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 8 
ABSTRACT 9 
 10 

In this study dimensionally-consistent governing equations of continuity and motion for 11 

transient soil water flow and soil water flux in fractional time and in fractional multiple space 12 

dimensions in anisotropic media are developed. Due to the anisotropy in the hydraulic 13 

conductivities of natural soils, the soil medium within which the soil water flow occurs is 14 

essentially anisotropic. Accordingly, in this study the fractional dimensions in two horizontal and 15 

one vertical directions are considered to be different, resulting in multi-fractional multi-16 

dimensional soil space within which the flow takes place. Toward the development of the 17 

fractional governing equations, first a dimensionally-consistent continuity equation for soil water 18 

flow in multi-dimensional fractional soil space and fractional time is developed. It is shown that 19 

the fractional soil water flow continuity equation approaches the conventional integer form of the 20 

continuity equation as the fractional derivative powers approach integer values. For the motion 21 

equation of soil water flow, or the equation of water flux within the soil matrix in multi-22 

dimensional fractional soil space and fractional time, a dimensionally consistent equation is also 23 

developed. Again, it is shown that this fractional water flux equation approaches the 24 

conventional Darcy's equation as the fractional derivative powers approach integer values. From 25 

the combination of the fractional continuity and motion equations, the governing equation of 26 

transient soil water flow in multi-dimensional fractional soil space and fractional time is 27 

obtained. It is shown that this equation approaches the conventional Richards equation as the 28 
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fractional derivative powers approach integer values. Then by the introduction of the Brooks-29 

Corey constitutive relationships for soil water into the fractional transient soil water flow 30 

equation, an explicit form of the equation is obtained in multi-dimensional fractional soil space 31 

and fractional time. The governing fractional equation is then specialized to the case of only 32 

vertical soil water flow and of only horizontal soil water flow in fractional time-space. It is 33 

shown that the developed governing equations, in their fractional time but integer space forms, 34 

show behavior consistent with the previous experimental observations concerning the diffusive 35 

behavior of soil water flow. 36 

 37 
INTRODUCTION 38 
 39 

Various laboratory (Silliman and Simpson, 1987; Levy and Berkowitz, 2003) and field 40 

studies (Peaudecerf and Sauty, 1978; Sudicky et al., 1983; Sidle et al., 1998) of transport in 41 

subsurface porous media have shown significant deviations from Fickian behavior. As one 42 

approach to the modeling of the generally non-Fickian behavior of transport, Meerschaert, 43 

Benson, Baumer, Schumer, Zhang and their co-workers (Meerschaert et al. 1999, 2002, 2006; 44 

Benson et al. 2000a,b; Baumer et al. 2005, 2007; Schumer et al. 2001, 2009; Zhang et al. 2007, 45 

2008 and 2009) have introduced the fractional advection-dispersion equation (fADE) as a model 46 

for transport in heterogeneous subsurface media. By theoretical and numerical studies the above 47 

authors have shown that fADE has a nonlocal structure that can model well the heavy tailed non-48 

Fickian dispersion in subsurface media, mainly by means of a fractional spatial derivative in the 49 

dispersion term of the equation. Meanwhile, they have also shown that fADE, with a fractional 50 

time derivative, can also model well the long particle waiting times in transport in both surface 51 

and subsurface environments. However, while the above-mentioned studies provided extensive 52 

treatment of the fractional differential equation modeling of transport in fractional time-space by 53 
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subsurface flows, few studies have addressed the detailed modeling of the actual subsurface 54 

flows in porous media in fractional time-space.  55 

He (1998) seems to be the first scholar who proposed a fractional form of Darcy's equation 56 

for water flux in porous media. Based on this fractional water flux equation, in his pioneering 57 

work He (1998) then proposed a fractional governing equation of flow through saturated  porous 58 

media. The left-hand-side (LHS) and the right-hand-side (RHS) of He's fractional Darcy flux 59 

formulation have different units. As saturated flow equations, He's proposed governing equations 60 

address the groundwater flow instead of the unsaturated soil water flow. Since the focus of our 61 

study is soil water flow in fractional time-space, below we shall discuss the literature that 62 

specifically addresses the fractional soil water flow equations. 63 

As early as in 1960's Gardner and his co-workers (Ferguson and Gardner, 1963; Rawlins and 64 

Gardner, 1963) questioned the classical diffusivity expression in the diffusion form of the 65 

conventional Richards equation for soil water flow being only dependent on the soil water 66 

content. Based on their experimental observations, they reported that diffusivity was also 67 

dependent explicitly on time besides being dependent on the soil water content. Following on 68 

these experimental observations, Guerrini and Swartzendruber (1992) hypothesized a new form 69 

for Richards equation for horizontal unsaturated soil water flow in semi-rigid soils. Unlike the 70 

assumption that the soil hydraulic conductivity K and soil water pressure head  are only 71 

dependent on the soil water content, they hypothesized that K and  are also dependent 72 

explicitly on time. This hypothesis led them to the formulation of the diffusivity coefficient D 73 

within the diffusion form of the Richards equation as function of not only the soil water content 74 

but also explicitly on time, that is D = D(,t) = E() t
m 

where E is a function of water content  75 

while m is a power value. The application of their theory to the field data of Rawlins and 76 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-456, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 26 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



4 
 

Gardner (1963) proved successful, yielding fractional values of m less than unity in t
m

. In a field 77 

experimental study of horizontal water absorption into porous construction materials (fired-clay 78 

and siliceous brick),  El-Abd and Milczarek (2004) arrived at a formulation of diffusivity 79 

coefficient again in the form D(,t) = E() t
m

. The application of this form to their experimental 80 

data produced satisfactory results. 81 

The study by Pachepsky et al. (2003) appears to be the first to propose a fractional model of 82 

horizontal, unsaturated soil water flow in field soils. Motivated by the observations of Nielsen et 83 

al. (1962) on the jerky movements of the infiltration front in field soils, that can be explained by 84 

long recurrence time intervals in-between motions, Pachepsky et al. (2003) proposed a time-85 

fractional model of horizontal soil water flow in field soils. While the space component of their 86 

model has integer derivatives, they proposed a fractional form for the diffusivity, and expressed 87 

the Darcy water flux formulation in diffusive form with their proposed fractional diffusivity. 88 

Pachepsky et al. (2003) showed that the cause for fractional diffusivity is the scaling of time in 89 

the Boltzmann relationship not with the power of 0.5 (which corresponds to Brownian motion) 90 

but with a power less than 0.5, an experimental observation that was already made by Guerrini 91 

and Swartzendruber (1992). Pachepsky et al. (2003) supported their claim by various previous 92 

experimental studies'  results, and showed that their proposed time-fractional form of the 93 

Richards equation with fractional diffusivity can explain experimental data. Meanwhile,  94 

Gerolymatou et al. (2006) proposed a fractional integral form for the Richards equation in fractional 95 

time but in integer horizontal space for unsaturated soil water flow in one horizontal dimension. 96 

Comparing their model simulations against the field experimental data of El-Abd and Milczarek 97 

(2004), they showed that their fractional Richards equation describes the evolution of soil water 98 

content in time and space better than the corresponding integer Richards equation. Again 99 
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considering horizontal unsaturated soil water flow in fractional time but integer space, Sun et al. 100 

(2013) utilized the concept of fractal ruler in time, due to Cushman et al. (2009), to define a 101 

fractional derivative in time which they used to modify the integer time derivative in the 102 

conventional Richards equation. By means of this fractional derivative definition they were able 103 

to model the anomalous Boltzmann scaling in the wetting front movement and were able to 104 

obtain good fits to water content experimental data. Sun et al. (2013) conjectured that the time-105 

dependent diffusivity D(,t) = E() t
m  

(for a fractional value of m) due to Guerrini and 106 

Swartzendruber (1992) and El Abd and Milczarek (2004), in the conventional Richards equation 107 

can be expressed essentially by representing the conventional integer derivative of the soil water 108 

content with respect to time by a product of the fractional time derivative of the soil water 109 

content and a fractional power of time.   110 

The above-cited studies on the governing equations of soil water flow only treat time with 111 

fractional dimension, while keeping space with integer dimension. Furthermore, these studies 112 

address only one spatial dimension. Accordingly, our study in the following will attempt to 113 

develop a fractional continuity equation and a fractional water flux (motion) equation for 114 

unsaturated soil water flow in both fractional time and in multi-dimensional fractional space, 115 

starting from the conventional mass conservation and Darcy's law. Due to the anisotropy in the 116 

hydraulic conductivities of natural soils, the soil medium within which the soil water flow occurs 117 

is essentially anisotropic. Accordingly, in this study the fractional dimensions in two horizontal 118 

and one vertical directions will be considered different, resulting in multi-fractional space within 119 

which the flow takes place. Toward the development of the fractional governing equations, first a 120 

dimensionally-consistent continuity equation for soil water flow in multi-fractional, multi-121 

dimensional space and fractional time will be developed. For the motion equation of soil water 122 
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flow, or the equation of water flux within the soil matrix in multi-fractional multi-dimensional 123 

space and fractional time, a dimensionally consistent equation will also be  developed. From the 124 

combination of the fractional continuity and motion equations, the governing equation of 125 

transient soil water flow in multi-fractional, multi-dimensional space and fractional time will be 126 

obtained. It will be shown that this equation approaches the conventional Richards equation as 127 

the fractional derivative powers approach integer values. Then by the introduction of the Brooks-128 

Corey constitutive relationships for soil water (Brooks and Corey, 1964) into the fractional 129 

transient soil water flow equation, an explicit form of the equation will  be obtained in multi-130 

dimensional, multi-fractional space and fractional time. The governing fractional equation is then 131 

specialized to the case of only vertical soil water flow and of only horizontal soil water flow in 132 

fractional time-space.  133 

  134 

DERIVATION OF THE CONTINUITY EQUATION FOR TRANSIENT SOIL WATER 135 
FLOW IN MULTI-DIMENSIONAL FRACTIONAL SPACE AND FRACTIONAL TIME 136 

 137 
The fractional Taylor series approximation of a function f(x) around x may be defined 138 

according to the generalized Taylor series formula (Odibat and Shawagfeh, 2007;  Momani and 139 

Odibat, 2008) as: 140 

         
          

       
 
     

  
                (1) 141 

where Γ( 
. 
) is the gamma function, and    

  
      is a left-sided Caputo fractional derivative of 142 

the function f (y), defined as (Odibat and Shawagfeh, 2007; Podlubny, 1999), 143 

    
  
     

 

       
 

     

           

 

 
   ,        -1<              . (2) 144 
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Specializing the integer m =1 reduces equation (2) to 145 

   
  
     

 

       
 

     

       

 

 
   ,  0 <                . (3) 146 

Then to-order 147 

  
 
     

 

      
 

     

      

 

 
         0 <                . (4) 148 

Specializing the fractional Taylor series expansion to -order (k = 0, 1 in equation (1)), one 149 

obtains from the generalized Taylor series formula: 150 

              
     

      
   

 
    ,                     (5) 151 

to -order. 152 

Within the above framework one can express the net mass outflow rate from the control 153 

volume in Figure 1 as  154 

                                                                       155 

                                                                            (6)  (5) 156 

Then by introducing equation (5) into equation (6), and expressing the Caputo derivative 157 

  
 
      by  

      

     
 for convenience, the net mass flux from the soil control volume in Figure 1 158 

may be expressed to -order in fractional space as, 159 
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                           (7)  161 

where different fractional powers are considered in the three Cartesian directions in space due to 162 

the general anisotropy in the soil permeabilities and in the resulting flows in the soil media. It 163 

also follows from equation (5) with f(xi) = xi that to -order, 164 

 165 

    
     

  

       

     

     
  

  i=1,2,3     (8) 166 

 167 
With respect to the Caputo derivative; 168 

     

     
  
 

  
    

       
        ,           i=1,2,3    (9) 169 

 170 
Hence, combining equations (8) and (9) yields, 171 
 172 

     
   

              

  
    

      ,    i=1,2,3   (10) 173 

with respect to    -order fractional space in the i-th direction, i=1,2,3. 174 

Introducing equation (10) into equation (7) yields for the net mass outflow rate 175 

 
       

      
  

 

   
 
  
                      

       

  
    

 
 

   
 
  
                       176 

 177 

 
       

  
    

 
 

   
 
  
     

                  ,     =                     (11) 178 

 179 

to -order, reflecting multi-fractional scaling in the anisotropic soil medium. 180 
 181 

Denoting the volumetric water content by (  ,t), the water volume Vw within the control 182 

volume in Figure 1 may be expressed as 183 

                            .                       (12) 184 

Hence, the time rate of change of mass within the control volume in Figure 1 is 185 
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                  .  (13) 186 

Introducing equation (5) with x replaced by t, into equation (13) yields the time rate of change of 187 

mass within the control volume with respect -fractional time increments: 188 

       
     

         
  

 

  
 
 

                    .   (14) 189 

to -order. With respect to the Caputo derivative: 190 

   

     
 

    

      
               (15) 191 

which when combined with equation (5) (with x replaced by t) yields 192 

      
            

    
        .          (16) 193 

to -order. Introducing equation (16) into equation (14) yields for the time rate of change of 194 

mass within the control volume in Figure 1 with respect to -order fractional time increments: 195 

      

    
 
                

     
                   .  (17) 196 

Since the time rate of change of mass within the control volume of Figure 1 is inversely 197 

related to the net flux through the control volume, equations (11) and (17) can be combined to 198 

yield 199 

      

    
 
                

     
   

       

      
  

 

   
 
  
             

       

  
    

 
 

   
 
  
             200 

                                        
       

  
    

 
 

   
 
  
                     ,     201 

      

    
 
                

     
   

       

  
    

  
 

   
 
  
                  

 
      (18)  202 

as the fractional continuity equation of transient soil water flow in multi-fractional space of a 203 

generally anisotropic soil medium in fractional time.  204 
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If one further assumes an incompressible soil medium with constant density, then the 205 

fractional soil water flow continuity equation (18) simplifies further to  206 

      

    
         

     
   

       

  
    

  
 

   
 
  
           

 
     , 0< , 1,2,3 <1 ;    =            .  (19)  207 

In the following, Equation (19) will be used as the fractional continuity equation for soil water 208 

flow for further study.   209 

Performing a dimensional analysis of Equation (19), one obtains 210 

 

    
 
 

  
  

 

     

 

   

 

 
  

 

 
                             (20) 211 

where L denotes length and T denotes time. Hence, Equation (20) shows the dimensional 212 

consistency of the left hand and right hand sides of the continuity Equation (19) for transient soil 213 

water flow in multi-fractional space and fractional time. 214 

Podlubny (1999) has shown that for  -1<        where n is any positive integer, as           215 

 and i   n, the Caputo fractional derivative of a function f(y) to order  or i (i = 1, 2, 3) 216 

becomes the conventional n-th derivative of the function f(y). Therefore, specializing Podlubny's 217 

(1999) result to n = 1, for and i(i = 1, 2, 3), the continuity equation (19) reduces to  218 

        

  
    

 

   
           

 
              (21) 219 

which is the conventional continuity equation for soil water flow. 220 

 221 
 222 
AN EQUATION FOR SOIL WATER FLUX (SPECIFIC DISCHARGE) IN FRACTIONAL 223 
TIME-SPACE 224 
 225 

The experiments of Darcy (1856) showed that the specific discharge qi is directly 226 

proportional to the change in hydraulic head, h = h(xi + x) - h(xi), i=1,2,3, and is inversely 227 

proportional to the spatial displacement in any direction i, xi = (xi + xi) - xi, i= 1,2,3 (Freeze 228 

and Cherry, 1979). Hence, one can express the Darcy law in integer time-space as  229 
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                   , i =1,2,3 .     (22) 230 

where Ki = Ki     denotes the hydraulic conductivity in the i-th spatial direction (i=1,2,3), and the 231 

negative sign on the right-hand-side (RHS) of equation (22) is due to soil water flow being in the 232 

direction of decreasing hydraulic head. 233 

In equation (22), using the fractional Taylor series expansion (5) to i-order (i= 1,2,3) yields: 234 

     
     

  

       
 
    

     
  

    ,  i = 1, 2, 3             (23) 235 

where the notation is the same as above. Combining equations (8), (10) and (23) with equation 236 

(22) yields, 237 

   
  

    

       
  

       
   

     
  

              
    

     
  
  

       
   

     
  

           , i=1,2,3 .             (24) 238 

 239 

 240 
Taking the limit as     goes to zero (i= 1,2,3), one obtains from equation (24),  241 

                 
       

  
    

 
    

     
  

           i = 1,2,3       (25) 242 

as the equation of water flux through anisotropic soil media in multi-fractional multi-dimensional 243 

space. 244 

Performing a dimensional analysis on equation (25), one obtains: 245 
 246 

                           and         
       

  
    

 
    

     
  
   

 

 

 

        
 

 

 
                    (26) 247 

 248 
which establishes the dimensional consistency of equation (25) as the fractional equation for soil 249 

water flux. Furthermore, it is well-known that for unsaturated soil water flow, the hydraulic 250 

conductivity is function of the volumetric soil water content and of spatial locationFreeze and 251 

Cherry, 1979). In fact, Ki may be expressed in terms of the saturated hydraulic conductivity Ks 252 

and the relative hydraulic conductivity Kr() as 253 
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                              .                (27) 254 

Hence, the equation of soil water flux (specific discharge) in multi-dimensional, multi-fractional 255 

anisotropic soil space may be expressed as 256 

                     
       

  
    

 
           

     
  

           ,  i= 1,2,3 .     (28) 257 

 258 
Equation (28) is dimensionally consistent in that both the LHS and RHS of the equation have the 259 

unit L/T.  260 

As noted above, Podlubny (1999) has shown that for  -1<      (i = 1, 2, 3) where n is any 261 

positive integer, as i   n, the Caputo fractional derivative of a function f(y) to order i (i = 1, 2, 262 

3) becomes the conventional n-th derivative of the function f(y). Therefore, specializing 263 

Podlubny's (1999) result to n = 1, for i(i = 1, 2, 3), the fractional soil water flux equation 264 

(28) becomes 265 

                     
         

   
           ,  i= 1,2,3 .      (29)  266 

which is the conventional Darcy's equation for soil water flux. As such the derived fractional soil 267 

water flux Equation (28) is consistent with the conventional Darcy's equation for the integer 268 

power case. 269 

 270 
GOVERNING EQUATION OF TRANSIENT SOIL WATER FLOW IN MULTI-271 
DIMENSIONAL FRACTIONAL SOIL SPACE AND FRACTIONAL TIME 272 
 273 
 274 

Combining the fractional continuity equation (19) with the fractional soil water flux equation 275 

(28) yields, 276 

      

    
 
         

     
  

       

  
    

  
 

   
 
  
           

       

  
    

 
           

     
  
  

     for 0< , 1,2,3 <1 ;  277 

     =            .        (30) 278 
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Since                             one obtains 279 

      

    
 
         

     
  

       

  
    

  
 

   
 
  
               

       

  
    

 
           

     
  
  

     for 0< ,1,2,3 <1;  280 

         =             (31)       (31) 281 

as the governing equation of transient soil water flow in anisotropic multi-dimensional fractional 282 

soil media and fractional time. 283 

Meanwhile, the soil hydraulic head h is related to the elevation head x3 and soil capillary 284 

pressure head  by  285 

  =  + x3                (32)     286 

Substituting Equation (32) into Equation (31) results in 287 

      

    
  
         

     
  

       

  
    

  
 

   
 
  
               

       

  
    

 
   

     
  
          

 
          .         (33) 288 

 289 

With respect to the Caputo derivative: 290 

 
     

     
  
 

  
    

       
  .                                                    (34) 291 

Opening equation (33) further and introducing equation (34) yields 292 

      

    
 
         

     
  

       

  
    

  
 

   
 
  
               

       

  
    

 
       

     
  
  

       293 

  
       

  
    

 
 

   
 
  
                ; 0< ,1,2,3 <1 ;    =                (35) 294 

as the governing equation of transient soil water flow in anisotropic multi-dimensional fractional 295 

media and fractional time. This governing equation may also be written as 296 
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                     ; 0< ,1,2,3 <1 ;    =             .(36) 298 
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As noted above, Podlubny (1999) has shown that for  -1<         (i=1,2,3) where n is any 299 

positive integer, as   and i   n, the Caputo fractional derivative of a function f(y) to order  or 300 

i (i = 1, 2, 3) becomes the conventional n-th derivative of the function f(y). Therefore, 301 

specializing Podlubny's (1999) result to n = 1, for and i(i = 1, 2, 3), the fractional 302 

governing equation (33) of soil water flow becomes 303 

        

  
  

 

   
                 

 

   
          

 
                                                                  (37) 304 

which is the conventional Richards equation for transient soil water flow. 305 

With respect to dimensional consistency, one may note that both sides of the fractional 306 

governing equation (33) or equation (35) for transient soil water flow have the unit 1/T. 307 

Meanwhile, both sides of equation (36) have the unit 1/T

. Hence, these fractional equations are 308 

dimensionally consistent. 309 

 310 

FRACTIONAL GOVERNING EQUATION OF TRANSIENT SOIL WATER FLOW IN THE 311 
VERTICAL DIRECTION   312 
 313 

In the case of vertical transient unsaturated flow for the infiltration process in soils in 314 

fractional time-space, Equation (35) reduces further to 315 

      

    
         

     
 

       

  
    

  
 

   
 
  
               

       

  
    

 
       

     
  
      316 

   
       

  
    

 
 

   
 
  
                  ; 0 < ,3 <1 ;    =              (38) 317 

as the governing equation. This governing equation for vertical transient soil water flow in 318 

fractional time-space can also be expressed as; 319 
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                       ; 0 < ,3 <1 ;    =            . (39)    321 

                                                                        322 

As in the integer case of Richards equation (37), equations (35), (36), (38) and (39) have both 323 

the hydraulic  conductivity K and the capillary pressure head  as functions of the soil 324 

volumetric water  content . As such, characteristic soil water relationships, such as those given 325 

by Brooks and Corey (1964), may be utilized to obtain an explicit form of the governing 326 

equation of transient, unsaturated soil water flow in fractional time-space, as explained in the 327 

following. 328 

 329 

SOIL WATER CONTENT-BASED EXPLICIT FORM OF THE GOVERNING EQUATION 330 

OF TRANSIENT SOIL WATER FLOW IN FRACTIONAL TIME-SPACE 331 

One can utilize the Brooks-Corey (1964) formula for the soil characteristic relationship 332 

between the capillary soil water pressure head  and the soil water content  as follows: 333 

          
 
        

                                                                                        (40) 334 

where b is the air entry pressure head (bubbling pressure), e = (s - r) is the effective porosity, 335 

s is the saturation volumetric soil water content, r is the residual water content, and  is the 336 

pore size distribution index. Therefore, the i-order Caputo fractional derivative of the capillary 337 

pressure head  with respect to xi in the interval (0,xi) may be expressed in terms of the Brooks-338 

Corey relationship (40) as (Podlubny, 1999; Odibat and Shawagfeh, 2007) 339 

       

     
  

  
    

 
  

       
  

 

   
      

            
   

  
 

         
 
  
         

    

     
  

 . (41) 340 

Under the Brooks-Corey (1964) relationship between the hydraulic conductivity and the 341 

volumetric soil water content, the relative hydraulic conductivity Kr() is expressed as 342 
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        ,    (42) 343 

and using expression (42) within                             , the i-order fractional Caputo 344 

derivative of              with respect to xi in the interval (0,xi) may be expressed as  345 

                 

     
  

    
                        

        

     
  

     , i = 1,2,3 . (43)   (41)  346 

Substituting equations (41) and (43) into equation (35) results in an explicit form of the 347 

governing equation of transient soil water flow in anisotropic multi-dimensional fractional soil 348 

space and fractional time in terms of the volumetric water content  as 349 
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             ; 0< ,1,2,3 <1      (44)  351 

in terms of the Brooks-Corey soil water characteristics relationships. This governing equation can 352 

also be expressed as 353 
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          ; 0< ,1,2,3 <1.   (45)    355 

 356 

Upon dimensional analysis of equation (44) one can see that it is dimensionally consistent since 357 

both of its sides have the unit of 1/T where T denotes time. Meanwhile, equation (45) is also 358 

dimensionally consistent with both sides of the equation having the unit 1/T

. 359 

Specializing equation (45) to only the vertical direction, the governing equation of 360 

transient soil water flow in the vertical direction in fractional space-time may be expressed as, 361 
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         ; 0< ,3 <1  .   (46) 363 

Upon dimensional analysis of equation (46) one can find that both sides of this equation have 364 

the unit of 1/T

 where T denotes time. Hence, the fractional equation of vertical transient soil 365 

water flow, in its explicit form, is dimensionally consistent.  366 

Finally, specializing equation (45) to only the horizontal directions, the governing equation 367 

of transient soil water flow in the horizontal directions in fractional space-time may be expressed 368 

as, 369 

         

     
      

         
         

 

        
    

  
 

   
 
  
                

        

  
    

 
         

    

     
  

    
          370 

        ; 0< , 1,2 <1  .    (47) 371 

Upon dimensional analysis of equation (47) one can find that both sides of this equation have the 372 

unit of 1/T

 where T denotes time. Hence, the fractional equation of horizontal transient soil 373 

water flow, in its explicit form, is dimensionally consistent. 374 

 375 

DISCUSSION AND CONCLUSION 376 

The governing equations that were developed in this study are for the fractional time 377 

dimension and for multi-dimensional fractional space that represents the fractal spatial structure 378 

of a soil field. If one were to simplify the developed theory above to only fractional time but 379 

integer-space soil fields, then the developed equations would simplify substantially. The 380 

governing equation (36) of transient soil water flow in anisotropic multi-dimensional fractional 381 

soil media in fractional time would simplify to (with i = 1, i =1,2,3): 382 
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                        ; 0<  <1;    =              (48) 384 

for the governing equation of transient soil water flow in integer multi-dimensional soil media 385 

and in fractional time. In terms of the Brooks-Corey soil characteristic relationships, the explicit 386 

governing equation of transient soil water flow in integer multi-dimensional soil space and in 387 

fractional time is obtained from the simplification of equation (45) as (with i = 1, i =1,2,3):  388 

         

     
     

      
          

      
 
 

   
                    

         
  

   
   

     389 

     
      

      

 

   
                    

       ; 0<  <1 ;    =             .      (49)    390 

 391 

As mentioned before, Guerrini and Swartzendruber (1992) and El Abd and Milczarek (2004), 392 

in their explanation of the anomalous behavior of the diffusivity coefficient in their experiments, 393 

have proposed that the diffusivity coefficient in the diffusion-based formulation of the Richards 394 

equation of soil water flow must depend not only on the water content but also on time. Hence, 395 

they formulated this diffusivity coefficient D as D = D(,t) = E() t
m 

where E is a function of 396 

water content  while m is a power value. This formulation proved to be successful in modeling 397 

various experimental data on horizontal soil water flow. If one were to formulate the diffusivity 398 

Di(,t) in the explicit governing equation (49) of transient soil water flow in fractional time and 399 

in anisotropic multi-dimensional integer soil space as 400 

                       
              , i = 1,2,3,     (50)  401 

this diffusivity coefficient is in the same form as the diffusivity coefficient D(,t) = E() t
m 

that 402 

was formulated by Guerrini and Swartzendruber (1992) and El Abd and Milczarek (2004) based 403 

on experimental observations. As such, within the framework of Brooks-Corey soil water  404 

relationships, the  explicit governing equations that were developed in this study for the transient 405 
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soil water flow in multi-dimensional fractional soil media and fractional time, when simplified to 406 

integer soil space, are consistent with the experimental observations of Guerrini and 407 

Swartzendruber (1992) and El Abd and Milczarek (2004) when their power value m = 1- . 408 

Sun et al. (2013) conjectured that the time-dependent diffusivity D(,t) = E() t
m  

(for a 409 

fractional value of m) due to Guerrini and Swartzendruber (1992) and El Abd and Milczarek 410 

(2004), in the conventional Richards equation can be expressed essentially by representing the 411 

conventional integer derivative of the soil water content with respect to time by a product of the 412 

fractional time derivative of the soil water content and a fractional power of time (Sun et al. 413 

2013, Eqn. (12)), that is,  
        

  
  

 

    
         

     
 where C denotes a constant.  In order to examine 414 

the conjecture of Sun et al. (2013), one can re-write the explicit governing equation (49) for soil 415 

water flow in integer space but fractional time in equivalent form as 416 
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       ;0<  <1 ;    =              .  (51)  418 

 Equation (51) shows that the fractional soil water flow equation (49) which accounts for the 419 

time-dependent diffusivity expression of Guerrini and Swartzendruber (1992) and El Abd and 420 

Milczarek (2004), does have an equivalent form where the integer time derivative of the soil 421 

water content in the conventional Richards equation is replaced by a product of the fractional 422 

time derivative of the soil water content and a fractional power of time, thereby supporting Sun 423 

et al.'s (2013) conjecture, although in this study the fractional derivative is defined in the Caputo 424 

sense while in Sun et al. (2013) the fractional derivative is defined with respect to a fractal ruler 425 

in time. 426 
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In conclusion, in this study first a dimensionally-consistent continuity equation for soil water 427 

flow in multi-fractional, multi-dimensional space and fractional time was developed. For the 428 

motion equation of soil water flow, or the equation of water flux within the soil matrix in multi-429 

fractional multi-dimensional space and fractional time, a dimensionally consistent equation was 430 

also developed. From the combination of the fractional continuity and motion equations, the 431 

governing equation of transient soil water flow in multi-fractional, multi-dimensional space and 432 

fractional time was then obtained. It is shown that this equation approaches the conventional 433 

Richards equation as the fractional derivative powers approach integer values. Then by the 434 

introduction of the Brooks-Corey constitutive relationships for soil water (Brooks and Corey, 435 

1964) into the fractional transient soil water flow equation, an explicit form of the equation was 436 

obtained in multi-dimensional, multi-fractional space and fractional time. Finally, the governing 437 

fractional equation was specialized to the cases of vertical soil water flow and horizontal soil 438 

water flow in fractional time-space. It is shown that the developed governing equations, in their 439 

fractional time but integer space forms, show behavior consistent with the previous experimental 440 

observations concerning the diffusive behavior of soil water flow. 441 

 442 
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 518 
Figure 1. The control volume for the three-dimensional soil water flow 519 
  520 
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