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Abstract. Daily precipitation extremes and annual totals have increased in large parts of the global land area over the last

decades. These observations are consistent with theoretical considerations of a warming climate. However, until recently these

trends have not been shown to consistently affect dry regions over land. A recent study, published by Donat et al. (2016), now

identified significant increases in annual-maximum daily extreme precipitation (Rx1d) and annual precipitation totals (PRCP-

TOT) in dry regions. Here, we revisit the applied methods and explore the sensitivity of changes in precipitation extremes and5

annual totals to alternative choices of defining a dry region (i.e., in terms of aridity as opposed to precipitation characteristics

alone). We find that a) statistical artifacts introduced by data preprocessing based on a time-invariant reference period lead

to an overestimation of the reported trends by up to 40%, and that b) the reported trend of globally aggregated extremes and

annual totals are highly sensitive to the definition of a ‘dry region of the globe’. For example, using the same observational

dataset, accounting for the statistical artifacts and based on different aridity-based dryness definitions, we find a reduction10

in the positive trend of Rx1d from the originally reported +1.6% decade−1 to +0.2 to +0.9% decade−1 (period changes for

1981-2010 averages relative to 1951-1980 are reduced to -1.32 to +0.97% as opposed to +4.85% in the original study). If we

include additional but less homogenized data to cover larger regions, the global trend increases slightly (Rx1d: +0.4 to +1.1%

decade−1), and in this case we can indeed confirm (partly) significant increases in Rx1d. However, these globally aggregated

estimates remain uncertain as considerable gaps in long-term observations in the Earth’s arid and semi-arid regions remain. In15

summary, adequate data preprocessing and accounting for uncertainties regarding the definition of dryness are crucial to the

quantification of spatially aggregated trends in precipitation extremes in the world’s dry regions. In view of the high relevance

of the question to many potentially affected stakeholders, we call for a well-reflected choice of specific data processing meth-

ods and the inclusion of alternative dryness definitions to guarantee that communicated results related to climate change be

robust.20
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1 Introduction

Daily precipitation extremes are expected to increase over large parts of the global land area roughly by 6-7% per ◦C of

warming due to a higher atmospheric water-holding capacity as specified by the Clausius-Clapeyron equation (Allen and

Ingram, 2002; Trenberth et al., 2003). Quantifying and predicting changes in precipitation characteristics due to climate change

is crucial for water availability assessments and adaptation to climate change (IPCC, 2012; Greve et al., 2014). On a global5

scale, daily precipitation extremes have been observed to intensify (Donat et al., 2013a; Westra et al., 2013; O’Gorman, 2015),

consistent with global model simulations (Fischer and Knutti, 2015), and coincide with a global-scale increase in observed

annual precipitation totals (Donat et al., 2013a). However, there is little information to date on how precipitation characteristics

have changed in the past over dry land areas and how they will change in the future. Donat et al. (2016) investigate whether

and to what extent daily precipitation extremes (Rx1d) and annual precipitation totals (PRCPTOT) have increased over the last10

60 years using observational data. The authors identify rapid increases in Rx1d over dry regions, which strongly outpace the

corresponding increases over wet areas, and find a similar pattern for PRCPTOT.

The question whether precipitation extremes increase in dry regions is highly relevant in the context of climate change

adaptation, as generally dry areas may be less prepared to deal with precipitation extremes (Ingram, 2016). Consequently, the

recent report on increasing Rx1d in dry areas was highlighted in major Science journals (including Nature (Tollefson, 2016)15

and Nature Climate Change (Ingram, 2016)) and received a lot of media coverage 1, 2, 3, 4, 5, 6, which indicates the importance

of this topic for the scientific community, the public and decision makers.

However, scrutinizing the findings by Donat et al. (2016) reveals two major issues of concern: Firstly, the applied statistical

approach introduces two systematic biases that lead to a substantial overestimation of the increase in PRCPTOT and Rx1d of

up to 40% in dry regions. Wet regions, by contrast, are only affected to a limited degree due to an approximate cancellation of20

errors in trend estimates. Secondly, the definition of a dry region used in Donat et al. (2016) based on PRCPTOT and Rx1d alone

does only partly reflect the water balance and thus water availability (for instance, it ignores losses through evapotranspiration).

Furthermore, defining dryness based on low Rx1d (Donat et al., 2016) fells a decision on whether a region is dry or not based

on only one day in the year. The chosen definitions thus induce considerable uncertainty in the reported results. If we test

alternative but well-established definitions of a ‘dry region’ (based on water supply and demand, either implicitly or explicitly,25

cf. Köppen, 1900; Greve et al., 2014) and apply the appropriate statistical tools, we find strongly increasing trends and period

changes (1981-2010 averages relative to the 1951-1980 reference period) in PRCPTOT and Rx1d in the world’s dry regions.

An accurate quantification of trends and changes in precipitation characteristics is of high relevance and a crucial prerequisite

in the context of making climate change adaptation decisions (e.g. IPCC, 2014).

1http://www.huffingtonpost.com/entry/global-warming-will-bring-extreme-rain-and-flooding-study-finds_us_56e081c7e4b0860f99d796ab
2https://www.theguardian.com/environment/2016/mar/08/hotter-planet-spells-harder-rains-to-come-study
3https://www.sciencedaily.com/releases/2016/03/160308105625.htm
4http://phys.org/news/2016-03-global-world-driest-areas.html
5http://www.abc.net.au/news/2016-03-08/climate-change-could-bring-more-rain-to-deserts-study/7229236
6http://www.asce.org/magazine/20160412-climate-change-to-cause-more-precipitation-in-dry-regions,-researchers-say/
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2 On data pre-processing based on a time-invariant reference period

As a first step in the analysis of Donat et al. (2016), the authors normalise the 60-year time series in the gridded HadEX2 dataset

(Donat et al., 2013a) for each grid point with the sample mean of a 30-year reference period (1951-1980), which is a widespread

procedure in climate science. However, this procedure artificially increases the mean of the spatial distribution in the out-of-

base period (1981-2010) in all investigated time series, simply because variability in the sample means inflates the signal in the5

latter period (Sippel et al., 2015). To illustrate this point, consider two hypothetical climate regions of the same size: In region

one, the mean of a precipitation quantity increases between two periods (from 100 to 200mm, say), for example due to a few

large extremes, whereas it decreases by exactly the same amount in region two (i.e. from 200 to 100mm). Consequently, over

the combined period the spatial average and the spread of the two regions would be statistically indistinguishable. However,

normalising by the mean of the first time period would imply that the spatial average across both regions for the second period10

is 1.25 (the average of 0.5 and 2), i.e. a spurious increase of 25% between both periods. This issue is illustrated in Fig. 1 for

an artificial dataset that consists of n= 104 time series (e.g., ‘grid cells’) that are drawn randomly and independently from

a Generalized Extreme Value distribution (GEV, Coles et al., 2001). The GEV distribution provides an asymptotical limit

model for maxima derived from a sequence of random variables with fixed block size (Coles et al., 2001, e.g. Rx1d,), and

is therefore appropriate to illustrate this issue. Normalising each time series in the artificial dataset by its mean in the first15

period yields a spatial ‘reference period distribution’ that is different from the spatial ‘out-of-base period distribution’ (and

from the original GEV distribution, Fig. 1a). In particular, this normalisation leads to increased spatial averages in the out-of-

base period (Fig. 1b). Furthermore, the normalisation procedure induces a considerable increase in the variance, skewness and

higher statistical moments in the spatial distribution in the out-of-base period (see e.g. Fig. 1a), which would be of relevance

if higher statistical moments (changes in spatial variance, etc.) were studied. The reason for this difference lies in the fact that20

the estimated sample means (of the reference period) are statistically dependent to reference period time series, but (virtually)

independent to the time period that lies outside of the reference period (Zhang et al., 2005; Sippel et al., 2015). It is worth

noting that these biases can be understood analytically (Appendix A). The expected value ∆bias, defined as the relative bias in

the out-of-base period, can be well approximated for each grid cell with

∆bias ≈
σ2

µ2nref
, (1)25

where µ, σ, and nref denote the time series’ mean, standard deviation, and reference period length, respectively (Appendix A).

Thereby, it can immediately be seen that the introduced bias is systematically positive outside of the reference period, and it is

proportional to the ratio of
σ2

µ2
for any fixed reference period length.

An additional statistical bias stems from the choice of the world’s 30% wettest and 30% driest regions based on the cli-

matology of PRCPTOT and Rx1d in the reference period (1951-1980). Because 30 years are fairly short to derive a robust30

climatology of the tails of the precipitation distribution, the computed changes in wet and dry regions are distorted by the ‘re-

gression to the mean’ phenomenon (Galton, 1886; Barnett et al., 2005). To illustrate this issue, recall the conceptual two-region

example quoted above, where variation between the two available time periods would be entirely due to random causes. If any

of the two periods would be chosen to stratify the dataset in one dry and one wet region, this would result in opposing changes
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(i.e. dry gets wetter, wet gets drier) in the independent period. In other words, selecting from the dry (wet) end of the spatial

distribution in one subset of the dataset, or ‘reference period’, will result in a higher probability for wetter (drier) conditions in

the remaining years if any type of random variation plays a role (Table 1, and Fig. 2 for changes due to both statistical effects).

Although random variations in 30-year averages are not very large (compare Fig. 3a,b and Fig. 3c,d), it is important to consider

this effect as it is indeed noticeable in the reported results (Table 1).5

The chosen normalisation approach combined with the spatial point selection method results in a bias toward PRCPTOT and

Rx1d increasing at a faster rate in dry regions compared to wet regions. Over dry regions, both effects lead to an overestimation

of the trends in precipitation totals and extremes by +40.3% and +33.2% (+32.9% and +40.4% overestimation in the reported

period changes from 1951-1980 to 1981-2010), respectively (Fig. 2, Table 1). In contrast, in wet regions both errors roughly

cancel each other out in the case of extremes (increase by only +8.7%) and lead to a small underestimation of the increase10

in total precipitation (-13.7%). In summary, we find that the applied preprocessing steps are crucial to accurately quantify

changes in precipitation extremes and annual totals. In the study under scrutiny, if the dryness definition is kept, trends and

period increments are corrected to much lower values, but the trends and period increments remain positive and significant (see

Fig. 2).

3 On the definition of a dry region15

Climatological dryness is typically not determined by water supply alone but also depends on atmospheric water demand, that

is the ability to evaporate water from the land surface (Köppen, 1900). This means that "we cannot tell whether a climate

is moist or dry by knowing precipitation alone; we must know whether precipitation is greater or less than potential evapo-

transpiration", as Charles Warren Thornthwaite put it in a landmark paper (Thornthwaite, 1948); a statement that is indeed

mirrored in present-day literature (e.g. Hulme, 1996; Cook et al., 2004; Feng and Fu, 2013; Greve et al., 2014; Sherwood and20

Fu, 2014; Huang et al., 2015), and international reports (Middleton and Thomas, 1992; Millennium Ecosystem Assessment,

2005; Adeel et al., 2005). Metrics and indicators that are typically used to determine climatological dryness and changes therein

are derived from this concept, e.g. the aridity index as the ratio of precipitation to potential evapotranspiration (e.g. Hulme,

1996; Greve et al., 2014; Milly and Dunne, 2016). However, in other studies dry regions are defined based on monthly or

annual precipitation totals (Allan et al., 2010; Sun et al., 2012; Liu and Allan, 2013). Donat et al. (2016) define dry regions for25

the PRCPTOT analysis based on low annual precipitation totals, and dry regions for the Rx1d analysis are based on moderate

annual-maximum daily precipitation. Consequently, this latter definition fells a decision whether a region is dry or not based on

the precipitation amount of a single day per year. Regions in northern Europe such as parts of Scandinavia or the Netherlands

fall in the ‘dry’ class because of relatively small annual-maximum daily precipitation (Fig. 3). Hence, different notions of what

constitutes a dry region can contrast each other, resulting in regions being dry in one definition and wet in another (e.g., parts of30

Northeastern Europe, Fig. 3). These variation in dryness definitions consequently induces uncertainties in the interpretation of

changes in precipitation extremes and totals in the ‘world’s dry regions’. These definition-related differences can be substantial

- for example, as much as 50.8% (PRCPTOT) and 71.8% (Rx1d) of the ‘dry grid cells’, following the respective definitions in
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Donat et al. (2016), are neither arid nor semi-arid (Appendix B, Figure B1), and would thus not be considered dry if a definition

based on both water supply and atmospheric demand were to be used.

To clarify this issue, we test the sensitivity of the reported increases in Rx1d and PRCPTOT to the choice of dryness

definition by using a variety of different dryness definitions (Fig. 3). Hence, we evaluate trends and period increments in Rx1d

and PRCPTOT in5

1. regions that fall below the global 30% quantile in HadEX2 in the respective diagnostic (Rx1d or PRCPTOT), following

Donat et al. (2016),

2. dry regions (‘B-climates’) from a traditional climate classification based on temperature and precipitation (Köppen,

1900; Kottek et al., 2006),

3. dry regions as identified from an aridity-based definition of dryness (Greve et al., 2014), and10

4. dry and transitional regions combined from the latter definition (Greve et al., 2014).

In addition, we test uncertainties related to the temporal coverage of the dataset by relying on time series with at least 90%

coverage (cf. Donat et al., 2016) and furthermore also analyse only time series without missing values (100% coverage).

Our results show that, if dry regions are defined based on water availability (i.e., dry regions following either Greve et al.

(2014) or Köppen (1900)) and statistical artefacts are accounted for, in dry or dry and transitional regions combined, the trends15

reduce from the originally reported 1.6% decade−1 (2.0% decade−1) to +0.2 to +0.9% decade−1 (+0.0 to +1.2% decade−1)

for Rx1d (PRCPTOT), respectively. The uncertainty range reflects the choice of aridity mask used and the temporal coverage

of the time series considered (see Table 2 and Table 3). Similarly, period changes between 1951-1980 and 1981-2010 would

be reduced to -1.32 to +0.97% (+0.5 to +3.8%) as opposed to +4.85% (+6.3%) for Rx1d (PRCPTOT) in the original study.

Although the trends remain positive, based on a two-sided Mann-Kendall test, no significant trends in Rx1d and PRCPTOT20

can be detected in the world’s dry regions. However, the coverage of the world’s arid regions with long-term observational

monitoring data is rather sparse and largely confined to arid and semi-arid regions in North-America and Eurasia (Fig. 3), and

thus large uncertainties remain. A few of the data gaps in HadEX2 in arid and semi-arid regions can be filled with available

data from the less homogenized GHCNDEX dataset (Donat et al., 2013b, Appendix B, Figure B2). In the dry (Köppen, 1900;

Greve et al., 2014) and dry-transitional regions (Greve et al., 2014) of this merged dataset, the magnitude of the trends and25

period changes remains largely the same for Rx1d (trends: +0.4 to +1.1% decade−1, period changes: -0.16 to +1.41%), but

with now more significant p-values due to a higher data coverage (Table 2). For PRCPTOT, the HadEX2-GHCNDEX merged

dataset reveals on average increased and significant trends (+0.6% to +1.9% decade−1) and period changes (+1.7% to +5.1%).

The reported results are consistent with earlier studies that report modest increases in Rx1d and PRCPTOT in predominantly

arid and semi-arid subsidence regions based on model simulations (Kharin et al., 2007; Fischer and Knutti, 2015) and in30

observations for individual subtropical regions such as Australia or the Mediterranean (Westra et al., 2013; Lehmann et al.,

2015). If ‘the world’s dry regions’ are defined based on falling below a global 30% threshold in Rx1d or PRCPTOT in the

HadEX2 dataset (Donat et al., 2016), we indeed confirm robust increases in both Rx1d and PRCPTOT. Thus, the originally
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reported robust increases in both diagnostics are highly sensitive to the definition of a ‘dry region’, and appear to stem from

regions with relatively moderate extreme (Rx1d) or average (PRCPTOT) precipitation, such as regions in Northern Europe

(Rx1d, Fig. 3) or North-East Siberia (PRCPTOT, Fig. 3).

4 Conclusions

Monitoring and an accurate quantification of trends in meteorological risks in a rapidly changing Earth system is a prerequisite5

to well-informed decision-making in the context of climate change adaptation (IPCC, 2014). In this context, short reference

periods that are defined on a subset of the available dataset for normalisation or data preprocessing purposes should be avoided,

as this procedure inevitably introduces biases (Zhang et al., 2005; Sippel et al., 2015). In the present study under scrutiny, these

statistical effects reduce the reported trends and period changes by up to 40%, but the direction of the overall signal remains

unchanged (i.e. increasing trends in Rx1d and PRCPTOT in regions of moderate extreme precipitation and low annual totals,10

respectively).

Furthermore, the definition of a ‘dry region’ induces considerable uncertainty in quantifying changes in Rx1d and PRCPTOT

in such areas. If dryness is defined based on water supply and demand (i.e. aridity), we find much smaller trends and period

increments in Rx1d and PRCPTOT, which are almost exclusively positive but in many cases insignificant (Table 2 and Table 3).

Hence, overall we can confirm an indication towards increases in both metrics in the world’s dry regions. However, it is15

important to stress that many of the world’s dry regions, such as large arid and semi-arid regions in Africa, the Arabian

Peninsula, and partly South America are not covered by monitoring datasets that are available at present. This fact highlights

the importance of consistent, long-term monitoring efforts, data quality control, development and maintenance of long-term

datasets (Alexander et al., 2006; Donat et al., 2013a, b), and also emphasises that the results reported here should be regarded

as indicative only for those arid regions where data is available.20

In summary, understanding and disentangling on-going changes in precipitation characteristics in the world’s dry regions

remains a research priority of high relevance. In this context, our paper demonstrates that 1) data preprocessing can introduce

substantial bias, and 2) trends and period changes can be sensitive to the specific choice of dryness definition that is used;

therefore we urge authors to be considerate and specific regarding both choices and to consider associated uncertainties.

6



Appendix A: Analytical approximation of the expected value for the normalisation-induced bias

Assumptions and Notation:

– Assume independent and identically distributed (i.e., stationary) variables Xt,i with mean given by E(X) = µ and vari-

ance Var(X) = σ2. Let the subscripts t and i denote time and grid cell index, respectively. Note that in real-world

applications, the biases could be estimated analytically by allowing for different sample means and variances across5

space.

– Let toob be an arbitrary time step in the ‘out-of-base’ (independent) period, and tref as an arbitrary time step inside the

reference period. Let nref denote the length of the reference period.

– Let ∆bias = E(
Xtoob,i

µ̂ref,i
)−1 denote the relative change induced by normalisation by the mean of an independent reference

period (i.e., ‘normalisation bias’, Xtoob,i is not contained in µref,i).10

Our objective is to find an analytical approximation of the expected value for the artificially induced relative change (∆bias)

by dividing a random variable Xtoob,i as defined above by a sample mean estimated from different samples (‘reference sam-

ples’) drawn from the same distribution (µ̂ref,i = 1
n

∑nref

tref=1Xtref ,i, where E(µ̂ref,i) = µ), i.e.

∆bias = E(
Xtoob,i

µ̂ref,i
)− 1≈ f(µ,σ,nref). (A1)

Clearly, for large nref this quantity should go to 0. Because Xt,i and µ̂ref,i are independent, we can write,15

∆bias = E(Xt,i)E(
1

µ̂ref,i
)− 1 = µE(

1

µ̂ref,i
)− 1. (A2)

If we subsitute µ̂ref,i = µ(1 + εref,i), where E(εi) = 0, Var(εi) = σ2

µ2nref
(because εref,i =

µ̂ref,i

µ − 1, and E(µ̂ref,i) = µ and

Var(µ̂ref,i) = σ2

nref
), and the subscript ref has been dropped from εi for convenience, we get

∆bias = µE(
1

µ(1 + εi)
)− 1 = E(

1

1 + εi
)− 1. (A3)

A Taylor expansion around the function g(x) = 1
1+x at x= 0 yields20

g(x) =
1

1 +x
= 1−x+x2−x3 +x4−x5 + ... (A4)

We will see below that the convergence criterion εi < |1| of the Taylor series is met in practically relevant cases, but it should

be noted that convergence cannot be ensured in all theoretically conceivable cases. Using Taylor expansion, ∆bias can be

approximated, making use of the linearity of the expectation operator E() and of the fact that E(εi) = 0 and E(ε2i ) = Var(εi) =

σ2

µ2nref
by definition,25

∆bias = E(
1

1 + εi
)− 1 (A5)

= E(1− εi + ε2i − ε3i + ε4i − ε5i + ...)− 1 (A6)

=
σ2

µ2nref
−E(ε3i ) +E(ε4i )−E(ε5i ) + ... (A7)
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This expression yields a sum over the central moments of the distribution of εi’s. For a symmetric probability distribution

(recall that εi denote the deviations of the sample means in a reference period around the underlying true mean), E(εki ) = 0,

where k is any uneven exponent k ∈ N. Eq. A7 then reduces to

∆bias =
σ2

µ2nref
+E(ε4i ) +E(ε6i ) + ... (A8)

As long as εi < |1| is fulfilled, the quadratic term dominates both Eq. A7 and Eq. A8. The present analytical approximation5

(both Eq. A7 and Eq. A8) provides the important insights that 1) normalisation with a ‘reference period sample mean’ leads

to an artificial increase of spatial averages in the out-of-base period, i.e. the bias is always positive in the out-of-base period,

∆bias > 0, and 2) that ∆bias ∝ (σµ
1√
nref

)2, i.e. the square of the coefficient of variation in the distribution of sample means

(i.e., cv[µ̂ref,i] = σ
µ
√
nref

). For any fixed nref , the amplitude of the normalisation-induced biases only depends on the square

of the ratio σ
µ . We verify below numerically that this approximation works well for random variables Xt,i drawn from i. a10

Gaussian distribution, ii. a Generalized Extreme Value distribution with two different choices for the shape parameter (ξ = 0,

‘Gumbel distribution’, and ξ 6= 0).

Gaussian distribution

Assume Xt,i ∼N (µ,σ2), the distribution of the sample mean deviations from the true mean will follow εi ∼N (0, σ2

µ2nref
). If

we substitute with εi = σ
µ

1√
nref

Y , where Y ∼N (0,1) in Eq. A8, the above expression reduces to15

∆bias =
σ2

µ2nref
+ (

σ

µ

1
√
nref

)4E(Y 4) + (
σ

µ

1
√
nref

)6E(Y 6) + ... (A9)

Because higher-order moments of a standard normal distributed random variable are well-known and can be derived analyti-

cally (Johnson et al., 1994, i.e., E(Y 4) = 3, E(Y 6) = 15), an analytical expression of the normalisation-induced bias becomes

straightforward:

∆bias ≈
σ2

µ2nref
+ 3(

σ

µ

1
√
nref

)4 + 15(
σ

µ

1
√
nref

)6. (A10)20

A comparison of Eq. A10 (i.e. the first three terms in the Taylor approximation) to numerical simulations shows that the an-

alytical approximation works well (Fig. A-1a). Furthermore, the estimation of mean and standard deviation from the empirical

time series to calculate the expected value for the biases is unbiased and show surprisingly little variation (Fig. A-1b) even for

a relatively small number of grid cells, where random variation in stationary time series becomes considerable (Fig. A-1b).

However, one important caveat is that Eq. A3 and the subsequent approximation only works as long as εi < |1| is fulfilled.25

How likely is a violation of this criterion? Numerical simulations for nref = 30 appear to be very stable for any µ
σ > 0.8 in the

Xt,i’s, i.e. corresponding roughly to a Cv[µ̂ref,i]≈ 0.2. For such a choice of Cv the chance of |εi| ≥ 1 corresponds to a −5σ

event with a probability of roughly 1 to 3.5 million. Given that the observed µ
σ ratios are considerably larger than the values

tested here even in the driest regions of the world, we conclude that the approximation can be used for the vast majority, if not

all, practical considerations.30
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Figure A-1. a) Ratio of mean to sd vs. normalisation-induced bias in a Gaussian distribution for numerical simulations with various mean

values (dots), and the derived analytical approximation (black line). The reference period length is taken as nref = 30, and numerical

simulations are conducted with n= 105 grid cells with each 60 time steps. b) Analytical estimates of biases as calculated from sample mean

and sample standard deviation following Eq. 1 in the main text (dark blue) for a given number of independent grid cells (µ
σ

= 1, nref = 30).

For comparison, the magnitude of random changes in stationary time series (i.e. empirical variation in the quantity ∆bias, following Eq. A1)

with nref = 30 and nobase = 30 is shown in black. Error bars indicate the 5th to 95th percentile in repeated numerical simulations.
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Generalized extreme value distribution

We investigate whether in Eq. A7 the higher-order terms in the Taylor approximation can be ignored in practical applications,

where an assumption of Gaussianity might not hold. Here, we test this for the Generalized Extreme Value distribution as an

appropriate model for annual maxima as investigated in the main manuscript with two different choices for the distribution’s

shape parameter (ξ).5

i. Gumbel distribution

We first assume, in analogy to the paragraph above, independent and identically distributed (i.e., stationary) random variables

drawn from a Generalized Extreme Value distribution with zero shape parameter (‘Gumbel distribution’,Xt,i ∼GEV (µ′,σ′, ξ =

0), where µ′, σ′ and ξ = 0 denote the GEV’s location, scale and shape parameter, respectively, see e.g. Johnson et al., 1995).

The expected values for mean (µ) and variance (σ2) of a GEV are given by µ= µ′+σ′γ, where γ denotes Euler’s constant.10

Folllowing Eq. A7, we can readily derive an analytical expression for the expected value of the normalisation-induced bias,

i.e.

∆bias =
σ2

µ2nref
−E(ε3i ) +E(ε4i )−E(ε5i ) + ... (A11)

= (
π

√
6nref(

µ′

σ′ + γ)
)2−E(ε3i ) +E(ε4i )−E(ε5i ) + ... (A12)

Here, we note again that the quadratic term dominates the expression. If we make the simplifying assumption that the sample15

means µ̂ref,i for nref = 30 follow (approximately) a Gaussian distribution (the assumption is only needed for the higher order

terms of the Taylor expansion), we can derive an analytical approximation for the normalisation-induced bias by insertion and

in analogy to above, i.e.

∆bias ≈ (
π

√
6nref(

µ′

σ′ + γ)
)2 + (

σ

µ

1
√
nref

)4E(Y 4) + ... (A13)

≈ (
π

√
6nref(

µ′

σ′ + γ)
)2 + 3(

π
√

6nref(
µ′

σ′ + γ)
)4. (A14)20

Hence, we find that the magnitude of the bias estimates is proportional to the ratio of scale to location parameter (σ
′

µ′ ) for any

fixed reference period length (but also the proportionality to the square of the ratio of standard deviation to mean remains,

i.e. Eq. 1 (or Eq. A13) in the main text). The analytical approximation can be verified by numerical simulation using GEV-

distributed random variables, and is found to fit the data very well (Fig. A-2a). Furthermore, an estimator of the expected

value of the biases by only estimating the mean and standard deviation of empirical time series (i.e., using the first term in the25

Taylor approximation) can be derived easily and is found to work reliable also for a small number of independent grid cells

(Fig. A-2c).
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ii. GEV distribution with ξ 6= 0

Here, we test whether the analytical argument from above can be extended to Generalized Extreme Value distributions with

ξ 6= 0. In practical applications of the GEV to observed maximum precipitation, a shape parameter of ξ ≈ 0.2 is often found

(Van den Brink and Können, 2011), therefore we test here for Xt,i ∼GEV(µ′,σ′, ξ = 0.2). The expected values for mean

(µ) and variance (σ2) of a GEV, when 0> ε < 1, are given by µ= µ′+σ′ Γ(1−ξ)−1
ξ and σ2 = (σ′)2 (g2− g2

1)

ξ
, where gk =5

Γ(1− kξ), k = 1,2, and Γ(t) is the gamma function (Johnson et al., 1995).

Hence, the (dominant) quadratic term in the Taylor approximation in Eq. A7 reads,

∆bias ≈
(g2− g2

1)

nrefξ[
µ′

σ′ +
Γ(1− ξ)− 1

ξ
]2
. (A15)

The approximation works again very well in numerical simulations (Fig. A-2b), and shows that if ξ 6= 0, there is a depen-

dency on ξ, nref , and again the ratio of σ
′

µ′ , which determine the magnitude of the normalisation-induced bias. Please note that10

the approximation works similarly well for random variables drawn from a GEV-distribution with negative shape parameter

(ξ =−0.2, not shown).

Figure A-2. a) Ratio of location to scale parameter vs. normalisation-induced bias in a Generalized Extreme Value distribution for the

analytical approximation (black line) and numerical simulations with various location parameter values (dots), with a) zero shape parameter,

and b) ξ = 0.2. Reference period length is taken as nref = 30, and numerical simulations are conducted with n= 105 grid cells with each

60 time steps. c) Analytical estimates of biases as calculated from sample mean and sample standard deviation following Eq. 1 in the main

text (dark blue) for a given number of independent grid cells drawn from a GEV distribution (µ
′

σ′ = 1, ξ = 0, nref = 30). For comparison,

the magnitude of random changes in stationary time series (i.e. empirical variation in the quantity ∆bias, following Eq. A1) with nref = 30

and nobase = 30 is shown in black. Error bars indicate the 5th to 95th percentile in repeated numerical simulations.

Short Remark on non-stationarity in the out-of-base period

Many real-world precipitation time series show non-stationarities due to climatic variations (O’Gorman, 2015) that are typi-

cally diagnosed as relative changes in the precipitation amount. Hence, we can ask whether and how any ‘real change in the15

expected value’ outside the reference period can be disentangled from the normalisation-induced bias. Given the analytical

approximation above, we can show that the highlighted normalisation-induced bias scales non-stationarities in the out-of-base

period in a multiplicative way:

Let c denote any change between the reference period expected value and some future period (e.g. assume one is interested in

global or latitudinal changes in a past and future climatic period), i.e. such that E(Xtref ,i) = cE(Xtoob,i), then the bias (∆bias,20

11



after accounting for the ‘real change’) would simply scale with the relative change (∆ denotes the total apparent change):

∆ = cE(
Xt,i

µ̂ref,i
)− 1 (A16)

= cE(
1

1 + εi
)− 1 (A17)

= c− 1︸︷︷︸
true change

+c[
σ2

µ2nref
−E(ε3i ) +E(ε4i )−E(ε5i ) + ...︸ ︷︷ ︸

∆bias

] (A18)

From Eq. A18, it is straightforward to see that for any multiplicative changes in the expected value of the out-of-base variables,25

the normalisation-inudced bias scales with the change. Hence, this expression implies that to detect the ‘true change c’ between

two periods, the normalisation-induced bias has to be accounted for, i.e.

c=
∆ + 1

1 + ∆bias
. (A19)
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Appendix B

Figure B-1. Relationship between annual-maximum daily rainfall (Rx1d from HadEX2-GHCNDEX merged dataset) and aridity (a), and

precipitation totals (PRCPTOT from HadEX2-GHCNDEX merged dataset) and aridity (b). Potential evapotranspiration is taken from the

CRU-TS3.23 dataset (Harris et al., 2014)

Figure B-2. Available data in the HadEX2 dataset (Donat et al., 2013a) merged with GHCNDEX (Donat et al., 2013b).
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Figure 1. Conceptual example of biases in the mean induced by normalisation based on a fixed reference period. a, Probability distributions

and their respective means for an artificial dataset of 104 grid cells each comprised of random variables sampled from a Generalized Extreme

Value distribution (GEV, µ= 1, σ = 1, ξ = 0, sample size nref = 8 for illustration), and normalised following Donat et al. (2016) with

different ref. periods. b, Shift in the mean of spatially aggregated variables due to reference period normalisation (nref = 30 following

Donat et al. (2016), Confidence intervals denote the 5th - 95th percentile). Code to reproduce this example is provided in Supplementary

Material.

Figure 2. Normalisation-induced biases on time series and trend estimates. a-b, Time series, trends and 30-year means of spatially aggregated

heavy precipitation (Rx1d) in (a) dry and (b) wet regions. c-d, Time series, trends and 30-year means of spatially aggregated total precipitation

(PRCPTOT) in (a) dry and (b) wet regions. Orange lines are taken from Donat et al. (2016) (ref. period: 1951-1980), black lines are corrected

for biases (ref. period: 1951-2010), and blue lines indicate a hypothetical 1981-2010 reference period.

Figure 3. Different mask of the world’s dry and wet regions. a-d, Dryness/Wetness masks based on 1951-1980 and HadEX2 (a-b, (see Donat

et al., 2016)) and 1951-2010 (c-d, to avoid ‘regression to the mean’ selection bias, see main text) for Rx1d (left) and PRCPTOT (right).

‘NDNW’ indicates neither dry nor wet areas, white inland areas indicate less than 90% data availability in the HadEX2 dataset and were not

considered. e-f, Dry regions based on the Köppen-Geiger classification as updated by (Kottek et al., 2006) and data availability in HadEX2.

g-h, Dry and transitional regions following (Greve et al., 2014) and data availability in HadEX2.

Figure 4. a-f, Time series, trends and 30-year means of spatially aggregated heavy precipitation (Rx1d, a,c,e) and annual rainfall totals

(PRCPTOT, b,d,f) in dry regions following (a-b) the Köppen-Geiger classification Kottek et al. (2006), (c-d) Greve et al. (2014), and (e-

f) dry and transitional regions combined (Greve et al., 2014). Red lines are drawn as reported in Donat et al. (2016) for comparison, i.e.

based on the 1951-1980 reference period and dryness defined as ‘moderate extreme precipitation’ (Rx1d) and annual precipitation totals

(PRCPTOT). Grey and black lines are corrected for statistical artefacts (1951-2010 reference period), and dry regions are defined based on

aridity. Grey lines report 90% complete time series, black lines report only data with 100% complete temporal coverage. All p-values are

given for two-sided (one-sided) Mann-Kendall trend tests.
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Table 1. Statistical pre-processing uncertainties and biases in period increments and trend slopes

World Region Precipitation

characteristic

Ref. Period

(Normalisa-

tion)

Ref. Pe-

riod (region

selection)

Period

Increment1

[%]

Bias [%] Sen slope

[decade−1]

Bias [%] Type of

bias

Dry (HadEX2,

30% lowest

Rx1day)

Rx1d 1951-1980 1951-1980 4.85 40.4 0.016 33.3 2

Rx1d 1981-2010 1981-2010 1.29 -62.7 0.006 -50.0 3

Rx1d 1951-2010 1951-2010 3.45 0.0 0.012 0.0 4

Rx1d 1951-1980 1951-2010 3.97 15.1 0.014 16.7 5

Rx1d 1951-2010 1951-1980 4.33 25.3 0.014 16.7 6

Wet (HadEX2,

70% highest

Rx1day)

Rx1d 1951-1980 1951-1980 2.09 2.2 0.007 8.7 2

Rx1d 1981-2010 1981-2010 2.09 2.2 0.007 -1.5 3

Rx1d 1951-2010 1951-2010 2.04 0.0 0.007 0.0 4

Rx1d 1951-1980 1951-2010 2.41 18.1 0.008 16.0 5

Rx1d 1951-2010 1951-1980 1.73 -15.3 0.006 -4.8 6

Dry (HadEX2,

30% lowest

PRCPTOT)

PRCPTOT 1951-1980 1951-1980 6.32 32.9 0.020 40.4 2

PRCPTOT 1981-2010 1981-2010 3.38 -29.0 0.010 -29.5 3

PRCPTOT 1951-2010 1951-2010 4.76 0.0 0.015 0.0 4

PRCPTOT 1951-1980 1951-2010 5.74 20.8 0.019 27.5 5

PRCPTOT 1951-2010 1951-1980 5.34 12.2 0.017 14.9 6

Wet (HadEX2,

70% highest

PRCPTOT)

PRCPTOT 1951-1980 1951-1980 0.83 -13.7 0.003 -13.6 2

PRCPTOT 1981-2010 1981-2010 1.30 35.5 0.005 28.9 3

PRCPTOT 1951-2010 1951-2010 0.96 0.0 0.004 0.0 4

PRCPTOT 1951-1980 1951-2010 1.32 38.5 0.005 38.2 5

PRCPTOT 1951-2010 1951-1980 0.40 -58.6 0.002 -52.4 6

1 Period increment denotes the change in period means between 1981-2010 vs. 1951-1980.
2 Combination of ‘Normalisation’ and ‘Regression to mean’ (RTM) bias, ‘early’ ref. period (i.e. following Donat et al. (2016))

3 Combination of ‘Normalisation’ and ‘RTM’ bias, ‘late’ ref. period
4 Ref. Period covering the entire temporal domain (no bias)

5 ‘Normalisation’ bias only
6 ‘RTM’ bias only
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