
1 Response to reviewers

We would like to thank the three anonymous reviewers for their informative comments. Two common concerns of the reviewers
are the length of the manuscript and the missing clarity in section 9. We will work on these two concerns and believe that this
will certainly improve the quality of the manuscript.

All page and line references in the following correspond to the track changes manuscript below.5

Our answers to the individual reviewers comments follow below:

Reviewer 1

1. Page 2, lines 15-16: How is the interpolation of non-parametric distributions by Lall et al. (1996) done. This becomes not10
clear here.

Answer: Lall et al. (1996) did not interpolate non-parametric distributions, they just mentioned that no interpolation scheme
does exist. Such a scheme needs to be different than parametric interpolation schemes, as non-parametric distributions do not
have any parameter. Phrasing is changed, see line 18-20 on p. 2.15

2. Page 9, 10: The application of MLM and MOM for parameter estimation of distribution functions is well known. The authors
may consider to remove this part with Eq. (18) to (22) and use just a reference here.

Answer: This part will be shortened or removed. This part is shortened, see missing lines between line 3 and 21 on page 10.

3. Page 10: Also, the estimation of the rank correlation is well known. This part with equations (23) to (25) may be removed20
here as well.

Answer: This part will be shortened or removed. This part is shortened, see missing lines between line 10 and 18 on page 11.

4. How are the theoretical variograms fitted; which method is used; using least squares over the full range of distances? If yes,
for the latter, why are close distances not given higher weights since they are more important for interpolations? Please give25
some more information, may be include an equation for fitting.

Answer: The theoretical variograms are fitted using least squares with distances up to 100 km, grouping the empirical variogram
values into distance classes of 10 km. In the attachment figuresvariograms.pdf the variograms of different parameters for
temporal resolutions of 1H and 12H are shown for the winter and summer season of calibration sample 2. The black crosses30
represent the empirical variogram values of the 10 km distance classes, which are used for the least squares fit. The grey
crosses represent the empirical variogram values of 1 km distance classes. When a good fit is obtained with the 10 km distance
classes, the theoretical variograms also seem to represent the smaller distances quite well, therefore, we think higher weights
for close distances are not necessary. Sometimes the empirical variogram of the considered parameter exhibits a close to pure
nugget effect (e.g. λ2 of P-Mixed-EXP-MLM Calibration Sample 2, winter season, 12H), then the fit of the variogram was not35
good, however, this not necessarily leads to bad regionalization results (see Table 7 in the manuscript). Figures are added to
the supplement of the manuscript.

5. Page 14, lines 24ff: It becomes not fully clear how zero precipitation values are handled in the whole process. I thought they
were excluded from the cdf’s but now we have P0 again? This needs to be better explained.

40
Answer: Only in section 9 zero values were included to show the advantages of interpolating distributions instead of precip-
itation values regarding the value of P0, to motivate the whole process of interpolating distributions, what was not done in
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any previous paper to our knowledge. Zero values can be included within the interpolation of non-parametric distributions by
applying the following steps. (i) Fitting a distribution to all precipitation values at each gauge. (ii) Estimate the quantile values
for certain quantiles (non-exceedance probabilities) over the whole probability range (0-1) with the inverse of the fitted distri-
butions at each gauge. (iii) Use the interpolation weights from inverse distance weighting to interpolate the quantile values of
different gauges for each chosen quantile. (iv) If the quantile is below p0 for some (or all) gauges, the quantile value at these5
gauges will be 0 mm, which then are just included in the interpolation. (v) The highest quantile with 0 mm at the target gauge
defines p0 at the target. Section 9 is moved to the supplement with additional explanations.

6. Page 15, lines 11-20: This explanation becomes not clear to me. I thought daily amounts were disaggregated according to
the closest hourly proportions on the daily sum from the closest recording station? So, in this explanation for instance what
means “assign the rainfall values” (line 12); what means Eq. (36); at which step are the daily data disaggregated, etc? This part10
needs to be much better explained.

Answer: We think you understood it correctly, the procedure works as you explained. “assign the rainfall values” just means
allocating hourly values from the closest high resolution gauge to the daily target gauge and Eq. (36) is the rescaling factor
calculated from the daily values of the target gauge and the daily sum of the hourly values of the closest high resolution gauge.15
This rescaling factor changes from day to day and simply assures that daily sums of the disaggregated hourly values at the
target gauge equal the daily values measured at the target. See changes in the manuscript from line 7 to line 20 on p. 16.

7. Page 19: I would suggest to give some example variograms here. Also, compare and contrast the variogram parameters to
the spatial persistence of T (Fig. 3).

20
Answer: It is difficult to compare the spatial persistence of T with the spatial persistence of the different distribution param-
eters, as T considers the whole distribution function and the distribution parameters only describe the distributions in parts.
However, the range of T was about 35 km, which can also be observed for some of the parameters, especially the mean of
P-Weibull-MOM, QVc of NP-SRT and QVth (see attachment figuresvariograms.pdf). Figures are added to the supplement of
the manuscript and the above explanations are added to the manuscript on p. 20.25

Reviewer 2

Major Comment 1: A first major concern is the excessive length of the manuscript: The text consists of 22 pages (single line
spacing), while the Authors also present 8 tables and 10 figures. My suggestion is for the Authors to reduce the length of
the manuscript at least 25 %. Indeed, there are some sections that could be provided in the Appendix, or as supplementary30
information, or even completely removed. The latter is also true for some tables and figures. For example, since the article is
not a review paper, sections 3, 6 8.1-8.2, and 9 should be reduced in size and some parts should be provided in the Appendix.
Evidently, the proposed methodology is explained quite “late” in the text (page 13), while its application and comparison to
parametric models is provided in page 20. Similarly, apart from the tables and figures associated with the above sections, table
6 essentially provides the same results as table 5. There is no need for both tables. Although, the Authors can more efficiently35
decide which parts of the text should be reduced in size, my point is that the present version of the manuscript is too explana-
tory in some cases including unnecessary information. In other words, the text should be more focused on the findings of the
present work.

Answer: We agree with the reviewer that the manuscript is quite long and that some parts could be removed to better focus40
on the actual findings. We think reducing the size of sections 3, 6 and 8.1-8.2 is a good proposition, as they only provide
information about already existing models and well known theory. Removing table 6 is also a good suggestion. However, we
think the order of the sections should be kept, as the explanations in the successive sections are based on each other.

1. Section 9 (old numbering, Regionalization example) is moved to the supplement with additional explanations.

2. Parts of section 9 (Dependence of sub-daily on daily values) and Figure 7 (old numbering) is moved to the supplement.45
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3. Section 3 is shortened (see missing lines 19 - 27 on p. 4).

4. Section 6.1 is shortened (see missing text between lines 14 - 29 on p. 8).

5. Section 6.2 is shortened (see missing text between lines 3 - 21 on p. 10).

6. Section 7 is shortened (see missing text between lines 10 - 18 on p. 11).

7. Section 8 is shortened.5

8. Table 6 is removed.

Major Comment 2 : A second concern is the actual innovation and value of the presented work. Although the basis of the
proposed non parametric approach is new and of potential interest, according to the obtained results, the parametric models are
more effective, both in terms of point-wise estimation (Tables 4, 5 and 6) and regionalization (Tables 7 and 8). Evidently, with
the only exception being the hourly rainfall, where the non parametric approach is consistently the best performing one for both10
samples 1 and 2, and both seasons, overall, the parametric models result in smaller distributional-related errors. Moreover, even
in the case where the non parametric and the parametric methods would be of the same overall performance, the parametric
approaches may again be preferred since they can be more effectively used for addressing risk and estimating rainfall extremes
in periods different than the control one (i.e. 1997-2011): contrary to the non-parametric approaches, theoretical distribution
models allow for more robust rainfall estimates, with approximate validity also beyond the range of the historical data in the15
considered control period (see Langousis et al., 2016a and references therein). That said, although the idea presented in sec-
tions 7 and 8.3 is potentially important, the results and the associated discussion in the rest sections do not support or indicate
a substantial innovation or significance.

Answer: We disagree with the first part of this comment, where the reviewer proposes not to publish this manuscript, because20
the non parametric method only performed best for the hourly resolution. If we only had shown results for the hourly distribu-
tion, this statement would possibly have been vice versa. However, we presented the results for several temporal resolutions, as
we also wanted to present the deficiencies of the newly developed non-parametric method. Even if the method performed worse
over all temporal resolutions, we would consider it as important to publish the method. This may prevent the investigation of
this method by another hydrologist and further more the methodology could be applied to distributions corresponding to other25
variables (where e.g. multi modal distributions are present). Additionally, we have shown that daily gauges are of great use for
the interpolation of sub-daily distributions. The philosophy of only allowing methods for publication, which always perform
best, may lead to cherry picking of the results and prevent an open discussion in science.

Regarding the estimation of rainfall extremes, non-parametric kernel density estimations may exhibit problems. However,
using a Gaussian kernel also allows for extrapolation beyond the range of the historical data, which still needs to be evaluated.30
The study mentioned from the reviewer (Langousis et al., 2016a) investigates daily rainfall extremes, but not, how it is for
different temporal resolutions? Also more investigations are required to answer this question. In addition, depending on the
application, rainfall extremes do not always have such a decisive character. An example is real-time control of sewer systems,
where average and larger values are more important, as rainfall extremes can not be controlled by the system anyway.

Major Comment 3 : The parametric models used in this study (section 6.2), although four in number, do not include a Pareto35
distribution. In their conclusions, Authors mention that Pareto distributions can be also tested in the future, however, in my
humble opinion, this is not sufficient. At least for the comparison section to be complete, one should include in the analysis
a Pareto model (e.g. Generalized Pareto Distribution) in this study, where the proposed approach is explained and compared
with other common methods. Pareto distributions have been indicated as a very efficient class for modeling daily rainfall,
while towards the latter, some studies have concluded that they outperform exponential models (see Papalexiou et al., 2013;40
Langousis et al., 2016b and references therein).
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Answer: In the references mentioned by the reviewer, the focus lies on extremes of daily rainfall, whereas in our investigations
we only exclude very small rainfall values for each aggregation due to measurement errors and minor importance (see Table
1 in the manuscript). Additionally the focus of the manuscript lies on regionalization, which can influence the performance
of a theoretical distribution and was to our knowledge not yet investigated for the whole range of daily rainfall values using
Pareto type distributions. However, Pareto type distributions are very interesting and their regionalization performance could5
be looked at in a different paper.

Comment 1 : In section 5, the Authors assess the consistency with which one can apply Ordinary Kriging for interpolating
rainfall distributions. In doing so, they evaluate the “similarity” between different rainfall distributions for increasing distances
for all temporal scales, and they present the results in Figure 3. In lines 9-10, page 6, the Authors state: “The graphs in Fig.
3 show a decreasing similarity of the distribution functions with increasing distances over all temporal resolutions, as. . .”.10
However, the latter comment is not accurate for temporal scales higher or equal to 1 day. Evidently, there is no significant
difference in the value of the adopted statistic even for distances on the order of 40 km. More discussion or even investigation
is needed on this matter.

Answer: The reviewer is right, with the graphs in Fig. 3 a decreasing similarity of the distribution functions with increasing15
distances can not be verified for temporal scales higher or equal to 1 day. This is, however, just an effect of the chosen plotting
scale of T. In the attachment Tdistance.pdf a graph similar to Fig. 3 b shows the development of T over distances for higher
aggregations with a different plotting scale of T. With this graph our statement in the manuscript can be verified. Graph is
added to the supplement of the manuscript.

Comment 2 : Lines 5-7, page 14: How the interpolation of the non parametric distribution functions is established to the target20
location? Is this done based on the new proposed approach described in section 8.3? If yes, it should be explained more explic-
itly. If no, then the Authors should include the approach used in section 9 (for cdf idw), in the comparison of section 11.3.2.

Answer: In section 9 Regionalization example the only difference compared to the proposed approach in section 8.3 is the
calculation of the weights. In section 9, they are estimated with IDW. There are several reasons why IDW instead of OK25
is used in section 9 to calculate the weights. Using OK with daily precipitation values leads to the additional challenge of
including zero rainfall values within the estimation of the variogram and the kriging itself. As the focus of the manuscript does
not lie on interpolating rainfall values, the simpler IDW method is used. Therefore, IDW is also used for the interpolation of
the distributions (cdfidw) to assure that the better performance of cdfidw does not originate from the calculation of the weights
(different with OK and IDW), but from the chosen interpolation scheme (cdfidw, valuesidw). In the subsequent sections, IDW30
is not used anymore, because OK is considered as a better interpolation method than the simpler IDW. We realized that the use
of IDW in this section is quite confusing and the reasons should therefore be explained in more detail. Section 9 is moved to
the supplement with additional explanations.

Comment 3 : Lines 4-6, page 18: The readers are not able to validate these statements. The rankings provided in tables 5 and
6, are combined, i.e. they summarize the performance of each model based on both criteria (38) and (40). Due the latter, the35
discussion of Figure 8 can be challenged as well.

Answer: We agree with the reviewer that the mentioned statement can not be verified by table 5 nor table 6. However, in
the attachment tablesranking.pdf we provide the required tables, with ranking numbers constructed of the mean and median
separately for each quality measure. These tables verify the criticized statement, as the non-parametric methods always perform40
better concerning the W 2 measure and the parametric mostly perform better concerning the Ld measure. Due to the length of
the manuscript we didn’t provide these tables, but both tables could be provided in an appendix of the final paper. See Table
S2 and S3 in the supplement.

Comment 4 : Table 5 shows remarkably high errors (about 5000) in the performance of the exponential and mixed exponential
models in case of the monthly precipitation amounts, for both seasons. Considering that Table 5 corresponds to wise point45
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estimation, such high errors indicate complete inconsistency in the fitting of each model to the data, which is not reasonable
to me, especially if on considers that in the case of 5-days scale, the corresponding errors are on the order of 30. The Authors
should discuss this result.

Answer: The exponential distributions have more problems with symmetric distributions than the rest of the considered dis-5
tribution types. Monthly rainfall values are quite symmetric, whereas the regarded range of the 5-days values are still right
skewed. Looking at the graphs in attachment cdfs.pdf may illustrate these problems. Therefore, we do not consider the fitting
of the models to the data as inconsistent.

Comment 5 : Line 15, page 9: Instead of MOM, why not using L-moments estimator (PWM)?
10

Answer: To our knowledge L-moments have not yet been tested for the regionalization of precipitation distributions respecting
the whole range of rainfall values, that is why we preferred moments as they were already tested for regionalization.

Comment 6 : Concerning the level of writing, apart from the length of the manuscript which has already been discussed (see
major comment 1), there numerous cases of ambiguity and typos, which means that the Authors need to refine their text.
Below, I mention just a few examples: 1) line 25, page 1: “In order to run. . .for these sites.”. Ambiguous sentence, please15
rephrase. 2) line 25, page 3: “only gauges with. . . are chosen.”. Please explain better. 3) equation (1): since this equation refers
to precipitation amount (see line 13 in the same page), please replace −∞≤ x <∞ with 0≤ x <∞. 4) line 9, page 5 (and in
other points throughout the manuscript): please replace “0.95 Qth” with “Qth =0.95”. 5) lines 16-17, page 5: “85% is defined.
. .” Ambiguous sentence, please rephrase. 6) line 9, page 5: “between “between 0.2 and 1.7 mm”. This is inconsistent with the
corresponding value in Table 1.20

Answer: The text of the manuscript indeed needs further refinement.

1. See line 2 - 4 on p. 2.

2. See lines 29-32 on p. 3.

3. This equation is not part of the manuscript anymore.25

4. Is replaced.

5. Is changed, see lines 25-29 on p. 5.

6. Is corrected, see line 17 on p. 5.

Reviewer 3
30

Comment 1 : It is not clear why the authors use the Inverse Distance Weighting method in section 9 if they first talk about
Ordinary Kriging as a regionalization method in section 8. Content from section 9 is a confusing. At the end of this section the
authors said the following: (the method cdfidw) it will be adopted in the sequel with OK as interpolation technique. It is not
clear what this statement means.

35
Answer: See answer on comment 2 of the second reviewer.

Comment 2 : Some of the details in section 6.2 (parametric models) can be skipped since they are very well known results.
The same situation can be said from section 8.1. The paper is rather long and the shortening of this section would help with the
final length of the paper.

40
Answer: We agree with the reviewer and will remove some of the details in the mentioned sections. See changes mentioned
within the answer on the first major comment of the second reviewer.
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Minor comments:
Page 5, par 25: a comma should have inserted after to be preassigned
Page 7, par 25. Instead of is investigated it should say are investigated
Figure 2: The y axis labels are not percentages as the title suggests
Figure 5: It is not clear what does the legend “single” mean5

Answer: These minor corrections will be made.

1. See line 9 on p. 7.

2. See line 6-7 on p. 8.

3. See y axis labels in Fig. 2 and Fig. 6.10

4. Is explained in the last sentence of the figure caption (already in the first draft of the manuscript).

2 Additional Changes in the manuscript

1. Additional references to already existing interpolation methods are give on lines 6-8 on page 3, as we learned about them
at a conference after the first submission of the manuscript.

2. We again checked the results and found some minor errors in Table 5, which are corrected.15

6



Regionalizing non-parametric precipitation amount models on
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Abstract. Parametric distribution functions are commonly used to model precipitation amounts
::::::::::::
corresponding

::
to

::::::::
different

:::::::
durations. Precipitation amounts themselves are crucial for stochastic rainfall generators or weather generators. Non-parametric

kernel density estimates (KDEs) offer a more flexible way to model precipitation amounts. As it is already stated in their name,

these models do not exhibit a parameter
:::::::::
parameters

:
which can easily be regionalized to run rainfall generators at ungauged

locations as well as at gauged locations. To overcome this deficiency we present a new interpolation scheme for non-parametric5

models and evaluate it for different temporal resolutions ranging from hourly to monthly. During the evaluation the non-

parametric methods are compared to commonly used parametric models like the two parameter
::::::::::::
two-parameter gamma and

the mixed exponential distribution. As water volume is considered to be an essential parameter for applications like flood

modeling, a Lorenz-curve based criterion is also introduced. To add value to the estimation of data at sub-daily resolutions, we

incorporated the plentiful daily measurements in the interpolation scheme and this idea was evaluated. The study region is the10

federal state of Baden-Württemberg in the southwest of Germany with more than 500 rain gauges. The validation results show

that the newly proposed non-parametric interpolation scheme works, and additionally seems to be more robust compared to

parametric interpolation schemes, and that the incorporation of daily values in the regionalization of sub-daily models is very

beneficial.

1 Introduction15

Rainfall time series of differing temporal resolutions are needed for various applications like water engineering design, flood

modeling, risk assessments or ecosystem and hydrological impact studies (Wilks and Wilby, 1999; Burton et al., 2008). As

many precipitation records are too short and contain erroneous measurements, stochastic precipitation models can be used to

generate synthetic time series instead. Starting from single site
::::::::
single-site

:
models (summarized in Wilks and Wilby, 1999),

multi site
::::::::
multi-site

:
models for simultaneous time series at various sites (e.g., Wilks, 1998; Buishand and Brandsma, 2001;20

Bárdossy and Plate, 1992) and finally models which allow for gridded simulations are developed (e.g., Wilks, 2009; Burton

et al., 2008).

For modeling precipitation one crucial variable is the precipitation amount, which follows a certain distribution. Distributions

of daily precipitation amounts are strongly right skewed, with many small values and few large values (Wilks and Wilby, 1999;

Li et al., 2012; Chen and Brissette, 2014). This also holds true for different temporal resolutions with increasing skewness for25
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higher temporal resolutions and vice versa. This means , that rainfall intensity distributions depend on the temporal scale of

the observed values. In order to run single site
:::::::
Applying

:::::::::
single-site

::
or

:::::::::
multi-site precipitation models at ungauged locations ,

or for their gridded applications,
::::::
requires

:::::::::::::
regionalization

::
of

:
precipitation amount distributionsare also needed for these sites.

To reach this goal, regionalization is required which
:
.
::::
This can be done in two different ways:

1. Interpolate precipitation amounts from observation points for every time step to the target location(s) and set up a5

distribution with the interpolated values.

2. Fit a distribution function to the precipitation amounts separately for each gauge and interpolate the distribution functions

to the target location(s).

The first approach is maybe
::::
seems

:
more straightforward, but exhibits several deficiencies such as overestimation of the rainfall

probability, underestimation of the variance and underestimation of the maximum rainfall value. In section ??, an example10

will demonstrate
:::::::::
supplement

::::::
section

:::
S1

:::
an

:::::::
example

:::::::::::
demonstrates

:
these problems. Due to the relative inefficiency of the first

interpolation approach
:
, the second is preferred.

In most stochastic rainfall models , theoretical parametric distribution functions are fitted to the empirical values using
:
, e.g.

:
,

the exponential distribution or the two parametric gamma distribution (Wilks and Wilby, 1999; Papalexiou and Koutsoyiannis,

2012). It is possible to either interpolate the parameters of the theoretical distribution or to interpolate the moments (e.g. mean15

and standard deviation) of the rainfall intensities (Wilks, 2008; Haberlandt, 1998). Lall et al. (1996) introduced a more flexible

non-parametric
::::::::
single-site

:
rainfall model, where they used non-parametric KDEs with a prior logarithmic transformation to

model daily rainfall intensities. They address
::::::::
mentioned

:
the problem of regionalization by using non-parametric estimates of

distribution functions,
:
.
::::::::
However,

::
a

:::::::
different

:::::::::::
interpolation

::::::
scheme

::
is
::::::::

required
:::
for

::::::::::::
non-parametric

:::::::::::
estimations, as they do not

use any parameter , which can simply be
:::
that

:::
can

:::
be

::::::
simply interpolated.20

In the present work we introduce a regionalization strategy for non-parametric distributions and compare it to the tradi-

tional regionalization of parametric distributions for varying temporal resolutions from hourly to monthly scale. The common

procedure to interpolate parametric distribution functions is:

1. Fit a parametric distribution (e.g.
:
, a gamma or exponential distribution) at each sampling site to the empirical distribution

function (EDF).25

2. Interpolate the moment(s) or parameter(s) of the fitted parametric distribution.

3. Set up the theoretical cumulative distribution function (CDF) at every interpolation target with the interpolated mo-

ment(s) or parameter(s).

The newly proposed procedure for non-parametric distribution functions is:

1. Fit a non-parametric distribution to log-transformed rainfall values using a Gaussian kernel.30

2. Estimate the interpolation (kriging) weights with the precipitation values of a certain quantile.
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3. Apply these weights to the values of certain discrete quantiles.

4. Linearly interpolate the remaining quantile values to receive a continuous CDF for all target locations.

In Arns et al. (2013) a similar approach is used to interpolate quantile value differences of water levels for a bias correction

between empirical distributions of observed and modeled values at the German North Sea Coast. In contrast to their work,

entire theoretical distribution functions through interpolation are estimated in our work. Goulard and Voltz (1993) introduced5

a curve kriging procedure to regionalize fitted functions, which was further developed by Giraldo et al. (2011).
:::::
Based

:::
on

::::
their

::::
work

:::::::::::::::::::::::::::::
Menafoglio et al. (2013) developed

:
a
::::::::
universal

:::::::
kriging

:::::::
approach

:::
for

:::
the

:::::::::::::
non-stationary

::::::::::
interpolation

:::
of

::::::::
functional

:::::
data,

:::::
which

::::
was

::::::
applied

:::
in

:::::::::::::::::::::::
Menafoglio et al. (2016) for

:::
the

:::::::::
simulation

::
of

::::
soil

:::::::
particle

::::::::::
distribution

::::::::
functions.

:
As CDF curves are

special functions, which are monotonically non-decreasing between 0 and 1, the curve kriging procedure would have been

additionally
::::::::::
additionally

:::::
needs

::
to

::
be

:
constrained to these conditions. Our approach can deal with these conditions directly.10

After describing the study region Baden-Württemberg in section 2, the concept of precipitation amount models will be

:
is
:

introduced in section 3. The data selection in section 4 is followed by an investigation of the spatial dependence of the

precipitation amount models in section 5. The theory of precipitation amount models will be
:
is

:
addressed in section 6 and the

basis of the proposed interpolation procedure for non-parametric models will be
:
is established in section 7. The application of

different regionalization procedures of
::
for

:
precipitation amount models will be

::
is explained in section 8and motivated in the15

regionalization example in section ??. How to make use of daily precipitation values will be demonstrated .
::::
The

:::::::::::::
implementation

::
of

::::
daily

::::::
rainfall

:::::::::::
observations

::::::
within

:::
the

::::::::::
interpolation

:::
of

::::::::
sub-daily

:::::::::
distribution

::::::::
functions

::
is
:::::::
outlined

:
in section 9. The resulting

performance of different precipitation amount models at point locations and their regionalization is depicted in section 10.

2 Study region and data

The study region is the federal state of Baden-Württemberg, which is located in the southwest of Germany. The mountain20

range Black Forest in the western part and the mountain range Swabian Alps extending from southwest to northeast exhibit the

highest elevations in Baden-Württemberg. The rising of large scale moist air masses across mountainous regions causes higher

rainfall amounts on the windward side and lower amounts on the leeward side. In the summer months,
:

slopes with differing

inclinations lead to a warming of the air triggering convection currents, which leads
::::::
leading to a greater number of showers

and thunderstorms over mountainous regions. This shows a dependence of rainfall on elevation with seasonal differences. The25

rain-bearing westerly winds lead to high rainfall amounts in the Black Forest. The less high mountains
:::::::
relatively

:::::
lower

:::::::
altitude

of the Swabian Alps only exhibit relatively low
:::::
results

::
in

:::::
lower rainfall amounts as they lie in the shadow of the Black Forest

(Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg (LUBW), 2006).

As an investigation period the
:::
The

:
years from 1997 -

:
to

:
2011 are chosen

:
as

:::::::::::
investigation

::::::
period, as the German Meteoro-

logical Service (DWD) set up many new rain gauges in 1997. To obtain a
:
A

:
relatively homogeneous dataset , only gauges with30

at least five years of data and a data availability of
:
is
::::::::
obtained

::
by

::::
only

::::::::
choosing

::::::
gauges

::::
with

::::::::::
observation

:::::::
periods

::::::
greater

::::
than

::
or

:::::
equal

::
to

:::
five

:::::
years

:::::::::
providing

::::::
rainfall

::::::::::::
measurements

:::
for at least 80 % are chosen

::
of

:::
the

::::
time

:::::
steps

::::::
within

::::
their

::::::::::
observation
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:::::
period. It turned out that we had access to (i) 242 hourly and 5 min resolution and (ii) 347 daily gauges available in the study

region, with 80 sites having both high and daily resolution instruments. The observations are provided by the DWD and the

Environmental Agency of Baden-Württemberg (LUBW). The high resolution rain gauges are mostly equipped with tipping

buckets and gravimetric measurement devices (Beck, 2013). Fig. 1 shows the study region with the locations of the two sets of

rain gauges.5

3 Modeling precipitation amounts at point locations

Modeling precipitation amounts in our context means estimating distribution functions. Using
:::
The

:::::
usage

::
of

:::::
these

:
distribution

functions includes the implicit assumption of temporally independent and identically distributed (i.i.d.) variables. This assump-

tion is generally accepted for daily rainfall as the autocorrelation of consecutive nonzero daily precipitation is relatively small

and usually of less importance. For higher temporal resolutionslike the hourlyone
:
,
::::
such

::
as

::::::
hourly, autocorrelation needs to be10

incorporated in the model (Wilks and Wilby, 1999). In practice different methods exist to take account of this correlation
::::
such

:
a
:::::::::
correlation

::::
into

:::::::
account. One approach is to include autocorrelation prior to the sampling procedure by using conditional

distributions. Conditions may be event statistics like the duration of a rainfall event (e.g., Acreman, 1990) or varying statistical

moments depending on the hour of the day (e.g., Katz and Parlange, 1995). Another approach is introducing autocorrelation

after the sampling procedure. Bárdossy (1998) uses empirical distributions of hourly rainfall intensities to sample values whose15

random order is subsequently changed within a Simulated Annealing scheme to consider autocorrelation. In Bárdossy et al.

(2000) theoretical representations
::::::
(CDFs)

:
of the empirical distributions are used to allow

::
for regionalization of the distributions

and enable simulations at ungauged locations.

In general, a point wise distribution of precipitation amounts is fully described by its CDF. The CDF F of a random variable

X is (DeGroot and Schervish, 2012)20

F (x) = P (X ≤ x) for −∞< x <∞,

where P stands for (
:::
The

:
non-exceedance ) probability and the random variable X represents precipitation amount values at

a given location. For observed rainfall values the EDF can be obtained directly from observed values. To obtain a continuous

CDF for observed rainfall values a theoretical distribution is fitted to the EDF. In addition to enabling regionalization, further

advantages of smooth estimates of empirical distributions are described in Lall et al. (1996). Sampling from smooth estimates25

prevents the repetition of observed values and offers the opportunity to sample continuous values instead of discrete values.

The values F (x) of the CDF are
::::::::::
probabilities

::
of

:
a
:::::
CDF

::
are

:
referred to as quantiles in this work and the x

::::
their

::::::::::::
corresponding

::::::
rainfall values are called quantile values.

4 Data selection

For applications of rainfall estimates,
:
like hydrological or hydraulic modeling

:
, the correct representation of small rainfall values30

is not necessary as their contribution to decisive high discharge rates is rather small. Furthermore, tipping bucket gauges lead to
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wrong estimates especially for low rainfall values (Habib et al., 2001). Relative estimation errors are increasing for decreasing

rainfall rates (Nystuen et al., 1996; Ciach, 2003) and they only represent a small part of the total water volume, but the number

of smaller rainfall values is rather high. To avoid the negative effect of this high number of inaccurate values and due to their

minor importance for further applications, this study focuses on medium and high rainfall values.

Therefore, the quantile threshold (Qth) for the one hourly (1H) values is set to 0.95. This means, that values smaller than the5

0.95 quantile value
:::::::
quantile

:::::
value

:
at
:::::::::
Qth=0.95 are excluded. To investigate the total water volume represented by rainfall values

above the 0.95
:::
this quantile at point locations, the Lorenz-curve (Lorenz, 1905) is used. We considered a water volume analysis

for varying quantiles as important, to show that high quantiles not only represent the decisive higher rainfall values
::::::::
intensities,

but also a large proportion of the total water volume. So focusing on these quantiles during the model setup is likely to lead

to a better model,
:
as lower quantiles would disturb the model estimation due to measurement errors and the higher quantiles10

already represent a great percentage of the total water volume. The volume of the lower quantiles can then be modeled by

simple and robust methods as they do not require a very precise estimation due to their high inaccuracy and minor importance.

The Lorenz-curve was introduced by Lorenz (1905) to measure the concentration of wealth. After arranging the n obser-

vations xi in non-decreasing order, the Lorenz-curve Li can be calculated from a population (in our case rainfall values at a

single gauge) with the following formula:15

L(i) =

∑i
j=1xj∑n
j=1xj

(1)

The hourly threshold quantile values (QVth) range between 0.2 and 1.7 mm for the 0.95
:::
1.6

::::
mm

::
for

:
Qth :

=
::::
0.95 depending

on the location of the gauge (see Table 1). The Lorenz-curve of hourly values above Qth ::::::
Lorenz

:::::
curve in Fig. 2 a shows that

their relative water volume is
::
(a)

::::::
shows

:::
that

::::::
hourly

:::::
values

::::::
above

:::
Qth::

=
::::
0.95

::::::::
represent between 70 and 95 %

::
of

:::
the

::::
total

:::::
water

::::::
volume

::
(1

:
-
::::::::::
cumulative

::::
share

::
of
:::::
water

::::::::
volume).20

Based on hourly values (1H) of the high resolution data set, aggregated rainfall values of different temporal resolutions are

obtained: 2 hourly (2H), 3 hourly (3H), 6 hourly (6H) and 12 hourly (12H). Through aggregation of daily values (1D) of the

daily data set, 5-daily (5D) and monthly (M) values are obtained. In order to exclude small values and still consider the values

producing a high percentage of the water volume, theQth for sub-daily resolutions are defined with the mean Lorenz-curves in

Fig. 2 b. 85% is defined as target percentage of the water volume with the value of the mean hourly Lorenz-curve for the 0.9525

:::
(b).

::::
The

::::
mean

::::::
hourly

::::::::::::
Lorenz-curve

:::::
yields

::::
0.15

::
as

::::::::::
cumulative

::::
share

:::
of

:::::
water

::::::
volume

:::
for

:
Qth :

=
::::
0.95

:::
(85

::
%

:::
of

:::
the

::::
total

:::::
water

::::::
volume

::
is

::::::::::
represented

:::
by

:::::
larger

:::::::
values),

:::::
which

::
is
::::

also
:::::::

defined
::
as

:::::
target

:::::
share

:::
for

::::
the

::::::::
remaining

:::::::::
sub-daily

:::::::::
resolutions. This

target percentage yields the following
::::
share

::
of

::::
0.15

::::::
results

::
in

:::
the

::::::::
following

:::::
values

::
of
:
Qth for sub-daily resolutions: 0.93, 0.92,

0.9, 0.86 (see Table 1). For aggregations greater or equal to one day, the number of values is rather small and there estimation

errors are lower due to an increasing accumulation time (Ciach, 2003; McMillan et al., 2012). Nevertheless, only values above30

the highest quantile of 1 mm in the study region are used for the daily (1D) and 5-daily (5D) resolution (see Table 1), as smaller

values may still exhibit measurement errors.
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For the estimation of these basic statistics in Table 1 and for following calculations, rain values of the investigated aggre-

gations smaller than 0.1 mm are set to 0 mm. The reason is to achieve homogenization of the data sets of different years and

gauges, as the discretization ranges from 0.01 mm to 0.1 mm depending on the gauge.

5 Probability distributions of precipitation amounts in a spatial context

This section focuses on the spatial dependence of precipitation amount distributions, as the applied interpolation technique of5

ordinary kriging (OK) , is based on the assumption that the variable of interest (the CDF) exhibits decreasing similarity
:
is
:::::
more

:::::
likely

::
to

::
be

:::::::::
dissimilar with increasing distances. For the purpose of describing the development of the distribution functions

in space, the test criterion
::::::
statistic

:
T of the two-sample Cramér–von Mises criterion is used (Anderson, 1962). It evaluates the

similarity of two CDFs, in our case the similarity of CDFs from observations of two different point locations. The test criterion

::::::
statistic

:
T is defined according to Anderson (1962) as:10

T =
U

NM(N +M)
− 4MN − 1

6(M +N)
(2)

where

U =N ·
N∑

i=1

(ri− i)2 +M ·
M∑

j=1

(sj − j)2 (3)

with N as number of observations of the first sample ,
:::
and M as number of observations of the second sample. Both observa-

tions are joined together in one pooled dataset and the ranks are determined in ascending order of all observations in the pooled15

dataset. ri are the ranks of the N observations of the first sample in the pooled dataset and sj are the sorted ranks of the M

observations of the second sample in the pooled dataset. T can be interpreted as the mean difference of CDF values (quantiles)

of observed rainfall values
::::::::
intensities

:
between both data sets. So, if T increases for increasing distances, the CDFs are less

similar for increasing distances.

For the calculations of T , only rainfall values above the different Qth (see Table 1) are used. The graphs in Fig. 3 show a20

decreasing similarity of the distribution functions with increasing distances over all temporal resolutions, as the values of T

are increasing with increasing distances. Note that the average T-values of the hourly (1H) data in Fig. 3 a
::
(a)

:
are shown as the

highest dashed line in 3 b
:::
(b). So the continuity of the whole distribution changes in space, not only the continuity of values of

a single quantile. This shows the applicability of interpolation techniques like OK.

6 Precipitation amount models25

In the following subsections non-parametric and parametric models for precipitation amounts at single sites will be
:::
are intro-

duced. Before estimating the non-parametric or parametric distributions at each observation gauge, observations smaller than

QVth are censored from the sample of each gauge and QVth is subtracted from the values above them to fit to the support of
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the theoretical distribution functions [0,∞). QVth varies from gauge to gauge for different temporal resolutions (see Table 1).

After estimating the theoretical CDFs, the quantiles F are scaled with Qth

Fsc = F · (1−Qth) +Qth (4)

and QVth is added to the quantile values. Only the monthly resolution is excluded from the whole scaling procedure, as all

monthly rainfall values are used.5

6.1 Non-parametric models

Non-parametric KDEs for precipitation amount distributions were previously used and are described for daily precipitation

amounts in Rajagopalan et al. (1997) and Peel and Wilson (2008). By using this non-parametric method no theoretical distri-

bution needs to be preassigned,
:
only a kernel and its bandwidth needs to be chosen. That is why they are assumed to be more

flexible. A kernel in this context is a function which is centered over each observation value and is itself a probability density10

:::::::
function whose variance is controlled by its bandwidth (Bowman and Azzalini, 1997). The probability density function (PDF)

or KDE f(x) of every data set is then constructed through a linear superposition of these kernels (Peel and Wilson, 2008),

where n is the number of observed values, K is the kernel function, h is the bandwidth of the kernel, x are discrete kernel

supporting points,
:
and xi are observed rainfall values:

f(x) =
1

n

n∑

i=1

K (x−xi;h) (5)15

The estimation of f(x) is performed with an R (R Core Team, 2015) implementation of Wand (2015). However, since our

non-parametric interpolation scheme is based on CDFs and not on PDFs, the CDF is needed. In order to obtain a CDF from

the KDEs an integration is required, which is done numerically with the composite trapezoidal rule (e.g., Atkinson, 1989). For

numerical reasons CDF values (quantiles )
:::::::
quantiles slightly greater than 1 are sometimes obtained, which are simply set to 1

to remain in the correct range.20

To model right skewed precipitation amounts with their bounded support on [0,∞)
:
, either an asymmetric kernel like the

Gamma kernel (Chen, 2000) or a symmetric kernel with a prior logarithmic transformation of the values (Rajagopalan et al.,

1997) can be used to avoid boundary bias. A boundary bias occurs when kernels with infinite support are used for data with

bounded support, as this would lead to a leakage of probability mass (Rajagopalan et al., 1997).

In this work the symmetric Gaussian kernel with a prior transformation of data to logarithms is chosen, as this is an implicit25

adaptive kernel method with increasing bandwidths for increasing values and therefore alleviates the need to choose variable

bandwidths with skewed data (Lall et al., 1996; Charpentier and Flachaire, 2014). The Gaussian kernel is chosen as it is

straightforward and its application is facilitated through several software implementations (Sheather, 2004). The Gaussian

kernel K(t) is described in Eq. 6:

K(t) =
1

h
√

2π
· exp

(−t2
2h2

)
(6)30
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If the density of the logarithmically transformed observed values y = log(x) is fY and a Gaussian kernel is used for this

density estimation,
:
the density estimation fX of the original values x according to Charpentier and Flachaire (2014) is:

fX(x) = fY (log(x))
1

x
(7)

Finally,
:
the bandwidth h needs to be chosen, which is commonly indicated as the key step for KDEs (e.g., Bowman, 1984;

Harrold et al., 2003; Sheather, 2004; Charpentier and Flachaire, 2014) as a poor bandwidth selection may result in a peakedness5

or an over smoothing of the density estimation. Due to this great importance of the bandwidth selectionthe performance
:
,
:::
the

:::::::::::
performances of different selection methods is

::
are

:
investigated.

1. The simplest and mostly
::::
most

::::::
widely

:
used selection method is Silverman’s rule of thumb (Silverman, 1986), which is

defined as

hopt,SRT = 0.9 ·min
(
s;
q3− q1

1.349

)
n−1/5 (8)10

to obtain the optimal kernel bandwidth hopt,SRT with n sample values, where s is the standard deviation and q3− q1

is the interquartile range. Silverman’s rule of thumb (SRT) is deduced from minimizing an approximation of the mean

integrated squared error between the estimated and the true densities, where the Gaussian distribution is referred to as

the true distribution . This resulted in using the minimum of two measures of dispersion: the standard deviation, which

is sensitive to outliers and the interquartile range (Charpentier and Flachaire, 2014).15

2. The second method is a plug-in approach developed by Sheather and Jones (1991), which is widely recommended due

to its good performance (Jones et al., 1996; Rajagopalan et al., 1997; Sheather, 2004). Instead of using a Gaussian

reference distribution it uses a prior non-parametric estimate in the approximation of the mean integrated square error

andtherefore ,
::::::::
therefore,

:
requires numerical calculation (Charpentier and Flachaire, 2014) to find the optimal bandwidth

hopt,SJ , which is performed with the R implementation of Wand (2015) within this work.20

Instead of minimizing the mean integrated squared error
:
, Bowman (1984) recommended minimizing the integrated squared

error through a least squares cross validation (LSCV), which is applied using the R package of Duong (2015). Another common

cross validation method is the maximum likelihood cross validation (MLCV), where the optimal bandwidth h is obtained by

maximizing a pseudo likelihood. Cross validation methods tend to produce small bandwidths and therefore tend to produce

peakedness of the density (Rajagopalan et al., 1997; Sheather, 2004; Peel and Wilson, 2008), which we also observed in our25

applications. This peakedness of the PDF may have been caused by discrete observations, however it could not be fully removed

by adding uniformly distributed values between e.g. (0, 0.1) to the observations as described in ?. Peakedness of the PDF leads

to similarity between CDF and EDF, and is therefore not very useful for further applications, as it makes the advantages of

smoothed distributions negligible (see section 3). Due to this deficiency both cross validation methods are not considered in

what follows.30
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6.2 Parametric Models

Within the parametric procedure four different parametric distributions are used to model the precipitation amounts of all aggre-

gations in this study. The exponential distribution is a widely used and simple model. Another common model for daily rainfall

is the two parameter
:::::::::
Commonly

:::::
used

::::::
models

:::
are

::
the

::::::::::
exponential

::::::::::
distribution

:::
and

:::
the

::::::::::::
two-parameter gamma distribution (Wilks

and Wilby, 1999). The mixed exponential distribution was also recommended in (Wilks and Wilby, 1999)
:::::::::::
recommended

:::
in5

::::::::::::::::::::
Wilks and Wilby (1999) and was firstly used for daily precipitation amounts by Woolhiser and Pegram (1979). In addition to

these models the Weibull distributionis used, which showed good performance for modeling monthly precipitation amounts in

Baden-Württemberg (Beck, 2013)
:
,
::
is

::::
used. The CDF F (x) and

::
the

:
PDF f(x) of each used parametric distribution are listed in

the following.

1. For the exponential distribution with the parameter λ these functions are:10

f(x;λ) = λe−λx (9)

F (x;λ) = 1− e−λx (10)

2. For the two parameter
::::::::::::
two-parameter gamma distribution they are:

f(x;θ,k) =
xk−1e−

x
θ

Γ(k)θk
(11)

F (x;θ,k) =
γ
(
k, xθ

)

Γ(k)
(12)15

where Γ is the gamma function and γ is the incomplete gamma function.

3. For the two parameter
::::::::::::
two-parameter Weibull distribution F (x) and f(x) are:

f(x;λ,k) =
k

λ

(x
λ

)(k−1)

e−(x/λ)k (13)

F (x;λ,k) = 1− e−(x/λ)k (14)

4. The mixed exponential distribution exhibits the following functions:20

f(x;λ1,λ2,α) = αλ1e
−λ1x + (1−α)λ2e

−λ2x (15)

F (x;λ1,λ2,α) = 1−αe−λ1x− (1−α)e−λ2x (16)

Parametric distributions with more than two parameters are not considered, as this would complicate the regionalization of

the distributions due to dependencies among the parameters. For the three parameter mixed exponential distribution the param-

eter α is fixed for the whole study region (Wilks, 2008), which transforms
::::::::::
transforming it into a two parameter

::::::::::::
two-parameter25

distribution.
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In order to estimate the optimal parameter sets of the presented parametric distributions for each rainfall gauge and temporal

resolution the maximum likelihood method (MLM)
::::
using

:::::::::
numerical

:::::::::::
maximization

:::
via

::
a
:::::::
Simplex

::::::::
algorithm

:
and the method

of moments (MOM) are applied. The MLM is applied to all mentioned parametric distributions. Within MLM the Likelihood

function ln(L(ϑ;x1, ...,xn)) is maximized by changing the parameter values ϑ of the respective distribution within a Simplex

algorithm. The Likelihood function L consists of the product of the corresponding PDF values of n observations:5

L(ϑ;x1, ...,xn) =
n∏

i=1

f(xi|ϑ)

For numerical reasons it is a usual procedure to take the (natural) logarithm of the above product. As the logarithm is a

monotonic function the maximum will be obtained with the same parameter combination as before:

ln(L(ϑ;x1, ...,xn)) =
n∑

i=1

ln(f(xi|ϑ))

In the special case of the mixed exponential distribution the parameter α is varied between 0.01 and 0.5 within the parameter10

estimation. For each value of α the sum of the log-transformed likelihoods is calculated over all gauges with varying values of

the remaining parameters, while the maximum sum defines the parameter set.

To apply MOMto the gamma distribution, the mean x̄ and the standard deviation sx of the sample values (θ =
s2x
x̄ , k = x̄2

s2x
) are

needed
:::
need

::
to
:::
be

::::::::
calculated

:::
for

:::
the

::::::
gamma

::::::::::
distribution. In order to use MOM for the Weibull distributionat first the coefficient

of variation CV is determined.15

CV =
sx
x̄

This empirical value of CV is subsequently used to estimate the Weibull parameter k through solving the following Eq. ??

(Cohen, 1965)

CV =

√
Γ
(
1 + 2

k

)
−
(
Γ
(
1 + 1

k

))2

Γ
(
1 + 1

k

)

within a Simplex algorithm. The second parameter can subsequently obtained via20

λ=
x̄

Γ
(
1 + 1

k

) .

:
,
::
the

:::::::
method

::::::::
described

::
in

:::::::::::::
Cohen (1965) is

:::::::
applied. For the estimation of the mixed exponential distribution parameters MOM

is not applied , due to its shortcomings described in Rider (1961). MOM is neither applied to the one parameter exponential

distribution, as it would yield the same results as with
:::::
those

::::
from

:
MLM.

7 Non-parametric distributions in a spatial context25

In order to establish the basis of the proposed regionalization procedure for non-parametric models and to get a more detailed

idea of the spatial relationship of distribution functions, the EDFs of hourly and monthly rainfall intensities of the gauge
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Stuttgart / Schnarrenberg and its five closest gauges are plotted in Fig. 4. It is therefore not of importance which EDF belongs

to which gauge, but rather the relationship
:::
that

:
the EDFs have with each other. These two graphs show that the order of the

EDFs stays quite persistent over different quantiles for both aggregations, as the EDFs do not cross each other very often. In

other words, if one gauge exhibits the highest rainfall values for a certain quantile it also exhibits the highest rainfall values for

other quantiles and vice versa. The red and purple EDFs on the left graph illustrate this quite nicely.5

A more global look at the spatial relation between different EDFs can be obtained with Spearman’s rank correlation ρxy of

quantile values of all gauges for different quantile pairs. As we want to investigate the persistence of EDFs for the whole study

region, we are only interested in the ranks or rather the order of different quantile values for differing quantiles, which can be

done by calculating ρxy .

For the calculation of
:
In
::::

our
:::::::::
application

:::
the

::::
two

::::
input

:::::::
datasets

:::
for

:::::::::
calculating

:
ρxy at first the ranks of two datasets x and y10

need to be determined, which is done by sorting the values and substituting the values with their ranking positions:

x=[x1,x2, ...,xn] where x1 ≤ x2...≤ xn
Rank(x) =[1,2, ...,n]

To finally obtain the rank correlation ρxy , the correlation rxy is calculated with the ranks of the values instead of the values

themselves:15

ρxy =
sqt
sq · st

where q and t are Rank(x) and Rank(y), sqt is the covariance of q and t, sq and st are the standard deviations of s and t.

In our case the two datasets x and y represent quantile values of two different pairs of quantiles over all gauges in the study

region.

These pairwise rank correlations of quantile values of all gauge pairs are calculated starting from Qth until 1 in 0.001 steps20

for sub-daily aggregations and in 0.005 steps for aggregations greater
:::
than

:
or equal to one day. This procedure is repeated until

the rank correlation of every quantile with every other quantile is obtained. Finally the mean values of the rank correlation

values belonging to each quantile are calculated (see the dotted gray lines in Fig. 5). The greatest mean rank correlation is

indicated with a red cross in this figure,
:
which also defines the control quantile (Qc) with the highest mean rank correlation.

Rank correlations of Qc with the remaining quantiles lead to the dashed lines in Fig. 5.25

Fig. 5 demonstrates , that most of the rank correlation values
:::::::::
correlations

:
are greater than 0.85, which indicates

::::::::
indicating

a persistence of quantile values over a great interval of quantiles as well as over the whole study region for hourly through

monthly data. Lower correlation values
:::::::::
correlations

:
can be observed for the highest and lowest quantiles, which indicates a

non persistent behavior for these quantiles. This behavior is similar for all temporal resolutions. Therefore, quantile values of

Qc can be used to set up the interpolation weights. Applying these weights to the remaining quantiles from Qth until 1 should30

lead to good regionalization results for non-parametric CDFs.

In Table 2 the control quantiles Qc with the highest mean correlations are summarized for all temporal resolutions. As the

precipitation mechanisms are different in summer and winter in Baden-Württemberg, the rainfall data sets are also analyzed
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separately for summer (from May to August) and winter (from September to April). Qc is mostly close to the center of the

considered quantile ranges, which are also shown in Table 2. Nevertheless, it is worth noting the strong similarity of winter

and summer control quantiles Qc. The proposed procedure to interpolate non-parametric distribution functions using the same

interpolation weights for different quantiles seems feasible as the persistence of the order for quantile values of spatially

distributed rain gauges is evident. Only values of very high and low quantiles show a non-persistent behavior. Therefore,5

quality measureswill be introduced, which focus on the difference of these values
:
,
:::
will

:::
be

:::::::::
introduced.

8 Regionalizing of precipitation amount models

Until now we have introduced the different methods to model precipitation amounts at point locations, where observations of

rainfall are available. Additionally, we have investigated the basis for the proposed non-parametric interpolation procedure. In

the following, the regionalization of point models in order to obtain precipitation amount models at ungauged locations will be10

:
is
:
described. The regionalization method used for this purpose is OK

:::
used

:::::::::::::
regionalization

::::::
method

::::
OK

:
is
:::::::::
introduced

::::
first.

OK will be introduced firstin ?? and then the regionalization of parametric precipitation amount models will be outlined

briefly in subsection ??. The newly developed regionalization procedure for the
::::
Then

:::
the

:::::::::
approaches

::
to
::::::::::
regionalize

:::::::::
parametric

:::
and

:
non-parametric models will be explainedin more detail in subsection ??, as it differs fundamentally from the common

regionalization of parametric models
::::::::::
distributions

:::
are

:::::::::
explained.15

8.1 Regionalization technique

In the following
::
As

:
only a short overview of OK will be given. For further information ,

:
the interested reader is referred to

the common geostatistical literaturelike Kitanidis (1997). The first step of OK is fitting a theoretical variogram model to the

empirical variogram . The variogram describes the development of the spatial dependence over increasing distances of the

regarded variable. The empirical variogram
:
,
::::
like

::::::::::::::
Kitanidis (1997),

:::
for

::::::
further

::::::::::
information.

::::
The

::::::::
empirical

:::::::::
variogram γe(h) is20

calculated using Eq. 17

γe(h) =
1

2n(h)

n(h)∑

i=1

(z(xi)− z(xi +h))2 (17)

where n(h) is the number of gauge pairs for distance h, xi represents the position of a gauge i and z(xi) is the variable value

at gauge i. As the distances between rainfall gauges never provide a continuous set of distances, the h in Eq. 17 represents

different distance intervals. For following applications the width of the interval of h is 10 km
:::
and

:::
the

:::::::::
maximum

:::::::
distance

::
is25

:::
100

:::
km. For the theoretical variogram γt(h) one single model out of the following four is chosen based on the least squares

criterion. The s parameters represent the sills, the r parameters the ranges of the variograms.

1. Gauss model:

γt(h) = s1

(
1− e−

h2

r21

)
(18)
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2. Spherical model:

γt(h) = s2

(
1.5

h

r2
− 0.5

(
h

r2

)3
)

(19)

3. Exponential model:

γt(h) = s3

(
1− e− h

r3

)
(20)

4. Matern model (Pardo-Iguzquiza and Chica-Olmo (2008), Kv is the modified bessel function of second kind):5

γt(h) = s4

(
1− 1

2v−1Γ(v)

(
h

r4

)v
Kv

(
h

r4

))
(21)

The next step within OK is solving the corresponding equation system to estimate an interpolated value at an unobserved

location x0:

∑n
j=1φjγt(xi−xj) +µ= γt(xi−x0) i= 1, ...,n,

∑n
j=1φj = 1.10

n∑

j=1

φjγt(xi−xj) +µ= γt(xi−x0) i= 1, ...,n,

n∑

j=1

φj = 1.

:::::::::::::::::::::::::::::::::::::::::::

(22)

where n is the number of gauges included in the interpolation (10 within this work) and µ is the Lagrange multiplier.

8.1 Parametric Models

As already outlined in the introduction, either the parameters (Kleiber et al., 2012) or the moments (Haberlandt, 1998; Wilks,15

2008) of parametric distributions can be interpolated to regionalize parametric models. Within this work the moments are

interpolated, when MOM is used for fitting the parametric distributions. If MLM is used, the parameters are interpolated. Since

only rainfall values above QVth (see Table 1) are used, QVth also needs to be interpolated within the parametric approachfor

the different temporal resolutions. The resulting regionalizedQVth then serve as anchor points for the parametric CDFs, whose

shape is determined by the regionalized parameters of the respective distribution.
:
.20

8.1 Non-parametric models

Kernel smoothed distribution functions do not provide a parameter that can be interpolated, so
:::
thus a procedure other than

:::
that

for parametric distributions needs to be applied. By analyzing the spatial relation of rainfall EDFs in section 7, a persistent
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order of quantile values over a wide range of quantiles is observed. Therefore, the interpolation weights of quantile values for

the control quantile Qc (see Table 2) can be applied to the remaining quantiles.

For all gauges the quantile valuesQVc of the control quantileQc are estimated with the inverse of the gauge wise
:::::::::
gauge-wise

numerically integrated non-parametric CDF Fnp:

QVc = F−1
np (Qc) (23)5

With these QVc at the observation points, the interpolation weights φj for the target locations are estimated with OK (see

Eq. 22). Then
:
, these weights are applied to the quantile values of quantiles between Qth and 1 in 0.0001 steps andfinally

:
,

:::::
finally,

:
the remaining quantile values are linearly interpolated to receive a continuous CDF for all target locations. In order

to assure a monotonically increasing CDF only positive interpolation weights are allowed. This makes the use of OK prob-

lematic. It can only be used if the equation system (see Eq. 22) is solved with positive weights, which leads to an additional10

constraint
::::::::
additional

:::::::::
constraints:

φj ≥ 0 j = 1, ...,n. (24)

Considering this additional constraint
::::
these

:::::::::
additional

:::::::::
constraints

:
the OK equation system is solved with a SCIPY imple-

mentation (Jones et al., 2001) of a FORTRAN algorithm by Lawson and Hanson (1987), which solves the Karush-Kuhn-Tucker

conditions for the non-negative least squares problem. In the following
:
, this kriging procedure will be called positive kriging15

(PK). Another way to solve this extended optimization problem with an application of the Lagrange method is presented in

Szidarovszky et al. (1987).

The persistence of quantile values (inverse of the quantiles) described in section 7 also implies the persistence of quantiles.

The interpolation of quantiles for discrete rainfall values would therefore also be an option. However, this would complicate

the regionalization as not only monotonicity needs to be preserved, but also the value range of quantiles from 0 to 1.20

9 Regionalization example

As already mentioned in the introduction, two main possibilities to obtain precipitation amount distributions at ungauged

locations exist. In the following, these possibilities will be compared with each other. In order to assure equal interpolation

weights εi of the control gauges i for both interpolation possibilities, a simple inverse distance weighting (IDW) is used as

interpolation technique in this example, which is based on the following Eq. ??:25

εi =

1
d2i

30∑
i=1

1
d2i

where di is the distance between control gauge i and the respective target gauge.

The first interpolation method is the interpolation of rainfall values for every time step to the target location, followed

by an estimation of the distribution function with the interpolated values (valuesidw). The second approach is first fitting
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a non-parametric distribution function to all control locations, which is followed by an interpolation of these distribution

functions to the target location (cdfidw). In the following example the non-parametric KDE using SRT for the bandwidth

selection is applied for estimating the distribution functions at the control gauges.

Although it is commonly accepted to follow the cdfidw approach to obtain precipitation amount distributions at ungauged

locations for stochastic rainfall models, we still want to illustrate the deficiencies of the valuesidw method to motivate the5

cdfidw approach empirically. Additionally, the resulting estimation errors also appear when rainfall values are interpolated

without considering the CDF explicitly. For example the use of interpolated rainfall values for hydrological models may

introduce a bias in the discharge estimation caused by the poor interpolation results.

In our example the distribution of daily rainfall values (1D) for the gauge Esslingen / Neckar is estimated from rainfall values

of 30 neighboring gauges (see Fig. ?? a). In Fig. ?? b and c, parts of the distribution functions resulting from both methods10

and the original EDF are shown. Clear disadvantages of the valuesidw method are the overestimation of days with rainfall and

thus an underestimation of the probability of no rainfall (Fig. ?? b) and a clear underestimation of the CDF for higher quantiles

(Fig. ?? c).

As the cdfidw method does not provide rainfall values automatically, which are needed to calculate basic statistical measures,

random rainfall values are generated with the inverse of the interpolated non-parametric CDF. The number of these random15

values is equivalent to the number of observed daily rainfall values of the validation gauge. In Table ?? basic statistics of

precipitation amounts are listed for both methods and the observations. Looking at the mean values of all rainfall (x) values,

the valuesidw method seems to reproduce this statistic very well. Considering the other statistics in Table ?? and Fig. ?? this is

most probably caused by two disadvantages of this method: an overestimation of days with small rainfall amounts (see P0) and

a simultaneous underestimation of higher rainfall intensities (see x>0 and max). This argument is reaffirmed by the smaller20

standard deviation of valuesidw and the illustrations of the precipitation amount distributions in Fig. ??. The cdfidw method

mainly provides better results summarizing the listed statistics. Only a tendency of overestimating high rainfall intensities can

be observed.

As the valuesidw method has great problems in reproducing probabilities of zero rainfall and the course of the distribution

function, this method is not recommended to be used with rainfall over a great range of aggregations. For higher aggregations25

these disadvantages may have no great effect, but for smaller aggregations with a greater skewness the problems might even

increase. This would lead to a more pronounced under estimation of high quantile values, which are mostly the decisive ones

for subsequent applications.

As the cdfidw method exhibits better results concerning the basic rainfall volume statistics, it seems to be the better choice

for the purpose of interpolating precipitation amount models, so it will be adopted in the sequel with OK as interpolation30

technique. However, before we come to the results, the use of daily values for sub-daily statistics will be investigated in the

following section.
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9 Dependence of sub-daily on daily values

As the high resolution rain gauge monitoring network in the study area is quite sparse and the corresponding time series are

often incomplete, it would be useful to include more dense and complete secondary information in the interpolation of the

sub-daily distributions. Therefore
:
, the applicability of daily values to improve their interpolation is investigated, as the daily

monitoring network exhibits
::
has

:
a higher density. A simple disaggregation strategy (rescaled nearest neighbor) of Bárdossy5

and Pegram (2016) is applied to all days to obtain distributions of sub-daily resolutions at the locations of the daily gauges.

:
,
::::::::
allocating

::::::::
sub-daily

::::::
values

::::
from

:::
the

::::::
closest

::::
high

:::::::::
resolution

:::::
gauge

::
to

:::
the

:::::
daily

:::::
target

::::::
gauge. The procedure to incorporate

daily values in the interpolation of sub-daily values should be the following:

1. Choose a daily gauge and assign the
::::
target

::::::
gauge

:::
and

:::::::
allocate

::::::::
sub-daily

:
rainfall values of the closest (concerning hori-

zontal distance) high resolution gauge to it.10

2. Aggregate the hourly values
::::::::
sub-daily

:::::
values

:::
of

:::
the

::::
high

::::::::
resolution

::::::
gauge to daily values phourly(t)

::::::::::
psub−daily(t)

:
and

calculate a scaling factor for every day t with
::
by

::::::::::
additionally

:::::
using the values of the daily

:::::
target gauge pdaily(t) :

sc(t) =
pdaily(t)

phourly(t)

pdaily(t)

psub−daily(t)
:::::::::::

(25)

3. Multiply all hourly
::::::::
sub-daily values of the nearest gauge with this scaling factor(varying .

::::
The

::::::
scaling

::::::
factor

:::::::
changes

from day to day )
:::
and

::::::
simply

::::::
assures

:::
that

:::::
daily

::::
sums

::
of
::::::::::::
disaggregated

::::::::
sub-daily

:::::
values

::
at
:::
the

:::::
target

::::::
gauge

::::
equal

:::
the

:::::
daily15

:::::
values

::::::::
measured

::
at

:::
the

:::::
target.

4. Repeat steps 1. to 3. for all daily gauges.

5. Calculate the sub-daily statistic of interest from these scaled values at every daily gauge and incorporate them in the

interpolation procedure.

To estimate the
:::
The

:
applicability of this procedure

:
is

:::::
tested

:::::
with a cross validationis applied based on the high resolution20

gauges only, which are used as daily gauges one after another. The resulting sub-daily statistics of scaled values for these pseudo

daily gauges are compared to their original sub-daily values by calculating the mean squared errors over all gauges. The scaled

nearest neighbor values are compared to nearest neighbor values and to interpolated rainfall values. The interpolation is done

by OK with ten neighbors using a single variogram model. During the cross validation a nearest neighbor gauge is defined as

the gauge with the closest distance and at least 50 % of data overlapping. For the interpolation then again only the overlapping25

period is chosen.

In Fig. ?? the results are shown for quantile values, but the standard deviation, the mean values and QVth were also

investigated. The cross validation of the different statistical variables are very similar. For all of them the scaled nearest neighbor

values (NNS) lead to the best results in summer and winter. Therefore daily gauges seem to be useful for the interpolation of

sub-daily non-parametric and parametric models.30
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For the ,
::::::
which

:
is
:::::::::
described

:
in
::::::
section

:::
S3

::
of

:::
the

::::::::::
supplement.

:::
For

:::
the incorporation of daily values within the regionalization of

parametric and non-parametric sub-daily distributions a special regionalization technique is not needed. The rescaling method

(NNS) is applied to all available daily gaugeswith a minor change. If for a certain day no hourly values are available for the

closest gauge,
:
the next closest gauge is used for the rescaling of that certain day in order to increase the sub-daily sample size

at the daily gauge. After obtaining the sub-daily values at the daily gauges, they are simply treated as additional control points5

for the regionalization.

10 Performance

This section is divided into three parts. In the first part 10.1 the quality measures will be
::
are

:
introduced, in the second 10.2 the

performance of the precipitation amount models for point wise estimations are compared for all temporal resolutions. In 10.3

the
:::
The regionalization of the precipitation amount models is addressed

::
in

::::
10.3. The precipitation amount models are fitted and10

regionalized separately for winter (from September to April) and summer (from May to August) months, as the rain-producing

weather processes are different in these two seasons.

10.1 Quality measures

The validation of the precipitation amount models at point locations and their regionalization is evaluated with two different

quality measures. These quality measures need to be measures considering the CDF and not the PDF,
:
as the interpolation of15

the non-parametric distributions only provides CDFs for ungauged locations.

The most common goodness of fit test to estimate the quality of fitted distributions is the Kolmogorov–Smirnov test. As

distributions of precipitation amounts are positively skewed,
:
the greatest part of the values are small or medium values, which

leads to the highest gradient of the CDF for these values. Therefore, a greater difference of the corresponding CDF quantiles

would be more likely and would govern the Kolmogorov–Smirnov test. However, these medium values are less important than20

the greater precipitation amounts for most of the precipitation model applications.

For this reason the Cramér–von Mises criterion as a more integral measure and a Lorenz-curve based measure - which

allows for conclusions about the representation of the water volume - are used. The Cramér - von Mises criterionW 2 for single

samples is (Stephens, 1974):

W 2 =
1

12n

n∑

i=1

(
2i− 1

2n
−F (xi)

)2

(26)25

where F (xi) represents the theoretical distribution (non-parametric or parametric) of the observed values xi in ascending order.

For sub monthly resolutions the Cramér - von Mises criterion is slightly modified, as only quantiles above Qth (see Table 1)

are used:

W 2 =
1

12n

n∑

i=1

((
2i− 1

2n
· (1−Qth) +Qth

)
−F (xi)

)2

(27)
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As already mentioned in section 7, a quality measureis needed, which describes the representation of high quantiles
:
,
::
is

::::::
needed. For Lorenz-curves, high vertical differences are supposed to appear more frequently for high quantiles as the slope

increases with increasing probabilities for rainfall intensities. Therefore
::::::::
quantiles.

:::::::::
Therefore, a measure respecting the vertical

differences of the Lorenz-curves is suitable. In section 4 the estimation of the Lorenz-curve with observed rainfall values was

described. However, the Lorenz-curve L(F (x)) can also be estimated from the theoretical CDF F (x), which is a preferable5

approach, as random rainfall values don’t
::
do

:::
not need to be generated from the CDF previous to the Lorenz-curve estimation:

L(F (x)) =

∫ F
0
x(F )dF

∫ 1

0
x(F )dF

(28)

where x(F ) is the gauge wise quantile function (the inverse of the CDF). The integrals of the quantile functions are esti-

mated numericallyas
:
,
::::::
because

:
the non-parametrically estimated distribution functions are not analytically invertible

::::::::
invertible

:::::::::
analytically. The Lorenz-curve criterion Ld used here is the squared difference of the observed L(Fn(x)) and modeled Lorenz-10

curve L(F (x)):

Ld =
n∑

i=1

(L(Fn(x))−L(F (x)))2 (29)

The differences of the Lorenz-curves are only estimated for values greater than QVth (see Table 1). Within the validation of

the regionalization only values above the highest QVth among the observed and differently regionalized values for each gauge

are evaluated, as they may differ for the different techniques.15

10.2 Point models

To determine an overall performance ranking for the remaining models, at first the arithmetic mean and the median over the

number of gauges of both measures of quality - the Cramér–von Mises criterion W 2 and the Lorenz-curve criterion Ld - are

calculated for each precipitation amount model. This leads to four different measures, which are shown for hourly values of the

winter season in Table ??
:
3. Note that

::
the

:
mean values reflect the robustness and

:::
the

:
median values represent a good average20

performance of one precipitation model for the whole study region.

To combine the four statistics (mean and median ofW 2 and Ld respectively) in one single performance measure,
:
every value

in Table ??
:
3 is then divided by the smallest (best) value (bold numbers) of its corresponding quality measure, indicating the

relative performance with respect to the best model. This leads to one number for each statistic and precipitation model starting

from 1 for the best performing model of each statistic. The bigger this number,
:
the worse its relative performance. These four25

numbers are then combined by adding them together, which results in a single number for each precipitation amount model to

define the performance ranking for each temporal resolution. A ranking number of 4 is the lowest possible number and implies

that the related model shows the best performance for all four quality measures. In Table ??
:
4 the ranking numbers for all

temporal resolutions and both seasons are shown.

With the ranking numbers the best performing precipitation amount model is estimated for each season and temporal reso-30

lution. In Table ?? the best parametric and non-parametric methods are presented for each resolution and it is stated whether
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the non-parametric or parametric method performs better. Among the non-parametric methods (NP) Silverman’s rule of thumb

(SRT) and the plug-in approach of Sheather and Jones (1991) (SJ) show very similar results, especially in the winter season.

The mixed exponential distribution with a MLM parameter estimation (Mixed-Exp-MLM) leads to the best results among the

parametric methods (P) for daily and sub-daily resolutions. For temporal resolutions greater
:::
than

:
1D the Weibull distribution

with a MOM parameter estimation (Weibull-MOM) leads to the best results. The best performance of the Weibull distribution5

for monthly values coincides with the results of Beck (2013) for the same study region.

The performance ranking of the different methods is quite similar in winter and summer. The non-parametric methods

always lead to better performances concerning the Cramér - von Mises criterion W 2. The parametric estimations mostly lead

to better results regarding the Lorenz-curve criterion Ld . Figure ??
:::
(for

::::::
details

:::
see

:::::
Table

:::
S2

:::
and

:::
S3

::
in

:::
the

:::::::::::
supplement).

::::
Fig.

:
6
:
may provide an explanation for the differences in performance regarding these two quality measures. The graphs show the10

CDFs and Lorenz-curves for the hourly (1H) and 12 hourly (12H) resolution for a chosen gauge. For the hourly resolution

the non-parametric SRT method leads to better results for both measures. An equally good performance regarding the W 2

for the parametric and non-parametric method can be observed for the 12 hourly resolution. However, the non-parametric

method performs worse regarding the Ld measure, as it overestimates the water volume represented by the higher quantiles.

The reason can already be observed in the CDF, where the non-parametric method systematically overestimates the values of15

high quantiles. The parametric method can lead to both to over- and underestimations. This influences the W 2 criterion in the

same way as a constant overestimation (see squared differences in Eq. 26), but it seems to lead to better results regarding the

Ld criterion.

Parameter estimation through MOM in combination with the Weibull distribution performs better for higher aggregations,

which exhibit more symmetric distributions. For daily and sub-daily aggregations , MLM parameter estimation in combination20

with the mixed exponential distribution leads to better results.

The overall performance is best with the mixed exponential distribution for temporal resolutions between two hours (2H) and

one day (1D) in both seasons. For five daily (5D) resolutions , the Weibull distribution exhibits the best overall performance in

both seasons. For the hourly distribution (1H) , the non-parametric models show the best overall performance in both seasons.

Only for the monthly distribution (M) the best performing methods differ between the two seasons. In the summer season the25

Weibull distribution shows the best results and in the winter season the non-parametric models perform
::
the

:
best.

10.3 Regionalization

The development of the two-sample Cramér–von Mises criterion T over distance in section 5 mostly indicates a spatial

dependence which may be modeled reasonably via kriging. Additionally, kriging techniques were already applied successfully

by others for the interpolation of rainfall values over different temporal scales (e.g., Tobin et al., 2011; Lloyd, 2005).30

In order to estimate the quality of the regionalized precipitation amount models,
:
a 2-fold cross validation (split sampling)

is used. Two equally sized samples of observation points are randomly generated (Fig. ??
:
7). The most simple regionalization

method is using the estimates of the nearest neighbor (NN) of the calibration set, which are therefore used as benchmarks for

the quality of the regionalization procedure. Additionally
:
, the daily rescaled nearest neighbors (NNS) are used as

:
a benchmark.
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In this case all daily gauges are used for the rescaling except for the daily observations at the locations of the respective

validation sample.

Following the results of the point-wise estimation in the previous section only the Weibull-MOM and the Mixed-Exp-MLM

models among the parametric models are investigated for the regionalization, as they show good performance for differing

aggregations. They are both investigated for all aggregations to test the difference of interpolating moments or parameters,5

except for the monthly aggregation, for which only the Weibull distribution is investigated. In order to regionalize the Weibull-

MOM model,
:
the mean and standard deviation are spatially interpolated,

:::
and

:
for the regionalization of the Mixed-Exp-MLM

modelits
:
,
:::
the parameters λ1 and λ2 are interpolated while its parameter α is

:::
kept constant for the whole study region.

As the two non-parametric approaches SRT and SJ show very similar results during the point wise estimation
:
, only the SRT

approach is interpolated. For the regionalization of the non-parametric models QVc (see Table 2 and Eq. 23) values are used to10

estimate the interpolation weights, which are further applied to the remaining quantiles.

Following the conclusions in section 9, daily gauges can be used to set up distribution functions for sub-daily values with a

scaled nearest neighbor approach (NNS). Therefore, their incorporation does not require a special interpolation method as they

can be used simply as additional supporting points.

10.3.1 Variogram estimation15

The first step during the regionalization procedure is the estimation of the theoretical variograms. As described in section ??

single theoretical variograms are estimated for all interpolation variables. The interpolation variables of the three precipitation

amount models for which theoretical variograms need to be estimated for the two seasons and eight temporal resolutions are:

1. P-Mixed-Exp-MLM: λ1, λ1

2. P-Weibull-MOM: mean, standard deviation20

3. NP-SRT: QVc values (see Table 2 and Eq. 23)

During the estimation of the parameters of the Weibull distribution with MOM, QVth is subtracted from the rainfall values

prior to the estimation of the mean and the standard deviation. As the mean of these values show lower spatial dependencies

than the mean of the censored values without subtraction, QVth is added to the mean values of the parameter estimation before

the regionalization. After the regionalization
:
, they are subtracted again to determine the parameters of the Weibull distribution.25

Variogram models are also fitted to QVth,
:
as the corresponding values serve as starting points for the parametric models at

the ungauged locations.
:::
Fig.

:::
S4

::
to

:::
S7

::
in

:::
the

::::::::::
supplement

:::::
show

:::::::::
exemplary

:::::::::
theoretical

::::::::::
variograms

::
of

:::::::
different

::::::::::
parameters

:::
for

:::::::
temporal

:::::::::
resolutions

:::
of

::
1H

::::
and

::::
12H

:::
for

:::
the

:::::
winter

::::
and

:::::::
summer

:::::
season

:::
of

:::::::::
calibration

::::::
sample

::
2.

:
It
::
is
:::::::
difficult

::
to
::::::::

compare
:::
the

::::::
spatial

::::::::::
persistence

::
of

::
T

::::
(see

::::
Fig.

::
3)

::::
with

:::
the

::::::
spatial

::::::::::
persistence

::
of

:::
the

::::::::
different

::::::::::
distribution

:::::::::
parameters,

:::
as

::
T

::::::::
considers

:::
the

::::::
whole

::::::::::
distribution

:::::::
function

::::
and

:::
the

::::::::::
distribution

::::::::::
parameters

::::
only

:::::::
describe

:::::::::
properties

:::
of

:::
the30

::::::::::
distribution.

::::::::
However,

:::
the

:::::
range

::
of

::
T

:::
was

:::::
about

:::
35

:::
km,

::::::
which

:::
can

::::
also

::
be

::::::::
observed

:::
for

::::
some

:::
of

::
the

::::::::::
parameters,

:::::::::
especially

:::
the

::::
mean

::
of
:::::::::::::::
P-Weibull-MOM,

::::
QVc::

of
::::::::
NP-SRT

:::
and

:::::
QVth.

:
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10.3.2 Precipitation amount models

The regionalization of the precipitation amount models is evaluated with the same quality measures as the point wise estimation,

the Cramér–von Mises criterion W 2 and the Lorenz-curve criterion Ld. For both seasons a 2-fold cross validation is applied.

The investigated interpolation approaches for the parametric distributions are:

1. OK - MOM: OK of the Weibull distribution, fitted with MOM.5

2. OK - MLM: OK of the mixed exponential distribution, fitted with MLM.

3. OK - MOM Daily: OK of the Weibull distribution including scaled NNS values of daily gauges (only for sub-daily

aggregations).

4. OK - MLM Daily: OK of the mixed exponential distribution including scaled NNS values of daily gauges (only for

sub-daily aggregations).10

The interpolation approaches for the non-parametric models are:

1. PK - NP: PK of the non-parametric models, which are estimated using SRT.

2. PK - NP Daily: PK of the non-parametric models including scaled NNS values of daily gauges (only for sub-daily

aggregations).

In Fig. ??
:
8, parts of the interpolation procedure for PK - NP are shown for the daily aggregation, where the non-parametric15

QVc at the calibration gauges and three interpolation fields are shown.

In Table ?? and Table ??
:
5

:::
and

:::::
Table

::
6 the performance ranking numbers of the regionalized precipitation amount models

are summarized for the winter season and for the summer season respectively. The differences between the two cross validation

samples are quite small, so the performances are not just resulting from the positioning of the gauges in the samples but from

the interpolation approaches. Among the parametric methods the MOM approaches mostly perform better than the MLM20

approaches for aggregations greater equal
::::
than

::
or

:::::
equal

::
to

:
2H during the winter season. In the summer season the MOM

approaches perform mostly worse than the MLM approaches for aggregations smaller
::::
than

:
6H and vice versa for higher

aggregations. Interpolating momentstherefore ,
::::::::
therefore,

:
seems to be more robust than interpolating parameters of distributions

as the performance ranking changed in favor of the MOM approaches comparing
::::::::
compared to the point wise results (see Table

??
:
4). Only for stronger skewed distributions in the summer and smaller aggregations,

:
the MLM approach still outperforms the25

MOM approach.

Comparing the non-parametric interpolation approaches with the parametric interpolation approaches shows that the non-

parametric approach performs best for hourly (1H) and two hourly values (2H) for both calibration samples and for calibration

sample 1 with three hourly values (3H) in the winter season. This seems to indicate a more robust non-parametric interpolation

method for the winter season as the performance ranking changed in favor of it compared to
::
in

::::::::::
comparison

::::
with the point30
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wise estimation. In the summer season the non-parametric methods only perform best for the hourly resolution (1H), which is

similar to the results of the point wise estimation.

It is obvious that using scaled values of the daily gauges is very beneficial as approaches incorporating these values almost

always include the best performing method,
:
except for the 12H aggregation in the summer season.

As benchmark
:
a
::::::::::
benchmark, the interpolation results are also shown for parametric and non-parametric estimates of nearest5

neighbors (NN) and additionally using scaled daily gauges for sub-daily aggregations (NNS). Among the benchmark methods

the NNS approaches perform better than the simpler NN approaches for the sub-daily aggregations, except for the twelve

hourly (12H) resolution in summer. Since the best interpolation approach almost always - with only two exceptions - performs

better than the best nearest neighbor approach,
:
the regionalization of distributions seems to be worthwhile.

11 Conclusions10

Comparing different modeling schemes for precipitation amounts at point locations (see Table ??
:
4) over different temporal

resolutions has revealed several findings. The non-parametric estimates only perform better for the hourly resolution in both

seasons and for monthly distributions in the winter season. The non-parametric estimates especially have problems
:::::
They

::::
have

:::::::
problems

:::::::::
especially in reproducing the volume correctly, as they seem to have difficulties with high quantiles. Causes for this

deficiency could be the numeric interpolation or the small number of rainfall values at high quantiles. For temporal resolutions15

between two hours and a month the parametric distributions outperform the non-parametric estimates
::::::::::
distributions. Among

the parametric methods the mixed exponential distribution performs better for sub-daily and daily aggregations, whereas the

Weibull distribution has the advantage for higher aggregations.

The regionalization of the precipitation amount models showed (see Table ?? and ??
:
5
::::
and

:
6) that the proposed interpolation

scheme for non-parametric distributions is useful as it does not worsen its performance ranking compared to the estimation20

at point locations. Rather, it appears to be a robust interpolation scheme as it more often outperforms the parametric schemes

comparing point wise estimation and regionalization. Among the parametric methods the interpolation of moments turned out

to be more robust than the interpolation of parameters.

As auxiliary variables , the use of daily gauges for sub-daily resolutions is very beneficial, which
::
as

:
was suggested by a data

analysis and is
:::
our

::::
data

:::::::
analysis

::
in

::::::
section

::
S3

::
in
:::
the

::::::::::
supplement

::::
and

:
is
::::
also

:
proven by the evaluation of the regionalization.25

In general
:
, the regionalization of distributions seems to be worthwhile as it nearly always performs better than the nearest

neighbor (horizontal distance) approaches, which would be the most simple estimate. As lower rainfall values were excluded

in this study due to their minor importance and measurement errors, the results are not directly comparable to those of most of

the other publications within this research field.

The difficulty of non-parametric distributions in representing water volumes may be reduced by using the Epanechnikov30

kernel with finite support as proposed by Rajagopalan et al. (1997). Additionally, ways of incorporating elevation within

the regionalization of non-parametric distributions needs
::::
need

:
to be tested. Regarding the parametric distributions, Chen and

Brissette (2014) and Li et al. (2012) recommended Pareto type distributions instead of exponential type distributions, which
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could also be tested in the future. Finally, the non-parametric interpolation approach could also be applied to parametric or

empirical distributions and should be tested for various study regions.
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Table 1. Basic rainfall information of the study region for different aggregations (agg): P0 is the probability of 0 mm rainfall, Qth stands for

the defined quantile thresholds or threshold ranges and QVth represents the corresponding quantile values (rainfall) for the defined Qth.

agg P0 (-) Qth (-) QVth (mm)

1H 0.82 - 0.93 0.95 0.2 - 1.6

2H 0.76 - 0.9 0.93 0.3 - 2.3

3H 0.71 - 0.87 0.92 0.4 - 3.1

6H 0.61 - 0.81 0.9 0.7 - 5.1

12H 0.46 - 0.72 0.86 1.2 - 7.7

1D 0.38 - 0.6 0.72 1.0 - 6.4

5D 0.1 - 0.22 0.29 1.0 - 7.2

M 0.0 - 0.02 0.0 - 0.02 0

Table 2. Control quantiles (Qc) which exhibit the highest mean pair wise rank correlations with other quantiles. They are shown for different

temporal aggregations (agg) and separately for summer and winter. Additionaly
:::::::::
Additionally,

:
the (center) quantile in the middle of the

investigated quantile range is shown.

season

agg winter summer center quantile

1H 0.977 0.979 0.975

2H 0.963 0.967 0.965

3H 0.959 0.966 0.96

6H 0.949 0.953 0.95

12H 0.924 0.922 0.93

1D 0.835 0.865 0.86

5D 0.615 0.575 0.645

M 0.545 0.46 0.5

Best performing non-parametric (NP) and parametric (P) models for all temporal resolutions and seasons for the point

wise estimation. Bold letters indicate the better performing method comparing the non-parametric and parametric estimations.

The numbers in parenthesis refer to the ranking numbers in Table ??. NP P NP P 1H SJ (4) Mixed-Exp-MLM (10.91) SRT

(4) Mixed-Exp-MLM (14.38) 2H SJ (7.35) Mixed-Exp-MLM (5.62) SRT (8.44) Mixed-Exp-MLM (5.93) 3H SJ (18.04)

Mixed-Exp-MLM (5.35) SRT (20.08) Mixed-Exp-MLM (5.31) 6H SRT (44.3) Mixed-Exp-MLM (5.16) SRT (41.91) Mixed-Exp-MLM5

(4.69) 12H SRT (40.37) Mixed-Exp-MLM (4.83) SRT (43.51) Mixed-Exp-MLM (4.72) 1D SJ (31.73) Mixed-Exp-MLM
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Regionalization example: Basic daily rainfall statistics of the observed values at the validation gauge (data), the interpolated rainfall values

(valuesidw), randomly sampled rainfall values of the interpolated non-parametric distribution function (cdfidw) and the respective ranges

of the calibration gauges. The rainfall statistics are the arithmetic mean (x), the standard deviation (sx) of all rainfall values, the arithmetic

mean (x>0) of non zero values, the probability of zero rainfall P0 and the maximum value (max). data valuesidw cdfidw

range calibration set x 2.18 2.17 2.27 1.77 - 3.18 sx 4.56 4.04 4.93 3.88 - 6.47 x>0 4.39 2.97 4.20 3.73 - 4.47 P0 0.50 0.27 0.46 0.46 -

0.54 max 56.0 49.12 62.29 42.5 - 102.3

Table 3. Mean and median of the two quality measuresW 2 and Ld for the eight precipitation amount models over the study region for hourly

values (1H) in the winter season. The bold numbers indicate the lowest (best) value of the corresponding measure.

W 2 Ld

mean median mean median

P-Weibull-MLM 0.001583 0.001196 0.05294 0.03385

P-Gamma-MLM 0.002638 0.00216 0.09383 0.06477

P-Exp-MLM 0.00972 0.008105 0.2712 0.2293

P-Mixed-Exp-MLM 0.0007976 0.0004327 0.03094 0.01646

P-Weibull-MOM 0.01416 0.008296 0.06319 0.02815

P-Gamma-MOM 0.03067 0.01882 0.1378 0.0675

NP-SJ 0.0003486 0.0001954 0.009708 0.005123

NP-SRT 0.0003753 0.0001994 0.009673 0.005147

(5.11) SRT (32.63) Mixed-Exp-MLM (4.71) 5D SJ (12.09) Weibull-MOM (5.9) SJ (13.03) Weibull-MOM (5.46) M SRT

(7.37) Weibull-MOM (11.4) SRT (7.7) Weibull-MOM (7.14)
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Table 4. Performance ranking numbers of the precipitation amount models for the point wise estimation
::::::::
estimations. The underlined numbers

indicate the best parametric (P) and non-parametric (NP) models. The bold numbers indicate the overall best model.

Winter Season

1H 2H 3H 6H 12H 1D 5D M

P-Weibull-MLM 22.74 13.04 10.81 7.15 5.45 8.38 7.26 31.49

P-Gamma-MLM 40.96 26.21 23.77 15.17 8.6 13.24 10.39 619.05

P-Exp-MLM 142.16 114.17 120.39 95.52 48.33 48.57 16.19 4744.19

P-Mixed-Exp-MLM 10.91 5.62 5.35 5.16 4.83 5.11 19.81 4746.51

P-Weibull-MOM 95.1 48.09 35.45 21.62 13.08 14.05 5.9 11.4

P-Gamma-MOM 211.72 112.95 80.16 44.01 21.72 24.63 6.81 243.85

NP-SJ 4 7.35 18.04 45.73 43.34 31.73 12.09 10.11

NP-SRT 4.1 7.46 18.45 44.3 40.37 34 12.5 7.37

Summer Season

1H 2H 3H 6H 12H 1D 5D M

P-Weibull-MLM 28.95 13.56 12.13 8.81 6.23 6.31 8.63 27

P-Gamma-MLM 66.05 35.66 31.95 18.38 9.08 8.68 13.87 421.39

P-Exp-MLM 291.57 191.99 181.42 97.26 34.39 28.48 30.79 5555.11

P-Mixed-Exp-MLM 14.38 5.93 5.31 4.69 4.72 4.71 36.06 5555.11

P-Weibull-MOM 98.96 41.81 28.86 17.22 10.42 8.54 5.46 7.14

P-Gamma-MOM 294.99 126.61 77.35 35.78 16.9 13.66 7.21 317.29

NP-SJ 4.47 9.93 22.73 52.92 50.11 35.1 13.03 9.73

NP-SRT 4 8.44 20.08 41.91 43.51 32.63 14.05 7.7

30



Table 5. Performance ranking numbers for the 2-fold cross validation of regionalized precipitation amount models in the winter season. The

underlined numbers indicate the best parametric (P) and non-parametric (NP) models. The bold numbers indicate the best overall model for

each validation sample and temporal resolution.

Calibration Sample 1

1H 2H 3H 6H 12H 1D 5D M

OK - MOM 10.45 8.63 7.87 7.22 6.27 4.45 4.27 4.05

OK - MLE 8.49 23.91 19.26 11.73 10.18 6.35 16.57 -

OK - MOM DAILY 7.83 4.97 4.67 4.21 4.84 - - -

OK - MLE DAILY 5.54 14.12 6.21 4.55 26.56 - - -

PK - NP 7.46 7.34 7.69 9.17 9.47 5.31 7.32 6.93

PK - NP DAILY 4.08 4.05 4.23 5.65 10.26 - - -

NNS - MOM 8.68 6.09 5.63 5.74 6.16 - - -

NN - MOM 15.75 13.33 13.30 11.85 10.51 5.99 5.92 6.34

NNS - MLE 7.72 5.59 5.67 5.59 5.63 - - -

NN - MLE 11.39 9.53 9.73 10.68 10.56 7.30 8.96 9.62

NNS -NP 6.23 5.74 6.04 7.58 11.70 - - -

NN - NP 10.21 10.53 10.60 12.92 14.11 5.50 7.26 287.63

Calibration Sample 2

1H 2H 3H 6H 12H 1D 5D M

OK - MOM 9.36 8.07 7.84 7.10 6.67 4.10 4.68 4.79
:::
4.01

OK - MLE 6.92 31.26 28.79 11.16 8.86 6.11 6.88 -

OK - MOM DAILY 6.05 4.90 5.10 4.76 6.29 - - -

OK - MLE DAILY 5.73 14.38 9.88 5.33 4.59 - - -

PK - NP 5.40 6.16 8.01 10.85 9.38 6.75 9.89 8.37
:::
7.58

PK - NP DAILY 4.08 4.21 5.26 7.61 10.37 - - -

NNS - MOM 7.77 6.25 6.12 5.57 7.47 - - -

NN - MOM 13.95 13.55 12.53 11.86 9.58 5.14 5.95 5.95
:::
5.07

NNS - MLE 6.61 5.22 4.95 4.91 5.69 - - -

NN - MLE 8.88 8.99 9.16 10.08 9.13 7.57 11.21 9.61
:::
8.78

NNS -NP 5.21 5.36 6.22 8.11 11.81 - - -

NN - NP 8.11 9.65 11.04 13.53 12.05 4.72 6.91 282.68
:::::
281.02
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Table 6. Performance ranking numbers for the 2-fold cross validation of regionalized precipitation amount models in the summer season.

The underlined numbers indicate the best parametric (P) and non-parametric (NP) models. The bold numbers indicate the best overall model

for each validation sample and temporal resolution.

Calibration Sample 1

1H 2H 3H 6H 12H 1D 5D M

OK - MOM 13.39 9.50 8.90 7.55 4.47 4.28 4.00 4.11

OK - MLE 9.58 7.12 6.92 6.52 65.88 4.44 12.14 -

OK - MOM DAILY 13.40 8.58 9.04 5.83 8.66 - - -

OK - MLE DAILY 6.53 4.13 4.06 7.85 20.38 - - -

PK - NP 6.83 8.10 10.32 11.77 9.35 10.24 11.65 6.08

PK - NP DAILY 4.09 5.55 7.36 9.73 18.03 - - -

NNS - MOM 13.17 9.67 9.34 6.95 9.71 - - -

NN - MOM 17.76 14.42 14.33 11.92 7.76 6.41 6.48 5.50

NNS - MLE 7.50 4.52 4.64 4.60 6.96 - - -

NN - MLE 14.14 12.45 11.81 10.82 7.28 12.04 12.80 7.79

NNS -NP 4.56 6.13 7.91 10.59 19.04 - - -

NN - NP 13.06 13.25 15.09 15.71 12.27 5.40 11.84 269.22

Calibration Sample 2

1H 2H 3H 6H 12H 1D 5D M

OK - MOM 11.83 8.00 8.65 7.14 4.20 4.12 4.00 4.00

OK - MLE 9.36 5.61 6.14 6.17 5.30 4.38 37.77 -

OK - MOM DAILY 12.29 8.67 8.39 6.12 6.69 - - -

OK - MLE DAILY 7.88 4.04 4.00 4.12 7.00 - - -

PK - NP 5.43 5.52 7.26 8.78 6.44 9.45 10.15 8.16

PK - NP DAILY 4.10 5.04 7.02 9.71 13.47 - - -

NNS - MOM 14.59 10.15 9.88 7.87 8.26 - - -

NN - MOM 16.83 11.77 11.59 9.53 5.94 5.88 4.83 4.77

NNS - MLE 8.61 4.99 5.26 4.61 6.15 - - -

NN - MLE 12.48 8.58 8.64 8.15 5.63 10.76 10.29 7.92

NNS -NP 5.45 6.17 7.76 10.18 14.00 - - -

NN - NP 9.97 9.13 10.63 10.27 7.75 5.59 8.57 260.95
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Figure 1. Locations of high resolution (hourly and 5 min, left) and daily rain gauges (right) in Baden-Württemberg.
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Figure 2. In (a) the range of the Lorenz-curves and the mean Lorenz-curve for hourly rainfall values of all rainfall gauges inside the study

region are shown, in (b) the mean Lorenz-curves are shown for different temporal resolutions.
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Figure 3. T criterion
:::::
statistic

:
over distance: (a) shows the results for hourly distribution functions of all gauge pairs (grey crosses) and their

mean calculated for 5 km classes. (b) shows the mean values of the T criterion
:::::
statistic

:
for different temporal resolutions

:::
(for

::::
more

::::
detail

:::
on

::
the

:::::::
temporal

::::::::
resolutions

::
of
:::
1D,

:::
5D

:::
and

::
M

:::
see

:::
Fig.

::
S2

:
in
:::
the

::::::::::
supplement).
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Figure 4. EDFs of hourly (a) and monthly (b) precipitation amounts for
::
the

:
gauge Stuttgart / Schnarrenberg and its five closest gauges for a

quantile interval. It shows that the order of the EDFs is quite persistent over a wide quantile range for low and high resolutions. Note: As the

daily and hourly data set are not the same, the colors in the two graphs do not represent
::::::::
correspond

::
to

:
the same gauges.
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Figure 5. The mean rank correlations ρxy of (a) hourly (1H) and (b) monthly (M) quantile values for all gauge pairs of discrete quantiles

in 0.001 (1H) and 0.005 steps (M) ranging from Qth to 1 (gray dotted line). They are calculated to define the control quantile (Qc) which

exhibits the greatest mean rank correlation ρxy (red cross). The black dashed line shows the (single) rank correlations ρxy of quantile values

at Qc (red cross) with quantile values of the remaining quantiles.
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Figure 6. Exemplary empirical (data), non-parametric (SRT) and parametric (Mixed-Exp) CDF (left) and Lorenz-curve (right) for hourly

(1H) and 12 hourly (12H) resolution of a chosen gauge. Also the values of the two quality measures Ld and W 2 are indicated.
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Locations of the two samples for the 2-fold cross validation of sub-daily (left) and daily gauges (right).

Figure 7.
:::::::
Locations

::
of
:::
the

:::
two

:::::
2-fold

::::
cross

::::::::
validation

::::::
samples

:::
for

:::::::
sub-daily

::::
(left)

:::
and

::::
daily

:::::
gauges

::::::
(right).

37



Illustrations for the kriging procedure of non-parametric distributions with daily values (1D) of the summer season using calibration sample

1 (see Fig. ??): In (a) the non-parametric QVc of the 0.865 Qc at the gauges are shown, which then lead to the interpolated values in (b)

using interpolation weights φj resulting from PK. The same interpolation weights φj are used for the remaining quantiles, for which

examplary results are shown in (c) for the 0.72 quantile and in (d) for the 0.98 quantile. An exponential variogram with a range of 41 km

and a sill of 2.2 mm2 is used.

(a) (b)

(c) (d)

Figure 8.
:::::::::
Illustrations

::
for

:::
the

:::::
kriging

::::::::
procedure

::
of

:::::::::::
non-parametric

:::::::::
distributions

::::
with

::::
daily

:::::
values

::::
(1D)

::
of

::
the

::::::
summer

:::::
season

:::::
using

::::::::
calibration

:::::
sample

::
1

:::
(see

:::
Fig.

:::
7):

::
In

::
(a)

:::
the

::::::::::::
non-parametric

::::
QVc ::

of
::
Qc::

=
::::
0.865

::
at
:::
the

:::::
gauges

:::
are

::::::
shown,

:::::
which

:::
then

::::
lead

::
to

:::
the

:::::::::
interpolated

:::::
values

::
in

::
(b)

:::::
using

:::::::::
interpolation

:::::::
weights

::
φj:::::::

resulting
::::
from

:::
PK.

::::
The

::::
same

::::::::::
interpolation

::::::
weights

::
φj:::

are
::::
used

:::
for

:::
the

::::::::
remaining

:::::::
quantiles,

:::
for

:::::
which

::::::::
exemplary

:::::
results

::
are

:::::
shown

::
in

:::
(c)

::
for

:::
the

::::::
quantile

:
=
::::
0.72

:::
and

::
in

::
(d)

:::
for

::
the

:::::::
quantile

:
=
::::
0.98.

:::
An

:::::::::
exponential

:::::::
variogram

::::
with

:
a
:::::
range

:
of
:::
41

:::
km

:::
and

:
a
::
sill

::
of
:::
2.2

:::::
mm2

:
is
:::::
used.
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