
 
Submission of revised manuscript  

 
Dear Editor and Reviewers: 

 

we thank four reviewers for their positive evaluation of our manuscript and their constructive comments. 

Furthermore, we thank M. Donat for a partly positive, partly critical evaluation of our manuscript and constructive 

suggestions. We highly appreciate the scientific discussion that took place, which we believe is an important step to 

scrutinize research findings. 

We respond to all comments in a point-by-point manner below, and outline changes made to the manuscript. We 

believe that the manuscript has improved significantly on the basis of the comments. 

Please note that we have attached an Appendix to manuscript (partly as a response to comments made by the 

Reviewers) that allows an analytical understanding and approximation of the normalisation-induced biases outlined 

in the manuscript. 
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Response to RC1: 
 
S. Sippel et al., 2016 
 
This manuscript highlights two concerns with the recent analysis 
presented in Donat et al (2016), who reported increasing trends 
in extreme precipitation and total precipitation in dry regions 
around the world. The two concerns raised by the authors with the 
analysis of Donat et al (2016) are valid. Here the authors 
present a re-analysis of the Donat et al (2016) work using more 
appropriate methodologies and find the results of Donat et al 
(2016) are highly dependent on the methodology they adopted, 
which has significant implications for the conclusions of Donat 
et al (2016). Overall, this manuscript presents an important 
critique of Donat et al (2016), which is highly relevant to the 
general scientific community. I believe the manuscript will be 
worthy of publication following moderate revision to improve the 
clarity of the manuscript, as it is hard to follow at times. 

We thank the reviewer for the positive evaluation of our 
manuscript. We have taken the reviewer's suggestion about 
improving the clarity of the manuscript into account as specified 
below in detail. 

My key comments / suggestions are as follows. 

The overall style of this manuscript is abbreviated and densely 
packed. In fact, some sections are difficult to follow as helpful 
explanations are not provided. Figures and Tables are cited, but 
little accompanying explanation is provided to help the reader 
understand and interpret them. The current manuscript style is 
like a very compact ‘communication arising’. I think this style 
provides the key messages, but it is very difficult to follow the 
technical argument in places. Also, why are Appendix A and B not 
just normal Figures and Tables, like the other Figures and Tables? 
Why the separate Appendices? I recommend you move this material 
from the Appendices into the paper. 

The key points made in this manuscript are fine, but the 
explanation accompanying the Figures and Tables requires 
expansion to improve the readability of the manuscript. At times 
I found it difficult to know how each Figure and Table slotted 
into the overall story; not because the material is irrelevant, 
but because a context for the material was not provided. There is 
a lot of interesting material in the Figures and Tables, which is 
hardly covered in the text. Expanding the explanations around the 
Figures and Tables will guide the reader through this important 



 

material and significantly increase the accessibility of this 
research. 

 

We understand the reviewer's concerns about the very dense style 
of writing and presentation. Indeed, the reviewer is correct that 
our objective was to provide the key messages in a very dense 
format. To account for the issue rightly pointed out by the 
Reviewer and to improve readability and clarity, we extend the 
explanations in the revised manuscript, and improve the embedding 
and context of figures and tables. We will also move the tables 
into the main manuscript and provide the respective context. 

For example, we extend the explanation of the normalization-
induced bias (p. 3, l.1-14) by the following paragraph that 
provides more context to Fig. 1:  

"This issue is illustrated in Fig. 1 for an artificial dataset 
that consists of n = 104 time series (e.g., ‘grid cells’) that 
are drawn randomly and independently from a Generalized Extreme 
Value distribution (GEV, Coles et al., 2001). The GEV 
distribution provides an asymptotical limit model for maxima 
derived from a sequence of random variables with fixed block size 
(Coles et al., 2001, e.g. the annual-maximum daily 
precipitation,), and is therefore appropriate to illustrate this 
issue. Normalising each time series in the artificial dataset 
with its mean in the first period yields a spatial ‘reference 
period distribution’ that is different from the spatial ‘out-of-
base period distribution’ (and from the original GEV distribution, 
Fig. 1a), e.g. resulting in increased spatial averages in the 
out-of-base period (Fig. 1b). Furthermore, the normalisation 
procedure induces a considerable increase in the variance, 
skewness and higher statistical moments in the spatial 
distribution in the second period (see e.g. Fig. 1a), which would 
be of relevance if higher statistical moments (changes in spatial 
variance, etc.) would be studied. The reason for this observed 
difference lies in the fact that the sample mean (derived from 
the reference period) is a dependent estimator for the reference 
period time series, but a (virtually) independent estimator for 
the time period that lies outside of the reference period (Zhang 
et al., 2005; Sippel et al., 2015)." 

Please note that in addition we include an analytical argument to 
derive an approximation for the expectation value of the 
normalization-induced bias in the revised version of the 
manuscript (please see attached pdf-file). However, in order to 



 

not compromise readability, we will include this in an Appendix 
or as Supplement. This argument thus provides an explanation as 
to why the biases are systematically positive outside of the 
reference period, and shows that this bias is proportional to the 
ratio between mean and standard deviation. We believe this is 
useful, because this type of reference period normalization is 
indeed common in many studies (not only in Donat et al.), and 
therefore the analytical approximation might provide a useful -
first order- estimate on the magnitude of the expected bias.  

Furthermore, to improve readability, we include an additional 
simple example that illustrates the second statistical issue, i.e. 
the "regression to the mean" effect, because the explanation as 
it stands now (p.3, l. 14-l.19) might not be immediately clear to 
all readers. Hence, we will add a simple example after l. 17:  

"To illustrate this issue, recall the conceptual two-region 
example quoted above, where variation between the two available 
time periods would be entirely due to random causes. If any of 
the two periods would be chosen to stratify the dataset in one 
dry and one wet region, this would result in opposing changes 
(i.e. dry gets wetter, wet gets drier) in the second period." 

 

Minor comments 

Page 3, line 18: “the dataset will result”. Are you 100% certain 
it will result in a higher probability for wetter (drier) 
conditions. Or is a better word to use here “may” result. I think 
this paragraph would benefit from an expanded explanation of the 
statistical bias being discussed as it is not easy to follow. 

Thanks for the comment, we agree the paragraph needs to be 
expanded to be made more clear. In a statistical sense (i.e. 
assume all grid cells to be random variables and assume many of 
them) we are certain that "selecting from the dry (wet) end of 
the spatial distribution in one subset of the dataset will result 
in a higher probability for wetter (drier) conditions in the 
remaining years". This is because random variation in the 
reference period plays a role and will lead to the regression to 
the mean phenomenon. But of course this only holds if there is 
not a systematic (global) shift outside the reference period. We 
will rephrase the sentence in a revised manuscript to make clear 
that it is a statistical expectation, rather than 100% certain. 

Appendix B second Table: Replace “Rx1day” with “PRCPTOT” in the 



 

wet and dry regions. 

Thanks for reading thoroughly. Correct, and has been changed. 

Figure 1: you need to improve the explanation of this Figure. The 
illustration provided in the text (page 3, lines 6-13) was 
excellent, but the connection to Figure 1 was not obvious. 

Again, thanks for pointing this out. As noted above, we have 
included an extended explanation for the figure (which will be 
inserted in p.3, l. 13) 

 

Figure 3c, 3d: are the p-values for the one-sided and two-sided 
trend tests reported correct or have they been switched? 

Again, thanks for reading thoroughly. The p-values have been 
switched indeed and we have corrected it. 

Tables 1 & 2: Explain what Period Inc. means. 

"Period Increment" means the period changes between the first 
(1951-1980) and the second (1981-2010) period. We will explain 
this better in the revised manuscript. 

 

 

  



 

Response to RC2: 
 
S. Sippel et al., 2016 
 
Review of Sippel et al., ‘Have precipitation extremes and annual 
totals been increasing in the world’s dry regions over the last 
60 years?’  

This paper (which can effectively be considered as a comment on 
the Donat et al (2016) paper) raises two issues with the Donat et 
al (2016) (hereafter D2016) paper – the way in which spatial 
averaging has been used and the way in which dry regions have 
been defined.  

Both of these are legitimate concerns. However, in my view both 
this paper and D2016 miss what I think is the main point with 
respect to the definition of dry regions – namely, that most of 
the world’s driest regions (in particular, almost all of the 
Sahara and the Middle East) are excluded because of a lack of 
data. (Similarly, many of the world’s wetter regions in South 
America, equatorial Africa and southeast Asia are also excluded). 
Any definition, whether it is the one used in D2016 or in this 
paper, is likely to give an unrepresentative sample of the 
world’s dry regions given that the data avail- ability is largely 
confined to North America, Eurasia and parts of Australia. Put 
another way, the HadEX2 data set in its current form is not 
capable of providing a fully representative sample of the world’s 
dry regions, which is particularly important given that there is 
no reason why we would expect tropical arid and semi-arid zones 
(e.g. the Sahel), subtropical deserts (e.g. southwest US) and 
high-latitude low-precipitation regions to have similar long-term 
trends. A casual reader encountering either this paper or D2016 
would expect the papers to be covering a very different range of 
areas to that which they actually do.  

We thank the reviewer for highlighting this issue. The reviewer 
is of course correct (and the other reviewers who have pointed 
this out), data scarcity is a large caveat in analyses about 
precipitation characteristics in "the world's dry regions".  

However, we believe that scarcity of data alone should not 
prohibit scientific analyses on precipitation characteristics 
such as the one by Donat et al. (or ours) in those dry regions 
where data are available. Therefore, in the revised manuscript we 
will make this point more clear in the text, and we particularly 
highlight that "dry regions of the world" actually implies "dry 
regions of the world where data are available". Moreover, to make 



 

this point clear to casual readers also, we will include Appendix 
A (Figure 0, the maps of the dry region definitions) in the main 
manuscript (as Reviewer #1 also recommended). 

(I would view both this paper’s method and the D2016 method as 
being reasonable ways of defining dry regions – the issue is that 
neither is representative given the gaps in the data set).  

Again, we agree with the Reviewer: Our manuscript was not 
intended to reject the definition used by Donat et al (please see 
also our reply to the short comment by M. Donat). We simply 
intended to illustrate that for the overall change in dry region 
extreme precipitation, it does make indeed a relatively large 
difference (i.e. there is a large sensitivity to how one defines 
a dry region) if one analyses extreme precipitation (Rx1d) trends 
in "regions of light extreme rainfall" (that could be humid 
throughout the year, cf. our response to the short comment by M. 
Donat), or whether one studies trends in "dry" (arid) regions.   

Averaging precipitation indices is another challenge – whilst the 
averaging period (as mentioned in this paper) is one issue, 
another is whether it is appropriate to average values from a 
distribution which is bounded below by zero and highly non-
Gaussian. If one averages absolute values, area averages are 
likely to be dominated by the wetter areas; if one averages 
normalised values, there will be much more volatility in the 
driest areas. (Somewhat ironically, the fact that the HadEX2 data 
set excludes most of the world’s really dry areas averted a 
bigger problem here – in climates where mean annual values are, 
say, below 10 mm, annual totals in excess of 1000% are plausible, 
which would completely overwhelm less variable climates in a 
spatial average).  

The Reviewer raises an interesting and highly relevant point - 
and we have investigated in detail as to whether the 
methodological issues due to reference period normalization and 
subsequent spatial averaging would have been worse in arid 
regions where there is currently no data available. 

First, we would like to point out that we agree with the Reviewer: 
Averaging absolute values would lead to wetter areas dominating 
the response, and that is why a normalization of some sort is 
required. Second, random variation in dry regions and the 
normalization procedure with subsequent spatial averaging (as 
illustrated by the Reviewer in the 1000% example) is precisely 
the root cause of the biases identified in our paper. These 
biases are related to the length of the reference period, but 



 

also to the ratio of mean:standard deviation (or location:scale 
in a GEV distribution) in the Rx1d time series (as implied by the 
Reviewer; and we will make this point clearer in the revised 
manuscript). Hence, it can be seen analytically that 1) these 
biases are systematically positive outside the reference period, 
and 2) the biases scale with the change (i.e., trend) in a 
multiplicative way (please see the attached pdf-file, we intend 
to include this material in the Appendix of a revised manuscript); 
and it is also possible to derive a (first-order) analytical 
approximation of the expectation value of the biases as a 
function of the ratio mean:sd, and the length of the reference 
period. The analytical approximation allows to derive some 
estimates of the magnitude of the biases if a grid-cell scale 
normalization is followed by spatial averaging. We believe that 
this is useful to have because the applied methodology is quite 
common and not specific to the Donat et al. study - for instance 
similar data processing methodologies based on fixed reference 
periods are used to bias-correct relative precipitation anomalies 
from climate models to some observational datasets (Hempel et al. 
2013, ESD, doi:10.5194/esd-4-219-2013), or observational datasets 
are derived based on station anomalies from a fixed baseline 
(Harris et al., 2014, doi/10.1002/joc.3711). However, we also 
note that in many real-world cases, the introduced biases will be 
small because the ratio of mean to standard deviation be high 
(e.g. in humid regions), but nonetheless it is important to note 
that this type of bias exists. 

However, having the analytical approximation at hand we can 
assess how the expectation values of the biases would differ 
between regions, in particular whether the normalization-induced 
bias would become worse if more stations from data-scarce arid 
regions would be available. To do so, we downloaded all available 
arid-region station data from the GHCNDEX database 
(http://www.climdex.org/sewocs.html), and disregarded all 
stations with less than 30 years of data. Subsequently, we 
stratify these stations according to whether they lie in regions 
with or without data availability in the HadEX2 dataset, and 
calculate the long-term mean and standard deviation of each 
individual station.  
 
The sample mean of the stations are indeed lower in data-scarce 
regions (Fig. 1a), i.e. arid regions without data in HadEX2 (and 
those stations in arid regions without data that lie in Africa 
only, Fig. 1a) tend to systematically receive less extreme 
rainfall (Rx1d). However, we notice that the ratio of mean:sd 
parameters is approximately similar in these regions (which would 



 

indicate a similar magnitude of the biases). An approximation of 
the expected bias in data-scarce regions (Fig. 3d) indicates that 
the expected bias would be slightly higher (+0.67\% vs. +0.71\%, 
+0.85% in stations that lie in Africa).  
Hence, we conclude that the reviewer is correct, the systematic 
biases would be slightly larger in data-scarce arid regions if 
data would be available there, but it would not be a completely 
different story. We do not intend to include this analysis in the 
revised manuscript (because it might lead a bit too far away from 
the actual story thereby compromising readability and clarity), 
but we will include a comment in the discussion of the 
normalization-induced biases (p.3, l. 1-14) to the fact that 
these biases will be higher if the mean:sd ratio is lower (as 
seen from the analytical approximation), which one might expect 
in very dry, currently data-scarce regions. 
 

 
Figure 1: (a) Sample mean, (b) ratio of mean:sd at individual 
stations of the GHCNDEX (stations-based) dataset in arid regions 
("Arid w. data": Stations in arid regions with data in HadEX2; 
"Arid no-data, all": Stations in arid regions without data in 
HadEX2; "Arid no-data, Africa": Stations in arid region in Africa 
without data in HadEX2). c) Expectation for artificial increase 
according to Eq. A8 (with only the first term of the Taylor 
series) in attached pdf-file. d) Map of arid regions of the world 
(Greve et al. 2014): Orange regions indicate data availability in 
the gridded HadEX2 and GHCNDEX datasets, whereas grey areas 

2 Implications for the ‘really dry regions’ of the world

An important caveat in analyses of extreme precipitation in the world’s dry regions is the scarcity of data in large parts of

these regions. Here, we test whether the normalization-induced bias would become worse if more stations from data-scarce

regions would be available. To do so, we download individual station data from the GHCNDEX dataset for all arid regions of

the world, and stratify these stations according to whether they lie in region with or without data availability in the HadEX2-5

GHCNDEX-merge. We fit a GEV distribution to each individual station that has more than 30 years of available data.

Indeed, the location parameters of the fitted GEV distributions are indeed lower in data-scarce regions (Fig. ??), i.e. these

regions tend to receive less extreme rainfall (Rx1d). However, we notice that the ratio of location:scale parameters is approx-

imately similar in these regions (which would indicate a similar magnitude of the biases), and the shape values in data-scarce

regions seem to be slightly higher (Fig. ??). An approximation of the expected bias for individual station with data in HadEX2-10

GHCNDEX-merge, and in data-scarce regions (Fig. ??d) indicates that the expected bias would be slightly higher (+0.63% vs.

+0.98%) in data-scarce regions.
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indicate data gaps. Individual stations in grey areas are denoted 
by black dots. 
 

 
In my view, it would be better not to try to do spatial averages 
at all, and instead report using indicators such as the % of 
gridpoints which show significant positive/negative trends. That 
said, if you are going to average precipitation indices, then 
this paper has identified a genuine issue with the D2016 
methodology.  

We agree with the reviewer that in general reporting station-
based indicators would be at least equally important. However, in 
order to compare quantities to climate models, or to study 
globally aggregated quantities relative to a common baseline (for 
which there seems to be a demand, see e.g. Hansen et al. 2012, 
Huntingford et al. 2013, Seneviratne et al. 2014, or similar 
papers that outline globally aggregated temperature 
characteristics), we believe that this approach can be indeed 
useful, too. 

In summary – I think this paper accurately documents valid issues 
with the D2016 paper, and as such I think it is appropriate for 
publication, but I also think it would be improved if it engages 
substantially more with the issues identified above.  

We thank the Reviewer for the positive evaluation and hope that 
we have addressed your concerns properly. 

 

  



 

Response to RC3: 
 
S. Sippel et al., 2016 
 
The authors examine the robustness to choices made in the 
analysis of a recent analysis of observed trends in precipitation 
in dry regions around the world. In general I quite like this, as 
results of studies are usually interpreted beyond the specific 
experiment design of the analysis, and so this paper performs the 
important task of determining the extent to which it is possible 
in the case of observed precipitation trends in dry regions. 
However, I think there are a couple of additional aspects to this 
that the authors have not considered, as well as one important 
syntactic issue, that I believe need to be addressed before 
publication.  

Thanks for the positive evaluation! 

First, the motivation you frequently mention is for informing 
adaption decisions. For that motivation, though, it is not clear 
to me that what you do in terms of normalising to the full period 
is necessarily any more appropriate than what Donat et alii (2016) 
did. Many decisions are based on climatic or hydrologic data from 
a specific time period, for instance in the case of international 
treaties allocating water on an international river. Thus 
adaptation decisions need to be made with respect to divergence 
from that reference baseline (ignoring non-climate stuff). So 
while e.g. you may be correct that there has been no actual trend 
in preciptation totals, say, that does not necessarily mean there 
has not been a trend as measured by stipulated monitoring 
procedures used in many decision-making settings. Cast another 
way, we have the same problem in dealing with future climate 
change: projections are based on, say, the full historical period 
you use, but that does not include the future itself. I expect 
you are not arguing that we cannot make useful projections of 
future climate change simply because we have not monitored the 
future yet. In this context, I laud your effort because you high- 
light the sensitivity to this point, but I think it is important 
– and entirely consistent with you consideration of robustness – 
to emphasise that there is not necessarily a single "correct" 
answer.  

Thanks for this point - indeed we are not arguing that no useful 
policy choices can be made just because the future is not part of 
the reference period. This would be somewhat nonsensical and 
clearly overstate the problem. However, for the latter problem, 



 

please note that it is not just an issue of random variation of 
the reference period - it is indeed a systematic bias that is 1) 
positive outside the reference period, and 2) scales with the 
relative change in the time series. The expectation value of the 
bias is a function of the reference period length, and the 
mean:standard deviation ratio (or location:scale ratio and shape 
parameter in a GEV). Please have a look at the analytical 
approximation (attached pdf-file), which we intend to include in 
the Appendix or Supplement of a revised manuscript. 

In many practical settings the bias might be small (e.g. if the 
ref. period is long enough, or the mean:standard deviation ratio 
is high), but in other cases it might be relevant for example 
because the trends in the quantity of interest might be small. In 
our particular case, we have chosen to normalize to the full 
period because this avoids the bias. However, in a hypothetical 
case where one would be bound to a given baseline period (for 
instance in your example where an international treaty would 
define climate change or its impacts relative to a specific 
baseline), one could still take our analytical results and 
estimate the expected magnitude of the biases relative to the 
observed trend. Thanks again for this hint, and we will emphasize 
in the revised manuscript that there is no correct answer for the 
choice of the reference period, but with either avoiding a 
"reference - non-reference breakpoint" or by analytically 
adjusting for it using e.g. our approximation (which also works 
if there are in-stationarities in the time series outside of the 
reference period). 

 

Second, in terms of all of the discussion about what constitutes 
a "dry" region, the most striking thing to me is that none of the 
definitions of dry regions you consider include what I think of 
as prototypical dry regions: the Sahara, the Saudi Peninsula, 
Central Asia (particulaly for Rx1D), southwestern Africa (other 
than South Africa), western Australia, northern Mexico (for Rx1D), 
nor the driest areas of South America (for Rx1D). The reason for 
this of course is monitoring coverage, but given the absence of 
all of these regions (the Sahara!) I do not think these results 
can plausibly be considered as being indicative of how 
precipitation is actually changing over the world’s dry regions. 
Again, I consider this a point about robustness that is entirely 
consistent with your paper, but it most certainly needs to be 
acknowledged/noted/highlighted.  

Yes, we agree (please see also additional analyses in the arid 



 

data-scarce regions and more detailed reply to Reviewer #2 who 
made a similar comment). In a revised manuscript, we will this 
point in the text, Abstract, and Conclusions, and also move 
Appendix A (Figure 0) in the main manuscript to ensure that even 
a casual reader will encouter the aridity and dryness maps, 
including the gaps in spatial coverage.  

Third, on the syntactic side, while the title refers to 
precipitation and it appears to be precipitation you are actually 
analysing, within the text this is generally referred to as 
"rainfall". Please clarify which you are examining, as these are 
certainly not identical for annual totals (and, if defined in 
certain ways, for heavy extremes) in many of the regions you 
examine.  

Thanks for this point. "Rainfall" and "rainfall extremes" are 
indeed used erroneously and we will change it to precipitation in 
a revised manuscript. 

Specific comments:  

page 1, line 1 The title says you are examining precipitation 
extremes and annual totals, but here you indicate it is rainfall. 
Which is it? It seems to be a precipitation dataset you are using, 
so it looks like the usage of "rainfall" is wrong?  

Yes it is, please see above. 

page 2, lines 24-25 If they are being underestimated, then it 
sounds like the errors are not completely cancelling, right?  

Not completely, correct. Will be rephrased in a revised 
manuscript for clarification. 

page 2, line 25 "These results": Which, Donat's or yours?  

Actually both, but we'll clarify. 

page 2, lines 25-26 I think such an assertive statement 
concerning the decision-making processes utilised in dry regions 
requires some supporting evidence, e.g. to other research on 
decision-making in those regions.  

That is true. We have rephrased our statement to reflect that an 
accurate quantification of change in precipitation 
characteristics (which includes monitoring, etc.) is important 
because it is simply a prerequisite to be able to make climate 
change adaptation decisions. 



 

page 3, line 9 "in both time periods" -> "over the combined 
periods"  

thanks. 

page 4, lines 21-22 This is a case where if you are considering 
rainfall, and not precipitation, then indeed North-East Siberia 
is rather dry.  

This is true, but we have changed the discussion to discuss 
precipitation; and discuss "dryness" in terms of "low 
precipitation" (precipitation alone), "low annual-maximum 
rainfall", and "dry in terms of water availability", i.e. supply 
and demand (arid climate). 

page 4, lines 25-26 I do not believe that Fischer and Knutti 
(2015) studied the decision- making processes used by those 
involved in responding to climate change, and in particular what 
they considered "relevant" information for informing those 
processes.  

Yes, true. We have rephrased to better reflect what we mean and 
removed the reference to the paper mentioned. 

page 6 "Figure 0" should have a different identifier.  

Yes, and the figure will be moved into main manuscript. 

page 6, caption Can you confirm that for only different between 
columns for the lowest two rows is the mask? I found this caption 
confusing, for instance with the distinction between the columns 
being introduced only halfway through. Subtitles on each panel 
could help.  

The difference between the columns for the lowest two rows is the 
mask and the data availability of HadEX2 for PRCPTOT (left) and 
Rx1d (right). We'll clarify the caption. 

Figure 2, caption line 3 By "red lines" do you mean yellow? 
Tables 1 and 2 What does "Period Inc. (%)" mean?  

Thanks for reading thoroughly! Red should be orange, and "Period 
Inc." means the relative period changes between the first and 
second period (i.e. 1951-1980 vs. 1981-2010). Will be 
corrected/clarified in a revised manuscript. 

Tables 1 and 2 Why do the "Sample size" values differ? Aren’t all 
the trends calculated over the same number of years?  



 

By "sample size" we mean the number of grid cells over which the 
spatial averages are taken. We'll clarify. 

Table 2 There is one trend values listed as "<0.000". Why do you 
not give the numerical value for a negative trend? This one is 
interesting, because it is the only significant negative trend.  

Oh, sorry. The trend is actually almost exactly 0 and not 
significant. Will denote this one as "0.000". 

 

  



 

Response to RC4: 
 
S. Sippel et al., 2016 
 
Overall, I am pleased with the topic of the Sippel et al. paper, 
which is an evaluation and criticism of some of the methods used 
in the Donat et al. 2016 paper “More extreme precipitation in the 
world’s dry and wet regions”. This is the type of check-and-
balance that keeps our science robust. Sippel et al. address two 
main criticisms of the Donat 2016 paper, (1) the introduction of 
a statistical bias when the rainfall data is normalised, and (2) 
the introduction of another statistical bias based on the regions 
that are selected as “dry” and “wet” regions. The overall flow 
and readability of the paper was dense, but not unfollowable. 
However, I understood the context of the paper, and the authors’ 
intention, much better after I read the Donat et al. 2016 paper. 
The authors could use more precise wording to clarify that the 
methods used were done to recreate the results from Donat et al. 
2016.  

We thank the reviewer for the positive evaluation of our 
manuscript. We agree that the original manuscript was partly very 
dense, and to address this issue we improve the embedding of 
Figures and Tables, provide better context, and add a second 
simple "illustrative example" to illustrate the "regression to 
the mean issue" a bit better. For more details, please see our 
reply to Reviewer #1, who raised a similar comment. We will also 
emphasize in a revised manuscript more precisely that the aim of 
our paper is to reanalyze the same dataset with a different 
methodology and choices for dryness definition in order to 
corroborate and test the sensitivity of the results. 

On the topic of the introduced bias from normalising the data; 
the process of normalising data is pretty common and ensures that 
areal averages are not dominated by very wet regions. However, 
this needs to be done with care. The authors unpack and clearly 
describe the statistical changes that are introduced from the 
normalisation process. I liked the illustrative example found on 
page three in lines six through 11 and the quantification of the 
bias (%) in appendices A and B provided good support for the 
argument. (Although it isn’t clear why these are included as 
appendices and not tables in the paper). Furthermore, the authors 
do well to point out the changes that arise by using different 
reference periods to deconstruct the data (i.e. Figure 2). I note 
that it was not really clear from reading the Donat (2016) paper 
why they used the 1951–1980 period to normalise the data.  



 

Thanks again for the positive comments. We'll move the Appendices 
in the main manuscript and hope this will improve readability. 

We agree with the reviewer that some normalization is often 
necessary to avoid that wet regions dominate spatial averages. 
Partly because this methodology is common (as pointed out by the 
Reviewer), please note that we have tried in addition to derive 
an analytical understanding / approximation of the biases. This 
will hopefully allow to estimate whether the systematic biases 
induced by reference period normalization in any particular case 
or study are worrisome or whether they are small and can be 
ignored. Please see the attached pdf-file, we intend to include 
this material in a revised manuscript as an Appendix or 
Supplement. 

I don’t completely agree with the argument for selecting dry 
regions. The criteria and thresholds used to define a dry region 
are very subjective. As Sippel et al. point out, precipitation 
alone is not enough to determine if a region is wet or dry–e.g. 
at very high latitudes where even small amounts of rainfall can 
exceed the potential evapotranspiration. However, the criteria 
used are dependent on the question to be answered. If the 
question to be answered is, “How are global precipitation 
patterns changing?” then an analysis of precipitation alone would 
be sufficient. If you are trying to address, “Are wet/dry regions 
getting wetter/drier?” then the hydrology/aridity or climate 
classification of the region would need to be considered.  

We appreciate your comment: Please note that our intention was 
not to reject any particular dryness definition, but simply to 
explore the robustness of the results to this choice. However, we 
admit that this was not clear enough in the original manuscript, 
and we'll stress that both definitions can be appropriate 
depending on which question is being asked. Therefore, in a 
revised manuscript, we will refer to "regions with moderate 
extreme precipitation" (for Rx1d), "meteorologically dry regions" 
(with low precipitation totals), and to dry (arid) regions.  

The authors quantify the “regression to the mean” bias (as shown 

in appendices A and B) that arise by defining dry areas as the 
lowest 30%. The authors further demonstrate that by using the 

Ko ̈ppen classification and the Greve (2014) definition that the 
large trends found by Donat et al. are dramatically minimised. I 
think this argument is a moot point because, as other reviewers 
have already pointed out, the HadEX2 dataset does not have data 
over the world’s driest regions (e.g. the Sahara, Western 
Australia) or some of the wettest regions (e.g. the Amazon or the 



 

Maritime Continent region).  

A global analysis or precipitation extremes or precipitation 
trends using HadEX2 data would deliver incomplete results.  

We agree that changes in precipitation characteristics as studied 
in our analyses are not representative or complete given data-
scarcity in many of the world's dry regions. However, we also 
believe that data-scarcity should not prevent scientific analyses 
being done with the data that is available at present. Therefore, 
we will emphasize this point clearly in the revised manuscript. 
In addition, please see our analyses in reply to Reviewer #2, 
where we have studied some of the characteristics of the data-
scarce regions in more detail. 

Specific comments: 1. Page 4, line 12: mentions a two-sided trend 
test. Is this the same as the Mann–Kendall test used by Donat at 
al. and mentioned in the caption of figure 3? It is not really 
clear in the body of the text why or how this test was chosen.  

In the study of Donat et al. a one-sided Mann-Kendall trend test 
is used. Therefore, in all our figures and tables we report both 
one-sided (H0: No positive trend; value from the Donat et al. 
study are reproduced), and two-sided (H0: No trend) p-values. In 
a revised manuscript, we will phrase the text more in terms of 
the reduction of the trend slopes, rather than p-values only, 
because the latter can be misleading for relatively noisy time 
series (see e.g. Short comment by Donat et al. and our reply). 

 

2. Appendix A, Figure 0, caption: check the spelling of Köppen. 
This figure was hard to understand. After reading the caption a 
few times I understood that it is basically built as a table with 
the first (left) column being the PRCPTOT data and the second 
(right) column being the Rx1D data. It would be nice to have the 
rows/columns clearly labelled.  

Thanks for this point, we clearly see the need to improve the 
labels and caption and will do so. 

3. Figure 2: The caption mentions red lines. The lines look 
orange to me.  

Yes they are (erroneously), and they will be changed. Thanks for 
reading thoroughly. 

4. Figure 3: I found this figure very difficult to understand. 



 

There is a lot of information that is overlayed on other 
information. The grey text is too light against the white 
background.  

We will improve readability of Figure 3 by changing the colour 
and expanding the caption. 

 

5. Your methods for producing this graph (grey and black lines) 
are not clear. You mention the grey lines have been corrected for 
“statistical artefacts”; I could not find this correction 
explained anywhere. Which artefacts have you corrected for? Is it 
the bias from the normalisation? Likewise, the process for 
producing the black line, or removing the incomplete data, is not 
explained.  

Yes, both the grey and black lines are produced by normalizing 
with the period means of the whole period, therefore avoiding the 
bias. Grey lines are based on the 90% completeness threshold in 
Donat et al., black lines are based on only 100% complete time 
series. We will improve this explanation in a revised manuscript. 

6. The label on the first row of graphs mentioned the Köppen–
Geiger climate classification, but the caption references Ko ̈ppen 
(1900). The Ko ̈ppen–Geiger classifications were not published 
until Geiger (1954 and 1961). Kottek et al. 2006, which was 
mentioned in the text, is of the Ko ̈ppen–Geiger classifications. 
Should the caption reference Kottek et al. 2006 rather than 

Ko ̈ppen (1900)?  

Thanks for this hint! Yes, it should. 

7. Are graphs 3.e and 3.f from the Greve data, dry+transitional 
regions? It is not clear from the caption.  

Yes, they are. Thanks for reading thoroughly, we will add this to 
the caption. 

 

  



 

Response to SC1 by M. Donat: 
 
S. Sippel et al., 2016 
 
The authors scrutinize a recent study (Donat et al. 2016) that 
reported increasing trends in precipitation extremes and annual 
totals in the world’s dry regions, as defined by precipitation 
amounts. The authors (1) suggest that the results of the 
scrutinised study were biased owing to choices of the reference 
period, and (2) discuss that the findings depend on how ‘dry’ 
regions are defined. 

We thank the authors for pointing out the statistical issue 
related to the reference period which is now addressed in a 
Corrigendum (submitted to Nature Climate Change on 12th September 
2016). Importantly, this statistical issue does not affect the 
major conclusions of the scrutinised study, a point that should 
be made clearly in the current manuscript. However, the remainder 
of this manuscript, in particular the discussion related to the 
definition of dry regions, is biased, inconsistent, ambiguous 
(misleading), and incomplete as outlined below. Therefore the 
manuscript needs to be carefully revised before publication. 

We thank M. Donat for the partly critical and partly positive 
comments on our manuscript. We appreciate that pointing out the 
statistical issues and sensitivities related to the data-
analytical tools applied in the original study are welcomed. 
Please note that partly in response to reviewer comments (who 
stressed that the normalization-methodology is indeed relatively 
common), we include some analytical approximation (see pdf-file) 
that allows to derive analytical estimates of the biases as a 
function of reference period length and the parameters of the 
distribution. We hope these estimates are considered as useful, 
and we intend to include this material in a revised manuscript as 
Supplement or Appendix. 

We also acknowledge the critical comments regarding the 
definition of dryness, and have carefully addressed the comments 
raised.  

Biased: The current manuscript claims that the only valid 
definitions of wet and dry regions are those based on surface 
water availability, referring to what is ’commonly understood’ or 
‘conventional’. However, in everyday language it is common to use 
‘wet’ or ‘dry’ to refer to high or low precipitation for both 
regions and times of year. Furthermore, in the scientific 
literature there are numerous related studies that have defined 



 

wet and dry solely based on meteorological parameters such as 
precipitation (e.g. Allan et al.,2010; Sun et al., 2012; Liu and 
Allan, 2013), and these are ignored in the current discussion and 
should be included in a revised manuscript. The current 
manuscript, therefore, appears biased in that it is largely based 
on a claim that only a particular definition of dryness is valid, 
when several other definitions are in common use. 

The purpose of the section on the definition of dryness was not 
to claim superiority of any particular dryness definition. In 
contrast, the main idea behind this exercise was to test how 
sensitive trend slopes or period changes are to alternative 
definitions of dryness, given that early climatological research 
had used the word "dry" in terms of water availability rather 
than precipitation totals alone (see our manuscript). However, we 
do not claim that this is superior. We have made this point 
clearer in the manuscript, and we also acknowledge that the three 
papers cited above use a dryness definition based on 
precipitation totals (annual or monthly climatology), similarly 
as Donat et al (2016) do in their original study for annual 
precipitation totals (PRCPTOT). 

However, for annual-maximum daily precipitation (Rx1d), we 
believe it is crucially important to consider this additional 
point: In contrast to the studies cited above, in the original 
NCLIM study by Donat et al, the definition of "dryness" has been 
made based on the annual-maximum daily precipitation amount (i.e., 
Rx1d). This means that any region with a relatively modest 1-day 
extreme rainfall would be considered as "dry". This is in 
contrast to the three papers cited above, because Rx1d is not 
necessarily strongly related to precipitation totals. For example, 
the potential for very strong convective rainfall in high 
Northern latitudes (e.g. Scandinavia, Siberia) might be limited, 
therefore resulting in moderate annual-maximum daily 
precipitation, while the region could still be "wet" throughout 
the year (either in terms of precipitation totals, or in terms of 
water availability, or both). To illustrate this example, please 
see the plot below computed from the original HadEX2 data (1951-
2010 means, using the 90% threshold for NA-removal):  

While there is clearly a relationship between PRCPTOT and Rx1d, 
we find that only 22% of the "dry" grid cells according to the 
maximum-annual precipitation definition are also "dry" given 
annual precipitation totals (see plot below). Hence, while we do 
understand the notion of exploring (spatial) extremes in the 
"HadEX2 data space", it becomes an issue of semantics here: We 



 

argue that regions with low annual-maximum precipitation should 
simply be called for example "regions with low maximum 
precipitation" rather than "dry" as this might lead to confusion 
(e.g. if cited in IPCC reports, reported by the media, etc.). 
Similarly, if compared with aridity, the difference between a 
definition based on precipitation totals, rainfall extremes and 
aridity becomes very clear (see figures below). 

In summary, we have changed the manuscript such that it becomes 
clear that we simply explore alternative definitions of dryness, 
we do not claim superiority or call it "common understanding", 
etc., and we now also state that definitions based on 
precipitation totals had been used previously in the literature. 

 

 

Figure 2: Relationship between PRCPTOT and Rx1d in HadEX2 
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Figure 3: Relationship between a) PRCPTOT and Aridity, and b) 
Rx1d and Aridity in the HadEX2-GHCNDEX merged dataset. Potential 
evapotranspiration is taken from the CRU-TS3.23 dataset (Harris 
et al., 2014). 

An important point that emerges from this discussion is that it 
is desirable to specify more clearly which type of definition of 
dry and wet is being used in studies of climate change. Indeed 
this is something the current manuscript could do better; 
see ’ambiguous’ section below. We suggest to the authors that 
they make the conclusion of their paper and abstract a call for 
more specificity in the use of ’dry’ and ’wet’ in climate-change 
studies. For example, one could refer to ’meteorological’ 
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or ’hydrological’ wet and dry regions, by analogy with the 
standard definitions of ’meteorological’ or ’hydrological’ 
drought. This would be of greater value than arguing that only 
one type of definition is valid. 

Thanks for this important point, we agree. We have shaped our 
manuscript more in this direction and distinguish between 
precipitation totals, regions of moderate annual-maximum 
precipitation (for Rx1d) and aridity-based definitions. 

Inconsistent: The analysis in Section 3 is likely affected by the 
same “regression to the mean” bias discussed in Section 2, 
because the dry-regions masks that include water demand were not 
defined over the entire study period 1951-2010. 

We do not think this is the case: In Section 3, we use two 
different dry-regions masks, one based on Köppen-Geiger, and 
another one based on Greve et al (2014). The former had been 
derived in 1900 without any data from 1951-2010, so it cannot be 
affected. The latter dry region mask has been derived from the 
1948-1968 period, but based on a very large number of dataset 
combinations (77) at the gridbox level and based on the aridity 
index (i.e., for two different variables: Potential 
evapotranspiration, Ep and precipitation, P). Therefore, 
estimates of the annual-maximum precipitation (Rx1d) should be 
virtually independent, as this variable is not (at all) related 
to Ep, and only weakly related to P. Similarly, the "regression 
to the mean" problem should be virtually eliminated also for 
precipitation totals due to the different combinations of 
datasets that inhibit random variation within one dataset, and 
because the Greve et al dry-region mask "is in good agreement 
with the commonly used standard climate-classifications of 
Köppen-Geiger" (Greve et al, 2014, NGEO). Any remaining 
"regression to the mean" issue in PRCPTOT would lead to a 
positive bias in the trend slopes and period changes relative to 
the Köppen-Geiger mask, but in fact the trend slopes and period 
increments obtained with the Greve-mask are smaller than those 
obtained with the Köppen-Geiger mask (see Table 2 in the 
manuscript). Hence, we conclude that "regression to the mean" is 
not an issue in our manuscript. 

 

Ambiguous: The current text uses ‘dry’ for different concepts, 
and this is likely to confuse readers. To avoid confusion, the 
authors should specify whether they are talking about ‘low-
precipitation’ or ‘arid’/’water-limited’ regions. This is 



 

particularly problematic e.g. in the Abstract lines 3-5 where dry 
is defined in terms of water availability but then immediately 
used to refer to the scrutinised study in which dry means low 
precipitation. Similarly in the introduction it needs to be 
specified which concepts of ‘dry’ the authors refer to in each 
case. 

Thanks for this point. As indicated above, we believe this is a 
very good idea and we have incorporated it in the manuscript. 

Incomplete: The main reason why Sippel et al. don’t find a 
(statistically significant) increase in Rx1day in arid regions 
seems to be related to scarcity of data. It is unfortunate 
reality that arid regions are insufficiently covered by 
observations. Aggregating only over a few grid cells results in 
relatively noisy time series, so that – despite a positive trend 
slope – the p-value of the applied trend test is too high to 
reject the null hypothesis of ‘no change’. A relatively easy 
attempt to optimise spatial coverage by merging the two existing 
datasets HadEX2 (Donat et al., 2013a) and GHCNDEX (Donat et al., 
2013b) gives a few additional grid cells with data in arid 
regions. Aggregating over this just slightly improved coverage 
results in a more robust trend estimate in observations and in 
the CMIP5 ensemble mean (Figure 1). This suggests that a major 
uncertainty when analysing precipitation changes in arid regions 
comes from the limited availability of observations. Also, if 
using the complete coverage as provided e.g. by the ensemble of 
CMIP5 models as used in Donat et al. (2016), the authors would 
find statistically significant increases in ensemble mean over 
the arid regions (not shown). Therefore we assume that the main 
reason why Sippel et al. conclude there is ‘no significant 
increase in heavy precipitation’ in arid regions is related to 
the scarcity of observations. 

Thanks. We agree that the scarcity of observational coverage and 
resulting noisy time series can be a major obstacle to detect 
significant trends. As suggested, we have merged the HadEX2 
dataset with the additional GHCNDEX dataset that contains data. 
This results in a minor upwards change in trend slopes and period 
increments, and that several (but not all) trend slopes are 
indeed significantly increasing. Hence, we report these 
additional results in the revised manuscript. For example, our 
revised Conlusion reads: 

"Monitoring and an accurate quantification of trends in 
meteorological risks in a rapidly changing Earth system is a 
prerequisite to informed decision-making in the context of 



 

climate change adaptation (IPCC 2014). Therefore, short reference 
periods that are defined on a subset of the available dataset for 
normalisation or data pre-processing purposes should be avoided, 
as this procedure inevitably introduces biases (Zhang et al., 
2005; Sippel et al., 2015). In the present study under scrutiny, 
these statistical effects reduce the reported trend slopes and 
period changes by up to 40%, but the direction of the overall 
signal remains unchanged (i.e. increasing trends in Rx1d and 
PRCPTOT in regions of moderate extreme precipitation and low 
annual totals, respectively). 
 
Furthermore, the definition of a `dry region' induces 
considerable uncertainty in quantifying changes in precipitation 
extremes or totals. If dryness is defined based on water supply 
and demand (i.e. aridity), we find a systematic and significant 
reduction of trend slopes and period increments in annual-maximum 
extreme precipitation and precipitation totals, which yields some 
significant and some in-significant (depending on precipitation 
characteristic, pre-processing, and specific dryness definition 
considered) but exclusively positive trend slopes 
(Table~\ref{table2} and Table~\ref{table3}). Hence, overall we 
confirm an indication towards increases in both metrics in the 
world's dry regions. However, as a caveat to the present study, 
it is important to stress that a large part of the world's dry 
regions, such as large arid and semi-arid regions in Africa, the 
Arabian peninsula, and partly South America are not covered by 
monitoring datasets that are available at present. This fact 
highlights the importance of consistent, long-term monitoring 
efforts, data quality control, development and maintenance of 
long-term datasets (Alexander et al., 2006; Donat et al., 
2013a,b), and also emphasises that the results reported here 
should be regarded as indicative only for those arid regions 
where there is data available at present. 
 
In summary, understanding and disentangling on-going changes in 
precipitation characteristics in the world's dry regions remains 
a research priority of high relevance. In this context, our paper 
demonstrates that 1) data pre-processing methods can introduce 
substantial bias, and 2) trends and period changes can be 
sensitive to the specific choice of dryness definition that is 
used; therefore we urge authors to be considerate and specific 
regarding both choices and to consider associated uncertainties. 
" 
 

 



 

Specific comments: 

Page 2, line 3: ‘if there is enough moisture available’ – do you 
mean annual average moisture availability? Or seasonal? Or on the 
day the rainfall extreme occurs? 

By "if there is enough moisture available", we mean enough 
moisture available for the extreme precipitation to occur, i.e. 
sensu e.g. Trenberth (2003). However, this sub-sentence is not 
necessary for the meaning and we have clarified the first 
sentence. 

Page 3, line 24: It would avoid possible confusion to include a 
clarification at the end of Section 3 that despite having effects 
on the quantification of trends, these biases do not affect the 
conclusions in the study under scrutiny. When avoiding the 
discussed biases, there are still statistically significant 
increases in Rx1day and PRCPTOT in the dry (i.e. low-
precipitation) regions. 

This is correct and had not been disputed in the original 
manuscript. However, to make this point crystal-clear, we have 
added a clarifying sentence as suggested. 

Page 3, lines 26-30: To avoid the impression of bias, it is 
important to mention other definitions of ‘dry’ here that are 
also commonly used in the scientific literature. 

Page 3, lines 31-33: Donat et al. provided a number of 
sensitivity tests, and also analysed Rx1day changes in the dry 
regions defined based on PRCPTOT (see their Supplementary 
Information SI4) – in this mask Scandinavia and the Netherlands 
are not part of the ‘dry’ class, but they still find increasing 
trends (and this is also the case after correcting for the biases 
discussed in Section 2). Please reword to avoid the impression of 
cherry-picking. 

As pointed out above, we have extended the discussion of the 
definition of dry regions: This discussion mentions now that also 
dryness definitions based on precipitation totals are in use, and 
discusses Scandinavia and the Netherlands only in terms of the 
dryness definition (thus, there should not be the impression of 
cherry-picking). 

 

Page 3, lines 5 and 12: The statements about changes in spread of 
the spatial distribution do not seem to be relevant since only 



 

means are included in the analysis (not e.g. variance). These 
statements should be removed, or it should be explicitly stated 
that they are not relevant to the current analysis. 

The spatial variance would be important for trend slopes, for 
example if confidence intervals would be obtained from the trend. 
However, we agree, and have separated the discussion. Also, 
please see our short analytical argument that allows to derive a 
first-order estimate of the magnitude of the normalisation-
induced biases. We hope the analytical argument/correction might 
be useful if observations up to the present would be compared for 
example with model simulations for the future. 

Page 4, lines 6-9: Over which time period where these alternative 
masks (2,3,4) defined? If not 1951-2010, you need to clarify that 
they may introduce the “regression to the mean” bias. 

The Köppen-Geiger classification is based on temperature and 
precipitation taken from the CRU TS 2.1 and the Global 
Precipitation Climatology Centre (GPCC), respectively, for the 
time period 1951-2000. Although this is not the full period, the 
period is (1) fairly long, and (2) two independent datasets are 
combined (temperature and precipitation), such that any potential 
"regression to the mean" effect should be negligible. 

Page 4, Line 9: What is the rationale behind including 
transitional regions when studying precipitation in dry regions? 

The rationale is simple: Our intention for this paper is to 
explore a range of different choices in order to test the 
sensitivity for different trend slopes and period increments of 
extreme precipitation - to this end, we believe that a 
combination of "arid" and "semi-arid" region can indeed provide 
additional insights. 

Page 4, lines 15/16: large parts of these ‘subsidence regions’ 
with no or little precipitation changes are located over the 
ocean. Water availability can clearly not be a limiting factor 
here, so this is unrelated to the discussion of different 
definitions of ‘dry’. 

We do not claim causality here - i.e. the statement does not 
imply that the reduced trend slopes in precipitation extremes in 
arid and semi-arid regions are due to water availability. This 
statement is just a short plausibility discussion of our results 
- given that the section is now entitled "Sensitivity of changes 
in precipitation totals and extremes to the definition of a dry 



 

region" we think this is appropriate.  

Page 4: Lines 17-21 give a hint of a balanced discussion, but 
unfortunately lead to a highly biased conclusion (lines 22-24), 
again appealing to what is supposedly ‘commonly understood’ and 
suggesting arid would be a conventional definition for dry. 

We have clarified and extended the conclusion: We report about 
the reduction in trend slopes, and indicate that there is a 
significant increase if the datasets are merged. 
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Abstract. Daily rainfall
::::::::::
precipitation extremes and annual totals have increased in large parts of the global land area over the

last decades. These observations are consistent with theoretical considerations of a warming climate. However, until recently

these global tendencies
:::::
trends

:
have not been shown to consistently affect land regions with limited moisture availability

:::
dry

::::::
regions

::::
over

::::
land. A recent study, published by Donat et al. (2016), now identified rapid increases in globally aggregated dry

region daily extreme rainfall and annual rainfall totals
::::::::
significant

::::::::
increases

::
in
:::::::::::::::

annual-maximum
:::::
daily

:::::::
extreme

:::::::::::
precipitation5

::::::
(Rx1d)

:::
and

::::::
annual

:::::::::::
precipitation

:::::
totals

:::::::::::
(PRCPTOT)

::
in

:::
dry

:::::::
regions. Here, we reassess the respective analysis and

:::::
revisit

:::
the

::::::
applied

:::::::
methods

::::
and

:::::::
explore

:::
the

:::::::::
sensitivity

::
of

:::::::
changes

::
in

:::::::::::
precipitation

::::::::
extremes

:::
and

::::::
annual

:::::
totals

:::
to

:::::::::
alternative

::::::
choices

:::
of

:::::::
defining

:
a
:::
dry

::::::
region

::::
(i.e.,

::
in

:::::
terms

::
of

::::::
aridity

::
as

:::::::
opposed

:::
to

::::::::::
precipitation

::::::::::::
characteristics

::::::
alone).

:::
We

:
find that a) statistical arti-

facts introduced by the choice of the reference period prior to data standardization
::::
data

:::::::::::
preprocessing

:::::
based

:::
on

:
a
::::::::::::
time-invariant

:::::::
reference

::::::
period

:
lead to an overestimation of the reported trends by up to 40%, and also that b) the definition

:::::::
reported

:::::
trend10

::
of

:::::::
globally

:::::::::
aggregated

::::::::
extremes

::::
and

::::::
annual

:::::
totals

:::
are

::::::
highly

::::::::
sensitive

::
to

:::
the

::::::::
definition

:::
of

:
a
:::::

‘dry
:::::
region

:
of ‘dry regions of

the globe’affect the reported globally aggregated trends in extreme rainfall. Using
:
.
:::
For

::::::::
example,

:::::
using

:
the same observa-

tional dataset, but accounting for the statistical artifacts and using alternative, well-established
:::::
based

::
on

::::::::
different

:::::::::::
aridity-based

dryness definitions, we find no
:
a
::::::::
reduction

:::
in

:::
the

:::::::
positive

:::::
trend

::
of

:::::
Rx1d

:::::
from

:::
the

:::::::::
originally

:::::::
reported

::::
+1.6%

:::::::
decade�1

:::
to

::::
+0.2

::
to

::::
+0.9%

:::::::
decade�1

:::::::
(period

:::::::
changes

:::
for

:::::::::
1981-2010

::::::::
averages

::::::
relative

:::
to

:::::::::
1951-1980

:::
are

:::::::
reduced

::
to

:::::
-1.32

::
to
::::::

+0.97%
::
as15

:::::::
opposed

::
to

:::::
+4.85%

:
in

:::
the

:::::::
original

:::::::
study).

::
If

:::
we

::::::
include

:::::::::
additional

:::
but

::::
less

::::::::::::
homogenized

::::
data

::
to

:::::
cover

:::::
larger

::::::::
regions,

:::
the

:::::
global

:::::
trend

::::::::
increases

:::::::
slightly

::::::
(Rx1d:

:::::
+0.4

::
to

::::
+1.1%

:::::::::
decade�1),

:::
and

:::
in

:::
this

:::::
case

:::
we

:::
can

::::::
indeed

:::::::
confirm

:::::::
(partly)

:
signifi-

cant increases in heavy precipitation in the world’s dry regions . Adequate data pre-processing approaches
::::
Rx1d.

:::::::::
However,

::::
these

:::::::
globally

::::::::::
aggregated

::::::::
estimates

::::::
remain

::::::::
uncertain

::
as

:::::::::::
considerable

::::
gaps

:::
in

::::::::
long-term

:::::::::::
observations

::
in

:::
the

::::::
Earth’s

::::
arid

::::
and

::::::::
semi-arid

::::::
regions

:::::::
remain.

::
In

::::::::
summary,

::::::::
adequate

::::
data

::::::::::::
preprocessing and accounting for uncertainties regarding the definition20

of dryness are crucial to the quantification of spatially aggregated trends in
::::::::::
precipitation

::::::::
extremes

::
in

:
the world’s dry regions.

In view of the high relevance of the question to many potentially affected stakeholders, we call for a cautionary consideration

1



:::::::::::
well-reflected

::::::
choice of specific data processing methods , including issues related to the definition of dry areas, to guarantee

robustness of communicated climate change relevant findings
::
and

:::
the

::::::::
inclusion

:::
of

:::::::::
alternative

::::::
dryness

:::::::::
definitions

::
to
:::::::::
guarantee

:::
that

::::::::::::
communicated

::::::
results

::::::
related

::
to

::::::
climate

:::::::
change

::
be

:::::
robust.

2



1 Introduction

Daily rainfall

::::
Daily

:::::::::::
precipitation

:
extremes are expected to increase

:::
over

:::::
large

:::::
parts

::
of

:::
the

::::::
global

::::
land

::::
area

:
roughly by 6-7% per �C

of warming following
::
due

:::
to

:
a
::::::
higher

::::::::::
atmospheric

::::::::::::
water-holding

::::::::
capacity

::
as

::::::::
specified

::
by

:
the Clausius-Clapeyron equation

(Allen and Ingram, 2002) , if there is enough moisture available
:::::::::::::::::::::::::::::::::::::::
(Allen and Ingram, 2002; Trenberth et al., 2003) . Quantifying5

and predicting changes in precipitation characteristics due to climate change is crucial for water availability assessments and

adaptation to climate change (IPCC, 2012; Greve et al., 2014). On a global scale, daily precipitation extremes have been

observed to intensify (Donat et al., 2013a; Westra et al., 2013; O’Gorman, 2015), consistent with global model simulations

(Fischer and Knutti, 2015), and coincide with a global-scale increase in observed annual rainfall
:::::::::::
precipitation totals (Donat

et al., 2013a). However, there is little consensus
::::::::::
information to date on how precipitation characteristics have changed in the10

past over dry land areas and how they will change in the future. Donat et al. (2016) investigate whether and to what extent

daily precipitation extremes (Rx1d) and annual precipitation totals (PRCPTOT) have increased over the last 60 years using

observational data. The authors identify rapid increases in rainfall extremes
:::::
Rx1d over dry regions, which strongly outpace the

corresponding increases over wet areas, and find a similar pattern for annual rainfall
:::::::::
PRCPTOT.

The question whether precipitation extremes increase in dry regions is highly relevant in the context of climate change15

adaptation, as generally dry areas may be less prepared to deal with precipitation extremes (Ingram, 2016). Consequently,

the recent report on increasing precipitation extremes
:::::
Rx1d in dry areas was highlighted in major Science journals (including

Nature (Tollefson, 2016) and Nature Climate Change (Ingram, 2016)) and received major a
:::

lot
::
of
:

media coverage 1, 2, 3, 4,

5, 6, which indicates the importance of this topic for the scientific community, the public and in the context of climate-related

decision-making
:::::::
decision

::::::
makers.20

However, scrutinizing the findings by Donat et al. (2016) reveals two major issues of concern: Firstly, the applied statisti-

cal approach introduces two systematic biases that leads
:::
lead to a substantial overestimation of the increase in precipitation

totals and extremes
:::::::::
PRCPTOT

::::
and

:::::
Rx1d of up to 40% in dry regions. Wet regions, by contrast, are only affected to a lim-

ited degree due to a
::
an

:::::::::::
approximate

:
cancellation of errors in trend estimates. Secondly, the definition of dryness

:
a
::::

dry

:::::
region

:
used in Donat et al. (2016) based on precipitation alone does not reflect the common understanding of a dry region25

and thus induces considerable uncertainty
:::::::::
PRCPTOT

::::
and

:::::
Rx1d

:::::
alone

::::
does

:::::
only

:::::
partly

::::::
reflect

:::
the

:::::
water

:::::::
balance

::::
and

::::
thus

::::
water

::::::::::
availability

::::
(for

::::::::
instance,

::
it

::::::
ignores

::::::
losses

:::::::
through

::::::::::::::::
evapotranspiration).

::::::::::::
Furthermore,

:::::::
defining

:::::::
dryness

:::::
based

:::
on

::::
low

::::
Rx1d

::::::::::::::::::::
Donat et al. (2016) fells

::
a

:::::::
decision

:::
on

:::::::
whether

:
a
::::::

region
::
is
::::

dry
::
or

:::
not

::::::
based

::
on

:::::
only

:::
one

::::
day

::
in

:::
the

:::::
year.

:::
The

:::::::
chosen

::::::::
definitions

::::
thus

::::::
induce

:::::::::::
considerable

::::::::::
uncertainty

::
in

:::
the

:::::::
reported

::::::
results. If we test alternative but well-established definitions

of a ‘dry region’ (based on water supply and demand, either implicitly or explicitly, cf. Köppen, 1900; Greve et al., 2014)30

1http://www.huffingtonpost.com/entry/global-warming-will-bring-extreme-rain-and-flooding-study-finds_us_56e081c7e4b0860f99d796ab
2https://www.theguardian.com/environment/2016/mar/08/hotter-planet-spells-harder-rains-to-come-study
3https://www.sciencedaily.com/releases/2016/03/160308105625.htm
4http://phys.org/news/2016-03-global-world-driest-areas.html
5http://www.abc.net.au/news/2016-03-08/climate-change-could-bring-more-rain-to-deserts-study/7229236
6http://www.asce.org/magazine/20160412-climate-change-to-cause-more-precipitation-in-dry-regions,-researchers-say/

3
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and reapply
:::::
apply the appropriate statistical tools, we find no significant increases in precipitation extremes or annual totals

:::::::
strongly

::::::::
increasing

::::::
trends

:::
and

::::::
period

:::::::
changes

::::::::::
(1981-2010

:::::::
averages

:::::::
relative

::
to

:::
the

:::::::::
1951-1980

::::::::
reference

::::::
period)

:::
in

:::::::::
PRCPTOT

:::
and

:::::
Rx1d

:
in the world’s dry regions. The increases in wet regions are slightly underestimated by Donat et al. (2016) due to

a cancellation of errors. These results are of high relevance
:::
An

:::::::
accurate

::::::::::::
quantification

::
of

:::::
trends

::::
and

:::::::
changes

::
in

:::::::::::
precipitation

:::::::::::
characteristics

::
is
:::
of

::::
high

::::::::
relevance

:::
and

::
a
::::::
crucial

::::::::::
prerequisite in the context of making climate change adaptation decisions in5

dry regions
:::::::::::::::
(e.g. IPCC, 2014) .

2 On data pre-processing based on a time-invariant reference period

As a first step in the analysis of Donat et al. (2016), the authors normalize
:::::::
normalise

:
the 60-year time series in the gridded

HadEX2 dataset (Donat et al., 2013a) for each grid point with the sample mean of a 30-year reference period (1951–1980
:::::::::
1951-1980),

which is a widespread procedure in climate science(Zhang et al., 2005; Sippel et al., 2015) . However, this procedure artifi-10

cially increases the mean and spread of the spatial distribution in the out-of-base period (1981-2010) in all investigated time

series, simply because variability in the sample means inflates the signal in the latter period (Sippel et al., 2015)(Fig. 1).

:
. To illustrate this point, consider two hypothetical climate regions of the same size: In region one, the mean of a rainfall

::::::::::
precipitation

:
quantity increases between two periods (from 100 to 200mm, say), for example due to a few large extremes,

whereas it decreases by exactly the same amount in region two (i.e. from 200 to 100mm). Consequently, in both time periods15

the
::::
over

:::
the

::::::::
combined

::::::
period

:::
the

:
spatial average and the spread of the two regions would be statistically indistinguishable.

However, normalizing
:::::::::
normalising

:
by the mean of the first time period would imply that the spatial average across both re-

gions for the second period is 1.25 (the average of 0.5 and 2), i.e. a spurious increase of 25% between both periods. In addition,

the normalization induces considerable spread in the
:::
This

:::::
issue

::
is
:::::::::
illustrated

::
in

::::
Fig.

::
1

:::
for

::
an

::::::::
artificial

::::::
dataset

::::
that

:::::::
consists

::
of

:::::::
n= 104

::::
time

::::::
series

:::::
(e.g.,

::::
‘grid

::::::
cells’)

::::
that

:::
are

::::::
drawn

::::::::
randomly

::::
and

::::::::::::
independently

:::::
from

:
a
:::::::::::

Generalized
:::::::
Extreme

::::::
Value20

:::::::::
distribution

::::::::::::::::::::::
(GEV, Coles et al., 2001) .

::::
The

::::
GEV

::::::::::
distribution

::::::::
provides

::
an

:::::::::::
asymptotical

::::
limit

::::::
model

:::
for

:::::::
maxima

::::::
derived

:::::
from

:
a
::::::::
sequence

::
of

:::::::
random

:::::::
variables

::::
with

:::::
fixed

:::::
block

:::
size

::::::::::::::::::::::::::
(Coles et al., 2001, e.g. Rx1d,) ,

::::
and

::
is

:::::::
therefore

::::::::::
appropriate

::
to

::::::::
illustrate

:::
this

:::::
issue.

:::::::::::
Normalising

::::
each

:::::
time

:::::
series

::
in
::::

the
:::::::
artificial

:::::::
dataset

::
by

:::
its

:::::
mean

::
in
::::

the
::::
first

::::::
period

:::::
yields

::
a
::::::
spatial

:::::::::
‘reference

:::::
period

::::::::::
distribution’

::::
that

::
is

:::::::
different

:::::
from

:::
the

:::::
spatial

:::::::::::
‘out-of-base

:::::
period

:::::::::::
distribution’

::::
(and

::::
from

:::
the

:::::::
original

:::::
GEV

::::::::::
distribution,

:::
Fig.

::::
1a).

::
In

:::::::::
particular,

:::
this

::::::::::::
normalisation

::::
leads

:::
to

::::::::
increased

:::::
spatial

::::::::
averages

::
in

:::
the

::::::::::
out-of-base

:::::
period

:::::
(Fig.

::::
1b).

:::::::::::
Furthermore,25

::
the

::::::::::::
normalisation

:::::::::
procedure

::::::
induces

::
a
:::::::::::
considerable

:::::::
increase

::
in

:::
the

::::::::
variance,

::::::::
skewness

::::
and

:::::
higher

:::::::::
statistical

:::::::
moments

:::
in

:::
the

spatial distribution in the second period .
:::::::::
out-of-base

::::::
period

:::
(see

::::
e.g.

:::
Fig.

::::
1a),

:::::
which

::::::
would

::
be

::
of

::::::::
relevance

::
if
::::::
higher

::::::::
statistical

:::::::
moments

::::::::
(changes

::
in

:::::
spatial

::::::::
variance,

::::
etc.)

::::
were

:::::::
studied.

::::
The

:::::
reason

:::
for

:::
this

:::::::::
difference

:::
lies

::
in

:::
the

:::
fact

::::
that

:::
the

::::::::
estimated

::::::
sample

:::::
means

:::
(of

:::
the

::::::::
reference

:::::::
period)

:::
are

:::::::::
statistically

:::::::::
dependent

::
to
:::::::::

reference
:::::
period

::::
time

::::::
series,

:::
but

:::::::::
(virtually)

::::::::::
independent

:::
to

:::
the

::::
time

:::::
period

::::
that

:::
lies

::::::
outside

::
of

:::
the

::::::::
reference

:::::
period

:::::::::::::::::::::::::::::::::
(Zhang et al., 2005; Sippel et al., 2015) .

::
It

::
is

:::::
worth

:::::
noting

::::
that

::::
these

::::::
biases30

:::
can

::
be

::::::::::
understood

:::::::::
analytically

::::::::::
(Appendix

:::
A).

:::
The

::::::::
expected

:::::
value

:::::
�bias,:::::::

defined
::
as

:::
the

::::::
relative

::::
bias

::
in

:::
the

::::::::::
out-of-base

::::::
period,

4



:::
can

::
be

::::
well

::::::::::::
approximated

::
for

:::::
each

:::
grid

::::
cell

::::
with

�bias ⇡
�

2

µ

2
nref

,

:::::::::::::

(1)

:::::
where

::
µ,

::
�,

::::
and

:::
nref::::::

denote
:::
the

::::
time

::::::
series’

:::::
mean,

:::::::
standard

::::::::
deviation,

::::
and

::::::::
reference

:::::
period

::::::
length,

::::::::::
respectively.

::::::::
Thereby,

::
it

:::
can

::::::::::
immediately

::
be

::::
seen

::::
that

:::
the

:::::::::
introduced

::::
bias

:
is
::::::::::::
systematically

:::::::
positive

::::::
outside

:::
of

::
the

::::::::
reference

::::::
period,

::::
and

:
it
::
is
:::::::::::
proportional

::
to

::
the

:::::
ratio

::
of

:::

�

2

µ

2 :::
for

:::
any

:::::
fixed

:::::::
reference

::::::
period

::::::
length.

:
5

An additional statistical bias stems from the choice of the world’s 30% wettest and 30% driest regions based on the cli-

matology of PRCPTOT and Rx1d in the reference period (1951-1980). Because 30 years are fairly short to derive a robust

climatology of the tails of the precipitation distribution, the computed changes in wet and dry regions are distorted by the

"‘regression to the mean" ’
:

phenomenon (Galton, 1886; Barnett et al., 2005).
:::
To

:::::::
illustrate

::::
this

:::::
issue,

:::::
recall

:::
the

::::::::::
conceptual

:::::::::
two-region

:::::::
example

::::::
quoted

::::::
above,

:::::
where

::::::::
variation

:::::::
between

:::
the

::::
two

::::::::
available

::::
time

:::::::
periods

:::::
would

:::
be

::::::
entirely

::::
due

::
to

:::::::
random10

::::::
causes.

::
If

:::
any

::
of

::::
the

:::
two

:::::::
periods

:::::
would

:::
be

::::::
chosen

::
to

::::::
stratify

:::
the

:::::::
dataset

::
in

:::
one

::::
dry

:::
and

::::
one

:::
wet

::::::
region,

::::
this

:::::
would

::::::
result

::
in

:::::::
opposing

:::::::
changes

::::
(i.e.

:::
dry

::::
gets

::::::
wetter,

:::
wet

::::
gets

:::::
drier)

::
in

:::
the

:::::::::::
independent

::::::
period. In other words, selecting from the dry (wet)

end of the spatial distribution in one subset of the dataset
::
(or

::::::::
reference

::::::
period)

:
will result in a higher probability for wetter

(drier) conditions in the remaining years (Figure in Appendix A,Tables in Appendix B
::
if

:::
any

::::
type

::
of

:::::::
random

::::::::
variation

::::
plays

::
a

:::
role

::::::
(Table

:::
??,

:::
and

::::
Fig.

::
2

::
for

:::::::
changes

::::
due

::
to

::::
both

::::::::
statistical

:::::::
effects).

::::::::
Although

:::::::
random

::::::::
variations

::
in
:::::::

30-year
::::::::
averages

:::
are

:::
not15

::::
very

::::
large

::::::::
(compare

::::
Fig.

::::
3a,b

::::
and

::::
Fig.

:::::
3c,d),

:
it
::

is
:::::::::

important
::
to

::::::::
consider

:::
this

:::::
effect

:::
as

:
it
::
is
::::::
indeed

:::::::::
noticeable

::
in

:::
the

::::::::
reported

:::::
results

::::::
(Table

::
??).

Hence, the chosen normalization
:::
The

::::::
chosen

::::::::::::
normalisation

:
approach combined with the spatial point selection method

gives
:::::
results

::
in

:
a bias toward precipitation totals and extremes

:::::::::
PRCPTOT

:::
and

:::::
Rx1d

:
increasing at a faster rate in dry regions

compared to wet regions. Yet over
::::
Over

:
dry regions, these two

::::
both effects lead to an overestimation of the trends in rainfall20

::::::::::
precipitation

:
totals and extremes by

:
+40.3% and

::
+33.2%

::::::
(+32.9%

:::
and

:::::
+40.4%

::::::::::::
overestimation

::
in

:::
the

:::::::
reported

::::::
period

:::::::
changes

::::
from

:::::::::
1951-1980

:::
to

::::::::::
1981-2010), respectively (Fig. 2, Tables in Appendix B, reference: 1951-2010

:::::
Table

::
??). In contrast, in

wet regions these effects
::::
both

:::::
errors

:
roughly cancel each other out in the case of extremes (

::::::
increase

:::
by

::::
only +8.7%) and lead

to an
:
a
:::::
small

:
underestimation of the increase in total rainfall

::::::::::
precipitation

:
(-13.7%).

::
In

::::::::
summary,

:::
we

::::
find

::::
that

:::
the

:::::::
applied

:::::::::::
preprocessing

:::::
steps

:::
are

::::::
crucial

::
to

:::::::::
accurately

:::::::
quantify

:::::::
changes

::
in

:::::::::::
precipitation

::::::::
extremes

:::
and

::::::
annual

:::::
totals.

:::
In

:::
the

:::::
study

:::::
under25

:::::::
scrutiny,

::
if

:::
the

::::::
dryness

:::::::::
definition

:
is
:::::

kept,
:::::
trend

:::
and

::::::
period

:::::::::
increments

:::
are

::::::::
corrected

::
to
:::::
much

::::::
lower

::::::
values,

:::
but

:::
the

:::::
trends

::::
and

:::::
period

:::::::::
increments

::::::
remain

:::::::
positive

::::
and

::::::::
significant

::::
(see

::::
Fig.

::
2).

:

3 On the definition of a dry region

Climatological dryness is generally not determined by water supply alone as implied by the definition in Donat et al. (2016) but

also depends on atmospheric water demand, that is the ability to evaporate water from the land surface (Köppen, 1900). This30

means that "we cannot tell whether a climate is moist or dry by knowing precipitation alone; we must know whether precipita-

tion is greater or less than potential evapotranspiration", as Charles Warren Thornthwaite put it in a landmark paper (Thornth-

5



waite, 1948); a statement that is clearly
::::::
indeed mirrored in present-day literature (e.g. Greve et al., 2014) . For the analysis of

precipitation extremes (
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Hulme, 1996; Cook et al., 2004; Feng and Fu, 2013; Greve et al., 2014; Sherwood and Fu, 2014; Huang et al., 2015) ,

:::
and

::::::::::
international

::::::
reports

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Middleton and Thomas, 1992; Millennium Ecosystem Assessment, 2005; Adeel et al., 2005) .

::::::
Metrics

:::
and

::::::::
indicators

::::
that

::
are

::::::::
typically

::::
used

::
to

::::::::
determine

::::::::::::
climatological

:::::::
dryness

:::
and

:::::::
changes

::::::
therein

::
are

:::::::
derived

::::
from

:::
this

:::::::
concept,

::::
e.g.

::
the

::::::
aridity

:::::
index

::
as

:::
the

::::
ratio

::
of

::::::::::
precipitation

::
to

::::::::
potential

:::::::::::::::
evapotranspiration

:::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Hulme, 1996; Greve et al., 2014; Milly and Dunne, 2016) .5

::::::::
However,

::
in

::::
other

::::::
studies

:::
dry

::::::
regions

:::
are

::::::
defined

:::::
based

:::
on

:::::::
monthly

::
or

:::::
annual

:::::::::::
precipitation

:::::
totals

:::::::::::::::::::::::::::::::::::::::::::::::
(Allan et al., 2010; Sun et al., 2012; Liu and Allan, 2013) .

::::::::::::::::::::
Donat et al. (2016) define

::::
dry

::::::
regions

:::
for

:::
the

:::::::::
PRCPTOT

:::::::
analysis

:::::
based

:::
on

:::
low

::::::
annual

:::::::::::
precipitation

:::::
totals,

:::
and

:::
dry

:::::::
regions

:::
for

::
the

:
Rx1d ), regions

:::::::
analysis

:::
are

:::::
based

:::
on

::::::::
moderate

::::::::::::::
annual-maximum

:::::
daily

:::::::::::
precipitation.

::::::::::::
Consequently,

::::
this

::::
latter

:::::::::
definition

:::
fells

::
a
:::::::
decision

:::::::
whether

::
a

:::::
region

::
is

:::
dry

::
or

::::
not

:::::
based

::
on

:::
the

:::::::::::
precipitation

::::::
amount

:::
of

:
a
:::::
single

::::
day

:::
per

::::
year.

:::::::
Regions

:
in northern

Europe such as parts of Scandinavia or the Netherlands fall in the ‘dry’ class because of relatively small annual maximum10

daily rainfall (Figure in Appendix A and Fig.1c in Donat et al. (2016) ). This is in contrast to what is commonly understood

by the term ‘dry ’ and consequently induces considerable confusion regarding increases in rainfall
::::::::::::::
annual-maximum

:::::
daily

::::::::::
precipitation

:::::
(Fig.

::
3).

:::::::
Hence,

:::::::
different

:::::::
notions

::
of

:::::
what

:::::::::
constitutes

:
a
::::

dry
:::::
region

::::
can

:::::::
contrast

::::
each

:::::
other,

::::::::
resulting

::
in

:::::::
regions

::::
being

::::
dry

::
in

:::
one

::::::::
definition

:::
and

::::
wet

::
in

::::::
another

:::::
(e.g.,

::::
parts

::
of

:::::::::::
Northeastern

::::::
Europe,

::::
Fig.

:::
3).

:::::
These

:::::::
variation

::
in

:::::::
dryness

:::::::::
definitions

:::::::::::
consequently

::::::
induces

:::::::::::
uncertainties

::
in

:::
the

:::::::::::
interpretation

::
of

:::::::
changes

::
in

::::::::::
precipitation

:
extremes and totals in globally ‘dry’regions.15

::
the

::::::::
‘world’s

:::
dry

:::::::
regions’.

:::::
These

:::::::::::::::
definition-related

:::::::::
differences

:::
can

:::
be

:::::::::
substantial

:
-
:::
for

:::::::
example,

:::
as

::::
much

:::
as

::::
50.8%

::::::::::
(PRCPTOT)

:::
and

::::
71.8%

:::::
(Rx1d)

:::
of

:::
the

::::
‘dry

::::
grid

::::::
cells’,

::::::::
following

:::
the

:::::::::
respective

::::::::::
definitions

::
in

:::::::::::::::::
Donat et al. (2016) ,

:::
are

::::::
neither

::::
arid

::::
nor

::::::::
semi-arid

:::::::::
(Appendix

::
B,

::::::
Figure

:::::
B1),

:::
and

::::::
would

::::
thus

:::
not

:::
be

:::::::::
considered

::::
dry

::
if

:
a
:::::::::
definition

:::::
based

:::
on

::::
both

:::::
water

::::::
supply

::::
and

::::::::::
atmospheric

:::::::
demand

::::
were

::
to

::
be

:::::
used.

:

To clarify this issue, we also test the sensitivity of the reported increases in Rx1d
::
and

::::::::::
PRCPTOT to the choice of dryness20

definition by using a variety of different dryness definitions (Figure in Appendix A
:::
Fig.

::
3). Hence, we evaluate trends and

period increments in Rx1d and PRCPTOT in

1. regions that fall below the global 30% quantile in HadEX2 in the respective diagnostic (Rx1d or PRCPTOT), following

Donat et al. (2016),

2. dry regions (‘B-climates’) from a traditional climate classification based on temperature and precipitation (Köppen,25

1900; Kottek et al., 2006),

3. dry regions as identified from an aridity-based definition of dryness (Greve et al., 2014), and

4. dry and transitional regions combined from the latter definition (Greve et al., 2014).

In addition, we test uncertainties related to the temporal coverage of the dataset by relying on time series with
:
at

::::
least

:
90%

coverage (cf. Donat et al. (2016)) and in addition we
:::::::::
furthermore

::::
also

:
analyse only time series without missing values (100%30

coverage).

Our results show that, based on
:
if
::::
dry

::::::
regions

:::
are

:::::::
defined

:::::
based

:::
on

:::::
water

::::::::::
availability

::::
(i.e.,

:::
dry

:::::::
regions

::::::::
following

::::::
either

:::::::::::::::::
Greve et al. (2014) or

::::::::::::::::::::::::::::::
Köppen (1900) (Greve et al., 2014) )

:::
and

::::::::
statistical

:::::::
artefacts

:::
are

:::::::::
accounted

:::
for,

::
in

:::
dry

::
or

:::
dry

:::
and

:::::::::
transitional

6



::::::
regions

:::::::::
combined,

:::
the

:::::
trends

::::::
reduce

::::
from

:::
the

::::::::
originally

::::::::
reported

::
1.6%

:::::::
decade�1

::::
(2.0%

:::::::::
decade�1)

::
to

::::
+0.2

::
to

::::
+0.9%

::::::::
decade�1

::::
(+0.0

::
to
:::::
+1.2%

::::::::
decade�1)

:::
for

:::::
Rx1d

:::::::::::
(PRCPTOT),

::::::::::
respectively.

::::
The

::::::::::
uncertainty

:::::
range

::::::
reflects

:::
the

::::::
choice

::
of

::::::
aridity

:::::
mask

::::
used

:::
and

:::
the

::::::::
temporal

::::::::
coverage

::
of

::::
the

::::
time

:::::
series

::::::::::
considered

::::
(see

:::::
Table

:::
??

:::
and

::::::
Table

::::
??).

::::::::
Similarly,

::::::
period

:::::::
changes

::::::::
between

:::::::::
1951-1980

:::
and

::::::::::
1981-2010

:::::
would

:::
be

:::::::
reduced

::
to

:::::
-1.32

::
to

:::::
+0.97%

::::
(+0.5

::
to

::::
+3.8%

:
)
::
as

:::::::
opposed

:::
to

:::::
+4.85%

::::
(+6.3%

:
)
:::
for

:::::
Rx1d

::::::::::
(PRCPTOT)

::
in

:::
the

:::::::
original

:::::
study.

::::::::
Although

:::
the

:::::
trends

::::::
remain

::::::::
positive,

:::::
based

::
on

:
a two-sided trend

::::::::::::
Mann-Kendall test, no sig-5

nificant increases in precipitation totals and extremes
:::::
trends

::
in

:::::
Rx1d

:::
and

:::::::::
PRCPTOT can be detected in the world’s dry regionsas

defined based on either Greve et al. (2014) or Köppen (1900) , or in dry and transitional regions combined or if time series with

incomplete temporal coverage are removed
:
.
::::::::
However,

:::
the

::::::::
coverage

::
of

:::
the

:::::::
world’s

:::
arid

:::::::
regions

::::
with

::::::::
long-term

::::::::::::
observational

:::::::::
monitoring

::::
data

:
is
::::::
rather

:::::
sparse

:::
and

::::::
largely

::::::::
confined

::
to

:::
arid

::::
and

::::::::
semi-arid

::::::
regions

::
in

:::::::::::::
North-America

:::
and

:::::::
Eurasia (Fig. 3, Table

1-2). These
:
),
::::
and

::::
thus

::::
large

:::::::::::
uncertainties

:::::::
remain.

::
A

::::
few

::
of

:::
the

::::
data

::::
gaps

:::
in

:::::::
HadEX2

:::
in

:::
arid

::::
and

::::::::
semi-arid

:::::::
regions

:::
can

:::
be10

::::
filled

::::
with

::::::::
available

::::
data

::::
from

:::
the

:::
less

::::::::::::
homogenized

::::::::::
GHCNDEX

::::::
dataset

::::::::::::::::::::::::::::::::::::::
(Donat et al., 2013b, Appendix B, Figure B2) .

::
In

:::
the

:::
dry

::::::::::::::::::::::::::::::::
(Köppen, 1900; Greve et al., 2014) and

::::::::::::
dry-transitional

:::::::
regions

::::::::::::::::::
(Greve et al., 2014) of

::::
this

::::::
merged

:::::::
dataset,

:::
the

:::::::::
magnitude

::
of

:::
the

::::::
trends

:::
and

::::::
period

::::::::
changes

:::::::
remains

::::::
largely

::::
the

:::::
same

:::
for

:::::
Rx1d

:::::::
(trends:

::::
+0.4

:::
to

::::
+1.1%

::::::::
decade�1,

::::::
period

::::::::
changes:

::::
-0.16

:::
to

:::::
+1.41%

:
),

:::
but

:::::
with

::::
now

:::::
more

:::::::::
significant

:::::::
p-values

::::
due

::
to
::

a
::::::
higher

::::
data

::::::::
coverage

::::::
(Table

::::
??).

::::
For

:::::::::
PRCPTOT,

::::
the

:::::::::::::::::
HadEX2-GHCNDEX

:::::::
merged

::::::
dataset

:::::::
reveals

::
on

:::::::
average

::::::::
increased

::::
and

:::::::::
significant

::::::
trends

::::
(+0.6%

:
to
:::::

+1.9%
:::::::::
decade�1).

::::
The15

:::::::
reported results are consistent with earlier studies that report no or modest changes

::::::
modest

::::::::
increases

:
in Rx1d and PRCPTOT

in (predominantly dry)
:::::::::::
predominantly

::::
arid

:::
and

:::::::::
semi-arid subsidence regions based on model simulations (Kharin et al., 2007;

Fischer and Knutti, 2015) and in observations for individual subtropical regions such as Australia or the Mediterranean (Wes-

tra et al., 2013; Lehmann et al., 2015). In contrast, if
::
If ‘the world’s dry regions’ are defined based on falling below a global

30% threshold in Rx1d or PRCPTOT in the HadEX2 dataset (Donat et al., 2016), we indeed confirm robust increases in both20

Rx1d and PRCPTOT. Thus, the reported
::::::::
originally

:::::::
reported

::::::
robust increases in both diagnostics are highly sensitive to the

definition of a ‘dry region’, and appear to stem from regions with relatively moderate extreme (Rx1d) or average (PRCPTOT)

rainfall
::::::::::
precipitation, such as regions in Northern Europe (Rx1d, Figure in Appendix A

::::
Fig.

:
3) or North-East Siberia (PRCP-

TOT, Figure in Appendix A)that are not commonly understood as ‘dry’. Hence, we conclude extreme rainfall (Rx1d) or annual

totals (PRCPTOT) do not show significant increases in the world’s dry (i.e. arid, or arid-transitional) regions in conventional25

definitions.
::::
Fig.

::
3).

:

4 Conclusions

An
:::::::::
Monitoring

:::
and

:::
an accurate quantification of spatially aggregated trends in

:::::
trends

::
in

::::::::::::
meteorological

:::::
risks

::
in a rapidly chang-

ing Earth system is of highest relevance to decision-makers
:
a
::::::::::
prerequisite

::
to

::::::::::::
well-informed

::::::::::::::
decision-making

:
in the context of

climate change adaptation (Fischer and Knutti, 2015) . Therefore
::::::::::::
(IPCC, 2014) .

::
In

:::
this

::::::
context, short reference periods that are30

defined on a subset of the available dataset for normalization or data pre-processing purposes (Zhang et al., 2005; Sippel et al., 2015)
:::::::::::
normalisation

::
or

:::
data

::::::::::::
preprocessing

:::::::
purposes

:
should be avoided, as this procedure inevitably introduces biases .

::::::::::::::::::::::::::::::::
(Zhang et al., 2005; Sippel et al., 2015) .

::
In

:::
the

::::::
present

:::::
study

:::::
under

::::::::
scrutiny,

::::
these

::::::::
statistical

::::::
effects

::::::
reduce

:::
the

::::::::
reported

:::::
trends

::::
and

:::::
period

:::::::
changes

:::
by

:::
up

::
to

::
40%

:
,
:::
but
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::
the

::::::::
direction

:::
of

:::
the

::::::
overall

:::::
signal

:::::::
remains

:::::::::
unchanged

::::
(i.e.

:::::::::
increasing

::::::
trends

::
in

:::::
Rx1d

:::
and

::::::::::
PRCPTOT

::
in

::::::
regions

:::
of

::::::::
moderate

::::::
extreme

:::::::::::
precipitation

:::
and

::::
low

::::::
annual

:::::
totals,

:::::::::::
respectively).

:

Furthermore, the definition of a ‘dry region’ induces considerable uncertainty in quantifying changes in rainfall extremes or

totals. We find no evidence for changes
::::
Rx1d

:::
and

::::::::::
PRCPTOT

::
in

::::
such

:::::
areas.

::
If
:::::::
dryness

::
is

::::::
defined

::::::
based

::
on

:::::
water

::::::
supply

::::
and

::::::
demand

::::
(i.e.

:::::::
aridity),

::
we

::::
find

:::::
much

::::::
smaller

::::::
trends

:::
and

:::::
period

::::::::::
increments

::
in

::::
Rx1d

::::
and

:::::::::
PRCPTOT,

::::::
which

:::
are

:::::
almost

::::::::::
exclusively5

::::::
positive

:::
but

::
in

:::::
many

:::::
cases

::::::::::
insignificant

::::::
(Table

::
??

:::
and

:::::
Table

::::
??).

::::::
Hence,

::::::
overall

:::
we

:::
can

::::::
confirm

:::
an

::::::::
indication

:::::::
towards

::::::::
increases

::
in

::::
both

::::::
metrics

::
in

:::
the

::::::
world’s

::::
dry

::::::
regions.

::::::::
However,

::
it
::
is

::::::::
important

::
to

:::::
stress

::::
that

::::
many

:::
of

:::
the

::::::
world’s

:::
dry

:::::::
regions,

::::
such

::
as

:::::
large

:::
arid

::::
and

::::::::
semi-arid

::::::
regions

::
in

::::::
Africa,

:::
the

:::::::
Arabian

:::::::::
Peninsula,

:::
and

::::::
partly

:::::
South

:::::::
America

:::
are

:::
not

:::::::
covered

::
by

::::::::::
monitoring

:::::::
datasets

:::
that

:::
are

:::::::
available

::
at

:::::::
present.

::::
This

:::
fact

:::::::::
highlights

::
the

::::::::::
importance

::
of

:::::::::
consistent,

::::::::
long-term

:::::::::
monitoring

::::::
efforts,

::::
data

::::::
quality

:::::::
control,

::::::::::
development

::::
and

::::::::::
maintenance

::
of

:::::::::
long-term

:::::::
datasets

::::::::::::::::::::::::::::::::::::::
(Alexander et al., 2006; Donat et al., 2013a, b) ,

::::
and

::::
also

:::::::::
emphasises

::::
that10

::
the

::::::
results

:::::::
reported

::::
here

::::::
should

::
be

::::::::
regarded

::
as

::::::::
indicative

::::
only

:::
for

:::::
those

::::
arid

::::::
regions

:::::
where

::::
data

::
is

::::::::
available.

:

::
In

::::::::
summary,

::::::::::::
understanding

:::
and

:::::::::::
disentangling

::::::::
on-going

:::::::
changes

::
in

::::::::::
precipitation

::::::::::::
characteristics

:
in observed annual rainfall or

heavy precipitation in the world’s dry or dry-transitional regions if the notion of dryness is based on water supply and demand

::::::
regions

:::::::
remains

:
a
::::::::
research

::::::
priority

:::
of

::::
high

::::::::
relevance.

:::
In

:::
this

:::::::
context,

:::
our

::::::
paper

:::::::::::
demonstrates

:::
that

:::
1)

::::
data

:::::::::::
preprocessing

::::
can

::::::::
introduce

:::::::::
substantial

::::
bias,

:::
and

::
2)

::::::
trends

:::
and

::::::
period

:::::::
changes

:::
can

:::
be

:::::::
sensitive

::
to

:::
the

:::::::
specific

:::::
choice

:::
of

::::::
dryness

::::::::
definition

::::
that

::
is15

::::
used;

::::::::
therefore

:::
we

::::
urge

::::::
authors

::
to

:::
be

:::::::::
considerate

:::
and

:::::::
specific

::::::::
regarding

::::
both

:::::::
choices

:::
and

::
to

:::::::
consider

:::::::::
associated

:::::::::::
uncertainties.

:
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Appendix A:
:::::::::
Analytical

:::::::::::::
approximation

::
of

:::
the

::::::::
expected

:::::
value

:::
for

:::
the

::::::::::::::::::::
normalisation-induced

::::
bias

::::::::::
Assumptions

::::
and

::::::::
Notation:

–
::::::
Assume

:::::::::::
independent

:::
and

:::::::::
identically

:::::::::
distributed

:
(i.e.aridity) ,

:::::::::
stationary)

::::::::
variables

::::
X

t,i::::
with

:::::
mean

:::::
given

:::
by

:::::::::
E(X) = µ

:::
and

:::::::
variance

::::::::::::
Var(X) = �

2.
:::
Let

:::
the

:::::::::
subscripts

:
t and biases due to short reference periods are avoided. Thus, understanding

and disentangling the discrepancy in rainfall trends between regions of moderate extreme or total rainfall (Donat et al., 2016) and5

data-scarce arid regions,
:
i

::::::
denote

::::
time

:::
and

::::
grid

::::
cell

:::::
index,

:::::::::::
respectively.

::::
Note

::::
that

::
in

:::::::::
real-world

::::::::::
applications,

:::
the

::::::
biases

::::
could

:::
be

::::::::
estimated

::::::::::
analytically

::
by

::::::::
allowing

:::
for

:::::::
different

::::::
sample

::::::
means

:::
and

::::::::
variances

::::::
across

:::::
space.

:

–
:::
Let

:::
t

oob:::
be

::
an

::::::::
arbitrary

::::
time

:::
step

:::
in

::
the

:::::::::::
‘out-of-base’

::::::::::::
(independent)

::::::
period,

::::
and

::::
t

ref ::
as

::
an

::::::::
arbitrary

::::
time

:::
step

::::::
inside

:::
the

:::::::
reference

:::::::
period.

:::
Let

::::
n

ref::::::
denote

:::
the

:::::
length

::
of

:::
the

::::::::
reference

::::::
period.

:

–
:::
Let

:::::::::::::::::::
�

bias

=E(
X

t

oob

,i

µ̂

ref,i

)� 1
::::::
denote

:::
the

::::::
relative

::::::
change

:::::::
induced

::
by

:::::::::::
normalisation

:::
by

:::
the

::::
mean

::
of

:::
an

::::::::::
independent

::::::::
reference10

:::::
period

::::
(i.e.,

::::::::::::
‘normalisation

:::::
bias’,

::::::
X

t

oob

,i::
is
:::
not

::::::::
contained

:::
in

:::::
µref,i).:

:::
Our

::::::::
objective

::
is

::
to

:::
find

:::
an

::::::::
analytical

::::::::::::
approximation

::
of

:::
the

::::::::
expected

::::
value

:::
for

:::
the

:::::::::
artificially

:::::::
induced

::::::
relative

::::::
change

:::::::
(�

bias

)

::
by

:::::::
dividing

::
a
:::::::

random
:::::::

variable
:::::::
X

t

oob

,i ::
as

:::::::
defined

::::::
above

::
by

::
a
:::::::

sample
:::::
mean

::::::::
estimated

:::::
from

::::::::
different

:::::::
samples

::::::::::
(‘reference

::::::::
samples?)

:::::
drawn

:::::
from

:::
the

::::
same

::::::::::
distribution

::::::::::::::::::::::
(µ̂ref,i =

1
n

P
n

ref

t

ref

=1Xt

ref

,i

,
:::::
where

:::::::::::::
E(µ̂ref,i) = µ),

:::
i.e.

�
bias

=E(
X

t

oob

,i

µ̂ref,i
)� 1⇡ f(µ,�,nref).

::::::::::::::::::::::::::::::::

(A1)15

::::::
Clearly,

:::
for

:::::
large

:::
nref::::

this
:::::::
quantity

:::::
should

:::
go

::
to

::
0.

:::::::
Because

::::
X

t,i:
and relating both to model simulations

::::
µ̂ref,i:::

are
:::::::::::
independent,

::
we

::::
can

:::::
write,

�
bias

::::
=E(X

t,i

)E(
1

µ̂ref,i
)� 1 = µE(

1

µ̂ref,i
)� 1.

::::::::::::::::::::::::::::::::::

(A2)

:
If
:::
we

::::::::
subsitute

:::::::::::::::::
µ̂ref,i = µ(1+ ✏ref,i),:::::

where
:::::::::
E(✏

i

) = 0, remains a research priority of high relevance.
::::::::::::::
Var(✏

i

) = �

2

µ

2

n

ref

::::::::
(because

:::::::::::::::
✏

ref,i

= µ̂

ref,i

µ

� 1,
:::
and

::::::::::::
E(µ̂

ref,i

) = µ

::::
and

:::::::::::::::::
Var(µ̂

ref,i

) = �

2

n

ref

),
:::
and

:::
the

:::::::
subscript

:::
ref

:::
has

::::
been

:::::::
dropped

:::::
from

:
✏

i:::
for

:::::::::::
convenience,20

::
we

:::
get

:

�
bias

::::
= µE(

1

µ(1+ ✏

i

)
)� 1 =E(

1

1+ ✏

i

)� 1.
:::::::::::::::::::::::::::::::

(A3)

:
A
::::::
Taylor

:::::::::
expansion

::::::
around

:::
the

:::::::
function

::::::::::
g(x) = 1

1+x ::
at

:::::
x= 0

:::::
yields

:

g(x) =
1

1+x

= 1�x+x

2 �x

3 +x

4 �x

5 + ...

::::::::::::::::::::::::::::::::::::::

(A4)

:::
We

:::
will

:::
see

::::::
below

:::
that

:::
the

:::::::::::
convergence

:::::::
criterion

:::::::
✏

i

< |1|
::
of

:::
the

:::::
Taylor

::::::
series

:
is
::::
met

::
in

:::::::::
practically

:::::::
relevant

:::::
cases,

:::
but

::
it

::::::
should25

::
be

:::::
noted

::::
that

::::::::::
convergence

:::::::
cannot

::
be

:::::::
ensured

::
in
:::

all
:::::::::::
theoretically

::::::::::
conceivable

:::::
cases.

::::::
Using

::::::
Taylor

:::::::::
expansion,

::::::
�

bias :::
can

:::
be

9



:::::::::::
approximated,

:::::::
making

:::
use

::
of

:::
the

:::::::
linearity

::
of

:::
the

:::::::::
expectation

:::::::
operator

::::
E()

:::
and

::
of

:::
the

:::
fact

::::
that

::::::::
E(✏

i

) = 0
:::
and

::::::::::::::::::::::
E(✏2

i

) =Var(✏
i

) = �

2

µ

2

n

ref

::
by

:::::::::
definition,

�
bias

::::
=E(

1

1+ ✏

i

)� 1
:::::::::::::

(A5)

=E(1� ✏

i

+ ✏

2
i

� ✏

3
i

+ ✏

4
i

� ✏

5
i

+ ...)� 1
::::::::::::::::::::::::::::::::

(A6)

=
�

2

µ

2
nref

�E(✏3
i

)+E(✏4
i

)�E(✏5
i

)+ ...

::::::::::::::::::::::::::::::::

(A7)5

::::
This

:::::::::
expression

:::::
yields

::
a
::::
sum

::::
over

:::
the

::::::
central

::::::::
moments

:::
of

:::
the

::::::::::
distribution

::
of

::::
✏

i

’s.
::::
For

:
a
:::::::::
symmetric

::::::::::
probability

::::::::::
distribution

:::::
(recall

::::
that

::
✏

i::::::
denote

:::
the

:::::::::
deviations

::
of

:::
the

::::::
sample

::::::
means

::
in
::

a
::::::::
reference

::::::
period

::::::
around

:::
the

:::::::::
underlying

::::
true

:::::::::::::::
mean)E(✏k

i

) = 0,

:::::
where

:
k

::
is
::::
any

::::::
uneven

::::::::
exponent

:::::
k 2 N.

::::
Eq.

:::
A7

::::
then

::::::
reduces

::
to

:

�
bias

::::
=

�

2

µ

2
nref

+E(✏4
i

)+E(✏6
i

)+ ...

:::::::::::::::::::::::::

(A8)

::
As

::::
long

:::
as

::::::
✏

i

< |1|
::
is
::::::::
fulfilled,

:::
the

::::::::
quadratic

::::
term

:::::::::
dominates

::::
both

:::
Eq.

::::
A7

:::
and

:::
Eq.

::::
A8.

::::
The

::::::
present

::::::::
analytical

:::::::::::::
approximation10

::::
(both

::::
Eq.

:::
A7

:::
and

:::
Eq.

::::
A8)

::::::::
provides

:::
the

::::::::
important

:::::::
insights

:::
that

:
1)

:::::::::::
normalisation

::::
with

::
a
::::::::
‘reference

::::::
period

::::::
sample

::::::
mean’

:::::
leads

::
to

::
an

:::::::
artificial

:::::::
increase

:::
of

:::::
spatial

::::::::
averages

::
in

:::
the

::::::::::
out-of-base

::::::
period,

:::
i.e.

:::
the

::::
bias

::
is

::::::
always

:::::::
positive

::
in

:::
the

::::::::::
out-of-base

::::::
period,

:::::::::
�

bias

> 0,
:::
and

:
2)

:::
that

::::::::::::::::
�

bias

/ (�
µ

1p
n

ref

)2,
:::
i.e.

:::
the

::::::
square

::
of
::::

the
:::::::::
coefficient

::
of

:::::::
variation

:::
in

:::
the

:::::::::
distribution

:::
of

::::::
sample

::::::
means

::::
(i.e.,

::::::::::::::::
c

v

[µ̂ref,i] =
�

µ

p
n

ref

).
: ::

For
::::

any
::::
fixed

:::::
nref ,:::

the
::::::::
amplitude

:::
of

:::
the

::::::::::::::::::
normalisation-induced

::::::
biases

::::
only

:::::::
depends

:::
on

:::
the

::::::
square

::
of

:::
the

::::
ratio

:::

�

µ

.
:::
We

:::::
verify

::::::
below

::::::::::
numerically

::::
that

:::
this

:::::::::::::
approximation

:::::
works

::::
well

:::
for

:::::::
random

::::::::
variables

::::
X

t,i::::::
drawn

::::
from

:
i.

:
a15

:::::::
Gaussian

:::::::::::
distribution, ii.

:
a

::::::::::
Generalized

:::::::
Extreme

:::::
Value

::::::::::
distribution

::::
with

:::
two

::::::::
different

::::::
choices

:::
for

:::
the

:::::
shape

:::::::::
parameter

::::::
(⇠ = 0,

:::::::
‘Gumbel

:::::::::::
distribution’,

:::
and

::::::
⇠ 6= 0).

:

::::::::
Gaussian

::::::::::
distribution

::::::
Assume

:::::::::::::::
X

t,i

⇠N (µ,�2),
:::
the

::::::::::
distribution

::
of

:::
the

::::::
sample

:::::
mean

::::::::
deviations

:::::
from

:::
the

:::
true

:::::
mean

::::
will

::::::
follow

:::::::::::::::
✏

i

⇠N (0, �

2

µ

2

n

ref

).
::
If

::
we

::::::::
substitute

:::::
with

::::::::::::
✏

i

= �

µ

1p
n

ref

Y ,
:::::
where

:::::::::::
Y ⇠N (0,1)

::
in
::::
Eq.

:::
A8,

:::
the

:::::
above

:::::::::
expression

:::::::
reduces

::
to20

�
bias

::::
=

�

2

µ

2
nref

+(
�

µ

1
p
nref

)4E(Y 4)+ (
�

µ

1
p
nref

)6E(Y 6)+ ...

::::::::::::::::::::::::::::::::::::::::::::::

(A9)

:::::::
Because

::::::::::
higher-order

::::::::
moments

::
of

:
a
:::::::
standard

::::::
normal

:::::::::
distributed

:::::::
random

::::::
variable

:::
are

::::::::::
well-known

:::
and

::::
can

::
be

::::::
derived

::::::::::
analytically

::::::::::::::::::::::::::::
(?, i.e., E(Y 4) = 3, E(Y 6) = 15) ,

::
an

::::::::
analytical

:::::::::
expression

:::
of

:::
the

::::::::::::::::::
normalisation-induced

::::
bias

:::::::
becomes

::::::::::::::
straightforward:

�
bias

::::
⇡ �

2

µ

2
nref

+3(
�

µ

1
p
nref

)4 +15(
�

µ

1
p
nref

)6.
::::::::::::::::::::::::::::::::::

(A10)

:
A
:::::::::::

comparison
::
of

::::
Eq.

::::
A10

::::
(i.e.

:::
the

::::
first

:::::
three

:::::
terms

::
in
::::

the
::::::
Taylor

:::::::::::::
approximation)

::
to

:::::::::
numerical

::::::::::
simulations

::::::
shows

::::
that25

::
the

:::::::::
analytical

::::::::::::
approximation

::::::
works

::::
well

::::
(Fig.

::::::
A-1a).

:::::::::::
Furthermore,

::::
the

:::::::::
estimation

::
of

:::::
mean

::::
and

:::::::
standard

::::::::
deviation

:::::
from

:::
the

10



::::::::
empirical

::::
time

:::::
series

::
to

:::::::
calculate

:::
the

::::::::
expected

::::
value

:::
for

:::
the

:::::
biases

::
is

::::::::
unbiased

:::
and

:::::
show

::::::::::
surprisingly

::::
little

:::::::
variation

::::
(Fig.

::::::
A-1b)

::::
even

:::
for

::
a

::::::::
relatively

:::::
small

:::::::
number

::
of
:::::

grid
:::::
cells,

:::::
where

:::::::
random

::::::::
variation

::
in
:::::::::

stationary
:::::

time
:::::
series

::::::::
becomes

:::::::::::
considerable

::::
(Fig.

::::::
A-1b).

::::::::
However,

:::
one

::::::::
important

::::::
caveat

::
is

:::
that

::::
Eq.

:::
A3

:::
and

:::
the

::::::::::
subsequent

::::::::::::
approximation

::::
only

:::::
works

:::
as

::::
long

::
as

::::::
✏

i

< |1|
::

is
::::::::
fulfilled.

::::
How

:::::
likely

::
is

:
a
::::::::
violation

::
of

:::
this

::::::::
criterion?

:::::::::
Numerical

::::::::::
simulations

:::
for

::::::::
nref = 30

::::::
appear

::
to

::
be

::::
very

::::::
stable

::
for

::::
any

:::::::

µ

�

> 0.8
::
in

:::
the5

:::::
X

t,i

’s,
:::
i.e.

::::::::::::
corresponding

:::::::
roughly

::
to

::
a

::::::::::::::
C

v

[µ̂ref,i]⇡ 0.2.
:::
For

::::
such

::
a

:::::
choice

:::
of

:::
C

v :::
the

::::::
chance

::
of

:::::::
|✏
i

|� 1
::::::::::
corresponds

::
to

:
a
:::::
�5�

::::
event

::::
with

::
a
:::::::::
probability

:::
of

::::::
roughly

::
1
::
to

:::
3.5

:::::::
million.

:::::
Given

::::
that

:::
the

::::::::
observed

::

µ

� :::::
ratios

:::
are

:::::::::::
considerably

:::::
larger

::::
than

:::
the

::::::
values

:::::
tested

::::
here

::::
even

::
in

:::
the

:::::
driest

::::::
regions

::
of

:::
the

::::::
world,

:::
we

:::::::
conclude

::::
that

:::
the

::::::::::::
approximation

:::
can

:::
be

::::
used

:::
for

:::
the

:::
vast

::::::::
majority,

::
if

:::
not

::
all,

::::::::
practical

::::::::::::
considerations.

:
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Figure A-1.
::
a)

::::
Ratio

::
of

:::::
mean

::
to

::
sd

::
vs.

:::::::::::::::::
normalisation-induced

:::
bias

::
in
::
a
:::::::
Gaussian

:::::::::
distribution

::
for

::::::::
numerical

:::::::::
simulations

::::
with

:::::
various

:::::
mean

:::::
values

:::::
(dots),

:::
and

:::
the

::::::
derived

::::::::
analytical

::::::::::::
approximation.

:::
The

:::::::
reference

::::::
period

:::::
length

::
is

::::
taken

:::
as

::::::::
nref = 30,

::::
and

::::::::
numerical

:::::::::
simulations

::
are

::::::::
conducted

::::
with

:::::::
n= 105

::::
grid

::::
cells

:::
with

::::
each

:::
60

::::
time

:::::
steps.

::
b)

::::::::
Analytical

:::::::
estimates

:::
of

:::::
biases

::
as

::::::::
calculated

::::
from

::::::
sample

::::
mean

::::
and

:::::
sample

:::::::
standard

:::::::
deviation

:::::::
following

:::
Eq.

:
1
::

in
:::
the

::::
main

:::
text

::::
(dark

:::::
blue)

::
for

:
a
:::::
given

::::::
number

::
of

:::::::::
independent

:::
grid

::::
cells

::::::
(µ� = 1,

:::::::::
n
ref

= 30).
:::
For

:::::::::
comparison,

:::
the

::::::::
magnitude

::
of

::::::
random

::::::
changes

::
in
::::::::

stationary
::::
time

::::
series

::::
(i.e.

:::::::
empirical

:::::::
variation

::
in

:::
the

::::::
quantity

::::::
�bias,

:::::::
following

:::
Eq.

::::
A1)

:::
with

::::::::
n
ref

= 30
:::
and

:::::::::
n
obase

= 30
::
is

:::::
shown

::
in

:::::
black.

::::
Error

:::
bars

::::::
indicate

:::
the

:::
5th

::
to

:::
95th

::::::::
percentile

::
in

::::::
repeated

::::::::
numerical

:::::::::
simulations.
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Appendix A

::::::::::
Generalized

::::::::
extreme

:::::
value

::::::::::
distribution

:::
We

:::::::::
investigate

:::::::
whether

::
in

:::
Eq.

:::
A7

:::
the

::::::::::
higher-order

:::::
terms

::
in
:::
the

::::::
Taylor

::::::::::::
approximation

::::
can

::
be

:::::::
ignored

::
in

:::::::
practical

:::::::::::
applications,

:::::
where

::
an

::::::::::
assumption

::
of

::::::::::
Gaussianity

::::::
might

:::
not

:::::
hold.

:::::
Here,

::
we

::::
test

:::
this

:::
for

:::
the

:::::::::::
Generalized

:::::::
Extreme

:::::
Value

::::::::::
distribution

::
as

:::
an

:::::::::
appropriate

::::::
model

:::
for

:::::
annual

::::::::
maxima

::
as

::::::::::
investigated

::
in

:::
the

:::::
main

:::::::::
manuscript

::::
with

::::
two

:::::::
different

:::::::
choices

:::
for

:::
the

:::::::::::
distribution’s5

:::::
shape

::::::::
parameter

:::
(⇠).

:

:
i.
:::::::
Gumbel

:::::::::::
distribution

:::
We

:::
first

:::::::
assume,

::
in

:::::::
analogy

::
to

:::
the

:::::::::
paragraph

:::::
above,

:::::::::::
independent

:::
and

:::::::::
identically

:::::::::
distributed

::::
(i.e.,

:::::::::
stationary)

:::::::
random

::::::::
variables

:::::
drawn

:::::
from

:
a
::::::::::
Generalized

::::::::
Extreme

:::::
Value

::::::::::
distribution

::::
with

::::
zero

:::::
shape

:::::::::
parameter

:::
? .

::::
The

:::::::
expected

::::::
values

:::
for

:::::
mean

:::
(µ)

::::
and

:::::::
variance

::::
(�2)

::
of

:
a
:::::
GEV

:::
are

:::::
given

::
by

::::::::::::
µ= µ

0 +�

0
�,

:::::
where

::
�

::::::
denotes

:::::::
Euler’s

:::::::
constant.

:
10

:::::::::
Folllowing

:::
Eq.

:::
A7,

:::
we

::::
can

::::::
readily

:::::
derive

::
an

:::::::::
analytical

:::::::::
expression

:::
for

::
the

::::::::
expected

:::::
value

::
of

:::
the

::::::::::::::::::
normalisation-induced

:::::
bias,

::
i.e.

:

�
bias

::::
=

�

2

µ

2
nref

�E(✏3
i

)+E(✏4
i

)�E(✏5
i

)+ ...

::::::::::::::::::::::::::::::::

(A1)

= (
⇡

p
6nref(

µ

0

�

0 + �)
)2 �E(✏3

i

)+E(✏4
i

)�E(✏5
i

)+ ...

::::::::::::::::::::::::::::::::::::::::::

(A2)

::::
Here,

:::
we

::::
note

:::::
again

::::
that

:::
the

::::::::
quadratic

::::
term

:::::::::
dominates

:::
the

:::::::::
expression.

::
If

:::
we

:::::
make

:::
the

:::::::::
simplifying

::::::::::
assumption

::::
that

:::
the

::::::
sample15

:::::
means

:::::
µ̂ref,i:::

for
::::::::
nref = 30

::::::
follow

:::::::::::::
(approximately)

::
a

:::::::
Gaussian

::::::::::
distribution

::::
(the

:::::::::
assumption

::
is
::::
only

:::::::
needed

::
for

:::
the

::::::
higher

:::::
order

::::
terms

:::
of

:::
the

:::::
Taylor

::::::::::
expansion),

:::
we

:::
can

::::::
derive

::
an

::::::::
analytical

::::::::::::
approximation

:::
for

:::
the

:::::::::::::::::::
normalisation-induced

:::
bias

:::
by

:::::::
insertion

::::
and

::
in

::::::
analogy

::
to
::::::
above,

:::
i.e.

:

�
bias

::::
⇡ (

⇡

p
6nref(

µ

0

�

0 + �)
)2 +(

�

µ

1
p
nref

)4E(Y 4)+ ...

::::::::::::::::::::::::::::::::::::::

(A3)

⇡ (
⇡

p
6nref(

µ

0

�

0 + �)
)2 +3(

⇡

p
6nref(

µ

0

�

0 + �)
)4.

:::::::::::::::::::::::::::::::::::::

(A4)20

::::::
Hence,

:::
we

::::
find

::::
that

:::
the

:::::::::
magnitude

:::
of

:::
the

::::
bias

::::::::
estimates

:::
is

::::::::::
proportional

:::
to

:::
the

:::::
ratio

::
of

:::::
scale

::
to
::::::::

location
:::::::::
parameter

::::
(�

0

µ

0 )

::
for

::::
any

:::::
fixed

::::::::
reference

::::::
period

:::::
length

::::
(but

::::
also

:::
the

:::::::::::::
proportionality

::
to

::::
the

:::::
square

:::
of

:::
the

::::
ratio

:::
of

:::::::
standard

::::::::
deviation

:::
to

:::::
mean

:::::::
remains,

:::
i.e.

:::
Eq.

::
1

::
(or

::::
Eq.

::::
A13)

::
in

:::
the

:::::
main

::::
text).

::::
The

::::::::
analytical

:::::::::::::
approximation

:::
can

::
be

:::::::
verified

::
by

:::::::::
numerical

:::::::::
simulation

:::::
using

:::::::::::::
GEV-distributed

:::::::
random

::::::::
variables,

:::
and

::
is

:::::
found

::
to

::
fit

:::
the

::::
data

::::
very

::::
well

::::
(Fig.

::::::
A-2a).

:::::::::::
Furthermore,

::
an

::::::::
estimator

::
of

:::
the

::::::::
expected

::::
value

::
of

:::
the

::::::
biases

::
by

::::
only

:::::::::
estimating

:::
the

:::::
mean

:::
and

::::::::
standard

::::::::
deviation

::
of

::::::::
empirical

::::
time

:::::
series

::::
(i.e.,

:::::
using

:::
the

::::
first

::::
term

::
in

:::
the25

:::::
Taylor

:::::::::::::
approximation)

::::
can

::
be

:::::::
derived

:::::
easily

:::
and

::
is
::::::
found

::
to

::::
work

:::::::
reliable

::::
also

:::
for

:
a
:::::
small

:::::::
number

::
of

:::::::::::
independent

:::
grid

:::::
cells

::::
(Fig.

:::::
A-2c).

:

13



::
ii.

::::
GEV

:::::::::::
distribution

::::
with

::::::
⇠ 6= 0

::::
Here,

:::
we

::::
test

:::::::
whether

:::
the

::::::::
analytical

::::::::
argument

:::::
from

:::::
above

::::
can

::
be

::::::::
extended

::
to

::::::::::
Generalized

::::::::
Extreme

:::::
Value

:::::::::::
distributions

::::
with

:::::
⇠ 6= 0.

::
In

::::::::
practical

::::::::::
applications

::
of

:::
the

:::::
GEV

::
to

::::::::
observed

:::::::::
maximum

:::::::::::
precipitation,

:
a
:::::
shape

:::::::::
parameter

::
of

:::::::
⇠ ⇡ 0.2

::
is

::::
often

::::::
found

:::::::::::::::::::::::::::::
(Van den Brink and Können, 2011) ,

::::::::
therefore

:::
we

:::
test

::::
here

:::
for

:::::::::::::::::::::::
X

t,i

⇠GEV(µ0
,�

0
,⇠ = 0.2).

::::
The

::::::::
expected

:::::
values

:::
for

:::::
mean

:::
(µ)

:::
and

:::::::
variance

::::
(�2)

::
of

:
a
:::::
GEV,

:::::
when

::::::::
0> ✏< 1,

:::
are

:::::
given

::
by

:::::::::::::::::
µ= µ

0 +�

0 �(1�⇠)�1
⇠ ::::

and
:::::::::::::::::
�

2 = (�0)2
(g2 � g

2
1)

⇠

,
::::::
where

:::::::::::::
g

k

= �(1� k⇠),5

:::::::
k = 1,2,

:::
and

::::
�(t)

::
is

:::
the

::::::
gamma

::::::::
function

:::
(?) .

:

::::::
Hence,

:::
the

:::::::::
(dominant)

::::::::
quadratic

::::
term

::
in

:::
the

::::::
Taylor

::::::::::::
approximation

::
in

:::
Eq.

:::
A7

:::::
reads,

:

�
bias

::::
⇡ (g2 � g

2
1)

nref⇠[
µ

0

�

0 +
�(1� ⇠)� 1

⇠

]2
.

::::::::::::::::::::::::

(A5)

:::
The

::::::::::::
approximation

:::::
works

:::::
again

::::
very

::::
well

::
in

::::::::
numerical

::::::::::
simulations

::::
(Fig.

::::::
A-2b),

:::
and

:::::
shows

::::
that

:
if
:::::
⇠ 6= 0,

:::::
there

::
is

:
a
::::::::::
dependency

::
on

::
⇠,

:::::
nref ,:::

and
::::::

again
:::
the

::::
ratio

:::
of

:::

�

0

µ

0 ,
::::::
which

::::::::
determine

::::
the

:::::::::
magnitude

::
of

::::
the

::::::::::::::::::
normalisation-induced

:::::
bias.

::::::
Please

::::
note

::::
that10

::
the

:::::::::::::
approximation

:::::
works

::::::::
similarly

::::
well

:::
for

:::::::
random

:::::::
variables

::::::
drawn

:::::
from

:
a
::::::::::::::
GEV-distribution

:::::
with

:::::::
negative

:::::
shape

:::::::::
parameter

:::::::::
(⇠ =�0.2,

:::
not

:::::::
shown).

:::::
Short

:::::::
Remark

:::
on

::::::::::::::
non-stationarity

::
in

:::
the

:::::::::::
out-of-base

::::::
period

:::::
Many

::::::::
real-world

:::::::::::
precipitation

::::
time

:::::
series

::::
show

:::::::::::::::
non-stationarities

:::
due

::
to

:::::::
climatic

::::::::
variations

:::::::::::::::::::
(O’Gorman, 2015) that

::
are

::::::::
typically

::::::::
diagnosed

:::
as

::::::
relative

::::::::
changes

::
in

:::
the

:::::::::::
precipitation

::::::::
amount.

::::::
Hence,

:::
we

::::
can

:::
ask

:::::::
whether

::::
and

::::
how

::::
any

:::::
‘real

::::::
change

::
in
::::

the15

:::::::
expected

::::::
value’

::::::
outside

:::
the

::::::::
reference

::::::
period

::::
can

::
be

:::::::::::
disentangled

:::::
from

:::
the

::::::::::::::::::
normalisation-induced

:::::
bias.

:::::
Given

:::
the

:::::::::
analytical

::::::::::::
approximation

:::::
above,

:::
we

:::
can

:::::
show

::::
that

:::
the

:::::::::
highlighted

:::::::::::::::::::
normalisation-induced

:::
bias

::::::
scales

::::::::::::::
non-stationarities

::
in

:::
the

::::::::::
out-of-base

:::::
period

::
in

::
a

:::::::::::
multiplicative

::::
way:

:

:::
Let

:
c

::::::
denote

:::
any

::::::
change

:::::::
between

:::
the

::::::::
reference

:::::
period

::::::::
expected

:::::
value

:::
and

:::::
some

:::::
future

:::::
period

::::
(e.g.

:::::::
assume

:::
one

::
is

::::::::
interested

::
in

:::::
global

::
or

:::::::::
latitudinal

:::::::
changes

::
in

:
a
::::
past

:::
and

:::::
future

:::::::
climatic

:::::::
period),

:::
i.e.

::::
such

::::
that

:::::::::::::::::::::
E(X

t

ref

,i

) = cE(X
t

oob

,i

),
::::
then

:::
the

::::
bias

::::::
(�bias,20

::::
after

:::::::::
accounting

:::
for

:::
the

::::
‘real

:::::::
change’)

::::::
would

::::::
simply

::::
scale

::::
with

:::
the

:::::::
relative

::::::
change

:::
(�

::::::
denotes

:::
the

::::
total

::::::::
apparent

:::::::
change):

:

�
:
= cE(

X

t,i

µ̂ref,i
)� 1

:::::::::::::

(A6)

= cE(
1

1+ ✏

i

)� 1
::::::::::::::

(A7)

= c� 1|{z}
true change

+c

:::::::::::

[
�

2

µ

2
nref

�E(✏3
i

)+E(✏4
i

)�E(✏5
i

)+ ...

| {z }
�

bias

::::::::::::::::::::::::::::::

] (A8)

::::
From

::::
Eq.

::::
A18,

:
it
::
is
:::::::::::::
straightforward

::
to

:::
see

:::
that

:::
for

::::
any

:::::::::::
multiplicative

:::::::
changes

::
in

:::
the

:::::::
expected

:::::
value

::
of

:::
the

::::::::::
out-of-base

::::::::
variables,25

::
the

:::::::::::::::::::
normalisation-inudced

::::
bias

:::::
scales

::::
with

:::
the

::::::
change.

::::::
Hence,

::::
this

:::::::::
expression

::::::
implies

:::
that

::
to

:::::
detect

:::
the

:::::
‘true

::::::
change

::
c’

:::::::
between
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Figure A-2.
::
a)

::::
Ratio

::
of

::::::
location

::
to

::::
scale

::::::::
parameter

::
vs.

:::::::::::::::::
normalisation-induced

:::
bias

::
in

:
a
:::::::::
Generalized

:::::::
extreme

::::
value

:::::::::
distribution

::
for

::::::::
numerical

::::::::
simulations

::::
with

::::::
various

::::::
location

:::::::
parameter

:::::
values

:::::
(dots)

:::
and

::
a)

::::
zero

::::
shape

::::::::
parameter,

:::
and

::
b)

::::
with

::::::
⇠ = 0.2.

::::::::
Reference

:::::
period

:::::
length

:
is
:::::
taken

:
as
:::::::::
n
ref

= 30,
:::
and

:::::::
numerical

:::::::::
simulations

:::
are

::::::::
conducted

:::
with

:::::::
n= 105

:::
grid

::::
cells

::::
with

:::
each

:::
60

:::
time

:::::
steps.

::
c)

::::::::
Analytical

:::::::
estimates

::
of

:::::
biases

::
as

:::::::
calculated

::::
from

::::::
sample

::::
mean

:::
and

::::::
sample

::::::
standard

:::::::
deviation

::::::::
following

:::
Eq.

:
1
::
in

:::
the

::::
main

:::
text

::::
(dark

::::
blue)

:::
for

:
a
:::::
given

::::::
number

:
of
::::::::::

independent

:::
grid

::::
cells

:::::
drawn

::::
from

:
a
::::
GEV

:::::::::
distribution

:::::::
(µ

0

�0 = 1,
:::::
⇠ = 0,

::::::::
n
ref

= 30).
:::
For

::::::::::
comparison,

::
the

::::::::
magnitude

::
of

::::::
random

:::::::
changes

:
in
::::::::

stationary
::::
time

::::
series

:::
(i.e.

:::::::
empirical

:::::::
variation

::
in

:::
the

::::::
quantity

:::::
�bias,

:::::::
following

:::
Eq.

::::
A1)

:::
with

::::::::
n
ref

= 30
:::
and

:::::::::
n
obase

= 30
:
is
::::::
shown

:
in
:::::
black.

::::
Error

::::
bars

::::::
indicate

::
the

:::
5th

::
to

:::
95th

::::::::
percentile

::
in

::::::
repeated

::::::::
numerical

:::::::::
simulations.

:::
two

:::::::
periods,

:::
the

::::::::::::::::::
normalisation-induced

::::
bias

:::
has

::
to

:::
be

::::::::
accounted

::::
for,

::
i.e.

:

c=
�+1

1+�bias
.

::::::::::::

(A9)
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Appendix B

Period increment, trend slopes, and biases in annual maximum daily precipitation (Rx1d)
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Figure B-1.
::::::::::
Relationship

::::::
between

:::::::::::::
annual-maximum

:::::
daily

:::::
rainfall

:::::
(Rx1d

:::::
from

::::::::::::::::
HadEX2-GHCNDEX

::::::
merged

::::::
dataset)

:::
and

:::::
aridity

::::
(a),

:::
and

:::::::::
precipitation

:::::
totals

:::::::::
(PRCPTOT

::::
from

::::::::::::::::
HadEX2-GHCNDEX

::::::
merged

::::::
dataset)

:::
and

::::::
aridity

:::
(b).

:::::::
Potential

::::::::::::::
evapotranspiration

:
is
:::::

taken
::::
from

:::
the

:::::::::
CRU-TS3.23

::::::
dataset

:::
(?)
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Figure B-2.
:::::::
Available

:::
data

::
in
:::
the

:::::::
HadEX2

:::::
dataset

:::::::::::::::::::::
(Donat et al., 2013a) merged

::::
with

:::::::::
GHCNDEX

::::::::::::::::
(Donat et al., 2013b) .
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Figure 1.
:::::::::
Conceptual

::::::
example

::
of

:::::
biases

::
in

::
the

:::::
mean

::::::
induced

::
by

::::::::::
normalisation

:::::
based

::
on

:
a
:::::

fixed
:::::::
reference

:::::
period.

::
a,

::::::::
Probability

::::::::::
distributions

:::
and

:::
their

::::::::
respective

:::::
means

::
for

:::
an

::::::
artificial

:::::
dataset

::
of

:::
104

::::
grid

:::
cells

::::
each

::::::::
comprised

::
of

::::::
random

:::::::
variables

::::::
sampled

::::
from

:
a
:::::::::
Generalized

:::::::
Extreme

::::
Value

:::::::::
distribution

:::::
(GEV,

::::::
µ= 1,

:::::
� = 1,

:::::
⇠ = 0,

::::::
sample

::::
size

:::::::
nref = 8

:::
for

:::::::::
illustration),

:::
and

:::::::::
normalised

::::::::
following

::::::::::::::::::
Donat et al. (2016) with

::::::
different

:::
ref.

:::::::
periods.

::
b,

::::
Shift

::
in

:::
the

::::
mean

::
of
:::::::

spatially
:::::::::
aggregated

:::::::
variables

:::
due

::
to

:::::::
reference

::::::
period

::::::::::
normalisation

:::::::::
(nref = 30

::::::::
following

::::::::::::::
Donat et al. (2016) ,

:::::::::
Confidence

:::::::
intervals

:::::
denote

:::
the

:::
5th

:
-
::::
95th

:::::::::
percentile).

::::
Code

::
to

::::::::
reproduce

:::
this

:::::::
example

:
is
:::::::

provided
::
in
::::::::::::
Supplementary

:::::::
Material.
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Figure 2.
:::::::::::::::::
Normalisation-induced

:::::
biases

::
on

:::
time

:::::
series

:::
and

::::
trend

:::::::
estimates.

:::
a-b,

:::::
Time

:::::
series,

::::
trends

:::
and

::::::
30-year

:::::
means

::
of

::::::
spatially

:::::::::
aggregated

::::
heavy

::::::::::
precipitation

:::::
(Rx1d)

::
in

::
(a)

:::
dry

:::
and

::
(b)

:::
wet

:::::::
regions.

:::
c-d,

::::
Time

:::::
series,

::::
trends

:::
and

::::::
30-year

:::::
means

::
of

::::::
spatially

:::::::::
aggregated

:::
total

::::::::::
precipitation

:::::::::
(PRCPTOT)

::
in

::
(a)

:::
dry

:::
and

::
(b)

:::
wet

:::::::
regions.

:::::
Orange

::::
lines

:::
are

::::
taken

::::
from

:::::::::::::::::
Donat et al. (2016) (ref.

::::::
period:

:::::::::
1951-1980),

::::
black

::::
lines

:::
are

:::::::
corrected

::
for

:::::
biases

:::
(ref.

::::::
period:

:::::::::
1951-2010),

:::
and

::::
blue

::::
lines

::::::
indicate

:
a
:::::::::
hypothetical

:::::::::
1981-2010

:::::::
reference

:::::
period.

:
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Figure 3.
:::::::
Different

::::
mask

:::
of

:::
the

::::::
world’s

:::
dry

::::
and

:::
wet

:::::::
regions.

:::
a-d,

:::::::::::::
Dryness/Wetness

::::::
masks

:::::
based

::
on

:::::::::
1951-1980

:::
and

::::::::
HadEX2

::::
(a-b,

::::::::::::::::::
(see Donat et al., 2016) )

:::
and

::::::::
1951-2010

::::
(c-d,

::
to

::::
avoid

:::::::::
‘regression

::
to

::
the

:::::
mean’

:::::::
selection

::::
bias,

:::
see

::::
main

:::
text)

:::
for

::::
Rx1d

::::
(left)

:::
and

:::::::::
PRCPTOT

:::::
(right).

:::::::
‘NDNW’

:::::::
indicates

::::::
neither

:::
dry

:::
nor

:::
wet

::::
areas,

:::::
white

:::::
inland

::::
areas

::::::
indicate

:::
less

::::
than

::
90%

:::
data

:::::::::
availability

::
in

::
the

:::::::
HadEX2

::::::
dataset

:::
and

:::
were

:::
not

:::::::::
considered.

:::
e-f,

:::
Dry

::::::
regions

:::::
based

::
on

:::
the

:
Kö

:::::::::
ppen-Geiger

::::::::::
classification

::
as

::::::
updated

:::
by

::::::::::::::::::
(Kottek et al., 2006) and

:::
data

:::::::::
availability

::
in

:::::::
HadEX2.

:::
g-h,

:::
Dry

:::
and

:::::::::
transitional

::::::
regions

:::::::
following

:::::::::::::::::
(Greve et al., 2014) and

::::
data

::::::::
availability

::
in
:::::::
HadEX2.

:
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Figure 4.
::
a-f,

:::::
Time

:::::
series,

:::::
trends

:::
and

::::::
30-year

:::::
means

:::
of

::::::
spatially

:::::::::
aggregated

:::::
heavy

::::::::::
precipitation

:::::
(Rx1d,

:::::
a,c,e)

:::
and

:::::
annual

::::::
rainfall

:::::
totals

:::::::::
(PRCPTOT,

::::
b,d,f)

::
in

:::
dry

::::::
regions

:::::::
following

::::
(a-b)

:::
the

::
Kö

:::::::::
ppen-Geiger

::::::::::
classification

:::::::::::::::
Kottek et al. (2006) ,

::::
(c-d)

:::::::::::::::
Greve et al. (2014) ,

:::
and

::::
(e-f)

::
dry

::::
and

:::::::::
transitional

::::::
regions

:::::::
combined

::::::::::::::::
(Greve et al., 2014) .

::::
Red

::::
lines

:::
are

:::::
drawn

::
as
:::::::

reported
::
in
:::::::::::::::::

Donat et al. (2016) for
::::::::::

comparison,
:::
i.e.

::::
based

:::
on

::
the

:::::::::
1951-1980

:::::::
reference

:::::
period

:::
and

:::::::
dryness

:::::
defined

:::
as

:::::::
‘moderate

:::::::
extreme

::::::::::
precipitation’

::::::
(Rx1d)

:::
and

::::::
annual

:::::::::
precipitation

:::::
totals

:::::::::
(PRCPTOT).

:::::
Grey

:::
and

::::
black

::::
lines

:::
are

:::::::
corrected

::
for

::::::::
statistical

::::::
artefacts

:::::::::
(1951-2010

:::::::
reference

:::::::
period),

:::
and

:::
dry

:::::
regions

:::
are

::::::
defined

::::
based

:::
on

:::::
aridity.

::::
Grey

::::
lines

:::::
report

::
90%

:::::::
complete

::::
time

:::::
series,

::::
black

::::
lines

:::::
report

::::
only

:::
data

::::
with

:::
100%

:::::::
complete

:::::::
temporal

::::::::
coverage.

::
All

:::::::
p-values

:::
are

::::
given

::
for

::::::::
two-sided

:::::::::
(one-sided)

:::::::::::
Mann-Kendall

::::
trend

::::
tests.
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