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Abstract.  14 

A stationary low pressure system and elevated levels of precipitable water provided a nearly continuous source 15 

of precipitation over Louisiana, United States (U.S.) starting around 10 August, 2016. Precipitation was heaviest 16 

in the region broadly encompassing the city of Baton Rouge, with a 3-day maximum found at a station in 17 

Livingston, LA (east of Baton Rouge) from 12–14 August, 2016 (648.3 mm, 25.5 inches). The intense 18 

precipitation was followed by inland flash flooding and river flooding and in subsequent days produced 19 

additional backwater flooding. On 16 August, Louisiana officials reported that 30,000 people had been rescued, 20 

nearly 10,600 people had slept in shelters on the night of 14 August, and at least 60,600 homes had been 21 

impacted to varying degrees. As of 17 August, the floods were reported to have killed at least thirteen people. 22 

As the disaster was unfolding, the Red Cross called the flooding the worst natural disaster in the U.S. since 23 

Super Storm Sandy made landfall in New Jersey on 24 October, 2012. Before the floodwaters had receded, the 24 

media began questioning whether this extreme event was caused by anthropogenic climate change. To provide 25 

the necessary analysis to understand the potential role of anthropogenic climate change, a rapid attribution 26 

analysis was launched in real-time using the best readily available observational data and high-resolution global 27 

climate model simulations. 28 

 The objective of this study is to show the possibility of performing rapid attribution studies when both 29 

observational and model data, and analysis methods are readily available upon the start. It is the authors 30 

aspiration that the results be used to guide further studies of the devastating precipitation and flooding event. 31 

Here we present a first estimate of how anthropogenic climate change has affected the likelihood of a 32 

comparable extreme precipitation event in the Central U.S. Gulf Coast. While the flooding event of interest 33 

triggering this study occurred in south Louisiana, for the purposes of our analysis, we have defined an extreme 34 

precipitation event by taking the spatial maximum of annual 3-day inland maximum precipitation over the 35 

region: 29–31 ºN, 85–95 ºW, which we refer to as the Central U.S. Gulf Coast. Using observational data, we 36 

find that the observed local return time of the 12-14 August precipitation event in 2016 is about 550 years (95% 37 

confidence interval (C.I.): 450-1450). The probability for an event like this to happen anywhere in the region is 38 
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presently 1 in 30 years (C.I. 11-110). We estimate that these probabilities and the intensity of extreme 39 

precipitation events of this return time have increased since 1900. A Central U.S. Gulf Coast extreme 40 

precipitation event has effectively become more likely in 2016 than it was in 1900. The global climate models 41 

tell a similar story, in the most accurate analyses the regional probability of 3-day extreme precipitation 42 

increases by more than a factor 1.4 due to anthropogenic climate change. The magnitude of the shift in 43 

probabilities is greater in the 25 km (higher resolution) climate model than in the 50 km model. The evidence 44 

for a relation to El Niño half a year earlier is equivocal, with some analyses showing a positive connection and 45 

others none. 46 

1 Introduction 47 

In the second week of August, a storm system developed in the United States (U.S.) Gulf Coast region and 48 

resulted in intense precipitation across south Louisiana in the region surrounding the city of Baton Rouge. The 49 

highest concentration of precipitation fell over the 3-day period of 12-14 August (Figure 1a-d). Saturday, 13 50 

August experienced the greatest total magnitude of precipitation and the broadest surface area of intense 51 

precipitation during the storm. The National Oceanic and Atmospheric Administration (NOAA) Climate 52 

Prediction Center (CPC) unified gauge-based gridded analysis of daily precipitation exhibits 25×25 km area 53 

boxes with precipitation maxima reaching up to 534.7 mm (21.1 inches) over the 3-day period. In station 54 

observations (a single point), a rain gauge in Livingston, LA (east of Baton Rouge) experienced an even higher 55 

3-day precipitation total of 648.3 mm (25.5 inches). In places, the 3-day precipitation totals in Louisiana 56 

exceeded three times that of the climatological August totals (historical average total precipitation that occurs 57 

over 31-days, Figure 1e) and three times the average annual 3-day precipitation maximum (Figure 1f). 58 

The intense precipitation formed due to a low pressure system that originated near Florida/Alabama on 59 

5 August. At that time the National Hurricane Center stated that the low pressure system might transform into a 60 

tropical depression if it moved to the Gulf of Mexico (Schleifstein 2016). Instead the system remained over land 61 

and moved westward slowly. On 12 August it became near-stationary over Louisiana (Figure 1a-c) allowing for 62 

the continuous development of thunderstorms in a localized area to the south and southeast of the low pressure 63 

center. The stationary storm system and anomalously moist atmospheric conditions (precipitable water 64 

exceeding 65 mm) created optimal conditions for high precipitation efficiencies and intense precipitation rates. 65 

Though the system had a warm-core  and some similarities to a tropical depression, it never formed the closed 66 

surface wind circulation about a well-defined center that are needed to be classified as one  (National Weather 67 

Service 2016).   68 
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 69 

Figure 1: (a,b,c) Daily precipitation (shaded colors) and sea level pressure (grey contours, interval 1 hPa, 1015 70 

hPa contour thickened, lower contours dashed) for 12, 13 and 14 August, 2016. (d) 3-day precipitation sum 12-71 

14 August, 2016. (e) August climatological total precipitation (1948-2015). (f) Average annual maximum 3-day 72 

precipitation event (1948-2015). Orange box in (d) shows the geographic region used for the analysis (29º-31ºN, 73 

85º-95ºW). Data from CPC unified gauge-based analysis of daily precipitation over the contiguous U.S. (2016 74 

data from the real time archive) and ECMWF operational analysis. 75 

Historic freshwater flooding in the region encompassing Baton Rouge, Louisiana followed the extreme 76 

precipitation event. Provisional reports from 18 August, 2016 showed streamgauges managed by the United 77 

States Geological Survey (USGS) registering above flood stage levels (levels at which overflow of natural banks 78 

starts to cause damage in the local area) at 30 sites and found that out of 261 sites in all of Louisiana 50 were 79 

overtopped by floodwaters (Burton and Demas 2016). This was a complex event where rivers responded to local 80 

precipitation as well as upstream and downstream conditions (Figure 2). For example, on the Comite River, a 81 

major drainage river for North Baton Rouge and its outlying districts, the provisional gauge height data 82 

exceeded the National Weather Service (NWS) flood stage from 12-16 August and exceeded the previous height 83 

record (set 19 May, 1953). The Comite River hit its NWS flood stage level before the maximum precipitation 84 

fell in Central U.S. Gulf Coast. Floodwaters were slow to recede due to flood stages downstream causing 85 

backwater flooding (upstream flooding caused by conditions downstream) in many neighborhoods (Burton and 86 

Demas 2016). Further downstream on the Amite River, provisional data showed that water levels exceeded the 87 

NWS floodstage from 13-23 August and also exceeded the previous height record (set 25 April, 1977). Its levels 88 

declined more slowly and did not fall below floodstage until late on 23 August, due to drainage from the Comite 89 

and other tributaries upstream that hit peak floodstage days earlier (Burton and Demas 2016). 90 
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 91 

Figure 2: Hydrographs of gauge levels, NWS flood stage value and previous historical record for 92 

USGS station (a) 07378000 on the Comite River and (b) 07380200 on the Amite River. Shaded pink areas 93 

indicate the 3-day period of maximum precipitation (12-14 August 2016). Observed streamgauge information 94 

downloaded 25 August, 2016 from the USGS: <http://waterdata.usgs.gov/la/nwis/uv?>; provisional USGS data 95 

is subject to adjustment: http://help.waterdata.usgs.gov/policies/provisional-data-statement.  96 

On 12 August the NWS issued flash flood warnings for parishes in south Louisiana, and activated the 97 

national Emergency Alert System which urged residents to move to higher ground.  The Louisiana Coast Guard, 98 

National Guard, and civilian volunteers mobilized to rescue over 30,000 people from their flooded homes and 99 

cars (Broach 2016).  By August 14, the federal government declared a major disaster, indicating that the severity 100 

of damage exceeded the local and state governments’ combined capability to respond, initiating federal 101 

assistance for individuals and public infrastructure (Davies 2016, FEMA 2016, Stafford Disaster Relief and 102 

Emergency Assistance Act). The flooding impacted the state’s agriculture industry with losses estimated in 103 

excess of $110 million (Allen and Burgess 2016).  Initial estimates also show that at least 60,600 homes were 104 

damaged, and thirteen people were killed due to the floods (Strum 2016). The American Red Cross, with FEMA 105 

and other federal and local agencies, provided shelter and emergency relief for 10,600 people initially displaced 106 

by the disaster, and the American Red Cross estimates that its ongoing relief efforts will cost $30 million 107 

(American Red Cross 2016). To date, more than 110,000 people have registered for federal disaster assistance 108 

(FEMA, 2016).  109 

South Louisiana is a region where a number of phenomena can lead to flooding. For example, as a 110 

coastal region, it can experience saltwater flooding from a storm surge, when the low pressure and winds of a 111 

storm moving towards the coastline push coastal saltwater inland. This occurred in August 2005 when 112 

Hurricane Katrina impacted a broad swath of the Gulf Coast, including New Orleans, LA, with a large storm 113 

surge. Inland, precipitation can directly cause pluvial flooding by producing runoff in a region independent of a 114 

body of water (i.e. when more rain falls than can be soaked up by the ground) or fluvial flooding when water 115 

levels exceed the capacity of the river environment. For inland freshwater flooding, land surface conditions prior 116 

to an extreme precipitation event may increase the susceptibility of a region to both types of flooding, by 117 

saturating the soil (Tramblay et al. 2010, De Michele and Salvadori 2002) or increasing river levels (Pinter 118 

2006). Inland flood conditions can also be induced by water flowing through the river system after a storm due 119 

to capacity limitations, as evident along the Amite River in August 2016 (Figure 2b) due to upstream flood 120 

conditions making their way downstream. Flooding can be influenced by remote meteorological conditions as 121 

river networks connect regions over vast areas. Louisiana had most recently experienced widespread inland 122 

flooding in March-April 2016. Although inland freshwater flooding occurs due to a combination of the level of 123 

http://waterdata.usgs.gov/la/nwis/uv
http://help.waterdata.usgs.gov/policies/provisional-data-statement
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extreme precipitation and its interaction with the land surface and river system, including human modifications 124 

to those systems and responses to events, we have chosen to focus our rapid attribution study on one portion of 125 

the problem: understanding the present and potentially climate change-influenced probability of extreme 126 

precipitation events like the one which occurred in August 2016. 127 

 Synoptic forcing for precipitation extremes in the Gulf Coast region includes both mid-latitude weather 128 

(cold core systems fueled by baroclinic instability), and tropical weather (warm core systems with barotropic 129 

instability). Extreme precipitation has historically been classified into 3 types of events: frontal systems, tropical 130 

systems, and air mass systems. Each of these categories can be further broken down; e.g. tropical systems 131 

ranging from easterly waves to hurricanes, frontal systems including interactions between the polar jet and moist 132 

air masses from the Gulf, squall lines, or mesoscale convective systems, and air mass systems that may include 133 

heavy rainfall from upper air disturbances, or convective storms that form because of daytime heating (Keim 134 

and Faiers 1996). The variety of weather systems that can give rise to precipitation extremes in the region 135 

complicates the statistical analysis of the extremes and requires climate models to capture the entire distribution 136 

in a realistic manner. Also, the response to radiative forcing may be non-linear: thermodynamic and/or dynamic 137 

changes may be different for different weather systems (O’Gorman 2015). 138 

In this article, we analyze the historical context and changes in statistics of extreme precipitation like 139 

the one experienced during August 2016 in south Louisiana by defining an extreme event by its local or regional 140 

maximum 3-day precipitation. We have focused our analysis on stations or land surface grid cells in the region: 141 

29–31 ºN, 85–95 ºW (illustrated by the orange box in Figure 1d), which we hereafter refer to as the “Central 142 

U.S. Gulf Coast”. Here we report the results of our rapid attribution study conducted by several organizations 143 

within two weeks of the event. The need for a rapid attribution study arises from the current intense public 144 

discussion that results from the significant societal impacts of this particular event and a continuous general 145 

interest in climate change. Media coverage following the event has linked into the growing body of scientific 146 

evidence that precipitation extremes are expected to increase due to the greater moisture content  of a warmer 147 

atmosphere following Clausius-Clapeyron scaling (O’Gorman 2015, Lenderink and Attema 2015, Scherrer et al, 148 

2016): e.g. “Disasters like Louisiana floods will worsen as planet warms, scientists warn” (Milman 2016), 149 

“Flooding in the South looks a lot like climate change” (Bromwich 2016). However, specific scientific 150 

statements for the event as observed in south Louisiana cannot be made based on general assessments of the 151 

connection of global warming and extreme rainfall. While attribution studies at a more traditional scientific pace 152 

(several months up to a year later) are important and add to scientific understanding of changing extremes, 153 

reporting results recently after an extreme event may enhance the societal understanding of climate change and 154 

extreme weather, and provide often requested information for management decisions following the event. 155 

The methodologies employed in this study are used regularly in the literature and were previously 156 

applied to the rapid attribution of the French and German 2016 flooding event (Van Oldenborgh et al. 2016) and 157 

of Storm Desmond over the UK in 2015 (Van Oldenborgh et al. 2015). The presented analysis builds upon these 158 

methodologies for event attribution and also explores the role of climate variability. We have made a few, 159 

carefully considered, crucial assumptions to facilitate the analysis. For example, these include assumptions on: 160 

the statistical distribution of 3-day precipitation in the area, the suitability of observational data and global 161 

climate models and the connection between extreme precipitation and global mean surface temperature. Please 162 

see Section 7 for a detailed discussion of all crucial assumptions and their potential impact on the results. 163 
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The present study is limited to investigation of changing precipitation statistics. Rapid attribution of 164 

flood risk was not feasible within the time frame and given our access to suitable data and models. Note that a 165 

‘climate attribution’ is fundamentally different from a deterministic synoptic attribution, a detailed analysis of 166 

the chain of events that led to the extreme rainfall is not provided. The trends and internal climate variability of 167 

extreme precipitation are investigated in station observations, gridded gauge-based precipitation analysis, and 168 

high-resolution global climate model simulations. Since this paper aims to provide a first attribution assessment 169 

of the 2016 south Louisiana extreme event, we have provided a detailed data and methods section (Section 2) in 170 

which our data sets, statistical calculations for return periods and trends and data set validation methodologies 171 

are described. The rest of the paper is organized as follows: Section 3 provides observational analysis. In 172 

Section 4 we evaluate the suitability of the global climate models. Model analysis is provided in Section 5. 173 

Section 6 synthesizes our conclusions. In Section 7 we provide a detailed discussion of crucial assumptions and 174 

their potential impact on the results, further avenues of research and implications of this work.  175 

2 Data and methods 176 

2.1 Observational data 177 

We utilize both point station observations and gridded analysis in this paper. The point station data are from the 178 

Global Historical Climatology Network daily product (GHCN-D) version 3.22 (Menne et al. 2012, 2016). The 179 

data set provides daily observations for stations worldwide. Data is quality controlled before becoming available 180 

in near-real time. Inside the defined Central U.S. Gulf Coast (Figure 1d), 324 stations with a minimum of 10 181 

years of data are available for the period 1891 to present (August 2016). However, not all stations provide data 182 

for the entire period, and spatial proximity between stations means that not all data points provide independent 183 

information (see Section 7.1). Therefore for some analyses a smaller selection of the available stations is taken 184 

into account. Selection criteria are described in the relevant sections.   185 

The gridded analysis used here is the product of the NOAA CPC Unified Gauge-Based Analysis of 186 

Daily Precipitation over the contiguous U.S. (Higgins et al. 2000). The data set interpolates point station data on 187 

a 0.25º×0.25º uniform latitude-longitude grid, based on the optimal interpolation scheme of Gandin and Hardin 188 

(1965). The CPC dataset covers the period 1 January 1948 to present (August 2016), data from 2007 onwards 189 

has been made available in real time. Because this is a gridded product, daily precipitation sums represent an 190 

areal average (0.25º×0.25º) rather than a point measurement. Therefore precipitation extremes are expected to be 191 

of smaller magnitude in the gridded product (Chen and Knutson 2008), as was noted for the south Louisiana 192 

event above (3-day total maxima of 534.7 mm in the CPC gridded versus 648.3 mm in the point station data). 193 

The gridded analysis and the individual station data are not independent, as the precipitation station data is the 194 

underlying source for the gridded analysis; consequently, changes in gauge station density in space and time (as 195 

discussed above for GHCN-D) also impact the gridded analysis. We note that, for comparisons with climate 196 

models - in which precipitation represents area averages, and not point values - the area-averaged precipitation 197 

values from the gridded analysis are likely more meaningful for comparison with models than point station data 198 

(Chen and Knutson 2008, Eggert et al, 2015). 199 

We use the National Aeronautics and Space Administration (NASA) Goddard Institute for Space 200 

Science (GISS) surface temperature analysis (GISTEMP, Hansen et al. 2010) for estimates of the development 201 
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of global mean surface temperature over time. This gridded data set is based on the GHCN point station data 202 

over land, NOAA Extended Reconstructed Sea Surface Temperature (ERSST, Huang et al. 2015) version 4 over 203 

oceans and Scientific Committee on Antarctic Research (SCAR) point station data for Antarctica. 204 

2.2 Model and experiment descriptions 205 

Many of the meteorological phenomena that cause extreme precipitation at the Central U.S. Gulf Coast are 206 

small-scale, therefore only high-resolution models can simulate them realistically. We verified that the Royal 207 

Netherlands Meteorological Institute (KNMI) EC-Earth 2.3 T159 experiments (~150km, Hazeleger et al. 2012)  208 

and the United Kingdom (U.K.) Met Office HadGEM3-A N216 (~60km, Christidis et al. 2013) models do not 209 

realistically represent precipitation extremes in the region.  210 

We therefore use two higher-resolution global climate models in our analysis from the NOAA 211 

Geophysical Fluid Dynamics Laboratory (GFDL). Both models were developed from the GFDL Coupled Model 212 

version 2.1 (CM2.1, Delworth et al. 2006) using a cubed-sphere finite volume dynamical core (Putman and Lin 213 

2007) with 32 vertical levels. Atmospheric physics are taken from the GFDL Coupled Model version 2.5 214 

(CM2.5, Delworth et al. 2006, 2012). The two models share the same ocean and sea ice components with a 1º 215 

horizontal resolution, but differ in their atmosphere and land horizontal resolution. In the Forecast-oriented Low 216 

Ocean Resolution model (FLOR, Vecchi et al. 2014), there are 180 points along each cubed-sphere finite 217 

volume dynamical core face (FV3-C180), which relates to a resolution of 0.5º per cell along the Equator. This 218 

has been interpolated to a 0.5º×0.5º uniform latitude-longitude grid. In the high-resolution version of the model 219 

(HiFLOR, Murakami et al. 2016), there are 384 points along each face (FV3-C384) on the cubed-sphere finite 220 

volume dynamic core, which relates to a resolution of 0.23º per cell along the Equator. This has been 221 

interpolated to a 0.25º×0.25º uniform latitude-longitude grid. For FLOR we use a flux-adjusted version of the 222 

model (FLOR-FA), in which atmosphere-to-ocean fluxes of momentum, enthalpy and freshwater are adjusted to 223 

bring the simulated fields closer to their observed climatological state. This procedure reduces model biases of 224 

for example SSTs, tropical cyclones (Vecchi et al. 2014) and precipitation patterns. We assume the modeled 225 

response to changes in radiative forcing are not impacted by the flux-adjustment (see Section 7.1). The 226 

adjustment method is described in detail in Vecchi et al. (2014). Descriptions on how to access the data used in 227 

this study are provided in the Data Availability section.  228 

Table 1 describes six different global coupled model experiments that have been performed using 229 

FLOR-FA and HiFLOR, which —for each model— differ in the type of radiative forcing that is prescribed, thus 230 

allowing us to assess the impact of radiative forcing on the statistics of weather extremes in these models. With 231 

FLOR-FA there are two sets of experiments. First, we made use of a multi-centennial integration in which 232 

values of radiative forcing agents (solar forcing, anthropogenic and natural aerosols, well-mixed greenhouse 233 

gases, ozone, etc.) are prescribed to remain at levels representative of a particular time - the mid-19th century in 234 

this case (Jia et al. 2016); radiative forcing agents are prescribed at the 1860 values following the protocol of the 235 

Fifth Coupled Model Intercomparison Project (CMIP5, Taylor et al. 2009). These types of experiments with 236 

global climate models are often referred to as “control” experiments (“pre-industrial control” in this particular 237 

case) but here we label this class of experiments as “static radiative forcing” experiments, since with HiFLOR 238 

we fix radiative forcing at a number of levels. In the static radiative forcing experiments the years of the 239 

integration bear no relation to the real world calendar. The second set of experiments with FLOR-FA is a suite 240 

https://datahub.io/dataset/scar-reader
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of five realizations (or “ensemble members”) in which the radiative forcing is prescribed to follow estimates of 241 

past and future radiative forcing changes over the period 1861-2100 (Jia et al. 2016); the forcing agents for the 242 

period 1861-2005 are prescribed to follow the CMIP5 historical experiment protocol, and for the period 2005-243 

2100 they follow the CMIP5 Representative Concentration Pathway 4.5 (RCP4.5), which represents the medium 244 

range greenhouse gas emissions scenario (Van Vuuren et al. 2011).  The five realizations of 1861-2100 245 

experiments differ only in their initial conditions on January 1, 1861, which are taken from five different years 246 

from the long FLOR-FA preindustrial static forcing experiment. In these experiments, the calendar of the 247 

experiments is connected to the history of radiative forcing - but the internal climate variations (e.g., El Niño 248 

events) and weather fluctuations (e.g., individual storms) are not constrained to follow their observed sequence. 249 

The static climate experiment has a slow drift because the slow climate components, notably the deep ocean, 250 

were not in equilibrium at the beginning of the run, this is most noticeable in the first 1000 years of the 251 

integration. 252 

 253 

Table 1: Global coupled model experiments performed with the FLOR-FA and HiFLOR models. 254 

Model Type of forcing 
Representative 

year of forcings 
No. of 

ensembles No. of modeled years in total 
FLOR-FA Static radiative forcing 1860 1 3550 
FLOR-FA Time-varying radiative forcing 1861-2100 5 1200 (5 realizations of 240 years) 
HiFLOR Static radiative forcing 1860 1 200 
HiFLOR Static radiative forcing 1940 1 75 
HiFLOR Static radiative forcing 1990 1 300 
HiFLOR Static radiative forcing 2015 1 70 

 255 

With HiFLOR, there are four experiments to explore the climate sensitivity of the statistics of weather 256 

events  through static radiative forcing experiments at levels representative of particular times: preindustrial 257 

conditions (fixed at 1860 values), mid-20th Century (fixed at 1940 values), late-20th Century (fixed at 1990 258 

values), and early 21st Century (fixed at 2015 values). The value of radiative forcing agents in these experiments 259 

is prescribed from either the  CMIP5 Historical Forcing protocol (for the 1860, 1940 and 1990 static forcing 260 

experiments) or from the CMIP5 RCP4.5 protocol (for the 2015 static forcing experiment); and the coupled 261 

atmosphere-land-ocean-sea ice state of the model is left to evolve freely. These simulations have been integrated 262 

for different lengths of time (Table 1, last column), over which they generate their own climate under the fixed 263 

forcing; longer integrations allow us to better estimate the statistics of climate extremes, but these were the 264 

lengths of integrations available as of 15 August, 2016.  265 

There are many fewer model years available with HiFLOR than FLOR-FA because the HiFLOR model 266 

was developed more recently, and because the HiFLOR model is substantially more computationally intensive 267 

(~6× the computer resources required for one year of integration) than FLOR-FA. The four HiFLOR static 268 

forcing experiments are initialized from the same ocean, atmosphere, land and sea ice initial conditions, which 269 

are representative of the observed state in the late 20th century, and the four experiments are not in radiative 270 

balance through the length of integration (the 1860 experiment has a negative top of atmosphere balance, while 271 

the 1940, 1990 and 2015 experiments have positive balances). Therefore these static climate experiments each 272 

exhibit an initial rapid (~20 year) adjustment away from the late-20th century observed initial conditions, and a 273 

slower climate drift reflecting the top of atmosphere imbalance over the length of the integration. We exclude 274 
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the first twenty years of each integration from our analysis, and assume  that the impact of the slow climate drift 275 

in each model experiment on the statistics of precipitation extremes is small (see justification in Section 7.1). 276 

In addition to the coupled model experiments discussed above, in which the history of sea surface 277 

temperatures (SSTs) in the models emerges from the dynamics of the models and the changes in radiative 278 

forcing, for HiFLOR a set of variable forcing experiments were run over 1971-2015 in which the model is 279 

constrained by both historical radiative forcing and the observed history of monthly SST (Table 2). These 280 

experiments can be used to connect the statistics of rainfall extremes to the detailed history of SSTs that 281 

occurred over the past 45 years, part of which was a response to radiative forcing changes and part of which 282 

emerged from internal climate variations. Furthermore by construction, these experiments have a substantially 283 

smaller SST bias than the free running versions of HiFLOR, as the statistics of weather extremes and their 284 

connection to larger-scale climate can be substantially affected by SST biases (e.g. Vecchi et al. 2014; 285 

Krishnamurthy et al. 2015; Pascale et al. 2016). These experiments are described in more detail in Murakami et 286 

al. (2015) and Van der Wiel et al. (2016). The model SST was restored to the interannually varying observed 287 

field (𝑆𝑆𝑇𝑇) Met Office Hadley Centre SST product (HadISST1.1, Rayner et al. 2003) by adding an extra term 288 

to to the modeled SST tendency:  289 

𝑑𝑆𝑆𝑇

𝑑𝑡
= 𝑂 +

1

𝜏
(𝑆𝑆𝑇𝑇  −  𝑆𝑆𝑇)       Eq. (1) 290 

with τ the restoring time scale (three ensemble members were produced with 𝜏 = 5days, three with  𝜏 =291 

10days). 292 

 293 

Table 2: Restored SST experiments performed with the HiFLOR model. 294 

Model Type of forcing 
Representative 

year of forcings 
No. of 

ensembles No. of modeled years in total 

HiFLOR 
Time-varying radiative forcing (CMIP5 

Historical and RCP4.5); SSTs restored to 

observed monthly observations 
1971-2015 6 270 (6 realizations of 45 years) 

2.3 Defining an extreme event and its statistics 295 

To classify the August 2016 south Louisiana flooding event, we must choose a definition for the event to guide 296 

our statistical analysis of observations and model experiments. We have chosen to classify extremes using 297 

multi-day averaged precipitation rather than single-day precipitation, to reflect the aspects of the event that 298 

resulted in the flooding of several rivers in the area. The following steps are taken to calculate our event 299 

statistics in the model and observations.  300 

 301 

1. We create 3-day precipitation averages in station points/grid cells over land found in the Central U.S. 302 

Gulf Coast: 29–31 ºN, 85–95 ºW, which has a relatively homogenous average precipitation extreme 303 

magnitude (Figure 1f). This provides us with, for each point in space, 365 values per year (366 in leap 304 

years) for each station point/grid cell, except the last and first years in the record when there are 364 305 

values per year (365 in leap years), since the first January 1 and last December 31 are dropped. 306 

2. We then, at each point in space, calculate the annual maximum for each year and define it as the local 307 

extremum for the year to create a set of extreme values for further analysis.  308 
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3. For some analyses we then take the maximum over the Central U.S. Gulf Coast region. We have 309 

carefully documented in the main text when this is the case.   310 

4. In the static forcing model experiments, we disregard the first 20 years of data to allow for some initial 311 

spin-up of the model in each new static forcing state. 312 

 313 

In order to estimate the observed return periods using the 3-day annual events found above, we fit the 314 

resulting data to a Generalised Extreme Value (GEV) Distribution (Coles 2001) in a similar manner as 315 

previously done for rapid attribution of the 2015 storm Desmond over the UK (Van Oldenborgh et al. 2015) and 316 

for the rapid attribution of the 2016 flooding in France and Germany (Van Oldenborgh et al. 2016). We first 317 

analyze the GEV distribution of observations and model simulations to determine if they represent the statistics 318 

of extreme precipitation events sufficiently to employ them in further work. To account for possible changes due 319 

to anthropogenic climate change over time, we scale the distribution with the 4-year smoothed global mean 320 

temperature (GISTEMP for observational analysis, modeled global mean 2m air temperature for model 321 

analysis), a measure of the uniform global climate response to forcing. The GEV function is represented by: 322 

𝐹(𝑥) = 𝑒𝑥𝑝 [− (1 + 𝜉
𝑥−𝜇

𝜎
)

1/𝜉

],   Eq. (2) 323 

𝜇 = 𝜇0𝑒𝑥𝑝 (
𝛼𝑇′

𝜇0
), 324 

 𝜎 = 𝜎0𝑒𝑥𝑝 (
𝛼𝑇′

𝜇0
). 325 

Where 𝜇 is the location parameter, 𝜎 is the scale parameter, and 𝜉 represents the shape parameter of the curve. 326 

The ratio of 𝜎/𝜇 reduces to the constant 𝜎0/𝜇0. The fit is estimated using a maximum likelihood method where 327 

𝜎, 𝜇0, 𝜎0 and 𝜉 are varied. There is a penalty term on 𝜉: a Gaussian with a width of 0.2 is added to the likelihood 328 

function such that values larger than ~0.4 are penalized as unphysical. This is mainly used to restrain fits to the 329 

1000-member non-parametric bootstrap that is used to estimate uncertainty. All years are assumed to be 330 

independent for this analysis, however correlations between proximate stations or ensemble members (when 331 

available) are taken into account with a moving block bootstrap technique (Efron and Tibshirani 1998). The 332 

average number of dependent stations will be noted in the analysis. 333 

The GEV is first estimated for observational data to provide a baseline for validation. We then evaluate 334 

the individual models by assessing the extent to which the GEV fit parameters (𝜇, 𝜎 and 𝜉) are similar to those 335 

fitted to the longest available observational analysis (GHCN-D). As in Van Oldenborgh et al. (2016), 336 

multiplicative bias correction is employed for the model data, which tends to  improve the similarity of the GEV 337 

fit from the model and the observations. 338 

 After a conditional GEV fit has been computed,  with global mean surface temperature as the covariate, 339 

Eq. (2) can be inverted to find the probability of the south Louisiana event in any year. We thus estimate the 340 

probability for the south Louisiana event in 2016, 𝑝1, and its probability in some earlier year, 𝑝0-  taken as 1860, 341 

1900 or the first year with available data if that is later. This year is taken as representative for a climate that has 342 

not yet been strongly influenced much by anthropogenic climate change. The probabilities for an event with a 343 

magnitude at least as great as that observed in south Louisiana in each year, 𝑖, can be expressed as return times, 344 

𝜏𝑖, by: 345 

𝜏𝑖 = 1/𝑝𝑖         Eq. (3) 346 

The ratio of probabilities or return periods from different years is known as the risk ratio where:  347 
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𝑅𝑅 = 𝑝1/𝑝0 = 𝜏0/𝜏1        Eq. (4) 348 

The risk ratio is a measure of how the likelihood of an event has changed in the target year (e.g., 2016) versus a 349 

reference year (e.g., 1900). A 𝑅𝑅 value of 1 would mean that the likelihood has not changed in the baseline year 350 

versus the target year. This ratio is therefore an indicator of changes in likelihood, but alone it cannot attribute 351 

this difference to a given mechanism. 352 

 There are multiple methods available to evaluate the impact of radiatively-forced climate change on the 353 

change in likelihood of events. For FLOR-FA, we repeat the analysis for the observations using data from the 354 

transient experiments. The natural variability from an ensemble member of the model is uncorrelated with that 355 

of other ensemble members, or the real world, so common changes in the ensemble members are therefore due 356 

to the prescribed external forcings. Multi-decadal changes over the past century are dominated by anthropogenic 357 

forcings. For the highest-resolution global climate model, HiFLOR, we fit a concatenated time series of 358 

maximum precipitation and the corresponding global mean temperatures from the four static forcing 359 

experiments to Eq. (2). Furthermore, in HiFLOR we fit the trends in extremes in the variable forcing 6-member 360 

ensemble covering 1971-2015. These simulations feature restored SSTs which reduce oceanic temperature 361 

biases compared to a fully free running ocean component and include the same oceanic variability as the real 362 

world (e.g. El Niño events, North Atlantic decadal variability).  363 

 We use the same procedure to investigate the effect of ENSO on extreme precipitation on the U.S. 364 

Central Gulf Coast, replacing the smoothed global mean temperature by an index of the strength of El Niño as 365 

covariate in Eq. (2). As the 2016 flooding occurred half a year after a strong El Niño event, we take as an index 366 

a detrended version of the Niño3.4 index with a lag of six months. The detrending is done by subtracting the 367 

average SST over 30 ºS–30 ºN.  368 

3 Observational analysis 369 

We here describe the character of the statistical distribution of observed precipitation extremes and their trends 370 

in the GHCN-D point station data and the CPC gridded analysis by fitting to a time-dependent GEV distribution 371 

(described in Section 2.3). Due to the many different meteorological phenomena that can lead to precipitation 372 

extremes in the Central U.S. Gulf Coast, we assess the extent to which the GEV gives a satisfactory description 373 

of the underlying data. We frame the results around measures of the probability per year of an event at least as 374 

intense as the 2016 south Louisiana event (expressed as a return time), and the change of return time from the 375 

beginning of the dataset to present (risk ratio). These return times can be assessed at a local scale (the expected 376 

wait time for an event at a particular place) or at a regional scale (the expected return time for an event 377 

somewhere in the Central U.S. Gulf Coast). Because the spatial scale of the most extreme precipitation events is 378 

substantially smaller than the whole region, the local return times are longer than the regional return times. This 379 

observational analysis on its own is only able to detect whether a trend is present, but cannot ascribe cause(s) to 380 

these trends. Note that from here onwards we will principally report 3-day average precipitation values rather 381 

than 3-day precipitation sums, unless stated otherwise. 382 
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3.1 Point station data 383 

We first analyze point station data, as extremes are affected by interpolation and station density, using the 384 

GHCN-D v3.22 dataset. This first analysis does not take the spatial maximum (Step 3 in Section 2.3), but 385 

analyzes all stations in the region with at least 10 years of data. This gives 324 stations with 12536 station years 386 

with data (Figure 3a), though it is crucial to note that they are not all statistically independent. The highest 387 

observed value at these gauges in 2016 is 216.1 mm/day at Livingston, LA on 12–14 August (648.3 mm, three-388 

day sum). 389 

Fitting these data to a time-dependent GEV distribution as described in Section 2.3 gives a reasonable 390 

description of the data (Figure 3c,e), although the fit is shaped mainly by the lower-intensity events and the 391 

highest-intensity events align closer to the lower bound. It should be noted that for each point station in the 392 

dataset, on average another 18 are correlated with 𝑟 > 1/𝑒, so the number of degrees of freedom is much less 393 

than the number of points. Overall it is surprising that all different meteorological situations that can give rise to 394 

extreme precipitation (as laid out in Section 1) can be described with a single GEV function. 395 

The local return time of a 216.1 mm/day event at a station in 2016 is about 550 yr (95% Confidence 396 

Interval, C.I., 450-1450 yr). The probability of a 3-day precipitation event at a station with 216.1 mm/day or 397 

more has increased by a factor 4.5 (C.I. 3.0-5.5) since 1900 in this analysis. This corresponds to an increase in 398 

intensity for a given return time of 22% (C.I. 16%-22%). 399 

This fit of all data available may be influenced by the spatially and temporally varying numbers and 400 

locations of stations. We therefore evaluate the impact of these changes in sampling on the results by limiting 401 

the analysis to stations with at least 80 years of data and at least 0.5º of spatial separation between stations. This 402 

leaves 19 stations with 1849 station years (Figure 3b), which results in 2.3 stations per degree of freedom on 403 

average. This analysis gives similar results: a return time of about 500 years (C.I. 360-1400) and an increase in 404 

probability of a factor 2.8 (C.I. 1.7-3.8), corresponding to an increase in intensity of 17% (C.I. 10%-21%), 405 

Figure 3d,f. The increase in probability is less than in the full station sample, although compatible within the 2σ 406 

uncertainties.  407 

Our final analysis of point station data focuses on the most intense events only by considering the 408 

spatial maximum of 3-day averaged precipitation anywhere in the Central U.S. Gulf Coast (Step 3 in Section 409 

2.3). This answers the question how likely an event, like that of south Louisiana 2016 or worse, was anywhere 410 

in the region, rather than at a specific place. In the point station data, the spatial maximum is only homogeneous 411 

when the number of stations does not vary by much. We therefore again consider only those stations with at 412 

least 80 years of data, but do not require a minimum distance this time. The number of stations increases up to 413 

around 40 in 1950–1980 and decreases again to the present. On average 1.3 stations are correlated at r>1/e with 414 

each of these stations. We consider the period 1930-2016. The decrease in number of stations at the end implies 415 

that a trend in extremes will be negatively biased. The number of events is lower than before (1 per year instead 416 

of 19/324 events per year), so the uncertainties are larger. 417 

A fit of a time-dependent GEV to the annual and spatial maximum of 3-day averaged precipitation 418 

describes the data well (Figure 4). The return time for an event like south Louisiana 2016 anywhere in the 419 

Central U.S. Gulf Coast is currently around 30 yr (between 11 yr and 110 yr with 95% C.I.). This is a factor 6.3 420 
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(C.I. 2.1-50) more than it was in the climate of 1930, corresponding to an increase of intensity of about 25% 421 

(C.I. 12%-35%). 422 

Analyses of station data analogous to the ones above but for the season July-August-September (JAS) 423 

show somewhat smaller trends, but with larger error margins. The estimated ranges of the JAS analyses and the 424 

all year analyses overlap. 425 

 426 

Figure 3: Fit of the annual maximum 3-day average GHCN-D station precipitation on the Central U.S. Gulf 427 

Coast to a GEV that scales with smoothed global mean surface temperature. (a) Location of all GHCN-D 428 

stations with minimum 10 years of data, (c) observations (blue marks), location parameter 𝜇 (thick red line 429 

versus global mean temperature anomalies, relative to 1980-2010), 𝜇 + 𝜎 and 𝜇 + 2𝜎 (thin red lines), the two 430 

vertical red lines show 𝜇 and its 95% C.I. for the two climates in (e). (e) Gumbel plot of the GEV fit in 2016 431 

(red line, with 95% uncertainty estimates) and 1900 (blue line), marks show data points drawn twice: scaled up 432 

with the trend to 2016 and scaled down to 1900. The yellow square (line) denotes the intensity of the observed 433 

event at Livingston, LA. (b,d,f) as (a,c,e) but for 19 GHCN-D stations with minimum 80 years of data and 434 

minimum spatial separation of 0.5º. 435 
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 436 

Figure 4: Fit of the spatial and annual maximum 3-day average GHCN-D station precipitation on the Central 437 

U.S. Gulf Coast to a GEV that scales with smoothed global mean surface temperature. (a) Observations (blue 438 

marks), location parameter 𝜇 (thick red line), 𝜇 + 𝜎 and 𝜇 + 2𝜎 (thin red lines versus global mean temperature 439 

anomalies), the two vertical red lines show 𝜇 and its 95% confidence interval for the two climates in (b). (b) 440 

Gumbel plot of the GEV fit in 2016 (red line, with 95% uncertainty estimates) and 1930 (blue line), marks show 441 

data points drawn twice: scaled up with the trend to 2016 and scaled down to 1900. The yellow square (line) 442 

denotes the intensity of the observed event at Livingston, LA. 443 

3.2 Gridded analysis 444 

To compare with the model data, we also analysed the CPC 0.25º×0.25º gridded precipitation analysis 1948–445 

2016. Because the spatial extent of 3-day averaged precipitation extremes is larger than the grid boxes, we first 446 

averaged these to a 0.5º×0.5º latitude-longitude grid. The highest value in 2016 is then 158.77 mm/day, which is 447 

the highest in the record. This is lower than at a single grid point due to the spatial averaging. A GEV fit of all 448 

0.5º grid points (not shown) gives a return time of 550 yr with an uncertainty from 300 to 2000 yr, compatible 449 

with the station analysis but with larger uncertainties. The probability has increased by a factor 3.5 (C.I. 2.0-11) 450 

since 1948, corresponding to an increase in intensity of 15% (C.I. 9%-24%). 451 

Taking the spatial maximum of the original 0.25º×0.25º grid we find that the highest observed value in 452 

2016 is 178.2 mm/day on 12–14 August (534.7 mm in three days). The record is too short to draw robust 453 

conclusions from a fit of a GEV depending on global mean temperature except that the precipitation maxima 454 

also increase in this dataset (Figure 5). In this dataset, the return time for an event like 2016 anywhere on the 455 

Central U.S. Gulf Coast is currently between 9 and 200 yr (best estimate 25 yr). This is about a factor 5 (C.I. 456 

1.1-60) larger than it was around 1948, which equates to an increase in intensity for an event like 2016 of 457 

roughly 15% (C.I. 0.4%-30%). 458 

As for station data, analyses of CPC similar to the ones above but for the season JAS show somewhat 459 

smaller trends, but with larger error margins. The estimated ranges of the JAS analyses and the all year analyses 460 

overlap. 461 
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 462 

Figure 5: As Figure 4 but for the spatial and annual maximum 3-day average 1948–2016 0.25º×0.25º gridded 463 

CPC analysis. 464 

3.3 Influence of natural variability 465 

We investigate the influence of natural variability on the probability of an event like south Louisiana 2016 by 466 

using indices of detrended SST as covariates in the time-dependent GEV fits. We first examine the influence of 467 

El Niño-Southern Oscillation (ENSO) by using as a covariate 6-month lagged Niño 3.4-index (5 ºS–5 ºN, 170–468 

120 ºW) minus SST averaged of 30 ºS–30 ºN to remove to first order the effects of global warming. This is 469 

inspired  by the heavy rain events after the 1997/98 El Niño event. A comparison of recent Niño 3.4 conditions 470 

with those from a year following the strongest La Niña year (1917) in a fit of all 324 stations with more than 10 471 

years of data suggests that anomalously warm tropical Pacific SSTs significantly (p < 0.1) increase the 472 

probability of an event like south Louisiana 2016, but not by much. In the year after El Niño, the probability is a 473 

factor 1.3 (C.I 1.0-1.9) higher than in a year following a very strong La Niña. However, the maximum of 474 

stations with at least 80 years, which represents the largest events, does not show a signal, albeit with a large 475 

uncertainty of a factor 0.5 decrease to a factor 1.7 increase. 476 

Simultaneous correlations with global SSTs indicate a region in the North Atlantic that has a significant 477 

relationship with Central U.S Gulf Coast extreme precipitation at p<0.1 (Figure 6). Although the field 478 

significance is very low, the region is a well-known source of decadal variability and predictability (e.g., 479 

Hazeleger et al. 2013), so we still consider it a possible source of decadal variability of extreme precipitation. 480 

We use an area-average of SSTs between 45–60 ºN and 50–20 ºW as a covariate in the GEV fit. The region was 481 

anomalously cold in 2016, so we compare the changed probability with a warm year (2006). In this statistical 482 

analysis, North Atlantic SSTs are significantly correlated (p < 0.01) to Central U.S Gulf Coast precipitation (by 483 

design, as we chose the region that has a significant correlation), with recent below average SSTs decreasing the 484 

probability of an event like 2016 (risk factor 0.37, C.I. 0.11-0.81). To ascertain whether this is a physical 485 

connection and not just a coincidence by picking the region of largest correlations, we need to analyse model 486 

results. 487 

 488 
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 489 

Figure 6: Correlation coefficient between Central U.S. Gulf Coast spatial and annual maximum of 3-day 490 

extreme precipitation intensity and annual mean SST (ERSST v4) with a linear regression on the global mean 491 

temperature removed at each grid point. 492 

4 Model evaluation 493 

We here describe an evaluation of simulated precipitation extremes in the two global coupled models (model 494 

descriptions in Section 2.2). Precipitation is a notoriously difficult field to simulate, as many coupled climate 495 

models exhibit large biases (Dai 2006, Flato et al. 2013). Though FLOR-FA and HiFLOR underestimate the 496 

intensity of Central U.S. Gulf Coast precipitation extremes slightly, this bias is significantly reduced in these 497 

high-resolution models compared to standard-resolution models (Van der Wiel et al. 2016).  498 

4.1 Annual cycle and intensity 499 

First we analyse the annual cycle of extreme precipitation intensity. We consider the median and 97.5 percentile 500 

of the monthly maximum of the spatial maximum of 3-day averaged precipitation (Figure 7). The 97.5 501 

percentile events are of smaller magnitude than the south Louisiana observed event (100-150 mm/day versus 502 

200 mm/day), but we consider smaller magnitude events to increase the number of events in the calculation and 503 

hence decrease uncertainties.  504 

The observed precipitation extremes in spring and summer are generally more intense than in autumn 505 

and winter (Figure 7a). There is no agreement between the two observational products on which season sees the 506 

most intense precipitation extremes (97.5 percentile, Figure 7b), though extremes in March-October are more 507 

intense than in winter. This period of stronger extremes is longer than the hurricane season, which provides a 508 

fraction of these extremes. In this region, the models underestimate the intensity of extreme precipitation, which 509 

was also noted in Van der Wiel et al. (2016). FLOR-FA has a peak season for extreme precipitation intensity in 510 

JAS which is not found in the observational data. The HiFLOR SST-restored experiment, in which global SST 511 

biases are decreased compared to the free running experiments, shows a similar peak in JAS. The HiFLOR 1990 512 
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static forcing experiment however, doesn’t show this peak. Instead it has a similar annual cycle structure to the 513 

observational data, though with a smaller amplitude.  514 

 515 

 516 

Figure 7. Annual cycle of monthly and spatial maximum 3-day averaged precipitation for point station data 517 

(GHCN-D, dark blue line), gridded observational data (CPC, light blue line) and model simulations (FLOR-FA, 518 

orange line, and HiFLOR, red lines). For HiFLOR the 1990 static forcing experiment (solid red line) and the 519 

variable forcing SST-restored experiment (dashed red line) are included. Shown are (a) the median value of the 520 

monthly extremes and (b) the 97.5 percentile. 521 

4.2 Meteorological conditions 522 

Next, we investigate the meteorological conditions generating extreme precipitation events in both models and 523 

compare these to the observed ones. For this analysis we consider the longest static forcing experiments for each 524 

model: 1860 for FLOR-FA and 1990 for HiFLOR and the CPC gridded precipitation analysis. The selection of 525 

these events is limited to the region of interest (Central U.S. Gulf Coast) and the months JAS to facilitate 526 

comparison against the south Louisiana event.  527 

Precipitation totals and circulation patterns for the nine largest extreme precipitation events in the CPC 528 

analysis (JAS season only) are shown in Figure 8. Note that the 2016 south Louisiana event ranks as number 2- 529 

heavy precipitation related to Hurricane Danny in 1997 was stronger, though it was confined to a smaller area. 530 

Seven of these nine events were associated with a tropical cyclone/hurricane making landfall (78%, orange 531 

tracks are the International Best Track Archive for Climate Stewardship, IBTrACS, track estimate, Knapp et al. 532 

2010), the exceptions are July 1975 and, as noted before, August 2016. Note that the GEV analysis in Section 533 

3.2 was based on annual maxima, for which the ranked extreme events are different than the ones shown in 534 

Figure 8 (these are nine of the top 14 events when all data is taken into account, ranks 1 and 2 are the same). 535 

  536 



18 

 

 537 

Figure 8: Top 9 extreme precipitation events in the Central U.S. Gulf Coast (29–31 ºN, 85–95 ºW) for the CPC 538 

gridded precipitation analysis. 3-day precipitation sum (mm, shaded colors, as in Figure 1d), 850-hPa height for 539 

the middle day (grey contours, interval 25 m, 1500 m contour thickened, lower contours dashed) from 540 

NCEP/NCAR Reanalysis 1 (Kalnay et al. 1996) and tropical cyclone track if system is classified as one (orange 541 

line, IBTrACS). These extreme events are calculated for the three month period: JAS.  542 

 543 

A similar figure for FLOR-FA is included as Figure 9. We now show the 18 most extreme events 544 

(approximate return period 3530/18≈200 years) in FLOR-FA. The return period in the model for these events is 545 

much larger than the return period for the observed events in the CPC analysis (approximate return period 546 

69/9≈8 years).  Despite the negative bias of precipitation extreme intensity (Section 4.1), the precipitation sums 547 

for these events are therefore larger than those in the observed data. All events are associated with a low 548 

pressure system, of which 8 (44%, orange tracks in Figure 9) are a tropical cyclone based on the TC tracking 549 

methodology of Harris et al. (2016) as implemented in Murakami et al. (2015). Note that the low pressure 550 

systems of the top 4 events do not classify as a tropical cyclone, showing the precipitation potential of non-551 

tropical cyclone low pressure systems in the model.  552 
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 553 

Figure 9: As Figure 8 but for the top 18 maximum extreme precipitation events in the 1860 FLOR-FA static 554 

forcing experiment. Note that years are model years and do not resemble dates on the real world calendar and 555 

that the model provides precipitation information over ocean grid boxes too. 556 

 557 

Because the HiFLOR 1990 static forcing experiment is of smaller length, it is not possible to sample 558 

the 200-year return period event as was done for FLOR-FA adequately. In Figure 10 we show the 6 most 559 

extreme events (approximate return period 280/6≈50 years, the top 2 events are samples of events with return 560 

periods of about 150 years). In HiFLOR the most extreme precipitation events are the result of a tropical 561 

cyclone, though storm intensity (storms in Figure 10a,b are tropical storms, storms in Figure 10c,d are 562 

hurricanes at the time of landfall) is not related to resulting precipitation magnitude. Note that the strongest 563 

event in HiFLOR exceeds 900 mm over a 3-day period, which is much stronger than the observed values in 564 

south Louisiana. 565 
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In conclusion, though the precipitation extremes are of smaller magnitude in both models and the 566 

annual cycle in observations is not recovered well (Section 4.1), the meteorological system leading to these 567 

precipitation extremes in JAS are realistic and resemble observed systems (Section 4.2).  568 

569 

Figure 10: As Figure 8, but now for the top 6 maximum extreme precipitation events in the 1990 HiFLOR static 570 

forcing experiment. Note that years are model years and do not resemble dates on the real world calendar and 571 

that the model provides precipitation information over ocean grid boxes too. 572 

5 Model analysis 573 

In order to attribute the observed trend to external forcing we use global climate models that isolate the different 574 

forcings. The model and experimental description can be found in Section 2.2.   575 

5.1 FLOR-FA 576 

A fit of all land grid boxes (0.5º×0.5º, 23095 data points) to a time-dependent GEV distribution is shown in 577 

Figure 11. The uncertainties take into account the dependencies by moving spatial blocks of 7.7 grid points on 578 

average. In contrast to the observations (Figure 3) the distribution cannot be described with a single GEV 579 

function: the extremes with return times larger than about 100 years (80 mm/day) diverge from the fit that is 580 

determined mainly by the less extreme precipitation events. This so-called 'double population' problem results 581 

from different meteorological mechanisms for extreme events. We therefore cannot use this fit for attribution. 582 
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583 

Figure 11: As Figure 4 but for the annual maximum 3-day average precipitation in the FLOR-FA variable 584 

forcing experiment (based on complete experiment, 1861-2100). 585 

 586 

 Taking the spatial maximum of all grid boxes selects only the high end of the distribution. Figure 12a,c 587 

shows the GEV fit to these extremes using data for simulated years 1861-2015. The fit is still not completely 588 

satisfactory as the highest five events (all in the early years of the experiments) fall on the upper boundary of the 589 

95%C.I.  around the fit to the rest of the distribution. Due to this, the shape parameter ξ and scale parameter σ of 590 

the GEV distribution are higher than they are in the observations. Because of model bias, we define our event to 591 

have the same return period as the gridded observations in 2016 (around 30 years, 115 mm/day). This gives a 592 

trend in this model that is significantly greater than zero at p<0.05 (one-sided). However, the factor 1.3 (C.I. 1.0-593 

1.9) increase in probability, corresponding to an increase in intensity of 5% (C.I. -1%-14%), is much less than 594 

the observed one . 595 

 Assuming that the relationship with global mean surface temperature does not change in the model 596 

world up to 2100, in spite of a different mix of anthropogenic forcings (greenhouse gases and aerosols), we can 597 

improve the signal-to-noise ratio of the fit by using all data in the variable forcing experiment (Figure 12b,d). 598 

For the spatial and annual maximum of 3-day averaged precipitation this gives an increase in probability of a 599 

factor 1.8 (C.I. 1.4-2.0) corresponding to an increase in intensity of 11% (C.I. 7%-12%) up to now.  600 

Analogous analyses but for the season JAS show similar results, although with larger error margins. 601 

We looked for an effect of ENSO in the long static forcing experiment in the same way as in the observations. 602 

This does not show any influence of El Niño averaged over the 12 months July–June preceding the year of 603 

extreme precipitation events. 604 

 605 
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 606 

Figure 12: As Figure 4 but for the annual and spatial maximum 3-day average precipitation in the FLOR-FA 607 

variable forcing experiment. (a,c) taking into account years 1861-2015, (b,d) taking into account 1861-2100. 608 

5.2 HiFLOR 609 

The HiFLOR model at a higher 25 km resolution has a more realistic seasonal cycle, but underestimates extreme 610 

precipitation by 25% for a 1 in 1 year event and by 35% for 1 in 1000 year extremes. We correct for this bias  as 611 

we did for the FLOR-FA experiment (the 30 year event is 103 mm/day). We concatenated the four static forcing 612 

experiments that we have available, leaving out the first 20 years of each, to create a 655-year record. To 613 

decrease dependencies we averaged 2×2 grid boxes into a 0.5º grid, this results in each grid box being correlated 614 

with 10.3 others with r>1/e on average. 615 

As was found for FLOR-FA, the GEV fit to all grid points results in a double population, therefore we 616 

disregard that analysis and instead focus on the spatial maximum precipitation extreme. Similar for FLOR-FA, 617 

taking the spatial maximum of this 50 km dataset selects mainly events in the more extreme population and does 618 

give a good fit to the GEV distribution (Figure 13). The outlier event is a tropical cyclone in the 1990 static 619 

forcing event, that was discussed in Section 4.2 (Figure 10a). The external forcing, which is the only change 620 

between the static forcing experiments, causes an increase in probability of a 103 mm or stronger event of a 621 

factor 2.0 (C.I. 1.4-2.5), in agreement with the FLOR-FA experiment up to 2100 (Figure 12b,d). This 622 

corresponds to an increase in intensity of 10% (C.I. 5%-12%). 623 
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 624 

Figure 13: As Figure 4 but for the annual and spatial maximum 3-day average precipitation in the HiFLOR 625 

static forcing experiments.  626 

 627 

An analysis of these data using the annual averaged detrended Niño3.4 index lagged by 6 months as 628 

covariate shows a relatively strong influence of El Niño in this model, with an increase in probability from the 629 

year following strongest La Niña to the strongest El Niño of a factor about 4.2 (C.I. 1.7–6.7). 630 

We followed the same procedure on the six ensemble members of the variable forcing HiFLOR 631 

experiment (1971–2015). These simulations do not have a negative bias in extreme precipitation. The restored 632 

SSTs eliminate a 2 K cold bias in the subtropical Atlantic that is present in the static forcing experiments, which 633 

may have caused the bias in precipitation extremes on the Central U.S. Gulf Coast in those simulations. Again 634 

there is one outlier event with 452.8 mm/day over three days, 1351 mm total. 635 

The spatial and annual maximum of 3-day averaged extreme precipitation increases by a factor 1.8 636 

(C.I. 1.2–3.3) in these experiments over the period 1971–2015, corresponding to a change in intensity of 14% 637 

(C.I. 4%–27%), Figure 14. Although the restoring of SSTs increases the fidelity of the simulation, it also 638 

includes the non-forced natural variability of the real world, so these numbers do not isolate the forced change 639 

but show the full change including the effects of natural variability. Assuming these are small compared to the 640 

trend we can extrapolate to the full change since 1900; the period 1971-2015 only includes about 2/3 of global 641 

warming since preindustrial times. This translates to a factor 2.4 (C.I. 1.3–6) increase in probability and 22% 642 

(C.I. 6%–41%) in intensity, which is very similar to the trend found in the observational data.  643 

Analyses of the season JAS show similar to somewhat smaller trends, but with larger error margins, 644 

overlapping the all-year error margins. 645 
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 646 

Figure 14: As Figure 4 but for the annual and spatial maximum 3-day average precipitation in the HiFLOR 647 

variable forcing restored SST experiments.  648 

6 Summary 649 

In this section we summarize the principal observational and model-based results as described in Sections 3 and 650 

5. We have analyzed two observational data products (GHCN-D point station data and CPC 0.25°×0.25° 651 

gridded analysis), to estimate the probability, and changes in probability and intensity of a 3-day precipitation 652 

event as large as that observed in south Louisiana 2015. The analysis was confined to the Central U.S. Gulf 653 

Coast (29–31 ºN, 85–95 ºW) and relies on time-dependent GEV fits to the data. First we investigated 654 

probabilities and changes at a single station, i.e. the probability of such an event at a fixed place in the region. 655 

Second we investigated regional probabilities and changes, i.e. the probability of such an event anywhere in the 656 

region. The spatial scale of the most extreme precipitation events is significantly smaller than the region 657 

considered, therefore the second probability is lower than the first. To attribute the observed changes to forced 658 

anthropogenic climate change, we repeat the analysis using high-resolution global climate model data from 659 

GFDL FLOR-FA and GFDL HiFLOR. GEV fits for the local analysis were unsatisfactory, therefore we only 660 

report the regional change in probabilities. 661 

The expected return period of a comparable 3-day precipitation event at a single station as high as the 662 

maximum observed is 450 to 1450 year, best estimate 550 year. Return periods like these are often written as a 663 

"1 in 1000 year event". The return time for observing an event anywhere in the region is lower: between 11 and 664 

110 year (best estimate 30 years). All observational analyses found clear positive trends, with an increase in 665 

probability for the regional event of about a factor 6.3 (97.5% certain more than 2.1), and an increase in 666 

intensity of 12% to 35% (Table 3). Estimates based on CPC gridded data are comparable but have larger ranges 667 

due to the shorter period of data availability.  668 

Table 3: Summary of observed (first two rows) and modeled (third row and down) changes in regional rainfall 669 

extremes in Central U.S. Gulf Coast. Note the modeled changes can be attributed to anthropogenic climate 670 

change. 671 

Data source 

(years used for 

calibration) 

Baseline regional return 

period for 2016 event  

(95% confidence range, 

observations only) 

Years 

change 

calculated 

over 

Change of return 

period in present day 

over given years (95% 

confidence range) 

Change in intensity of regional 30-

year return event in 2016 since 

beginning of record (95% 

confidence range) 
GHCN-D rain 30 year (11 - 110) 1930-2016 6.3× (2.1 ... 50) +25% (12% ... 35%) 
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gauges, minimum 

80 year data (1930-

2016) 
CPC 0.25°×0.25° 

gridded data 

(1948-2016) 
25 year (9 - 200) 1948-2016 5.4× (1.1 ... 60) +15% (0.4% ... 30%) 

FLOR-FA variable 

forcing experiment 

(1861-2015) 
 1900-2016 1.3× (1.0 ... 1.9) +5% (-0.5 ... 14%) 

FLOR-FA variable 

forcing experiment 

(1861-2100) 
 1900-2016 1.8× (1.4 ... 2.0) +11% (7% ... 12%) 

HiFLOR static 

forcing experiment 

(1860, 1940, 1990, 

2015) 

 1860-2015 2.0× (1.4 ... 2.5) +10% (5% ... 12%) 

HiFLOR variable 

forcing experiment 

(1971-2015), 

extrapolated to 

1900-2015 

 1900-2015 2.4× (1.3 ... 8) +22% (6% ... 41%) 

 672 

The sensitivity of precipitation extremes from both models is consistent with that estimated from the 673 

gridded observations. The lower-resolution FLOR-FA model shows lower trends than the HiFLOR model. For 674 

the HiFLOR model the sensitivity estimated from the SST-restored experiment for 1971–2015 is larger than that 675 

from the coupled simulations. Taking into account all modeling results, the probability of an event like south 676 

Louisiana 2015 has increased at least by a factor 1.4 due to radiative forcing; the two HiFLOR experiments and 677 

the analysis of the full dataset from FLOR-FA suggest central values close to a doubling of probability. Such an 678 

increase may be translated to what was once a 1/100 year event somewhere in the Central U.S. Gulf Coast, 679 

should now be expected to occur on average, at least once every 70 years, likely even more common. This trend 680 

is expected to continue over the 21st century as past and projected future greenhouse forcing continues to warm 681 

the planet. 682 

The evidence for an influence of the strong 2015/2016 El Niño increasing the probability of the 2016 683 

event is equivocal. The full station dataset shows a statistically significant but small increase in probability, but 684 

we do not find the same for the spatial maximum, which represents the strongest events. The FLOR-FA model 685 

similarly does not have an ENSO effect, whereas the HiFLOR model again shows a higher probability after a 686 

large El Niño. We have found some evidence for decadal Atlantic variability affecting precipitation in the 687 

observations, which would have decreased the likelihood in 2016 if confirmed. 688 

 689 
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 690 

Figure 15: Summary of observed (GHCN-D, CPC, blue colors) and modeled (FLOR-FA, HiFLOR, yellow, red 691 

color) changes in regional precipitation extremes in Central U.S. Gulf Coast. Ranges written in black are the 692 

time periods for which the change is shown over. Calibration for the calculations is done over separate time 693 

periods for noted models. See Table 3 for specific numeric values. 694 

7 Discussion 695 

We have presented a rapid attribution to climate change and climate variability of the south Louisiana intense 696 

precipitation event. Here we lay out the crucial assumptions made to conduct our assessment, further lines of 697 

inquiry to investigate the validity of the crucial assumptions and the sensitivity of our results to changes in these 698 

assumptions, suggestions for further study on related topics not investigated here, and questions that arise from 699 

this work. Finally, we note some societal impacts of the findings. 700 

7.1  Crucial assumptions  701 

In performing these analyses, we have made the following crucial assumptions about the statistical distribution 702 

of precipitation extremes, the observations , the relationship between temperature and precipitation extremes, 703 

and the models. We have tested the sensitivity of our results to some of these assumptions in the results sections 704 

(Sections 3-5) and discuss them below. 705 

1) We assume that the local, annual maxima of 3-day averaged precipitation over the region of analysis 706 

(29–31 ºN, 85–95 ºW) can be grouped together, and that their statistical distribution follows a GEV 707 

distribution. Underlying this assumption is that the region has homogeneous extreme precipitation 708 

characteristics (Figure 1f). Furthermore, we assume that all the annual maxima of 3-day averaged 709 

precipitation are drawn from the same statistical distribution, in spite of the many different mechanisms 710 

that lead to extreme precipitation in this region, and that this distribution can be represented well by a 711 

GEV distribution. We further assume that the spatial maximum over the region can also be described 712 

by a GEV.  713 

2) We assume that analyzing all seasons together provides a fuller distribution of the population of 714 

extreme precipitation events than isolating the analysis to seasons proximate to August (the month in 715 

which the south Louisiana event occurred). In part, the choice to analyse annual extreme events was 716 

motivated by the fact that a variety of meteorological phenomena can lead to extreme precipitation in 717 
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this region, flooding can occur in any season, and precipitation extremes may change in various 718 

seasons (Lehmann et al. 2015, Van der Wiel et al. 2016). All extreme value analyses were repeated 719 

focusing only on the JAS season and the qualitative nature of the results was the same as those 720 

presented. 721 

3) We assume that the inhomogeneities in point station data due to station changes, incomplete records 722 

and geographic coverage are smaller than the trends and have no coherent sign. We have checked this 723 

by performing the analysis on all stations and for a subset of stations with long (at least 80 year) 724 

records and sufficient (0.5º) spatial separation. 725 

4) We assume that the methods that create the gridded observationally-based precipitation data result in 726 

an accurate representation of 3-day average precipitation at the grid scale. The decorrelation scale of 3-727 

day precipitation is about twice the grid scale, so the largest uncertainty is the inhomogeneous 728 

distribution of the gauge stations in space and time. A comparison of the results with point station data 729 

shows that the differences are not large. 730 

5) We assume that, for the assessment of trends in GEV statistics, global mean surface temperature 731 

represents a relevant covariate to capture the a priori expected connection between precipitation 732 

extremes and temperature (e.g., O’Gorman 2015). A physical motivation for this expected connection 733 

is the dependence of the saturation specific humidity of air on temperature through Clausius-Clapeyron 734 

(see Section 1). The underlying assumption is that multi-decadal temperature changes exhibit “pattern 735 

scaling”, such that global mean temperature change is a sufficient parameter to describe the long-term 736 

changes of temperature; furthermore, global-mean temperature helps increase the signal-to-noise ratio 737 

of fits to temperature changes. If there is substantial spatial heterogeneity to temperature changes on 738 

multi-decadal timescales, the assumption that global mean temperature is the relevant metric becomes 739 

suboptimal. Furthermore, if dynamical changes (e.g., changes in the statistics of storms, changes in the 740 

dominant moisture sources for extremes, etc.) dominate the observed multi-decadal precipitation 741 

extreme changes, this assumption will also be suboptimal. 742 

6) We assume that the probability density function of precipitation extremes scales with a covariate, for 743 

example (smoothed) global mean temperature and does not exhibit other changes in shape. This 744 

assumption is supported by large-sample statistics from modelling experiments such as 745 

Weather@Home (Massey et al. 2015) in other regions, but it is not a priori obvious that these results 746 

should also hold for the Central U.S. Gulf Coast with its wide variety of weather phenomena causing 747 

extreme precipitation. Furthermore, the Massey et al. (2015) results were from models of resolution too 748 

low to resolve many of the meteorological phenomena that lead to extreme precipitation (e.g. tropical 749 

cyclones) in this region.  750 

7) We assume that, beyond an initial rapid (~20 year) adjustment to different static radiative forcings, the 751 

statistics of precipitation extremes in the static forcing model experiments depend on global mean 752 

temperature in the same way as the changes arising from slow drift due to top of the atmosphere 753 

radiative disequilibria and slow ocean adjustment. The latter changes are smaller than the forced trend, 754 

so the impact of slow model drift on the results is small. 755 

8) We assume that the CMIP5 historical forcings (1860-2005) and RCP4.5 forcings (2005-2100), as 756 

implemented in the models, are sufficiently accurate representations of the actual changes in radiative 757 
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forcing that occurred in the real climate system to allow meaningful comparison of modeled changes in 758 

precipitation extremes to those observed.  759 

9) We assume that the FLOR-FA and HiFLOR modeled responses to changes in radiative forcing are 760 

meaningful estimates of the sensitivity of precipitation extremes in the real climate system, since these 761 

models capture multiple physical factors affecting precipitation extremes in a physically-based and 762 

internally-consistent framework. This assumption is motivated in part because of the ability of these 763 

models to simulate large-scale precipitation and temperature over land (e.g., Van der Wiel et al. 2016; 764 

Delworth et al. 2015; Jia et al. 2015, 2016), precipitation extremes over the U.S. (Van der Wiel et al. 765 

2016), modes of climate variability (e.g., Vecchi et al. 2014; Murakami et al. 2015); the meteorological 766 

phenomena that lead to precipitation extremes and their relationship to modes of climate variability 767 

(e.g., Vecchi et al. 2014; Krishnamurthy et al. 2015; Murakami et al. 2015, 2016; Zhang et al. 2015, 768 

2016; Pascale et al. 2016); and that these models show skill at seasonal predictions of large-scale 769 

climate, regional hydrometeorology and the statistics of weather extremes across a broad range of 770 

climatic regimes (e.g., Vecchi et al. 2014; Jia et al. 2015, 2016; Yang et al. 2015; Msadek et al. 2015; 771 

Murakami et al. 2015, 2016). However, it is important to note that climate models can show a range of 772 

global and regional climate sensitivities to changing radiative forcing (e.g., Kirtman et al. 2013, Collins 773 

et al. 2013) 774 

 775 

These assumptions were crucial to enable a rapid assessment of the climate context of the extreme 776 

precipitation of the August 2016 south Louisiana event. Subsequent analyses should further assess the validity 777 

of these assumptions, and the quantitative impact of failures in their validity. Below we outline our present 778 

evaluation of the implications of these choices and potential areas of further research. 779 

 Sensitivity experiments should be produced by varying the parameters of our study. We did not 780 

conduct analysis of how the size of our defined box for the Central U.S. Gulf Coast affects our results (crucial 781 

assumption 1). If the region is altered to remove points that have greater risks relative to those included, the 782 

findings may change. Changes in extreme precipitation  risks in the Central U.S. Gulf Coast should not be 783 

applied elsewhere without further investigation. Temporally, we were able to validate the seasonal distribution 784 

of precipitation extremes in models and observations (Section 4.1), and redid the analysis for JAS only, which 785 

gave larger uncertainties and somewhat smaller trends (crucial assumption 2). Future work could further 786 

quantify seasonal differences in extremes and their response to climate forcing. Similarly, to sample the spread 787 

in sensitivity to future RCP forcings (crucial assumption 8, used for any modeled years beyond 2005), our 788 

results may be revised with different climate forcings. For the near term however, this is likely not an issue in 789 

HiFLOR (used to produce climates for 2005-2015 in the static forcing and nudged SST runs) as climate 790 

variability tends to be greater than the climate response to different scenarios during this time period  (Forster et 791 

al. 2013; Hawkins and Sutton 2009; Kirtman and Power 2013), but may affect future climate results in the 792 

FLOR-FA variable forcing experiment at the end of the century (2100, Hawkins and Sutton 2009).Furthermore, 793 

the appropriateness of GEV fits in general should be tested (crucial assumptions 1,6).  794 

  Sensitivity experiments of our results to model bias and integration length (or length of the observed 795 

record) should be produced (crucial assumptions 3 and 7). Short records limit the reliability of the statistics of 796 

precipitation extremes. This is important for our model validation of the annual cycle of extremes (Section 4.1) 797 
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and for the comparison of modeled and observed GEV fits (Section 5). The statistics of precipitation extremes in 798 

HiFLOR are closer to those observed than the statistics in FLOR-FA. However, we note that the model 799 

experiments with FLOR-FA are significantly longer and therefore provide better statistics of its (biased) climate 800 

than the experiments with HiFLOR or the observed record. It cannot thus be fully-excluded that the double 801 

distribution of extremes in FLOR-FA or the large peak in JAS in extreme precipitation intensity is purely a 802 

result of model bias. 803 

 A portion of the beginning of the static forcing experiments have been disregarded to allow the model 804 

to spin-up in response to radiative forcing. GEV fits were originally calculated by disregarding the first 10 years 805 

of data to allow for spin-up, but was extended to 20 years to provide the simulated climate more time to 806 

approach equilibrium (crucial assumption 7). The results are only altered slightly by this sensitivity test. Given 807 

the length of the available ensemble suite of static forcing experiments, disregarding more years in the 808 

beginning of the simulation would reduce our ability to sample extremes. With longer integrations of static 809 

forcing experiments and additional ensemble members, we would have more information to assess how model 810 

spin-up may affect our results. Similarly, longer integrations would allow for an assessment of the impact of 811 

model drift due to ocean adjustment (crucial assumption 7). 812 

 The attribution to climate change presented here depends on our assumption that changes in 813 

precipitation extremes scale with global mean temperature and do not arise from changes in the shape of their 814 

underlying distribution (crucial assumptions 5 and 6). The thermodynamic basis of this assumption is based on a 815 

large body of research (O’Gorman 2015), however as noted before there is a large variety of synoptic systems 816 

that may cause precipitation extremes in the Gulf Coast region. It is not obvious that possible impacts of 817 

changes in synoptic weather patterns scale with global mean temperatures. For example, the frequency, track 818 

location and/or intensity of tropical cyclones (responsible for 7 out of the 9 most extreme events in JAS were 819 

related to tropical cyclones, Figure 8) can each change in complex ways that need not scale with each other or 820 

global mean temperature (e.g., Vecchi and Soden 2007; Murakami and Wang 2010; Emanuel and Sobel 2013; 821 

Emanuel et al. 2013; Knutson et al. 2013; Vecchi et al. 2013; Walsh et al. 2015), and could cause changes to the 822 

statistics of extreme rainfall in the Central U.S. Gulf Coast. Further research must investigate what the impact of 823 

dynamic changes (e.g. frequency of occurrence of various synoptic systems, dominant moisture sources, 824 

precipitation efficiency) is on the presented trend of precipitation extremes.  825 

 To investigate the sensitivity of the results to the chosen observational data sets (both based on rain 826 

gauge measurements, crucial assumption 3 and 4), we suggest repeating the current analysis with an 827 

independent observational estimate of current and historical precipitation along the Gulf coast (e.g. estimates 828 

based on satellite data). Furthermore, though we use two global climate models (FLOR-FA and HiFLOR, 829 

crucial assumptions 7 and 9) and various experimental setups (static radiative forcing, time-varying radiative 830 

forcing and restoring observed SST variability), the models are part of the same NOAA/GFDL family. 831 

Consequently, they exhibit similar patterns of (surface temperature) bias and rely on the same parameterization 832 

schemes for precipitation. Further inquiry for understanding model-specific biases that may impact the results 833 

may still be warranted. For example, there is a North Atlantic cold bias in the models, thought to be connected 834 

in part to inadequate eddy parameterizations and a resulting cloud feedback (Delworth et al. 2006; Delworth et 835 

al. 2012; Vecchi et al. 2014; Murakami et al. 2015). This may be the source of higher magnitudes of modeled 836 

extreme precipitation found due to climate variability in the HiFLOR restored-SST experiments. An assessment 837 
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using different climate models would therefore add value to allow for a sampling of risk across models, in 838 

addition to across experimental setups. These will be available shortly in the HighResMIP project (Haarsma et 839 

al. 2016). 840 

7.2 Future work and broader impacts 841 

 As described in the introduction and methods, we have purposefully focused our present assessment on 842 

one aspect of the flooding problem: the risk of extreme precipitation events that have the potential to produce 843 

inland flooding. We have provided provisional streamgauge data in the introduction (Figure 2) to illustrate the 844 

effect of the August 2016 event, but have not examined flood risks in the region from streamgauge data directly. 845 

Part of the reason for this is that real-time streamgauge data is provisional and subject to revision, which can be 846 

exacerbated during a flood when gauges can be overtopped and have missing data due to high water volumes or 847 

streamgauge malfunctions (Rantz 1982). The USGS advises users to cautiously consider the use of provisional 848 

streamgauge data for decision making (official USGS provisional policy available: 849 

<https://water.usgs.gov/wateralert/provisional/>). A complimentary modeling study of land surface conditions 850 

and interactions with the river environment also requires a more local modeling approach, potentially with a 851 

hydrologic model with information on the river system and small scale water processes, and conceivably 852 

including an estimate of the impact of direct human impacts (through urbanization, water diversion and 853 

management, etc.) which under our time constraints, data access, and present capabilities of our climate models 854 

was not feasible.   855 

 It is important to distinguish extreme precipitation events that are the topic of this study, motivated by 856 

the August 2016 rain event that led to devastating “freshwater” or “inland” flooding in south Louisiana, from 857 

events that lead to “coastal” or “saltwater” flooding. In particular, the climate change context of saltwater 858 

flooding must include an assessment of the regional sea level change contributions and meteorological 859 

conditions that can influence these types of events (e.g., Katsman et al, 2008, Sterl et al, 2012, Lin et al. 2012, 860 

2014, Little et al. 2014). While certain meteorological conditions, such as landfalling tropical cyclones, can lead 861 

to both freshwater and saltwater flooding (e.g., Lin et al. 2012, Villarini et al. 2014), the assessments and 862 

discussions presented here are only relevant to extreme rainfall events that have the potential to initiate inland 863 

flooding; we do not address changes in storm surges, nuisance flooding (Moftakhari et al. 2015) or other 864 

saltwater flooding events. 865 

 Dependence of the statics of extreme precipitation events in the Central U.S. Gulf Coast on large-scale 866 

climate drivers could provide a scientific basis for seasonal predictions of the odds of these events, much as is 867 

now regularly done for the statistics of hurricanes. However, as we show in Section 3.3, we are unable to find 868 

strong connections between the statistics of these extreme precipitation events and modes of SST variability 869 

(e.g., ENSO), which suggests the possibility for limited seasonal predictability for these events beyond the 870 

multi-decadal increase in probability from long-term climate warming. However, potential sources of 871 

predictability may be uncovered by future refined analyses.  872 

The extent to which the changing risk of extreme rainfall events like that in south Louisiana has 873 

implications for stakeholders, such as homeowners, local and federal governments, the humanitarian system, 874 

and the insurance industry, will depend on details of the exposure, vulnerability and the disaster preparedness 875 

and response strategies available to each. Changes to the physical system are a key factor in  adaptation and 876 
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decisions, but these factors operate in a complex landscape. Through a disaster management lens, the increased 877 

frequency of this type of event found in this study may place strains on humanitarian responders and institutions 878 

now and in the future. Knowing the change in return periods of the most extreme events can help to provide 879 

insight into how humanitarian institutions can evolve to be prepared for the future; in addition to adapting to a 880 

broader trend of increasing hydro-meteorological disasters globally (CRED 2015). A worthwhile topic to 881 

explore in further assessment of this and related events is the extent to which public and media perception both 882 

before (local preparedness, willingness to evacuate) and after (nationwide media coverage and awareness of 883 

impacts) may have been impacted by the fact that the storm was not named. However, there is an insufficiency 884 

of peer-reviewed literature on this topic, even as media outlets in the UK and U.S. have started naming winter 885 

storms following the German example (Cutlip 2013, Van Oldenborgh et al. 2015).  886 

It is essential to note that this analysis has pursued an assessment of the climate change context of 887 

extreme precipitation events (a “climate attribution” study) in which we evaluate the impact of climate 888 

conditions and changes in radiative forcing on the probability of extreme rainfall events in south Louisiana and 889 

the Central U.S. Gulf Coast. This analysis is fundamentally different in nature from (and complementary to) 890 

assessments of the synoptic chain of events that led to the particular Louisiana extreme precipitation event in 891 

August 2016 (we would label that “synoptic attribution”). Synoptic attribution of the event generally involves a 892 

clear chain of events that led to the extreme rainfall event in a relatively deterministic fashion. Meanwhile, the 893 

climate attribution presented here is fundamentally probabilistic. Although we recognize that the synoptic 894 

context of this particular extreme event is unique (in fact all events are unique in detail), we have sought to 895 

understand the climate context of the probabilities of a class of events that causes extreme precipitation in the 896 

Central U.S. Gulf Coast of which this event (flood-inducing extreme precipitation in south Louisiana) is a 897 

member (Otto et al, 2016). Furthermore, it is possible to assess the climatic context in more detail, by assessing 898 

more proximate climate drivers than global-mean temperature or radiative forcing (e.g., by looking at the impact 899 

of particular patterns of SST), or by a more refined assessment of the detailed impact of the superposition of 900 

modes of climate variability and multi-decadal climate change (e.g., Delworth et al. 2015, Jia et al. 2016). For 901 

any particular event a spectrum of attribution studies (from purely synoptic to purely climate) could, and 902 

perhaps should, be pursued in order to unravel the various factors relevant to that event. Moreover, some of 903 

these studies are feasible at rapid attribution timescales while others require more time and focused resources to 904 

produce the specific and targeted modeling experiments and observational analyses.  905 

Climate attribution studies such as this one can only be performed with pre-existing multi-centennial 906 

global simulations with high spatial resolution models.  This allowed us to efficiently assess the impact of 907 

radiative forcing changes on regional extreme precipitation events. These simulations, obviously, necessitated 908 

the long-term research aimed at developing these high-resolution models (e..g, Putnam and Lin 2007, Delworth 909 

et al. 2012, Vecchi et al. 2014, Murakami et al. 2015). Furthermore, this work was enabled by a body of work 910 

using these models that provided the necessary understanding of the characteristics and fidelity of these models 911 

to simulate large-scale and regional climate, and weather events over a broad range of scales and phenomena 912 

(e.g., Vecchi et al. 2014; Msadek et al. 2014; Delworth et al. 2015; Jia et al. 2015, 2016; Murakami et al. 2015, 913 

2016; Krishnamurthy et al. 2015; Zhang et al. 2015, 2016; Pascale et al. 2016; Van der Wiel et al. 2016).  914 

In particular, this paper follows on a recent analysis of the climatology and CO2 sensitivity of extreme 915 

precipitation events over the U.S. in these same models, showing that FLOR and HiFLOR in particular are 916 
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uniquely capable of capturing Central U.S. Gulf Coast precipitation extremes, which has large biases in coarser 917 

resolution models (Van der Wiel et al. 2016). Though the analysis of extreme precipitation events in Van der 918 

Wiel et al. (2016) is of a different nature (focusing on much lower return period events, using different statistical 919 

methods, and focusing at the grid point scale rather than regional events), the results presented there are 920 

consistent with the current analysis. The previous paper showed that in response to increasing CO2 levels in the 921 

atmosphere, precipitation extremes along the Central U.S. Gulf Coast increase in intensity, with less likely 922 

events exhibiting larger fractional intensity increases.  923 

We have here sought to provide a scientifically rigorous rapid assessment of the climate context of this 924 

precipitation event, which had tragic consequences, to provide meaningful grounding to the public discussions 925 

of this event, given both the intense interest in this specific event and our ongoing work on the general subject of 926 

climate and extremes (and precipitation extremes in the U.S. in particular, Van der Wiel et al. 2016). We hope 927 

that this study, including our explicit discussion of the assumptions needed to pursue this accelerated 928 

assessment, will  help push the scientific conversation forward to improve our understanding of the risks and 929 

return periods of extreme precipitation in the Central U.S. Gulf Coast. The field of rapid attribution analysis is 930 

still nascent and may one day lead to such assessments being the normal course of action in response to an 931 

extreme event to help provide scientific basis for real-time discussions, and in longer-term disaster response and 932 

rebuilding. Until that time, studies such as this will likely only be done for select regions and event types where 933 

there is sufficient easily accessible data, and a team of scientists with the necessary expertise and ability to make 934 

time in their schedules to provide a rapid assessment. We expect that these early efforts at event attribution will 935 

expand our knowledge and capabilities on this subject, and facilitate further inquiry.  936 
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