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 10 
Abstract. In this study dimensionally-consistent governing equations of continuity and motion for transient soil 11 

water flow and soil water flux in fractional time and in fractional multiple space dimensions in anisotropic media are 12 

developed. Due to the anisotropy in the hydraulic conductivities of natural soils, the soil medium within which the 13 

soil water flow occurs is essentially anisotropic. Accordingly, in this study the fractional dimensions in two 14 

horizontal and one vertical directions are considered to be different, resulting in multi-fractional multi-dimensional 15 

soil space within which the flow takes place. Toward the development of the fractional governing equations, first a 16 

dimensionally-consistent continuity equation for soil water flow in multi-dimensional fractional soil space and 17 

fractional time is developed. It is shown that the fractional soil water flow continuity equation approaches the 18 

conventional integer form of the continuity equation as the fractional derivative powers approach integer values. For 19 

the motion equation of soil water flow, or the equation of water flux within the soil matrix in multi-dimensional 20 

fractional soil space and fractional time, a dimensionally consistent equation is also developed. Again, it is shown 21 

that this fractional water flux equation approaches the conventional Darcy's equation as the fractional derivative 22 

powers approach integer values. From the combination of the fractional continuity and motion equations, the 23 

governing equation of transient soil water flow in multi-dimensional fractional soil space and fractional time is 24 

obtained. It is shown that this equation approaches the conventional Richards equation as the fractional derivative 25 

powers approach integer values. Then by the introduction of the Brooks-Corey constitutive relationships for soil 26 

water into the fractional transient soil water flow equation, an explicit form of the equation is obtained in multi-27 

dimensional fractional soil space and fractional time. The governing fractional equation is then specialized to the 28 

case of only vertical soil water flow and of only horizontal soil water flow in fractional time-space. It is shown that 29 

the developed governing equations, in their fractional time but integer space forms, show behavior consistent with 30 

the previous experimental observations concerning the diffusive behavior of soil water flow. 31 

1. Introduction 32 

Various laboratory (Silliman and Simpson, 1987; Levy and Berkowitz, 2003) and field studies (Peaudecerf and 33 

Sauty, 1978; Sudicky et al., 1983; Sidle et al., 1998) of transport in subsurface porous media have shown significant 34 

deviations from Fickian behavior. As one approach to the modeling of the generally non-Fickian behavior of 35 

transport, Meerschaert, Benson, Baumer, Schumer, Zhang and their co-workers (Meerschaert et al. 1999, 2002, 36 
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2006; Benson et al. 2000a,b; Baumer et al. 2005, 2007; Schumer et al. 2001, 2009; Zhang et al. 2007, 2008 and 37 

2009) have introduced the fractional advection-dispersion equation (fADE) as a model for transport in 38 

heterogeneous subsurface media. By theoretical and numerical studies the above authors have shown that fADE has 39 

a nonlocal structure that can model well the heavy tailed non-Fickian dispersion in subsurface media, mainly by 40 

means of a fractional spatial derivative in the dispersion term of the equation. Meanwhile, they have also shown that 41 

fADE, with a fractional time derivative, can also model well the long particle waiting times in transport in both 42 

surface and subsurface environments. However, while the above-mentioned studies provided extensive treatment of 43 

the fractional differential equation modeling of transport in fractional time-space by subsurface flows, few studies 44 

have addressed the detailed modeling of the actual subsurface flows in porous media in fractional time-space.  45 

He (1998) seems to be the first scholar who proposed a fractional form of Darcy's equation for water flux in 46 

porous media. Based on this fractional water flux equation, in his pioneering work He (1998) then proposed a 47 

fractional governing equation of flow through saturated  porous media. The left-hand-side (LHS) and the right-hand-48 

side (RHS) of He's fractional Darcy flux formulation have different units. As saturated flow equations, He's 49 

proposed governing equations address the groundwater flow instead of the unsaturated soil water flow. Since the 50 

focus of our study is soil water flow in fractional time-space, below we shall discuss the literature that specifically 51 

addresses the fractional soil water flow equations. 52 

As early as in 1960's Gardner and his co-workers (Ferguson and Gardner, 1963; Rawlins and Gardner, 1963) 53 

questioned the classical diffusivity expression in the diffusion form of the conventional Richards equation for soil 54 

water flow being only dependent on the soil water content. Based on their experimental observations, they reported 55 

that diffusivity was also dependent explicitly on time besides being dependent on the soil water content. Following 56 

on these experimental observations, Guerrini and Swartzendruber (1992) hypothesized a new form for Richards 57 

equation for horizontal unsaturated soil water flow in semi-rigid soils. Unlike the assumption that the soil hydraulic 58 

conductivity K and soil water pressure head  are only dependent on the soil water content, they hypothesized that 59 

K and  are also dependent explicitly on time. This hypothesis led them to the formulation of the diffusivity 60 

coefficient D within the diffusion form of the Richards equation as function of not only the soil water content but 61 

also explicitly on time, that is D = D(,t) = E() t
m 

where E is a function of water content  while m is a power 62 

value. The application of their theory to the field data of Rawlins and Gardner (1963) proved successful, yielding 63 

fractional values of m less than unity in t
m
. In a field experimental study of horizontal water absorption into porous 64 

construction materials (fired-clay and siliceous brick),  El-Abd and Milczarek (2004) arrived at a formulation of 65 

diffusivity coefficient again in the form D(,t) = E() t
m
. The application of this form to their experimental data 66 

produced satisfactory results. 67 

The study by Pachepsky et al. (2003) appears to be the first to propose a fractional model of horizontal, 68 

unsaturated soil water flow in field soils. Motivated by the observations of Nielsen et al. (1962) on the jerky 69 

movements of the infiltration front in field soils, that can be explained by long recurrence time intervals in-between 70 

motions, Pachepsky et al. (2003) proposed a time-fractional model of horizontal soil water flow in field soils. While 71 

the space component of their model has integer derivatives, they proposed a fractional form for the diffusivity, and 72 

expressed the Darcy water flux formulation in diffusive form with their proposed fractional diffusivity. Pachepsky et 73 
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al. (2003) showed that the cause for fractional diffusivity is the scaling of time in the Boltzmann relationship not 74 

with the power of 0.5 (which corresponds to Brownian motion) but with a power less than 0.5, an experimental 75 

observation that was already made by Guerrini and Swartzendruber (1992). Pachepsky et al. (2003) supported their 76 

claim by various previous experimental studies'  results, and showed that their proposed time-fractional form of the 77 

Richards equation with fractional diffusivity can explain experimental data. Meanwhile,  Gerolymatou et al. (2006) 78 

proposed a fractional integral form for the Richards equation in fractional time but in integer horizontal space for 79 

unsaturated soil water flow in one horizontal dimension. Comparing their model simulations against the field experimental 80 

data of El-Abd and Milczarek (2004), they showed that their fractional Richards equation describes the evolution of 81 

soil water content in time and space better than the corresponding integer Richards equation. Again considering 82 

horizontal unsaturated soil water flow in fractional time but integer space, Sun et al. (2013) utilized the concept of 83 

fractal ruler in time, due to Cushman et al. (2009), to define a fractional derivative in time which they used to 84 

modify the integer time derivative in the conventional Richards equation. By means of this fractional derivative 85 

definition they were able to model the anomalous Boltzmann scaling in the wetting front movement and were able to 86 

obtain good fits to water content experimental data. Sun et al. (2013) conjectured that the time-dependent diffusivity 87 

D(,t) = E() t
m  

(for a fractional value of m) due to Guerrini and Swartzendruber (1992) and El Abd and Milczarek 88 

(2004), in the conventional Richards equation can be expressed essentially by representing the conventional integer 89 

derivative of the soil water content with respect to time by a product of the fractional time derivative of the soil 90 

water content and a fractional power of time.   91 

The above-cited studies on the governing equations of soil water flow only treat time with fractional dimension, 92 

while keeping space with integer dimension. Furthermore, these studies address only one spatial dimension. 93 

Accordingly, our study in the following will attempt to develop a fractional continuity equation and a fractional 94 

water flux (motion) equation for unsaturated soil water flow in both fractional time and in multi-dimensional 95 

fractional space, starting from the conventional mass conservation and Darcy's law. Due to the anisotropy in the 96 

hydraulic conductivities of natural soils, the soil medium within which the soil water flow occurs is essentially 97 

anisotropic. Accordingly, in this study the fractional dimensions in two horizontal and one vertical directions will be 98 

considered different, resulting in multi-fractional space within which the flow takes place. Toward the development 99 

of the fractional governing equations, first a dimensionally-consistent continuity equation for soil water flow in 100 

multi-fractional, multi-dimensional space and fractional time will be developed. For the motion equation of soil 101 

water flow, or the equation of water flux within the soil matrix in multi-fractional multi-dimensional space and 102 

fractional time, a dimensionally consistent equation will also be  developed. From the combination of the fractional 103 

continuity and motion equations, the governing equation of transient soil water flow in multi-fractional, multi-104 

dimensional space and fractional time will be obtained. It will be shown that this equation approaches the 105 

conventional Richards equation as the fractional derivative powers approach integer values. Then by the 106 

introduction of the Brooks-Corey constitutive relationships for soil water (Brooks and Corey, 1964) into the 107 

fractional transient soil water flow equation, an explicit form of the equation will  be obtained in multi-dimensional, 108 

multi-fractional space and fractional time. The governing fractional equation is then specialized to the case of only 109 

vertical soil water flow and of only horizontal soil water flow in fractional time-space.  110 
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2. Derivation of the continuity equation for transient soil water flow in multi-dimensional fractional space 111 

and fractional time 112 

Let   
  
      be a Caputo fractional derivative of the function f (x), defined as (Podlubny, 1999; Odibat and 113 

Shawagfeh, 2007; Usero, 2008; Li et al. 2009), 114 

    
  
     

 

       
 

     

           

 

 
   ,        -1<              .  (1) 115 

Specializing the integer m =1 reduces equation (1) to 116 

   
  
     

 

       
 

     

       

 

 
   ,  0 <                .  (2) 117 

Then to-order 118 

  
 
     

 

      
 

     

      

 

 
         0 <                . (3) 119 

One can obtain a -order approximation to a function f (
.
) around "a" as  120 

           
      

      
   

 
    ,              .          (4) 121 

This result follows by taking the upper limit value of the Caputo derivative at "x" in the mean value representation 122 

of a function in terms of fractional Caputo derivative  (Usero, 2008; Li et al., 2009; Odibat and Shawagfeh, 2007) in 123 

order to have a distinct value for the above -order approximation of the function f around "a". Within this 124 

framework the governing equations, based on this approximation, become prognostic equations that shall be known 125 

from the outset of model simulation for the whole time-space modeling domain. The next issue is what to take for 126 

the value of "a". If one expresses equation (4) with a = x-x, that is, 127 

              
     

      
      

 
    ,     (5) 128 

then the evaluation of the Caputo fractional derivative for f(x) = x will result in an expression that will contain a 129 

binomial expansion with a fractional power, which has infinite number of terms. As will be discussed in a later 130 

section, in order to render the developed fractional governing equations to become purely differential equations, it is 131 

necessary to establish an analytical relationship between x and       that will be universally applicable throughout 132 

the modeling domain. This is possible when one takes the lower limit in the above Caputo derivative in equation (5) 133 

as zero (0) (that is, x = x) for f(x) = x. Then under such a construct, it will be possible to develop purely differential 134 
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forms (with only fractional differential operators and no finite difference operators) for the governing equations of 135 

soil water flow, as will be shown in the following. 136 

Within the above framework one can express the net mass outflow rate from the control volume in Figure 1 as  137 

                                                138 

                                                139 

                                                     (6)   140 

Then by introducing equation (5) into equation (6) with    = x, and expressing the resulting Caputo derivative 141 

  
 
     (taking    = x renders the lower limit in the Caputo derivative of  equation (5) to be 0) by  

      

     
 for 142 

convenience, the net mass flux from the soil control volume in Figure 1 may be expressed to -order in fractional 143 

space as, 144 
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where different fractional powers are considered in the three Cartesian directions in space due to the general 147 

anisotropy in the soil permeabilities and in the resulting flows in the soil media. It also follows from equation (5) 148 

with f(xi) = xi that to -order one obtains the approximation,  149 

 150 

    
     

  

       

     

     
  

  i=1,2,3      (8) 151 
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With respect to the Caputo derivative   
 
 ; 153 

     

     
  
 

  
    

       
        ,           i=1,2,3     (9) 154 

 155 

Hence, combining equations (8) and (9) yields, 156 
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      ,    i=1,2,3   (10) 158 

with respect to    -order fractional space in the i-th direction, i=1,2,3. 159 

Introducing equation (10) into equation (7) yields for the net mass outflow rate 160 
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 164 

to -order, reflecting multi-fractional scaling in the anisotropic soil medium. 165 

Denoting the volumetric water content by (  ,t), the water volume Vw within the control volume in Figure 1 166 

may be expressed as 167 

                            .                       (12) 168 

Hence, the time rate of change of mass within the control volume in Figure 1 is 169 

                                   

  
                  .    (13) 170 

Introducing equation (5) with fractional power  replaced by , x replaced by t  and with    = t, into equation (13),  171 

and expressing the resulting Caputo derivative operator with its lower limit as 0, by 
  

     
  for convenience,  yields 172 

the time rate of change of mass within the control volume with respect to -fractional time increments: 173 
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to -order. With respect to the Caputo derivative   
   

   

     
    :  175 
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which when combined with equation (5) (with x replaced by t and  replaced by ) yields the approximation, 177 

      
            

    
        .          (16) 178 

to -order. Introducing equation (16) into equation (14) yields for the time rate of change of mass within the control 179 

volume in Figure 1 with respect to -order fractional time increments: 180 

      

    
 
                

     
                   .   (17) 181 

Since the time rate of change of mass within the control volume of Figure 1 is inversely related to the net flux 182 

through the control volume, equations (11) and (17) can be combined to yield 183 
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       (18)  187 

as the fractional continuity equation of transient soil water flow in multi-fractional space of a generally anisotropic 188 

soil medium in fractional time.  189 

If one further assumes an incompressible soil medium with constant density, then the fractional soil water flow 190 

continuity equation (18) simplifies further to  191 

      

    

         

     
   

       

  
    

  
 

   
 
  
           

 
     , 0< , 1,2,3 <1 ;    =            .  (19)  192 
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In the following, Equation (19) will be used as the fractional continuity equation for soil water flow for further 193 

study.   194 

Performing a dimensional analysis of Equation (19), one obtains 195 
 

    
 
 

  
  

 

     

 

   

 

 
  

 

 
                              (20) 196 

where L denotes length and T denotes time. Hence, Equation (20) shows the dimensional consistency of the left 197 

hand and right hand sides of the continuity Equation (19) for transient soil water flow in multi-fractional space and 198 

fractional time. 199 

Podlubny (1999) has shown that for  -1<        where n is any positive integer, as            and i   n, the 200 

Caputo fractional derivative of a function f(y) to order  or i (i = 1, 2, 3) becomes the conventional n-th derivative 201 

of the function f(y). Therefore, specializing Podlubny's (1999) result to n = 1, for and i(i = 1, 2, 3), the 202 

continuity equation (19) reduces to  203 

        

  
    

 

   
           

 
               (21) 204 

which is the conventional continuity equation for soil water flow. 205 

3. An equation for soil water flux (specific discharge) in fractional time-space 206 

The experiments of Darcy (1856) showed that the specific discharge qi is directly proportional to the change in 207 

hydraulic head, h = h(xi) - h(xi - x) , i=1,2,3, and is inversely proportional to the spatial displacement in any 208 

direction i, xi = xi - (xi - xi), i= 1,2,3 (Freeze and Cherry, 1979). Hence, one can express the Darcy law in integer 209 

time-space as  210 

                   , i =1,2,3 .     (22) 211 

where Ki = Ki     denotes the hydraulic conductivity in the i-th spatial direction (i=1,2,3), and the negative sign on 212 

the right-hand-side (RHS) of equation (22) is due to soil water flow being in the direction of decreasing hydraulic 213 

head. 214 

In equation (22), using the -order approximation to a function around x-x in equation (5) to i-order (i= 215 

1,2,3) yields (with   
    

    

     
  
 ) :  216 

     
     

  

       
 
    

     
  

    ,  i = 1, 2, 3              (23) 217 

where the lower limit in the integral of the Caputo derivative is again taken at zero. Combining equations (10) and 218 

(23) with equation (22) yields, 219 

   
  
    

       
       

    

     
  
   , i=1,2,3 .                  (24) 220 

 221 

Expressing equation (24) for the specific discharge qi , one obtains 222 

                 
       

  
    

 
    

     
  

           i = 1,2,3        (25) 223 

as the equation of water flux through anisotropic soil media in multi-fractional multi-dimensional space. 224 
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Performing a dimensional analysis on equation (25), one obtains: 225 

 226 
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 228 

which establishes the dimensional consistency of equation (25) as the fractional equation for soil water flux. 229 

Furthermore, it is well-known that for unsaturated soil water flow, the hydraulic conductivity is function of the 230 

volumetric soil water content and of spatial locationFreeze and Cherry, 1979). In fact, Ki may be expressed in 231 

terms of the saturated hydraulic conductivity Ks and the relative hydraulic conductivity Kr() as 232 

                              .                   (27) 233 

Hence, the equation of soil water flux (specific discharge) in multi-dimensional, multi-fractional anisotropic soil 234 

space may be expressed as 235 

                     
       

  
    

 
           

     
  

           ,  i= 1,2,3 .       (28) 236 

 237 

Equation (28) is dimensionally consistent in that both the LHS and RHS of the equation have the unit L/T.  238 

As noted above, Podlubny (1999) has shown that for  -1<      (i = 1, 2, 3) where n is any positive integer, as 239 

i   n, the Caputo fractional derivative of a function f(y) to order i (i = 1, 2, 3) becomes the conventional n-th 240 

derivative of the function f(y). Therefore, specializing Podlubny's (1999) result to n = 1, for i(i = 1, 2, 3), the 241 

fractional soil water flux equation (28) becomes 242 

                     
         

   
           ,  i= 1,2,3 .       (29)  243 

which is the conventional Darcy's equation for soil water flux. As such the derived fractional soil water flux 244 

Equation (28) is consistent with the conventional Darcy's equation for the integer power case. 245 

4. Governing equation of transient soil water flow in multi-dimensional fractional soil space and fractional 246 

time 247 

Combining the fractional continuity equation (19) with the fractional soil water flux equation (28) yields, 248 

      

    
 
         

     
  

       

  
    

  
 

   
 
  
           

       

  
    

 
           

     
  

  
     for 0< , 1,2,3 <1 ;  249 

     =            .        (30) 250 

Since                             one obtains 251 

      

    
 
         

     
  

       

  
    

  
 

   
 
  
               

       

  
    

 
           

     
  

  
     for 0< ,1,2,3 <1;  252 

         =              (31)       (31) 253 

as the governing equation of transient soil water flow in anisotropic multi-dimensional fractional soil media and 254 

fractional time. 255 

Meanwhile, the soil hydraulic head h is related to the elevation head x3 and soil capillary pressure head  by  256 
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  =  + x3                  (32)     257 

Substituting equation (32) into equation (31) results in 258 
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With respect to the Caputo derivative: 260 

 
     

     
  
 

  
    

       
  .                                                               (34) 261 

Opening equation (33) further and introducing equation (34) yields 262 
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                ; 0< ,1,2,3 <1 ;    =                  (35) 264 

as the governing equation of transient soil water flow in anisotropic multi-dimensional fractional media and 265 

fractional time. This governing equation may also be written as 266 
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                     ; 0< ,1,2,3 <1 ;    =              (36) 268 

As noted above, Podlubny (1999) has shown that for  -1<         (i=1,2,3) where n is any positive integer, 269 

as   and i   n, the Caputo fractional derivative of a function f(y) to order  or i (i = 1, 2, 3) becomes the 270 

conventional n-th derivative of the function f(y). Therefore, specializing Podlubny's (1999) result to n = 1, for and 271 

i(i = 1, 2, 3), the fractional governing equation (33) of soil water flow becomes 272 

        

  
  

 

   
                 

 

   
          

 
                                                                              (37) 273 

which is the conventional Richards equation for transient soil water flow. 274 

With respect to dimensional consistency, one may note that both sides of the fractional governing equation (33) 275 

or equation (35) for transient soil water flow have the unit 1/T. Meanwhile, both sides of equation (36) have the unit 276 

1/T

. Hence, these fractional equations are dimensionally consistent. 277 

5. Fractional governing equation of transient soil water flow in the vertical direction 278 

In the case of vertical transient unsaturated flow for the infiltration process in soils in fractional time-space, 279 

Equation (35) reduces further to 280 
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                  ; 0 < ,3 <1 ;    =              (38) 282 

as the governing equation. This governing equation for vertical transient soil water flow in fractional time-space can 283 

also be expressed as; 284 
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                       ; 0 < ,3 <1 ;    =            .     (39)    286 

As in the integer case of Richards equation (37), equations (35), (36), (38) and (39) have both the hydraulic  287 

conductivity K and the capillary pressure head  as functions of the soil volumetric water  content . As such, 288 

characteristic soil water relationships, such as those given by Brooks and Corey (1964), may be utilized to obtain an 289 

explicit form of the governing equation of transient, unsaturated soil water flow in fractional time-space, as 290 

explained in the following. 291 

6. Soil water content-based explicit form of the governing equation of transient soil water flow in fractional 292 

time-space 293 

One can utilize the Brooks-Corey (1964) formula for the soil characteristic relationship between the capillary 294 

soil water pressure head  and the soil water content  as follows: 295 

          
 
        

                                                                                                            (40) 296 

where b is the air entry pressure head (bubbling pressure), e = (s - r) is the effective porosity, s is the saturation 297 

volumetric soil water content, r is the residual water content, and  is the pore size distribution index. Therefore, 298 

the i-order Caputo fractional derivative of the capillary pressure head  with respect to xi in the interval (0,xi) may 299 

be expressed in terms of the Brooks-Corey relationship (40) as (Podlubny, 1999; Odibat and Shawagfeh, 2007) 300 

       

     
  

  
    

 
  

       
  

 

   
      

            
   

  
 

         
 
  
         

    

     
  

                                              (41) 301 

Under the Brooks-Corey (1964) relationship between the hydraulic conductivity and the volumetric soil water 302 

content, the relative hydraulic conductivity Kr() is expressed as 303 

        
            

                                                                 (42) 304 

and using expression (42) within                             , the i-order fractional Caputo derivative of              305 

with respect to xi in the interval (0,xi) may be expressed as  306 

                 

     
  

    
                         

         

     
  

     , i = 1,2,3                                                                              (43) 307 

Substituting equations (41) and (43) into equation (35) results in an explicit form of the governing equation of 308 

transient soil water flow in anisotropic multi-dimensional fractional soil space and fractional time in terms of the 309 

volumetric water content  as 310 
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              ; 0< ,1,2,3 <1    (44)  312 

in terms of the Brooks-Corey soil water characteristics relationships. This governing equation can also be expressed as 313 
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           ; 0< ,1,2,3 <1.     (45)    315 
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 316 

Upon dimensional analysis of equation (44) one can see that it is dimensionally consistent since both of its sides 317 

have the unit of 1/T where T denotes time. Meanwhile, equation (45) is also dimensionally consistent with both 318 

sides of the equation having the unit 1/T

. 319 

Specializing equation (45) to only the vertical direction, the governing equation of transient soil water flow 320 

in the vertical direction in fractional space-time may be expressed as, 321 
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          ; 0< ,3 <1  .                                    (46) 323 

Upon dimensional analysis of equation (46) one can find that both sides of this equation have the unit of 1/T

 324 

where T denotes time. Hence, the fractional equation of vertical transient soil water flow, in its explicit form, is 325 

dimensionally consistent.  326 

Finally, specializing equation (45) to only the horizontal directions, the governing equation of transient soil 327 

water flow in the horizontal directions in fractional space-time may be expressed as, 328 
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        ; 0< , 1,2 <1  .           (47) 330 

Upon dimensional analysis of equation (47) one can find that both sides of this equation have the unit of 1/T

 where 331 

T denotes time. Hence, the fractional equation of horizontal transient soil water flow, in its explicit form, is 332 

dimensionally consistent. 333 

7. Physical framework for the developed time-space fractional governing equations of soil water flow 334 

In parallel to the conventional governing equations of soil water flow processes (Freeze and Cherry, 1979; Bear, 335 

1979), the corresponding governing equations of the soil water flow processes in fractional time-space must have 336 

certain properties: i) The fractional governing equations must be purely differential equations, containing only 337 

differential operators, and no difference operators. ii) They must be prognostic equations. That is, they are solved 338 

from the initial conditions and boundary conditions in order to describe the evolution of the flow field in time and 339 

space. As such, from the outset the form of the governing equation must be known in its entirety. Once its physical 340 

parameters (such as the saturated hydraulic conductivity, etc.) are estimated, the governing equation is fixed 341 

throughout the simulation time and the simulation space for the simulation of the soil water flow in question. iii) 342 

These equations must be dimensionally consistent. iv) The fractional governing equations of soil water flow with 343 

fractional powers must converge to the corresponding conventional governing equations with integer powers as the 344 

fractional powers approach the corresponding integer powers.  345 

However, a distinct difference of the fractional governing equations of soil water flow from the corresponding 346 

conventional equations is that they are based on fractional derivatives which are nonlocal. Being nonlocal, the 347 

fractional governing equations of soil water flow have the potential to account for the effect of the initial conditions 348 

on the soil water flow for long times, and for the effect of the upstream boundary conditions on the flow for long 349 
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distances from the upstream boundary. The physical meaning of the fractional governing equation may be explained 350 

most easily in the case of vertical soil water flow. In the context of upstream-to-downstream vertical soil water flow 351 

from the soil surface downward, in the integer form of the soil water flow mass conservation equation (the 352 

conventional equation) the time rate of change of mass within a control volume grid (x-x, x) is determined by the 353 

mass flux coming from the upstream neighbour grid (x-2x, x-x) into (x-x, x), and the mass flux that is moving 354 

from the control volume grid (x-x, x) to the downstream neighbour grid (x, x+x ). This framework holds also for 355 

the soil water flow in the two horizontal directions. As such, the mass evolution in the case of the integer governing 356 

equation of soil water flow is local (at the scale of the specific computational grid), due to interaction only among 357 

neighbouring computational grids. On the other hand, in the case of the fractional governing equation of mass of 358 

vertical upstream-to-downstream soil water flow from the soil surface downward, we deal with the Caputo fractional 359 

derivative  360 

   

     
     

 
             (48) 361 

defined by, 362 

  
 
      

 

      
 

     

      
 

  
 

             0 <             .   (49) 363 

As such, each local integer derivative       at each depth   in the interval (0,   ) contributes to the Caputo fractional 364 

derivative of the interval (0,   ) with weight          .  Within this  framework, for example, in the case of one-365 

dimensional downward vertical soil water flow in fractional time-space, the effect of  the upstream boundary 366 

condition at depth zero is still accounted for at any depth    below the soil surface by means of the fractional spatial 367 

derivatives that appear in the corresponding governing equation (Equation (39) or Equation (46) above). It also 368 

follows from equation (49) that this memory effect is modulated by the value of the fractional power  . This is also 369 

the case in the time dimension where the effect of the initial condition at time zero is accounted for at any time t 370 

after the initial time. Also, the effects of the local derivatives at each time s (         on the Caputo derivative of 371 

the interval (0,t) are accounted for with the weights          .  Hence, the fractional governing equations of soil 372 

water flow are nonlocal, and, as such, can quantify the influence of the initial and boundary conditions on the flow 373 

process more effectively than the corresponding conventional governing equations that are local. 374 

Referring to equation (4) above, it is necessary to take the upper limit value of the Caputo derivative at "x" in 375 

the mean value representation of a function in terms of the fractional Caputo derivative  (Usero, 2008; Li et al., 376 

2009; Odibat and Shawagfeh, 2007) in order to have the governing equations, based on this approximation, become 377 

prognostic equations that shall be known from the outset of model simulation for the whole time-space modeling 378 

domain. Then referring to equation (5) above, in order to have the governing equations to have purely differential 379 

forms (with only the differential operators (and no difference operators) existing in these equations), it is necessary 380 

to establish an analytical relationship between x and       . This is possible by taking the origin of the Caputo 381 

derivative in equation (5) at zero (the upstream boundary location in space or initial time location in time). 382 

Otherwise, when one evaluates the Caputo derivative of the function x at the integral limits (x-x, x), one ends up 383 

with a fractional binomial expansion that has infinite number of terms, which prevents an analytical relationship 384 

between x and      . This is also the case for the time dimension. The Caputo derivative of the function t in the 385 
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time dimension must again be evaluated at the lower limit of the integral set at the initial time zero in order to obtain 386 

purely differential operators for the evolution in time for the governing equations. It is also important to note that 387 

under these approximations, the resulting governing equations are all dimensionally-consistent, and all the resulting 388 

fractional governing equations converge to their corresponding conventional counterparts with integer powers as 389 

their fractional powers approach unity. 390 

8. Discussion and conclusion 391 

The governing equations that were developed in this study are for the fractional time dimension and for multi-392 

dimensional fractional space that represents the fractal spatial structure of a soil field. If one were to simplify the 393 

developed theory above to only fractional time but integer-space soil fields, then the developed equations would 394 

simplify substantially. The governing equation (36) of transient soil water flow in anisotropic multi-dimensional 395 

fractional soil media in fractional time would simplify to (with i = 1, i =1,2,3): 396 
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                        ; 0<  <1;    =                      (50) 398 

for the governing equation of transient soil water flow in integer multi-dimensional soil media and in fractional time. 399 

In terms of the Brooks-Corey soil characteristic relationships, the explicit governing equation of transient soil water 400 

flow in integer multi-dimensional soil space and in fractional time is obtained from the simplification of equation 401 

(45) as (with i = 1, i =1,2,3):  402 
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        ; 0<  <1 ;    =             .              (51) 404 

 405 

As mentioned before, Guerrini and Swartzendruber (1992) and El Abd and Milczarek (2004), in their 406 

explanation of the anomalous behavior of the diffusivity coefficient in their experiments, have proposed that the 407 

diffusivity coefficient in the diffusion-based formulation of the Richards equation of soil water flow must depend 408 

not only on the water content but also on time. Hence, they formulated this diffusivity coefficient D as D = D(,t) = 409 

E() t
m 

where E is a function of water content  while m is a power value. This formulation proved to be successful 410 

in modeling various experimental data on horizontal soil water flow. If one were to formulate the diffusivity Di(,t) 411 

in the explicit governing equation (51) of transient soil water flow in fractional time and in anisotropic multi-412 

dimensional integer soil space as 413 

                       
           , i = 1,2,3,       (52)  414 

this diffusivity coefficient is in the same form as the diffusivity coefficient D(,t) = E() t
m 

that was formulated by 415 

Guerrini and Swartzendruber (1992) and El Abd and Milczarek (2004) based on experimental observations. As such, 416 

within the framework of Brooks-Corey soil water  relationships, the  explicit governing equations that were 417 

developed in this study for the transient soil water flow in multi-dimensional fractional soil media and fractional 418 
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time, when simplified to integer soil space, are consistent with the experimental observations of Guerrini and 419 

Swartzendruber (1992) and El Abd and Milczarek (2004) when their power value m = 1- . 420 

Sun et al. (2013) conjectured that the time-dependent diffusivity D(,t) = E() t
m  

(for a fractional value of m) 421 

due to Guerrini and Swartzendruber (1992) and El Abd and Milczarek (2004), in the conventional Richards equation 422 

can be expressed essentially by representing the conventional integer derivative of the soil water content with 423 

respect to time by a product of the fractional time derivative of the soil water content and a fractional power of time 424 

(Sun et al. 2013, Eqn. (12)), that is,  
        

  
  

 

    

         

     
 where C denotes a constant.  In order to examine the 425 

conjecture of Sun et al. (2013), one can re-write the explicit governing equation (51) for soil water flow in integer 426 

space but fractional time in equivalent form as 427 

      

    

         

     
     

      
       

 

   
                

      
  

   
   

        428 

     
       

   
                

        ;0<  <1 ;    =             .      (53)  429 

 Equation (53) shows that the fractional soil water flow equation (51) which accounts for the time-dependent 430 

diffusivity expression of Guerrini and Swartzendruber (1992) and El Abd and Milczarek (2004), does have an 431 

equivalent form where the integer time derivative of the soil water content in the conventional Richards equation is 432 

replaced by a product of the fractional time derivative of the soil water content and a fractional power of time, 433 

thereby supporting Sun et al.'s (2013) conjecture, although in this study the fractional derivative is defined in the 434 

Caputo sense while in Sun et al. (2013) the fractional derivative is defined with respect to a fractal ruler in time. 435 

In conclusion, in this study first a dimensionally-consistent continuity equation for soil water flow in multi-436 

fractional, multi-dimensional space and fractional time was developed. For the motion equation of soil water flow, 437 

or the equation of water flux within the soil matrix in multi-fractional multi-dimensional space and fractional time, a 438 

dimensionally consistent equation was also developed. From the combination of the fractional continuity and motion 439 

equations, the governing equation of transient soil water flow in multi-fractional, multi-dimensional space and 440 

fractional time was then obtained. It is shown that this equation approaches the conventional Richards equation as 441 

the fractional derivative powers approach integer values. Then by the introduction of the Brooks-Corey constitutive 442 

relationships for soil water (Brooks and Corey, 1964) into the fractional transient soil water flow equation, an 443 

explicit form of the equation was obtained in multi-dimensional, multi-fractional space and fractional time. Finally, 444 

the governing fractional equation was specialized to the cases of vertical soil water flow and horizontal soil water 445 

flow in fractional time-space. It is shown that the developed governing equations, in their fractional time but integer 446 

space forms, show behavior consistent with the previous experimental observations concerning the diffusive 447 

behavior of soil water flow. 448 
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 519 
Figure 1. The control volume for the three-dimensional soil water flow. 520 
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