is suitable. In section 4 the
estimation of the Lorenz-curve with observed rainfall values was described. However, the Lorenz-curve L(F(x)) can also be
estimated from the theoretical CDF F'(x), which is a preferable approach, as random rainfall values do not need to be generated

from the CDF previous to the Lorenz-curve estimation:
L(F(x)) = foli (30)

where x(F') is the gauge wise quantile function (the inverse of the CDF). The integrals of the quantile functions are estimated
numerically, because the non-parametrically estimated distribution functions are not invertible analytically. The Lorenz-curve
criterion L4 used here is the squared difference of the observed L(F,(x)) and modeled Lorenz-curve L(F(z)):

n

La=) (L(Fu(z)) — L(F(x)))* G

i=1
The differences of the Lorenz-curves are only estimated for values greater than QV;;, (see Table 1). Within the validation
of the regionalization only values above the highest V7, among the observed and regionalized values for each gauge are

evaluated, as they may differ for the different techniques.
10.2 Point models

To determine an overall performance ranking for the remaining models, at first the arithmetic mean and the median over the
number of gauges of both measures of quality - the Cramér—von Mises criterion W2 and the Lorenz-curve criterion Ly - are
calculated for each precipitation amount model. This leads to four different measures, which are shown for hourly values of
the winter season in Table 3. Note that the mean values reflect the robustness and the median values represent a good average
performance of one precipitation model for the whole study region.

To combine the four statistics (mean and median of W?2 and L4 respectively) in one single performance measure, every
value in Table 3 is then divided by the smallest (best) value (bold numbers) of its corresponding quality measure, indicating the
relative performance with respect to the best model. This leads to one number for each statistic and precipitation model starting
from 1 for the best performing model of each statistic. The bigger this number, the worse its relative performance. These four
numbers are then combined by adding them together, which results in a single number for each precipitation amount model to
define the performance ranking for each temporal resolution. A ranking number of 4 is the lowest possible number and implies
that the related model shows the best performance for all four quality measures. In Table 4 the ranking numbers for all temporal
resolutions and both seasons are shown.

With the ranking numbers the best performing precipitation amount model is estimated for each season and temporal reso-

Iution. Among the non-parametric methods (NP) Silverman’s rule of thumb (SRT) and the plug-in approach of Sheather and
Jones (1991) (SJ) show very similar results;-espectally-in-the-winterseasen. The generalized Pareto distribution with a MLM
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arameter estimation (Pareto-MLM) exhibits the best performance among the (P) parametric models for the hourly resolution.
The mixed exponential distribution with a MLM parameter estimation (Mixed-Exp-MLM) leads to the best results ameng-the

parametrie-metheds(P)-for-daily-and-for the remaining sub-daily and the daily resolutions. For temporal resolutions greater
than 1D the Weibull distribution with a MOM parameter estimation (Weibull-MOM) leads to the best results, except for the

daily resolution in the winter season. where the Pareto-MOM combination is better. The best performance of the Weibull
distribution for monthly values coincides with the results of Beck (2013) for the same study region.

The performance ranking of the different methods is quite similar in winter and summer. The non-parametric methods always
lead to better performances concerning the Cramér—von Mises criterion W 2. The parametric estimations mestly-lead to better
results regarding the Lorenz-curve criterion Ly (for details see Table S2 and S3 in the supplement). Fig. 6 may provide an
explanation for the differences in performance regarding these two quality measures. The graphs show the CDFs and Lorenz-
curves for the hourly (1H) and 12 hourly (12H) resolution for a chosen gauge. For the hourly resolution the non-parametric
SRT method leads to better results for both measures. An equally good performance regarding the W? for the parametric and
non-parametric method can be observed for the 12 hourly resolution. However, the non-parametric method performs worse
regarding the L, measure, as it overestimates the water volume represented by the higher quantiles. The reason can already
be observed in the CDF, where the non-parametric method systematically overestimates the values of high quantiles. The
parametric method can lead to over- and underestimations. This influences the W? criterion in the same way as a constant
overestimation (see squared differences in Eq. 28), but it seems to lead to better results regarding the L criterion.

Parameter estimation through MOM in combination with the Weibull distribution performs better for higher aggregations,
which exhibit more symmetric distributions. For daily and sub-daily aggregations MLM parameter estimation in combination
with the mixed exponential distribution feads-to-better-mostly leads to the best results.

The overall performance is best with the mixed exponential distribution for temporal resolutions between two hours (2H)
and one day (1D) in both seasons. For five

in-beth-seasons—FHor-the-the hourly distribution (1H) the non-parametric models show the best overall performance in both

seasons—Only-for-the-monthly-distribution-the summer season, and the third-best performance after the generalized Pareto
Pareto-MLM and Pareto-MOM) distribution in the winter season. For the monthly resolution (M) the bestperforming-methods

the-nen-parametric-meodels-perform-the-best-Weibull distribution exhibits the best overall performance in both seasons. For the
five daily resolution the MOM estimation provides the best result in winter (Pareto-MOM) and summer (Weibull-MOM).

10.3 Regionalization

In order to estimate the quality of the regionalized precipitation amount models, a 2-fold cross validation (split sampling)
is used. Two equally sized samples of observation points are randomly generated (Fig. 7). The most simple regionalization
method is using the estimates of the nearest neighbor (NN) of the calibration set, which are therefore used as benchmarks for

the quality of the regionalization procedure. Additionally, the daily rescaled nearest neighbors (NNS) are used as a benchmark.
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In this case all daily gauges are used for the rescaling except for the daily observations at the locations of the respective
validation sample.

Following the results of the point-wise estimation in the previous section only the Weibull-MOM and the Mixed-Exp-MLM
models among the parametric models are investigated for the regionalization, as they show good performance for differing
aggregations. They are both investigated for all aggregations to test the difference of interpolating moments or parameters,
except for the monthly aggregation, for which only the Weibull distribution is investigated. In order to regionalize the Weibull-
MOM model, the mean and standard deviation are spatially interpolated, and for the regionalization of the Mixed-Exp-MLM
model, the parameters A; and As are interpolated while its parameter « is kept constant for the whole study region.

As the two non-parametric approaches SRT and SJ show very similar results during the point wise estimation, only the SRT
approach is interpolated. For the regionalization of the non-parametric models QV, (see Table 2 and Eq. 25) values are used to
estimate the interpolation weights, which are further applied to the remaining quantiles. Following the conclusions in section 9,

daily gauges can be used to set up distribution functions for sub-daily values with a scaled nearest neighbor approach (NNS).
10.3.1 Variogram estimation

The first step during the regionalization procedure is the estimation of the theoretical variograms. The interpolation variables
of the three precipitation amount models for which theoretical variograms need to be estimated for the two seasons and eight

temporal resolutions are:
1. P-Mixed-Exp-MLM: A1, A\;
2. P-Weibull-MOM: mean, standard deviation

3. NP-SRT: QV. values (see Table 2 and Eq. 25)

During the estimation of the parameters of the Weibull distribution with MOM, QV4, is subtracted from the rainfall values
prior to the estimation of the mean and the standard deviation. As the mean of these values show lower spatial dependencies
than the mean of the censored values without subtraction, QV;y, is added to the mean values of the parameter estimation before
the regionalization. After the regionalization, they are subtracted again to determine the parameters of the Weibull distribution.
Variogram models are also fitted to QQV;, as the corresponding values serve as starting points for the parametric models at
the ungauged locations. Fig. S4 to S7 in the supplement show exemplary theoretical variograms of different parameters for
temporal resolutions of 1H and 12H for the winter and summer season of calibration sample 2.

It is difficult to compare the spatial persistence of T (see Fig. 3) with the spatial persistence of the different distribution
parameters, as T considers the whole distribution function and the distribution parameters only describe properties of the
distribution. However, the range of T was about 35 km, which can also be observed for some of the parameters, especially the

mean of P-Weibull-MOM, QV,. of NP-SRT and QV}y,.
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10.3.2 Precipitation amount models

The regionalization of the precipitation amount models is evaluated with the same quality measures as the point wise estimation,
the Cramér—von Mises criterion W2 and the Lorenz-curve criterion L. The investigated interpolation approaches for the

parametric distributions are:

1. OK - MOM: OK of the Weibull distribution, fitted with MOM.
2. OK - MLM: OK of the mixed exponential distribution, fitted with MLM.

3. OK - MOM Daily: OK of the Weibull distribution including scaled NNS values of daily gauges (only for sub-daily

aggregations).

4. OK - MLM Daily: OK of the mixed exponential distribution including scaled NNS values of daily gauges (only for
sub-daily aggregations).

The interpolation approaches for the non-parametric models are:
1. PK - NP: PK of the non-parametric models, which are estimated using SRT.

2. PK - NP Daily: PK of the non-parametric models including scaled NNS values of daily gauges (only for sub-daily

aggregations).

In Fig. 8, parts of the interpolation procedure for PK - NP are shown for the daily aggregation, where the non-parametric
QV. at the calibration gauges and three interpolation fields are shown.

In Table 5 and Table 6 the performance ranking numbers of the regionalized precipitation amount models are summarized
for the winter season and for the summer season respectively. The differences between the two cross validation samples are
quite small, so the performances are not just resulting from the positioning of the gauges in the samples but from the inter-
polation approaches. Among the parametric methods the MOM approaches mostly perform better than the MLM approaches
for aggregations greater than or equal to 2H-one day during the winter season. In the summer season the MOM approaches
perform mostly worse than the MLM approaches for aggregations smaller than 6H and vice versa for higher aggregations.
Interpolating moments, therefore, seems to be more robust than interpolating parameters of distributions as the performance
ranking changed in favor of the MOM approaches compared to the point wise results (see Table 4). Only for stronger skewed
distributions in-the-summer-and-of smaller aggregations, the MLM approach still outperforms the MOM approach.

Comparing the non-parametric interpolation approaches with the parametric interpolation approaches shows that the non-

parametric approach performs best for hourly (1H) and-two-hourly—values-«(2H)-values for both calibration samples and for

in line with the point wise esti
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bestapproaches also produced very good results for the hourly resolution (H;~which-is-similarto-theresults-of the peint-wise
estimationin both seasons.

It is obvious that using scaled values of the daily gauges is very beneficial as approaches incorporating these values almost
always include the best performing method, except for the 12H aggregation in the summer season.

As a benchmark, the interpolation results are also shown for parametric and non-parametric estimates of nearest neighbors
(NN) and additionally using scaled daily gauges for sub-daily aggregations (NNS). Among the benchmark methods the NNS
approaches perform better than the simpler NN approaches for the sub-daily aggregations, except for the twelve hourly (12H)
resolution in summer. Since the best interpolation approach almost always - with only two exceptions - performs better than

the best nearest neighbor approach, the regionalization of distributions seems to be worthwhile.

11 Conclusions

Comparing different modeling schemes for precipitation amounts at point locations (see Table 4) over different temporal res-

olutions has revealed several findings. The non-parametric estimates only perform better for the hourly resolution in beth

the summer season. They have problems especially in reproducing the
volume correctly, as they seem to have difficulties with high quantiles. Causes for this deficiency could be the numeric inter-
polation or the small number of rainfall values at high quantiles. For temporal resolutions between two hours and a month
the parametric distributions outperform the non-parametric distributions for both seasons. Among the parametric methods the
mixed-exponential-distribution-MLM parameter estimation (Mixed-Exp-MLM and Pareto-MLM) performs better for sub-daily
and daily aggregations, whereas the Weibull-distribution-MOM parameter estimation (Weibull-MOM and Pareto-MOM) has
the advantage for higher aggregations.

The regionalization of the precipitation amount models showed (see Table 5 and 6) that the proposed interpolation scheme

for non-parametric distributions is useful as it does not worsen its performance ranking compared to the estimation at point lo-

cations. Ratherit-appearsto-be-arobustinterpolation-scheme-as-itmore-often-outperforms-the-parametric-schemes-comparing
peint—wise-estimation—and-regionalization—Among the parametric methods the interpolation of moments turned out to be
more robust than the interpolation of parameters. The proposed regionalization scheme for non-parametric models could
also be tested in different research fields, whenever non-parametric distributions may provide good representations of point
wise models and the order of the quantiles is persistent over spatially distributed locations. Especially for applications where
multimodal distributions are common, this interpolation scheme may be of great interest, because kernel density estimates, in

contrast to parametric models, can easily model multimodal distributions.
As auxiliary variables the use of daily gauges for sub-daily resolutions is very beneficial, as was suggested by our data

analysis in section S3 in the supplement and is also proven by the evaluation of the regionalization.
In general, the regionalization of distributions seems to be worthwhile as it nearly always performs better than the nearest

neighbor (horizontal distance) approaches, which would be the most simple estimate. As lower rainfall values were excluded
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in this study due to their minor importance and measurement errors, the results are not directly comparable to those of most of
the other publications within this research field.

The difficulty of non-parametric distributions in representing water volumes may be reduced by using the Epanechnikov
kernel with finite support as proposed by Rajagopalan et al. (1997). However, in return the use of an Epanechnikov kernel

instead of a Gaussian kernel reduces the ability of modeling precipitation beyond the range of historical data. Additionally, ways
of incorporating elevation within the regionalization of non-parametric distributions need to be tested. Regarding-the-parametrie

distributions-Mamalakis et al. (2017) used kriged two-component parametric distributions (a generalized Pareto distribution for

model rainfall. They applied a parameter estimation through probability weighted moments, Chen-and-Brissette (2044)-and

el O ded-Pareto-typed butio ad-o PO al-typed butions;—which could also be tested

in-the—futarecompared to the presented estimation approaches for the regionalization of distributions on varying temporal
resolutions. Finally, the non-parametric interpolation approach could also be applied to parametric or empirical distributions

and should be tested for various study regions.
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13 Data availability

The used sub-daily precipitation data sets were obtained from the LUBW during various research projects and are not available
to the public as far as the authors know. Therefore, they can not be provided by the authors. The daily data set was downloaded
from the Webwerdis homepage (http://www.dwd.de/DE/leistungen/webwerdis/webwerdis.html) of the DWD, where a personal
account is required. However, to the knowledge of the authors any academic researcher can apply for a personal account and
some of the used daily and sub-daily values also seem to be available on the homepage of the DWD Climate Data Center

(http://www.dwd.de/DE/klimaumwelt/cdc/cdc_node.html).
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Table 1. Basic rainfall information of the study region for different aggregations (agg): P is the probability of 0 mm rainfall, Q¢ stands for

the defined quantile thresholds or threshold ranges and )V, represents the corresponding quantile values (rainfall) for the defined Q.

agg By (-) Qin ) QVin (mm)

IH 0.82-0.93 0.95 02-1.6
2H 0.76-0.9 0.93 03-23
3H 0.71-0.87 0.92 04-3.1
6H 0.61-0.81 0.9 0.7-5.1
12H 0.46-0.72 0.86 12-7.7
1D 0.38-0.6 0.72 1.0-6.4
5D 0.1-0.22 0.29 1.0-7.2
M 0.0-0.02 0.0-0.02 0

Table 2. Control quantiles (Q).) which exhibit the highest mean pair wise rank correlations with other quantiles. They are shown for different
temporal aggregations (agg) and separately for summer and winter. Additionally, the (center) quantile in the middle of the investigated

quantile range is shown.

season

agg winter summer center quantile

1H 0977 0.979 0.975
2H  0.963 0.967 0.965
3H  0.959 0.966 0.96
6H  0.949 0.953 0.95
12H 0.924 0.922 0.93
1D 0.835 0.865 0.86
5D 0.615 0.575 0.645
M 0.545 0.46 0.5
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Table 3. Mean and median of the two quality measures W2 and L for the eight-ten precipitation amount models over the study region for

hourly values (1H) in the winter season. The bold numbers indicate the lowest (best) value of the corresponding measure.

w? Ly

mean median mean median
P-Gamma-MLM 6-:002638-0.00263 0:00216-0.002146 6:09383-0.0752 6:06477-0.04835
P-Exp-MEM-P-Mixed-Exp-MLM 6:06972-0.0007967 0:008105-0.0004331 6:2742-0.02026. 0:2293-0.007648
P-Mixed-Exp-MEM-P-Pareto-MLM  6:0067976-0.0006701  0:6004327-0.0003277  6:63694-0.008036  0:04646-0.001959
P-Weibul-MOM-P-Weibull-MLM 0:04416-0.001578 0:008296-0.0012 6:66319-0.03891 6:628+5-0.02249
P-Gamma-MOM 6:03067-0.03089 0:04882-0.01897 64378-0.1656 08:0675-0.04182
NP-SRT 0:0003753-0.0003752  0:6004994-0.0001995 0.01815 0:0051470.01448
NE-SI 0.0003485 0.0001954 0.01492 001156
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Table 4. Performance ranking numbers of the precipitation amount models for point wise estimations. The underlined numbers indicate the

best parametric (P) and non-parametric (NP) models. The bold numbers indicate the overall best model.

Winter Season

1H 2H 3H 6H 12H 1D 5D

P-Weibul-MEM-P-Exp-MLM 227422518 13:0414585 108112944  74569.16 54537.67 8384163 7:2614.€
P-Gamma-MLM 40965999 26213067 23772279 15471043 86698 13241151  10:39:9(
P-Exp-MEM-P-Mixed-Exp-MLM 142461293 H417-572 12039538 9552509 4833479 4857515 164915,
P-Mixed-Exp-MEMP-Pareto-MLM 1091 6.39 562612 535729 516709 483638 511640 19816,
B-Weibul-MOMP-Weibull MLM 9543083 48691401 3545974  2h62575 4368493 465751 5904
P-Gamma-MOM 2147226589 H295138.15 80469477 44014147 21722024 24632348 68166
NP-S+P-Pareto-MOM. 4811 73588 18641023 4573925 4334796 373808 1209 8
P-Weibull- MOM 123.72 8L72. 44.64 2128 1237, 1371 382
NP-SRT 4+13.54 7462200 18453543 443 4216 4637 3622 343121 425172
NP-SJ 11.23 2212 33.82 4321 3815, 29.15 1677

Summer Season

1H 2H 3H 6H 12H 1D 5D
P-Gamma-MLM 66:0551.51 35664053 31953014 18381282 908743 868798 138710,
P-Exp-MEM-P-Mixed-Exp-MLM 204571037 49h99-593 18442531  9726-471 3439477 2848479 307923,
P-Mired-Exp-MEMPPareto-MLM #4238 758 5931344 5311279 469713 472555 4TESS8 36066
P-Gamma-MOM 204.99289.15  126:61-14527 77358773 35783309 1691551 13661344 7264
NP-SRT 4615 844 19.05 2008 31.54 4191 3741 4351 3615 3263 30.76 140519,

N~ ARAA

NP-SJ 691 22.09 36.11 4641 41.17 334 17.64
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Table 5. Performance ranking numbers for the 2-fold cross validation of regionalized precipitation amount models in the winter season. The

underlined numbers indicate the best parametric (P) and non-parametric (NP) models. The bold numbers indicate the best overall model for

each validation sample and temporal resolution.

Calibration Sample 1

1H 2H 3H 6H 12H 1D 5D M
OK - MOM 16:45-10.08 8:63-9.85 787-9.62 722-6.95 6:27-6.36 445 4.56 427 437 405 4.14
OK - MEE-MLM 8:49-7.04 2394722 1926711 +H=73-1052 10-486.70 7.60 6.35 16.57 -
OK - MOM DAILY 783745 4975.97 4675.72 421421 484 5.32 - - -
OK - MEE-MLM DAILY 554 4.46 +412-4.05 621402 4:55-4.07 26:56-4.39 - - -
PK - NP 746-7.18 734-8.21 7:69-8.94 9+7-8.98 947 921 53+ 556 732 724 693 6.94
PK - NP DAILY 408 409 405574 423 600 565568 40261009 - - :
NNS - MOM 8:68-7.59 6:09-6.76 5:636.73 574-5.79 6-16-7.01 - - -
NN - MOM 15:75-13.78  14333-13.27  143:30-13.68 851045  16:5+9.85  5:99-6.05 592 6.09 634 648
NNS - MEE-MLM 772648 559 5.88 5:67-6.44 559 5.61 563 5.69 - - -
NN - MEE-MLM +H-39-10.04 9:53-9.81 9:73-10.39  16:68-10.19  16:56-10.51  730-541  8:96:7.40 9:62-288.07
NNS -NP-- NP 623 5.82 5747.09 6:04-7.75 758727 H-76-11.53 - - -
NN - NP 10:2+10.65  10:53-12.22  10:60-13.19  42:92-13.10 41381 5507.65 7269.03 287.639.76

Calibration Sample 2

1H 2H 3H 6H 12H 1D 5D M
OK - MOM 9:369.82 8:07-9.81 784941 7146-7.46 6:67-0.59 410 4.00  4:68 4.69 401 4.14
OK - MEE-MLM 6:92-5.19 3+266.19 28796.87  ++1610.29 8:866.73 6141+5.45 6:886.85_ -
OK - MOM DAILY 6:05-5.90 490 5.83 516 6.39 476 4.58 6:20-6.26 - - -
OK - MEE-MLM DAILY 573 433 +438-4.16 9:88-4.39 533-5.62 4:59 4.38 - - -
PK - NP 540567 646837  S0HI086 40851170 938 9.54 675 637 989 973 758 759
PK - NP DAILY 408 414 421 600 526749 T6F 849 40371LLS - - :
NNS - MOM F776.24 6:25-7.06 6-12-7.09 557-5.51 F47-7.42 - - -
NN - MOM 13951137 43551340 42531231  +:86-11.44 9:589.17 544-5.10 595 591 507 523
NNS - MEE-MLM 661494 522508 495490 49+ 467 569 562 - - :
NN - MEE-MLM 8:88-7.25 8:99-9.25 9:1469.52 16:68-9.78 9:143-8.47 757-4.82  H2H690  &78283.64
NNS -NP-- NP 521 4.80 5366.96 6:22-8.52 844-8.52 H=81-12.37 - - -
NN - NP 8-+H-8.36 9:65-11.34 11041290  13:53-14.37 42051181 472735 691112 28162896
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Table 6. Performance ranking numbers for the 2-fold cross validation of regionalized precipitation amount models in the summer season.

The underlined numbers indicate the best parametric (P) and non-parametric (NP) models. The bold numbers indicate the best overall model

for each validation sample and temporal resolution.

Calibration Sample 1

1H 2H 3H 6H 12H 1D 5D M
OK - MOM 13393402 9501342 8901023 FSSTIS 447473 428422 400400 4 404
OK - MEE-MLM 9581096 742715 6927.00 63521775 6588954 444449 12441124 -
OK - MOM DAILY 13402216 85813.63 9041057 583 574 866948 - - -
OK - MEEMLM DAILY 653 1046 443 419 406 422 7857.10  203813.18 - - -
PK - NP 683537 8101040 10321216 HFF1170 935 971 1024 983 165 1134 608 589
PK - NP DAILY 409 430 555827 736 997 973 1042  18:03-18.88 - - -
NNS - MOM 13472070 9671294 9341029 695639 9741029 - - -
NN - MOM 17763016 4421943 14331653 H921126 7767172 6.18 6.41 6:485:50 5.
NNS - MEEMLM 7501037 452436 464 448 460 441 696751 - - -
NN - MEE-MLM 341129 12451169  +H-8H11.80  10:829.98 728735 1204519 12801157 7792698
NNS -NP-- NP 456 4.10 6143-8.79 7941026 40:59-10.72  19:04-20.24 - - -
NN - NP 13066260 13251498 15091641 15741595 42271241 5401159  H84-12.70 269:22-7.84

Calibration Sample 2

1H 2H 3H 6H 12H 1D 5D M
OK - MOM 11:8329.60 800995 865878 744661 420 411 412 405 400 405 400 4.10
OK - MEE-MLM 936642 561566 614599  61783.02 530701 438556 37972415 -
OK - MOM DAILY 12292489 8671154 839923 612602 669711 - - -
OK - MEEMLM DAILY 788 458 404 400 400 400 4126146  7:005.66 - - -
PK - NP 543567 552682 726811 878 853 644 662 945963 1045979 816 699
PK - NP DAILY 410 427 504701 702830 974975  13:4713.60 - - -
NNS - MOM 14592466 10451274 9881038 787698 826854 - - -
NN - MOM 16832771 HA71410 1591190 953910 594581 588581 483 482 477 490
NNS - MEEMLM 861553 499 509 526 491 461 443 615630 - - -
NN - MEE-MLM 1248890 858815 864794  8157.63 563 563 1076525 1029869 7922612
NNS -NP-- NP 545 541 647780 776935 10481034 14001438 - - -
NN - NP 9:979.18 943-10.34  40:63-11.78 4027990  #757.90 55910.83 8571041 260:95-8.07
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Figure 1. Locations of high resolution (hourly and 5 min, left) and daily rain gauges (right) in Baden-Wiirttemberg.
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Figure 2. In (a) the range of the Lorenz-curves and the mean Lorenz-curve for hourly rainfall values of all rainfall gauges inside the study

region are shown, in (b) the mean Lorenz-curves are shown for different temporal resolutions.
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Figure 3. T statistic over distance: (a) shows the results for hourly distribution functions of all gauge pairs (grey crosses) and their mean

calculated for 5 km classes. (b) shows mean values of the T statistic for different temporal resolutions (for more detail on the temporal

resolutions of 1D, 5D and M see Fig. S2 in the supplement).
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Figure 4. EDFs of hourly (a) and monthly (b) precipitation amounts for the gauge Stuttgart / Schnarrenberg and its five closest gauges for a

quantile interval. It shows that the order of the EDFs is quite persistent over a wide quantile range for low and high resolutions. Note: As the

daily and hourly data set are not the same, the colors in the two graphs do not correspond to the same gauges.
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Figure 5. The mean rank correlations pz, of (a) hourly (1H) and (b) monthly (M) quantile values for all gauge pairs of discrete quantiles
in 0.001 (1H) and 0.005 steps (M) ranging from Q5 to 1 (gray dotted line). They are calculated to define the control quantile (Q).) which
exhibits the greatest mean rank correlation pz,, (red cross). The black dashed line shows the (single) rank correlations p, of quantile values

at Q. (red cross) with quantile values of the remaining quantiles.
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Figure 6. Exemplary empirical (data), non-parametric (SRT) and parametric (Mixed-Exp) CDF (left) and Lorenz-curve (right) for hourly

(1H) and 12 hourly (12H) resolution of a chosen gauge. Also the values of the two quality measures Ly and W? are indicated.
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Figure 7. Locations of the two 2-fold cross validation samples for sub-daily (left) and daily gauges (right).
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Figure 8. Illustrations for the kriging procedure of non-parametric distributions with daily values (1D) of the summer season using calibration
sample 1 (see Fig. 7): In (a) the non-parametric QV. of Q. = 0.865 at the gauges are shown, which then lead to the interpolated values in
(b) using interpolation weights ¢; resulting from PK. The same interpolation weights ¢; are used for the remaining quantiles, for which
exemplary results are shown in (c) for the quantile = 0.72 and in (d) for the quantile = 0.98. An exponential variogram with a range of 41 km

and a sill of 2.2 mm? is used.
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