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Abstract  9 

Assessing the factors that have an impact on potential evapotranspiration (PET) sensitivity to changes in 10 

different climate variables is critical to understanding the possible implications of climatic changes on the 11 

catchment water balance. Using a global sensitivity analysis, this study assessed the implications of baseline 12 

climate conditions on the sensitivity of PET to a large range of plausible changes in temperature (T), relative 13 

humidity (RH), solar radiation (Rs) and wind speed (uz). The analysis was conducted at 30 Australian locations 14 

representing different climatic zones, using the Penman-Monteith and Priestley-Taylor PET models. Results from 15 

both models suggest that the baseline climate can have a substantial impact on overall PET sensitivity. In 16 

particular, approximately two-fold greater changes in PET were observed in cool-climate energy-limited 17 

locations compared to other locations in Australia, indicating the potential for elevated water loss as a result of 18 

increasing actual evapotranspiration (AET) in these locations. The two PET models consistently indicated 19 

temperature to be the most important variable for PET, but showed large differences in the relative importance 20 

of the remaining climate variables. In particular, for the Penman-Monteith model wind and relative humidity 21 

were the second-most important variables for dry and humid catchments, respectively, whereas for the 22 

Priestley-Taylor model solar radiation was the second-most important variable, with greatest influence in 23 

warmer catchments. This information can be useful to inform the selection of suitable PET models to estimate 24 

future PET for different climate conditions, providing evidence on both the structural plausibility and input 25 

uncertainty for the alternative models. 26 

Keywords: climate impact assessment; evapotranspiration; climate zones; Penman-Monteith; Priestley-Taylor; 27 

global sensitivity analysis 28 

  29 
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1. Introduction 30 

Assessing changes to evapotranspiration (ET) is critical in understanding the impacts of anthropogenic climate 31 

change on the catchment water balance. ET represents the dominant loss of water from catchments worldwide, 32 

with about 62% of global land-surface precipitation accounted for by ET (Dingman, 2015), and ET exceeding 33 

runoff in over 77% of the global land surface (Harrigan and Berghuijis, 2016). ET is affected by climate change 34 

through a cascade of processes that begins with the increasing concentration of greenhouse gases, followed by 35 

their attendant impacts on large-scale circulation and changes to the global distribution of energy and moisture. 36 

These large-scale processes lead to local-scale changes in the atmosphere, which in turn influence the 37 

catchment water balance through a set of terrestrial hydrological processes by which precipitation is converted 38 

into actual ET (AET), runoff and groundwater recharge (Oudin et al., 2005). Other factors that can potentially 39 

affect ET under a changing climate include changing land cover patterns (e.g. Liu et al., 2008), and the CO2 40 

fertilization effects that can limit the rate of plant transpiration under elevated levels of CO2 (e.g. Prudhomme 41 

et al., 2014;Milly and Dunne, 2016). 42 

Climate impact studies that investigate the influence of climate forcings on the catchment water balance are 43 

usually based on projections of future climate represented by climate variables such as temperature and solar 44 

radiation from general circulation models (GCMs), which are converted into potential ET (PET) using one or 45 

several PET models. The PET projections are combined with GCM projections of precipitation (P), which 46 

together can be used to directly estimate the water deficit (Taylor et al., 2013;Chang et al., 2016). Alternatively, 47 

rainfall-runoff models can be used to translate the changes in P and PET into changes in runoff (e.g. Akhtar et al., 48 

2008;Chiew et al., 2009;Koedyk and Kingston, 2016), as well as associated information such as the impact on 49 

catchment streamflow (Wilby et al., 2006), water supply security (Paton et al., 2014, 2013) and flood risk (Bell et 50 
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al., 2016). Therefore, to quantify the specific impact of changes in ET on the water balance, a good 51 

understanding of the sensitivity of PET to potential changes in its key influencing climatic variables is required 52 

(Goyal, 2004;Tabari and Hosseinzadeh Talaee, 2014). This is particularly relevant given the recent focus on 53 

‘scenario-neutral’ (or ‘bottom-up’) approaches to climate impact assessment (Brown et al., 2012;Prudhomme et 54 

al., 2010;Culley et al., 2016), which require the sensitivity of a given system to potential changes in climate 55 

forcings to be estimated (Prudhomme et al., 2013a;Steinschneider and Brown, 2013;Prudhomme et al., 56 

2013b;Kay et al., 2014;Guo et al., 2016a).  57 

Furthermore, the sensitivity of PET can provide critical evidence in relation to identifying models that are most 58 

appropriate for PET estimation under climate change conditions, which is particularly relevant to the ongoing 59 

debate on the potential trade-off between model complexity and reliability. Complex models such as the 60 

Penman-Monteith model are often recommended for their ability to better represent the physical processes 61 

that affect PET (McVicar et al., 2012;Donohue et al., 2010;Barella-Ortiz et al., 2013). For example, the Penman-62 

Monteith model can account for the effects of wind, and thus can help explaining at least part of the observed 63 

decreases in pan evaporation with increases in temperature in many locations globally – the ‘evaporation 64 

paradox’ –  due to the observed decreases in wind speed (Roderick et al., 2007;McVicar et al., 2008;Lu et al., 65 

2016). However, simpler empirical models may also be preferable under some conditions, as they require a 66 

smaller number of input climate variables, which might be able to be projected with greater confidence with 67 

GCMs, and thus leading to greater confidence in the corresponding PET estimates (Kay and Davies, 68 

2008;Ekström et al., 2007;Ravazzani et al., 2014). For example, there is reasonable confidence in projections of 69 

temperature and relative humidity in Australia for a given emission scenario, but less confidence in projections 70 

of wind due to sub-grid effects of orography and other land-surface features (Flato et al., 2013;CSIRO and 71 
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Bureau of Meteorology, 2015). In these situations, models such as the Priestley-Taylor model that do not 72 

depend on wind may produce more reliable estimates of PET compared to the more complex Penman-Monteith 73 

model. Thus, the choice of climate variables to include in climate impact assessments must be informed both by 74 

the relative importance of each variable on projections of PET (e.g. Tabari and Hosseinzadeh Talaee, 2014), and 75 

the likely confidence in the projections of each variable (e.g. Flato et al., 2013;Johnson and Sharma, 2009). 76 

Sensitivity analysis methods have been employed in a number of recent studies to assess the overall sensitivity 77 

of PET estimated by the Penman-Monteith model to potential changes in climate, as well as to better 78 

understand the relative importance of different climate variables on overall PET sensitivity. For example, Goyal 79 

(2004) found that PET was most sensitive to perturbations in temperature, followed by solar radiation, wind 80 

speed and vapor pressure, at a single study site in an arid region in India. Tabari and Hosseinzadeh Talaee (2014) 81 

also looked at the sensitivity of PET to perturbations of historical climate data from eight meteorological 82 

stations representing four climate types in Iran, and concluded that the importance of wind speed and air 83 

temperature was lower while that of sunshine hours was higher for a humid location compared to an arid 84 

location. Gong et al. (2006) found that the differences in PET sensitivity across the upper, middle and lower 85 

regions of the Changjiang (Yangtze) basin in China were largely due to contrasting baseline wind speed patterns. 86 

However, most of these PET sensitivity analysis studies focused on a limited number of study sites and/or 87 

climatic zones, so that the specific causes for varying PET sensitivity at different locations, such as the roles of 88 

climatic and hydrological conditions, remain unclear. Consequently, it is difficult to extrapolate our existing 89 

knowledge of PET sensitivity and the relative importance of each climate variable to new locations, which is 90 

essential for assessing the water balance at regional scales. 91 
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To address the shortcomings of existing studies outlined above, this study aims to gain an understanding of (i) 92 

the sensitivity of PET estimates to changes in the key climatic variables which influence PET, and how these 93 

sensitivity estimates are affected by varying baseline hydrologic and climatic conditions at different locations; 94 

and (ii) the relative importance of these climatic variables for PET, and how this changes with the baseline 95 

hydrologic and climatic conditions at different locations. These aims were achieved by analyzing the responses 96 

of PET to perturbations in four of its driving climatic variables, namely temperature (T), relative humidity (RH), 97 

solar radiation (Rs) and wind speed (uz), at 30 study sites across Australia representing a range of climate zones. 98 

Both the Penman-Monteith and Priestley-Taylor models were used, as they represent different 99 

conceptualizations of the PET-related processes, with both models being widely used for climate impact 100 

assessments (Felix et al., 2013;Arnell, 1999;Gosling et al., 2011;Kay et al., 2009;Prudhomme and Williamson, 101 

2013;Donohue et al., 2009). It is worth noting that the potential changes in one climate variable can be 102 

amplified or offset by changes in another variable (for examples see the discussions of 'evaporation paradox' in 103 

Lu et al., 2016;Roderick and Farquhar, 2002), which can affect the relative importance of each variable. To 104 

account for this effect, a global sensitivity analysis method was used, with similar methods being applied to 105 

account for the impact of joint variations in the input variables on the output from a variety of environmental 106 

models, ranging from conceptual rainfall-runoff models (e.g. Tang et al., 2007a;Tang et al., 2007c) to complex 107 

models which consider a number of surface-groundwater processes (e.g. Guillevic et al., 2002;van Griensven et 108 

al., 2006;Nossent et al., 2011). The results of the global sensitivity analysis in this study were presented in terms 109 

of both the range of potential changes in PET and relative sensitivity indices of each climate variable for PET, 110 

which were then used to elucidate the specific roles of varying baseline hydro-climatic conditions on influencing 111 

these sensitivity measures. 112 
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The subsequent sections of this paper are structured as follows. Section 2 introduces the data obtained from 113 

the 30 study sites required for the global sensitivity analysis. Section 3 describes the approach to the global 114 

sensitivity analysis of PET. Section 4 presents and discusses two sets of results which address the two study aims 115 

respectively: (i) the range of estimated changes in PET in response to potential changes in temperature, solar 116 

radiation, humidity and wind, and how this changes with location; and (ii) the relative importance of the four 117 

climate variables for estimating PET, and how this changes with location. The study is summarized and 118 

concluded in Sect. 5.   119 

2. Data  120 

To represent contrasting hydro-climatic conditions for assessing PET sensitivity, we selected case study 121 

locations within different Köppen classes in Australia. The original Köppen climate classification (Köppen et al., 122 

1930;Köppen, 1931) provides a useful categorization of hydro-climatic conditions at specific locations, which is 123 

based on the long-term average levels and seasonal patterns of climatic and hydrologic variables, including 124 

temperature, relative humidity and rainfall. A ‘modified Köppen classification’ system has been adapted for 125 

Australia (as in Stern et al., 2000) and is now widely used in climatic and hydrologic studies to identify and 126 

categorize case study locations (e.g. Johnson and Sharma, 2009;Rustomji et al., 2009;Li et al., 2014;Guo et al., 127 

2017).  128 

As mentioned in the Introduction, both the Penman-Monteith and the Priestley-Taylor models were used to 129 

estimate PET for the global sensitivity analyses. The estimation of PET with these models relies on temperature, 130 

relative humidity, solar radiation and (for the Penman-Monteith model only) wind speed. In addition, the 131 

rainfall data were also obtained to assess the aridity of the different locations. We limited the selection of study 132 
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sites to those with 10 or more years of continuous climate data with no more than 5 % missing records over the 133 

study period. This led to a final selection of 30 weather stations (Fig. 1), with a consistent data period from 1 134 

January 1995 to 31 December 2004.  The data obtained at each site are detailed as below: 135 

 Daily maximum and minimum temperature (T in °C), maximum and minimum relative humidity (RH 136 

in %) and wind speed (uz in m s-1): Data for each of these variables were obtained directly from each 137 

weather station. 138 

 Daily solar radiation (Rs in MJ m-2 day-1): Daily solar radiation was calculated from daily sunshine hour 139 

data (n in h) obtained from each weather station, using the Ǻngström-Prescott equation as in McMahon 140 

et al. (2013). 141 

 Daily rainfall (mm/day): Daily rainfall data were obtained from a rain gauge at each weather station.  142 

Figure 1: Locations of 30 Australian weather stations selected for analysis (see Table 1 for the full names of these 143 

weather stations), with reference to their corresponding climate classes derived following the modified Köppen 144 

classification (reproduced with data from Stern et al., 2000).  145 

 146 

Table 1 shows the average values of the four PET-related climate variables, as well as the rainfall within the 147 

study period, at each of the 30 sites. As can be seen, there are large differences in the average values of each 148 

variable, highlighting large differences in the climatic conditions across the 30 sites. In addition, a quantity 149 

particularly relevant to ET processes is the long-term averaged ratio of PET to precipitation (PET/P), which 150 

describes whether a location is water-limited (PET/P >1) or energy-limited (PET/P < 1) (Gerrits et al., 151 

2009;McVicar et al., 2010). This ratio was estimated for each site and is also shown in Table 1 (with the point 152 

colour in Fig. 1 indicating whether the location is water-limited or energy-limited). The range of PET/P values 153 
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indicates substantial variations in the water availability conditions at different study sites. Note that these ratios 154 

were based on the estimates of PET from the Penman-Monteith model. Although the use of Priestley-Taylor 155 

model resulted in different PET estimates at each site, the categorization of water- and energy-limited 156 

catchments was generally consistent with those from Penman-Monteith, with different categories only shown 157 

at four out of the 30 study sites (sites 6, 19, 20 and 27).  158 

Table 1: Names, locations and average climate conditions of the 30 weather stations over the study period (1995-159 

2004). 160 

 161 

3. Method 162 

3.1. Overview 163 

A schematic of the approach followed in study is shown in Fig. 2. As a required model input for the global 164 

sensitivity analysis, a large number of representative samples were first obtained for the four climate variables 165 

that influence PET (T, RH, Rs and uz) at each study site, by perturbing the corresponding historical climate data 166 

(Sect. 3.2). The outputs of the global sensitivity analysis (i.e. the responses of PET) were estimated with the 167 

Penman-Monteith and Priestley-Taylor models (Sect. 3.3). To understand the PET sensitivity and the relative 168 

importance of the four climate variables in influencing PET and how these change with location, a global 169 

sensitivity analysis was conducted with the responses of PET to the climate perturbations (Sect. 3.4). This 170 

proceeded in two parts: 171 

(1) To assess the sensitivity of PET to the climate variables, the range of percentage changes in PET in 172 

response to all the climate perturbations was estimated relative to the baseline PET at each location. To 173 
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observe the impact of varying baseline hydro-climatic conditions, the ranges obtained from each PET 174 

model were also plotted against the baseline levels of each climate variable for all study sites.  175 

(2) To assess the relative importance of each climate variable, the range of percentage responses in PET to 176 

all climate perturbations in (1) was first compared to the conditional range of percentage responses in 177 

PET with holding each variable constant. This comparison enables an assessment of the relative impact 178 

of each variable on the potential responses of PET. An alternative presentation of the individual and 179 

interaction effects of the climate variables was achieved using the Sobol’ method (Sobol’ et al., 2007). 180 

Here, the total variance of PET was estimated based on different samples drawn from the perturbed 181 

ranges of each climate variable, and then partitioned into the individual contribution from each climate 182 

variable and their interactions (see Appendix A.1. for details). The Sobol’ first-order sensitivity indices 183 

were estimated and plotted against the baseline levels of each climate variable for all study sites to 184 

explore the role of varying baseline hydro-climatic conditions on the relative importance of each 185 

climatic variable for PET. 186 

Figure 2: Schematic of the method used in this study. 187 

 188 

3.2. Representing plausible changes in the climatic variables  189 

As part of the global sensitivity analysis, a large number of representative combinations of the changes in the 190 

four climate variables (T, RH, Rs and uz) were obtained. The upper and lower bounds for perturbing each climate 191 

variable were determined based on the uncertainty bounds of projections for 2100 for Australia (Stocker et al., 192 

2013). The selected bounds are given in Table 2, which are all slightly wider than those presented in Stocker et 193 

al. (2013) to encompass a comprehensive range of plausible future climate change scenarios. Within these 194 
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bounds, samples were drawn for different combinations of changes in each climatic variable. Latin hypercube 195 

sampling (LHS) was used for this purpose due to its effectiveness in covering multi-dimensional input spaces 196 

(Osidele and Beck, 2001;Sieber and Uhlenbrook, 2005;Tang et al., 2007b).   197 

 Table 2: Plausible perturbation bounds for each climate variable relative to their current levels. 198 

 199 

According to Nossent et al. (2011) and Zhang et al. (2015), the sample size was selected to ensure the 200 

convergence of the first- and total-order Sobol’ sensitivity indices, which occurs when the width of the 95 % 201 

confidence intervals from 1000-fold bootstrap resampling of the each index is below 10 % of the corresponding 202 

mean obtained from bootstrapping. Specifically, we generated different sizes of LHS samples of climate 203 

perturbations with the historical climate data from one study site, from which the PET responses were 204 

estimated using the Penman-Monteith model. The 1000-fold bootstrap estimates for the Sobol’ first- and total-205 

order sensitivity indices for each climate variable were then derived (as in Eqn. 1.2 and 1.5 in Appendix A.1., 206 

respectively) for each sample size. It was observed that both the Sobol' indices began to converge when the 207 

sample size exceeded 5000, and this was therefore used as the LHS sample size for all the sensitivity 208 

experiments in this study. Based on this sample size, a total of 30000 Sobol’ samples were compiled as required 209 

to estimate the first- and total-order indices (as detailed in Appendix A.1.), which correspond to 30000 climate 210 

perturbations to be used to test PET sensitivity. 211 

To generate time series of perturbed climate data, the 30000 joint perturbations to the four climate variables 212 

obtained by LHS were treated as change factors, and applied to the time series of daily values of the 213 

corresponding historical data. Rather than using a single daily mean value of temperature and relative humidity, 214 

the two PET models used in this study require both the daily minimum and maximum values; therefore each 215 
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pair of temperature variables and relative humidity variables was considered jointly and thus perturbed by the 216 

same amount for each day. In addition, to ensure physical plausibility of the perturbations, the daily maximum 217 

and minimum values of relative humidity were capped at a maximum of 100%. 218 

3.3. Estimating PET responses to climate perturbation 219 

To represent the responses in PET as a result of the climate perturbations, we used both the Penman-Monteith 220 

and Priestley-Taylor models, which provide contrasting process representations to estimate PET. The Penman-221 

Monteith model is often referred to as a combinational model, as it combines the energy balance and mass 222 

transfer components of ET, and takes into account vegetation-dependent processes such as aerodynamic and 223 

surface resistances (Eqn. 2.1 in Appendix A.2.). The model requires input of six climate variables, namely, Tmax, 224 

Tmin, RHmax, RHmin, Rs and uz. The Priestley-Taylor model consists of a simpler structure, considering only the 225 

energy balance, without consideration of mass transfer or any impact from vegetation (Eqn. 3.1 in Appendix 226 

A.3.). Therefore, the Priestley-Taylor model is also referred to as a radiation-based model. The model only 227 

requires five climate variables, including Tmax, Tmin, RHmax, RHmin and Rs.  228 

To minimize the potential confounding effects of differences in vegetated surface, the evaporative surface was 229 

assumed to be reference crop for all study sites, so that it was possible to use the FAO-56 version of the 230 

Penman-Monteith model (Allen et al., 1998). The detailed formulations of the two PET models, as well as the 231 

relevant constants and assumptions, are included in McMahon et al. (2013). Both models were implemented 232 

using the R package Evapotranspiration (http://cran.r-project.org/web/packages/Evapotranspiration/index.html) 233 

(Guo et al., 2016b). From each model, two sets of estimated PET were obtained: (i) a single set of baseline 234 

(historical) PET data at each study site with the historical climate data; (ii) 30000 sets of perturbed PET data at 235 

http://cran.r-project.org/web/packages/Evapotranspiration/index.html
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each study site corresponding to the 30000 sets of perturbed climate data obtained using LHS, as detailed in 236 

Sect. 3.2.  237 

3.4. Analyses of PET sensitivity 238 

To assess the overall sensitivity of PET to plausible climate change, we first estimated the annual average 239 

percentage changes in PET (relative to the baseline PET) using all climate perturbations at the 30 study sites, 240 

with estimates from both the Penmen-Monteith and Priestley-Taylor models. A closer investigation of how PET 241 

sensitivity varies with baseline climate was conducted by plotting the ranges of all monthly PET responses 242 

against the average levels of each climate variable, for all study sites and all months. The reason for the choice 243 

of monthly timescale is that for some study sites, the climate can vary substantially by season, so that an annual 244 

analysis might obscure important sub-annual effects. 245 

To assess the relative importance of each climate variable for PET estimation from each model, we first 246 

compared the ranges of the two sets of PET changes, namely: 247 

(1) The range of all potential changes in PET obtained from the entire 30000 sets of climate perturbations 248 

from LHS; and 249 

(2) The conditional ranges of potential changes in PET assuming no change in one of the climate variables. 250 

This was obtained with using a subset of all climate perturbations used in (1), for which the changes in 251 

the specific conditioning climate variable were close to zero (within ±0.1 ◦C for T, and within ±0.1 % for 252 

the other three variables).  253 

In this way any difference between (1) and (2) was purely contributed by the impact of changing the specific 254 

conditioning climate variable. To quantify and compare the relative importance of each climate variable, we 255 
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then utilized the Sobol’ method, which was implemented within the R package sensitivity (https://cran.r-256 

project.org/web/packages/sensitivity/index.html). We estimated the Sobol’ first-order sensitivity indices (as in 257 

Eqn. 1.2, Appendix A.1.) to assess the role of each individual climate variable for each PET model, at the 30 258 

study sites. The sum of all interaction effects was also calculated for each location as the difference between 259 

the sum of all first-order indices and one (Eqn. 1.6, Appendix A.1.). The Sobol’ first-order indices were then 260 

plotted against the baseline levels of each climate variable at the 30 study sites, to assess how the relative 261 

importance changes with the baseline climatic conditions.  262 

4. Results and discussion 263 

4.1. Ranges of potential changes in PET in response to potential climate change for different 264 

climate zones 265 

We start by assessing the potential changes in PET in response to the full set of climate perturbations at the 30 266 

study sites at the annual timescale, using both the Penman-Monteith and Priestley-Taylor models. The results 267 

are presented in Table 3 in terms of the minimum, maximum and average changes of PET relative to the 1995-268 

2004 baseline, in response to the 30000 sets of climate perturbation at each study site. The two models suggest 269 

similar average PET changes at most locations, with the average changes obtained from the Penman-Monteith 270 

model across all the locations (+13.38 %) being slightly higher than that for the Priestley-Taylor model 271 

(+10.91 %). Greater differences between the two models were observed when considering the ranges of 272 

changes. In particular, the minimum and maximum values (averaged across all the 30 sites) were -13.66 % and 273 

+47.09 % for the Penman-Monteith model, respectively, compared to -7.39 % and +34.47 % for the Priestley-274 

https://cran.r-project.org/web/packages/sensitivity/index.html
https://cran.r-project.org/web/packages/sensitivity/index.html
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Taylor model. This corresponds to a range for the Penman-Monteith model being approximately 45 % wider 275 

than that of the Priestley-Taylor model.  276 

Table 3: Maximum, minimum and average of all possible changes in annual average PET in response to the full set of 277 

climate perturbations from the Penman-Monteith and Priestley-Taylor models at the 30 study sites (as % changes to 278 

baseline PET relative to the 1995-2004 baseline). The maximum and minimum changes from each model across all 279 

locations are shaded in grey. 280 

 281 

For each PET model, the magnitudes of average potential changes in PET display substantial variation across the 282 

locations, with both models suggesting the lowest average changes at arid locations and highest average 283 

changes at humid locations, as was also observed in Table 3. Specifically, the Penman-Monteith model 284 

identified the highest average PET change at Flinders Island (+17.15 %), with the lowest average change at Alice 285 

Springs (+9.80 %). The Priestley-Taylor model identified the highest average change at Hobart (+17.77 %), with 286 

the lowest at Tennant Creek (+7.09 %).    287 

To further investigate how potential change in PET varies with different climatic conditions, we now focus on 288 

the associations between the PET responses and the baseline levels of the four climate variables for each month 289 

of the year and across the 30 study sites. Starting with the Penman-Monteith model (Fig. 3), it is clear that the 290 

PET response displays a clear association with the baseline levels of climate variables, with higher magnitude of 291 

responses for locations that are cooler (low T), more humid (high RH), and receiving less solar radiation (low Rs). 292 

The highest associations can be found with T (Fig. 3a), with the monthly changes in PET ranging from -30.2% to 293 

+98.3 % for the lowest baseline T value of 5.0 °C, compared to a range of -13.3 % to +46.6 % for the highest 294 

baseline T of 30.3 °C. Similarly, the range of Penman-Monteith PET responses also shows clear decreases with 295 
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baseline Rs (Fig. 3c), and increases with baseline RH (Fig. 3b). The baseline uz (Fig. 3d) levels show no obvious 296 

impact on the PET responses.   297 

Figure 3: Ranges of monthly PET responses obtained from the Penman-Monteith model, plotted against the monthly 298 

baseline levels of (a) temperature, (b) relative humidity, (c) solar radiation and (d) wind speed at 30 study sites. Each 299 

vertical line represents the range of all potential changes in PET in response to the full set of climate perturbations 300 

for a single month at a single location, with the mean represented by the point on the line. The classification of 301 

energy- and water-limited months is based on the corresponding monthly PET/P ratios. 302 

 303 

The potential responses in PET obtained from Priestley-Taylor was also investigated (Fig. 4), and results are 304 

consistent with the results from the Penman-Monteith model, although the overall ranges of responses were 305 

smaller for each variable as anticipated from the results in Table 3. Interestingly, regardless of the choice of PET 306 

model, the range of PET responses at the monthly scale is larger than the range for the annual scale suggesting 307 

greater uncertainty at higher temporal resolutions. 308 

Figure 4: Range of monthly PET responses obtained from the Priestley-Taylor model, plotted against the monthly 309 

baseline levels of (a) temperature, (b) relative humidity, (c) solar radiation and (d) wind speed at 30 study sites. Each 310 

vertical line represents the range of all potential changes in PET in response to the full set of climate perturbations 311 

for a single month at a single location, with the mean represented by the point on the line. The classification of 312 

energy- and water-limited months is based on the corresponding monthly PET/P ratios. 313 

 314 

In addition to assessing the impact of baseline climatic conditions, we are also interested in the role of baseline 315 

hydrological conditions (represented by the PET/P ratio at each study site) on the potential responses in PET. 316 

Since the hydrological conditions can vary substantially over the course of a year for each study site, for this 317 

analysis we focused on the PET/P ratios estimated on a monthly basis, and thus differ from the long-term PET/P 318 

ratios presented in Table 1. These results are also shown in Figs. 3 and 4, with red-colored bars denoting water-319 

limited conditions, and blue-colored bars denoting energy-limited conditions. These figures show that the 320 
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magnitude of potential responses in PET is generally larger under energy-limited conditions, regardless of the 321 

choice of PET model. In contrast, for water-limited conditions, the potential responses in PET only vary within 322 

approximately half of the entire range obtained from each PET model. However, when exploring the association 323 

with temperature (Figs. 3a and 4a) in more detail, the magnitude of responses in PET is in fact lowest for 324 

energy-limited conditions during warm months (i.e. when T > 25 °C, corresponding to the monsoonal summer 325 

months in the northern parts of Australia), and highest for the energy-limited conditions during cool months (i.e. 326 

when T < 15 °C, corresponding to the wet winter months in southern Australia). This highlights that it is the 327 

atmospheric temperature, rather than the level of aridity, that appears to affect the potential responses in PET. 328 

This finding leads to a different interpretation to previous studies, which indicated that the dominant drivers of 329 

spatially varying PET include aridity (Tabari and Hosseinzadeh Talaee, 2014) and wind speed (Gong et al., 2006). 330 

The above results also have potential implications on likely AET changes in a future climate. In particular, the 331 

above analysis shows that cool and humid regions and seasons appear to show the greatest potential responses 332 

in PET, and given that water is not expected to be limited for these cases, the ratio between AET and PET is also 333 

likely to be the greatest for these cases. As such, one might expect a greater change to AET occurring at the 334 

locations and during times of the year where PET is most sensitive to changes in climate.  335 

As a potential limitation to the above analysis, some reliability issues of the Penman-Monteith model have been 336 

discussed in a recent study by Milly and Dunne (2016), which suggested that the Penman-Monteith model may 337 

overestimate the potential changes in PET in these energy-limited regions relative to a GCM-based AET 338 

benchmark. They concluded that the potential changes in ET would be better described by GCMs than ‘off-line’ 339 

PET models (such as the two models used in this study), as GCMs can explicitly consider more complex 340 

atmospheric processes, such as the interaction between CO2 and stomatal conductance. Nevertheless, it should 341 
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be noted that the current reliability of GCMs in simulating ET is also questionable, due to the uncertainty in 342 

representing soil moisture and radiative energy at the evaporative surface (e.g. Seneviratne et al., 2013;Boé and 343 

Terray, 2008;Barella-Ortiz et al., 2013). In addition, due to the coarse scale of GCM output, downscaling is 344 

generally required to post-process output for use at local and regional scales, which often adds further bias and 345 

uncertainties to the GCM simulation and largely limits their applicability (e.g. Chen et al., 2012;Diaz-Nieto and 346 

Wilby, 2005). Therefore, although GCM results may be more suitable for large-scale assessments, catchment-347 

scale climate impact assessments are likely to be informed by ‘off-line’ PET models for the foreseeable future. 348 

Consequently, the estimated potential changes in PET shown in this study will remain relevant for climate 349 

impact assessments conducted using these models. 350 

4.2. Relative importance of climate variables affecting PET for different climate zones 351 

We now explore the relative importance of each climate variable on overall PET sensitivity, by first visualizing 352 

the conditional responses of PET when holding each variable constant at its historical level while perturbing the 353 

remaining variables, and then comparing this to the unconditional estimates of all potential responses in PET (as 354 

shown in Fig. 3 and Fig. 4). Figure 5 shows the ranges of the monthly unconditional responses in PET (dashed 355 

lines) and the ranges of the monthly responses conditioned on zero-change in each of T, RH, Rs and uz (solid 356 

lines) for the Penman-Monteith model, plotted against the monthly baseline levels of the four climate variables 357 

at the 30 study sites.  358 

Figure 5: Range of monthly PET responses from the Penman-Monteith model, plotted against the monthly baseline 359 

levels of (a) temperature, (b) relative humidity, (c) solar radiation and (d) wind speed at 30 study sites. Each dashed 360 

(solid) line represents the range of all potential changes in PET in response to the full set of climate perturbations 361 

(conditioned on no-change in each climate variable) for a single month at a single location. The corresponding 362 

means are represented by the points on the lines. The classification of energy- and water-limited months is based on 363 

the corresponding monthly PET/P ratios. 364 
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The figure suggests that perturbations in T have the greatest impact on the potential changes in PET compared 365 

to other climate variables (Fig. 5a), contributing to at least 45 % of the entire range of PET responses compared 366 

to the unconditional results. Humidity also plays a significant role, although only for higher humidity levels 367 

(contributing up to 57 % of the entire range of PET responses) with relatively minor influence for the less humid 368 

catchments (Fig. 5b). In contrast, the role of solar radiation (Fig. 5c) and wind (Fig. 5d) is generally minor, with 369 

the range of unconditional responses being only slightly wider than the range of conditional responses.    370 

A similar analysis was conducted for the Priestley-Taylor model (Fig. 6), and shows somewhat different results 371 

compared to those obtained for the Penman-Monteith model. Consistent with Fig. 5a, temperature has the 372 

greatest impact, but in this case contributes up to 85 % of the overall variability in PET responses (Fig. 6a). As a 373 

result, the range of PET changes contributed by the remaining variables (i.e. conditional responses with no-374 

change in temperature) is much smaller. Unlike in Fig. 5b, the role of relative humidity does not appear to 375 

increase significantly with increasing baseline humidity (Fig. 6b) and in general contributes less than 33 % of the 376 

overall variability. The lower impact of RH on Priestley-Taylor PET compared to the impact on Penman-Monteith 377 

PET can be related to the structure of Priestley-Taylor model, which does not consider the aerodynamic 378 

processes, so that the impact of RH on PET through these processes is not accounted (see Eqn. 2.7, 2.15 and 379 

2.16 in Appendix A.2.). The role of solar radiation appears to be somewhat larger for high baseline solar 380 

radiation values (Fig. 6c) and wind is shown to have no impact as expected, since wind is not an input into the 381 

Priestley-Taylor model (Fig. 6d). However, it is worth noting that although the Priestley-Taylor model does not 382 

consider wind as an input variable, the range of unconditional responses of PET is slightly wider than the range 383 

of responses conditioned on no-change in wind. This is because the conditional responses were estimated with 384 
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only a subset of all climate perturbations (Sect. 3.4), which may not consist of the entire range of perturbation 385 

in each of the other three climate variables.     386 

Figure 6: Range of monthly PET responses from the Priestley-Taylor model, plotted against the monthly baseline 387 

levels of (a) temperature, (b) relative humidity, (c) solar radiation and (d) wind speed at 30 study sites. Each dashed 388 

(solid) line represents the range of all potential change in PET in response to the full set of climate perturbations 389 

(conditioned on no-change in each climate variable) for a single month at a single location. The corresponding 390 

means are represented by the points on the lines. The classification of energy- and water-limited months is based on 391 

the corresponding monthly PET/P ratios. 392 

 393 

A more formal quantitative measure of the relative importance of each climate variable for PET is provided by  394 

the Sobol’ indices. Figure 7 shows the Sobol’ first-order indices of the Penman-Monteith PET to changes in the 395 

four climate variables at the annual scale, as well as their interactions. The first-order indices are plotted against 396 

the baseline levels of each climatic variable to observe the impact of baseline climate conditions. For 397 

presentation purposes, the baseline levels are represented by the rank of the baseline annual average value of 398 

each variable, rather than the absolute level of each climate variable across the 30 study sites. The Sobol’ 399 

indices in the figure show that T is generally the most important variable for PET, with index values ranging from 400 

0.46 to 0.62. Since the Sobol’ indices suggest the partitioning of the total variance of PET, these results are 401 

consistent with Fig. 5a, which suggests that perturbations in T contribute to at least 45 % of the variation in the 402 

estimated changes in PET. The role of wind and humidity in affecting the sensitivity values is also evident, with 403 

wind being the second-most important variable (with Sobol’ indices up to 0.42) for sites with low baseline 404 

humidity, and humidity being the second-most important variable (with Sobol’ indices up to 0.47) for sites that 405 

have high humidity (Fig. 7b). Solar radiation is generally the variable with the lowest Sobol’ indices, with the 406 

largest contributions (up to 18 %) can be observed for warm catchments (Fig. 7a). 407 
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Figure 7: Sobol’ first-order sensitivity indices of the Penman-Monteith model for changes in the four climate 408 

variables (colored) and their interaction effects (grey), plotted against the ranking of the average level of each climate 409 

variable at 30 study sites 410 

 411 

The Sobol’ sensitivity indices are also presented for the Priestley-Taylor model (Fig. 8), and show substantial 412 

differences compared to those for the Penman-Monteith model. Temperature exhibits the largest sensitivity 413 

score in most cases, and ranges from 0.44 to 0.83. The relative role of temperature varies most clearly as a 414 

function of both the baseline temperature (Fig. 8a) and the baseline solar radiation values (Fig. 8c), with 415 

temperature being particularly important for low temperature and low solar radiation sites. As temperature and 416 

radiation increase, the relative role of solar radiation becomes more important, reaching Sobol’ index values of 417 

up to 0.49. In contrast, the role of relative humidity is generally minor (with Sobol’ indices within the range 418 

0.03-0.1) and does not appear to vary as a function of baseline conditions. Finally, the role of wind is absent, 419 

given that this variable is not included as part of the Priestley-Taylor equation. 420 

Figure 8: Sobol’ first-order sensitivity indices of the Priestley-Taylor model for changes in the four climate variables 421 

(colored) and their interaction effects (grey), plotted against the ranking of the average level of each climate variable 422 

at 30 study sites 423 

 424 

The differences between the Penman-Monteith and Priestley-Taylor models highlight the different physical 425 

assumptions underpinning the models, with aerodynamic processes being important for the Penman-Monteith 426 

model as indicated by the relative importance of RH and uz for this model, whereas Rs has a critical role in the 427 

Priestley-Taylor model, which is closely linked to the emphasis of radiative energy as the energy source for ET in 428 

the model. 429 
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Finally, comparing Fig. 7 and Fig. 8, it is apparent that the interactions among the four climate variables on PET 430 

(shown as grey bars) are greater in the Penman-Monteith model compared to the Priestley-Taylor model. 431 

Specifically, these interactions contribute fractions of 0.03-0.04, and 0-0.02 of the total variance in PET for the 432 

Penman-Monteith and Priestley-Taylor models, respectively. The relative magnitude of the interaction effects in 433 

the two models can be again related to their structural differences: the higher interaction effects in Penman-434 

Monteith can be a result of the larger number of variables in this model compared with those in the Priestley-435 

Taylor model.  436 

It is difficult to assess the consistency of these sensitivity results with existing literature, given the different 437 

methodologies and datasets used in other studies. Although most PET sensitivity studies used only the Penman-438 

Monteith PET model, there is still substantial discrepancy in results depending on the specific implementations 439 

of sensitivity analysis. For example, Gong et al. (2006) perturbed each of temperature, wind speed, relative 440 

humidity and solar radiation within ±20 % for the Changjiang basin in China, and observed that that relative 441 

humidity was generally the most important variable driving PET, followed by solar radiation, temperature and 442 

wind speed. This contrasted with our results from the Penman-Monteith model, which showed temperature as 443 

the most important variable and solar radiation as the least important variable for almost all the stations 444 

analyzed, and may be attributable to the different baseline climates as well as the perturbation ranges used for 445 

the sensitivity analysis between the two studies.  446 

The results of our study were more consistent with Goyal (2004), who concluded that PET is most sensitive to 447 

potential changes in temperature for an arid region in India, by applying a ±20 % perturbation on each of 448 

temperature, solar radiation, wind speed and vapor pressure. In contrast, Tabari and Hosseinzadeh Talaee 449 

(2014) also used a ±20 % perturbation range, but on only three climate variables, namely temperature, wind 450 
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speed and sunshine hours, for several climate regions in Iran. Their study concluded that the catchment aridity 451 

was a major determinant of the sensitivity to temperature, wind speed and humidity, whereas our analysis 452 

highlights the importance of baseline temperature and humidity, rather than the aridity (or water- or energy-453 

limited status of the catchment) as a key driver. 454 

PET sensitivity can further diversify by the choice of PET models, as illustrated in McKenney and Rosenberg 455 

(1993), in which the percentage changes in PET due to a +6 ◦C change can differ up to around 40 %, when 456 

estimated with eight alternative PET models. This lack of consistency in the relative importance of the climate 457 

variables for PET is not surprising given the findings of our study, as the results are strongly dependent on the 458 

design of the sensitivity analysis experiment, including the choice of study sites and study periods, the input 459 

climate variables considered, and the ways to perturb them (i.e. the choice of global or local perturbation and 460 

the ranges of perturbation in different input variables).  461 

Nevertheless, the sensitivity results from this study suggest some distinct spatial patterns of the relative 462 

importance of different climate variables in Australia. Since the Penman-Monteith model is the most 463 

comprehensive physically-based PET model, the above regionalization of the PET sensitivity from this model can 464 

be used as a benchmark to identify the key climate variables for estimating PET under potential climate change. 465 

This information can be particularly useful to suggest the potential suitability of specific PET models for regional 466 

applications. For example, since the Penman-Monteith PET showed higher sensitivity to wind at dry locations 467 

(Fig. 7b), it is expected that wind-dependent PET models (such as Penman and Penman-Monteith) would be 468 

more appropriate for predicting PET at these locations. In contrast, using simpler models that do not consider 469 

wind as an input (such as Priestley-Taylor) can be problematic for these locations. Although this study only 470 

examined two PET models, the results suggest that simpler empirical models are likely to ignore some potential 471 
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dynamics and interactions within the climate variables, which makes them less preferred for PET estimation 472 

under changing climates.  473 

Another particular issue in the selection of one or several PET models under a changing climate arises from 474 

considering the current reliability of available climate projections, as the models can show high levels of 475 

sensitivity to variables for which we currently do not have high-quality climate projections. For example, for a 476 

given emissions scenario, there is reasonable confidence in projections of temperature and relative humidity in 477 

Australia, but less confidence in projections of solar radiation and wind (Flato et al., 2013;CSIRO and Bureau of 478 

Meteorology, 2015). However the radiation-based Priestley-Taylor model can show high sensitivity to solar 479 

radiation, particularly for warm locations with high baseline solar radiation (Fig. 8a and 8c), due to a particular 480 

emphasis on radiative energy and thus the empirical relationships between PET and solar radiation. Similarly, 481 

the Penman-Monteith model can exhibit higher sensitivity to wind for locations with low relative humidity (Fig. 482 

7b). Therefore, the use of GCM projections at these locations may lead to significant uncertainty in PET 483 

estimates due to the uncertainty in the driving variables. 484 

5. Summary and conclusions 485 

In this study, we used a global sensitivity analysis to investigate the sensitivity of PET and the relative 486 

importance four climatic variables which influence PET (T, RH, Rs and uz) under plausible future changes in these 487 

variables. The sensitivity analysis was conducted at 30 Australian case study locations within different climate 488 

zones to understand the impact of varying baseline hydro-climatic conditions. For the sensitivity analysis, the 489 

historical climate data at each study site were first perturbed to represent a large number of plausible climate 490 
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change conditions, and then the responses in PET were estimated with both the Penman-Monteith and 491 

Priestley-Taylor models, from which the sensitivity of PET was analysed. The key results are as follows: 492 

 In general PET is most sensitive to potential changes in climate in regions with lower temperature, less 493 

solar radiation and greater humidity, where two-fold greater magnitude of changes in PET are expected 494 

compared to other locations in Australia.  495 

 Within the plausible perturbations in T, RH, Rs and uz, PET is generally most sensitive to T. The relative 496 

importance of the other climate variables varies substantially with the PET models. Rs has a dominant 497 

role in the radiation-based Priestley-Taylor model, highlighting the importance of radiative energy in 498 

the model. In contrast, the importance of RH and uz are comparable for the Penman-Monteith model, 499 

whereas Rs has only little impact, reflecting the contribution of aerodynamic energy. 500 

 The relative importance of climate variables in influencing PET depends very clearly on baseline climatic 501 

conditions. From Penman-Monteith, locations that are warmer, drier and receiving more solar radiation 502 

generally show greater sensitivity to uz and lower sensitivity to RH. For Priestley-Taylor, the importance 503 

of T increases while that of Rs decreases for cooler locations and locations receiving less solar radiation. 504 

The global sensitivity analysis used in this study is a powerful tool for providing a comprehensive and consistent 505 

measure of PET sensitivity to different climatic variables, considering a wide range of possible changes in 506 

climate, across different models with different data requirements. However, we have identified space for 507 

improvements in further implementations. For example, the bounds of perturbation for each climate variable 508 

can have a substantial impact on PET sensitivity, and thus their selection requires careful justification (for 509 

example see Whateley et al., 2014;Shin et al., 2013). Therefore, alternative lines of evidence on possible 510 

changes in climate should be considered in setting these bounds: for example, the results of ensemble climate 511 
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models (e.g. Collins et al., 2013), the impact of low-frequency climatic modes (e.g. Chen et al., 2013;Vincent et 512 

al., 2015), as well as findings from within paleoclimatology records (e.g. Ault et al., 2014;Ho et al., 2015).  513 

The analysis in this study also lends itself to scenario-neutral analyses (Brown et al., 2012;Prudhomme et al., 514 

2010), although the full implications on specific impacts of hydrological systems (e.g. flood risk, water supply, 515 

etc) would require the sensitivity analysis to be propagated to runoff via explicitly modelling the interaction 516 

between ET and rainfall-runoff processes (e.g. Garcia and Tague, 2015;Roy et al., 2016). Furthermore, potential 517 

changes to precipitation, which were not analyzed here but which can have a significant impact on future runoff, 518 

would need to be considered. Within this context, the incorporation of alternative lines of evidence can 519 

therefore not only be used to define the bounds of the perturbations, but can also be superimposed onto the 520 

exposure space (e.g. as in Prudhomme et al., 2013a;Culley et al., 2016) to provide insight into the likelihood of 521 

possible changes. The outcomes of our study can feed into such a scenario-neutral analysis by providing 522 

guidance on the variables that are likely to be most important for a particular location, as well as providing 523 

insights on the potential implications of using alternative PET models on the overall sensitivity results.  524 

  525 
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Appendix 756 

A.1. Sobol’ sensitivity analysis (Sobol’ et al., 2007) 757 

Sobol’ is considered a variance-based method, which requires estimation of the total variance in a model output 758 

due to changes in its inputs is estimated with a Monte-Carlo approach. To estimate the variances, a large 759 

number of samples is firstly drawn by varying all input variables simultaneously, and then a Sobol’ sequence is 760 

constructed by re-sampling from within these Monte-Carlo samples (Saltelli et al., 2010). According to Sobol’ et 761 

al. (2007), to estimate the Sobol’ first-order and total-order indices with a Monte-Carlo sample size of n 762 

consisting of p input variables, a Sobol’ sequence with a total of n.(p+2) samples should be obtained, i.e. 763 

requiring n.(p+2) model evaluations. 764 

Sobol’ analysis partitions the total variance in model output to the contribution of each individual input variable 765 

(i.e. first-order effects), as well as their interactions (i.e. higher-order effects), as follows (equation adapted 766 

from Zhang et al., 2015): 767 

𝑉𝑌 =  ∑ 𝑉𝑖        +         𝑛
𝑖=1 ∑ 𝑉𝑖𝑗𝑖<𝑗 + ∑ 𝑉𝑖𝑗𝑘𝑖<𝑗<𝑘 … + 𝑉1,2…,𝑛                      (1.1) 768 

Individual effects                        Interactions 769 

 The outputs from Sobol’ analysis include (equations adapted from Nossent et al., 2011): 770 

1) First-order sensitivity index, which quantifies the individual contribution of each input variable to 771 

the total variance of the model’s output; 772 

𝑆𝑖 =
𝑉𝑖

𝑉𝑌
                                                                       (1.2) 773 



34 
 

2) Second- and higher-order sensitivity index, which quantifies the contribution of interactions among 774 

two or more input variables to the total variance of the model’s output; 775 

For second-order: 𝑆𝑖𝑗 =
𝑉𝑖𝑗

𝑉𝑌
                                                 (1.3) 776 

For higher-order: 𝑆𝑖𝑗…𝑛 =
𝑉𝑖𝑗...𝑛

𝑉𝑌
                                             (1.4) 777 

3) Total sensitivity index, which quantifies the total contribution of each input variable, including its 778 

individual effect as well as all its interactions with other input variables, to the total variance of the 779 

model’s output.  780 

𝑆𝑇𝑖 = 𝑆𝑖 + ∑ 𝑆𝑖𝑗𝑗≠𝑖 = 1 −
𝑉~𝑖

𝑉𝑌
                                                      (1.5) 781 

From Eqn. 1.1 to 1.4, the sum of individual effects of all input variables and all their interactions equals one 782 

(adapted from Zhang et al., 2015): 783 

1 =  ∑ 𝑆𝑖        +         𝑛
𝑖=1 ∑ 𝑆𝑖𝑗𝑖<𝑗 + ∑ 𝑆𝑖𝑗𝑘𝑖<𝑗<𝑘 … + 𝑆1,2…,𝑛                       (1.6) 784 

Individual effects                        Interactions 785 

  786 
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A.2. Penman-Monteith PET model (FAO-56) (as in McMahon et al., 2013) 787 

The Penman-Monteith PET model (FAO-56) is given as: 788 

𝐸𝑇 =  
0.408∆(𝑅𝑛−𝐺)+𝛾

900

𝑇𝑎+273
𝑢2(𝑣𝑎

∗ −𝑣𝑎)

∆+𝛾(1+0.34𝑢2)
                                             (2.1) 789 

 790 
The process for estimating each of the variables in this equation are described in the following sections.  791 
 792 

Estimating ∆ in Equation 2.1 793 

∆ is the slope of vapor pressure curve in kPa°C-1, which is estimated by: 794 

∆=
4098[0.6108exp (

17.27∗𝑇𝑎
𝑇𝑎+237.3

)]

(𝑇𝑎+237.3)2                                                         (2.2) 795 

 796 
In Eqn. 2.2, Ta is the average daily temperature in °C, calculated as:  797 

𝑇𝑎 =
𝑇𝑚𝑎𝑥+𝑇𝑚𝑖𝑛

2
                                                            (2.3) 798 

 799 

Estimating Rn in Equation 2.1 800 

Rn is the net incoming solar radiation at the evaporative surface in MJ.m-2.day-1, which is estimated by:  801 

𝑅𝑛 = 𝑅𝑛𝑠 − 𝑅𝑛𝑙                                                          (2.4) 802 
 803 
In Eqn. 2.4, Rns is the net shortwave solar radiation, estimated by:  804 

𝑅𝑛𝑠 = (1 − 𝛼)𝑅𝑠                                                               (2.5)  805 
 806 
In Eqn. 2.5, α is the albedo at evaporative surface which is fixed at 0.23 in this equation, and Rs is the measured 807 
or estimated incoming solar radiation in MJ.m-2.day-1. Rnl is the net outgoing longwave radiation, estimated as:  808 
 809 

𝑅𝑛𝑙 = 𝜎(0.34 − 0.14𝑣𝑎
0.5)

(𝑇𝑚𝑎𝑥+237.2)4+(𝑇𝑚𝑖𝑛+237.2)4

2
(1.35

𝑅𝑠

𝑅𝑠0
− 0.35)          (2.6) 810 

 811 

In Eqn. 2.6: 𝜎 is is Stefan-Boltzmann constant = = 4.903*10-9 MJ.m-2.day-1 °K-4, va is the mean daily actual vapor 812 

pressure in kPa, Rs0 is the clear-sky radiation in MJ.m-2.day-1. va and Rs0 estimated by Eqn. 2.7 and 2.8, 813 
respectively:  814 

𝑣𝑎 =
𝑣𝑎

∗ (𝑇𝑚𝑎𝑥)
𝑅𝐻𝑚𝑎𝑥

100
+𝑣𝑎

∗ (𝑇𝑚𝑖𝑛)
𝑅𝐻𝑚𝑖𝑛

100

2
                                               (2.7) 815 

 816 

𝑅𝑠0 = (0.75 + 2 × 10−5𝐸𝑙𝑒𝑣)𝑅𝑎                                                 (2.8) 817 
 818 
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In Eqn. 2.8, Elev is the ground elevation above sea level at the measurement location, and Ra is the 819 
extraterrestrial solar radiation in MJ.m-2.day-1, estimated as: 820 

𝑅𝑎 =
1440

𝜋
𝐺𝑠𝑐𝑑𝑟

2(𝜔𝑠 sin(𝑙𝑎𝑡) sin(𝛿) + cos(𝑙𝑎𝑡)sin(𝑙𝑎𝑡) sin(𝜔𝑠)]                       (2.9) 821 

 822 
In Eqn. 2.9, Gsc is the solar constant = 0.0820 MJ.m-2.min-1, lat is the latitude in radiance, dr is the inverse relative 823 
distance between Earth and Sun, δ is the solar declination in radians, and ωs is the sunset hour angle in radians, 824 
The dr, δ and ωs are estimated as follows: 825 

𝑑𝑟
2 = 1 + 0.033cos (

2𝜋

365
𝐷𝑜𝑌) with DoY as the day of the year                (2.10) 826 

𝛿 = 0.409sin (
2𝜋

365
𝐷𝑜𝑌 − 1.39)                                         (2.11) 827 

𝜔𝑠 = 𝑎𝑟𝑐𝑜𝑠[− tan(𝑙𝑎𝑡) tan(𝛿)]                                         (2.12) 828 
 829 

Estimating other variables in Equation 2.1 830 

- G is negligible for daily time step. 831 
 832 

- γ is the psychrometric constant in kPa°C-1, estimated as: 833 

𝛾 = 0.00163
𝑃

𝜆
 where P is the pressure at elevation z meters                     (2.13) 834 

 835 
- u2 is the daily average wind speed measured at 2 meters in m.s-1, which can be estimated from the 836 

measured wind speed at z meters as: 837 

𝑢2 = 𝑢𝑧

ln (
2

𝑧0
)

ln (
𝑧

𝑧0
)
 where z0 is the roughness height in meters                         (2.14) 838 

 839 
- (va

*- va) is the vapour pressure deficit in kPa, in which va is the mean daily actual vapor pressure in kPa, 840 
estimated as Eqn. 2.7; va

* is the daily saturation vapor pressure in kPa, estimated as: 841 

𝑣𝑎
∗ =

𝑣𝑎
∗ (𝑇𝑚𝑎𝑥)+𝑣𝑎

∗ (𝑇𝑚𝑖𝑛)

2
                                                        (2.15) 842 

 843 
In Eqn. 2.15, va

*(Tmax) and va
*(Tmin) are the vapor pressures at temperatures Tmax and Tmin in °C are estimated 844 

with: 845 

𝑣𝑇
∗ = 0.6108exp [

17.27𝑇

𝑇+237.3
]                                                        (2.16) 846 

 847 
 848 

A.3. Priestley-Taylor PET model (as in McMahon et al., 2013) 849 

The Priestley-Taylor PET model is given as: 850 
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𝐸𝑇 = 𝛼𝑃𝑇 ∗ [
∆

∆+𝛾

𝑅𝑛

𝜆
−

𝐺

𝜆
]                                                            (3.1) 851 

where: 852 
 853 

- α PT is the albedo specifically used for the Priestley-Taylor model, since an evaporative surface of 854 
reference crop was assumed, this has a value of 1.12 which was for a similar surface of short grass (See 855 
Table S8 of the supplementary of McMahon et al., 2013), 856 

 857 
- ∆ is the slope of vapor pressure curve in kPa°C-1, estimated as Eqn 2.2. 858 

 859 
- γ is the psychrometric constant in kPa°C-1, estimated as Eqn. 2.12. 860 

 861 
- λ is the latent heat of vaporization, which is 2.45 MJ.kg-1 at 20◦C. 862 

 863 
- Rn is the net incoming solar radiation at the evaporative surface in MJ.m-2day-1, which is estimated in 864 

the same way as Eqn. 2.4. 865 
 866 

- G is negligible for daily time step.  867 
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Figures and Tables 868 

   869 

Figure 1: Locations of 30 Australian weather stations (see Table 1 for the full names of these weather stations) 870 

selected for analysis, with reference to their corresponding climate classes derived following the modified Köppen 871 

classification (reproduced with data from Stern et al., 2000).  872 

  873 
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 874 

Figure 2: Schematic of the method used in this study. 875 

876 
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 877 

Figure 3: Ranges of monthly PET responses obtained from the Penman-Monteith model, plotted against the monthly 878 

baseline levels of (a) temperature, (b) relative humidity, (c) solar radiation and (d) wind speed at 30 study sites. Each 879 

vertical line represents the range of all potential changes in PET in response to the full set of climate perturbations 880 

for a single month at a single location, with the mean represented by the point on the line. The classification of 881 

energy- and water-limited months is based on the corresponding monthly PET/P ratios. 882 

 883 
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 884 

Figure 4: Range of monthly PET responses obtained from the Priestley-Taylor model, plotted against the monthly 885 

baseline levels of (a) temperature, (b) relative humidity, (c) solar radiation and (d) wind speed at 30 study sites. Each 886 

vertical line represents the range of all potential changes in PET in response to the full set of climate perturbations 887 

for a single month at a single location, with the mean represented by the point on the line. The classification of 888 

energy- and water-limited months is based on the corresponding monthly PET/P ratios. 889 

 890 

    891 
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 892 

Figure 5: Range of monthly PET responses from the Penman-Monteith model, plotted against the monthly baseline 893 

levels of (a) temperature, (b) relative humidity, (c) solar radiation and (d) wind speed at 30 study sites. Each dashed 894 

(solid) line represents the range of all potential changes in PET in response to the full set of climate perturbations 895 

(conditioned on no-change in each climate variable) for a single month at a single location. The corresponding 896 

means are represented by the points on the lines. The classification of energy- and water-limited months is based on 897 

the corresponding monthly PET/P ratios. 898 

899 
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 900 

Figure 6: Range of monthly PET responses from the Priestley-Taylor model, plotted against the monthly baseline 901 

levels of (a) temperature, (b) relative humidity, (c) solar radiation and (d) wind speed at 30 study sites. Each dashed 902 

(solid) line represents the range of all potential change in PET in response to the full set of climate perturbations 903 

(conditioned on no-change in each climate variable) for a single month at a single location. The corresponding 904 

means are represented by the points on the lines. The classification of energy- and water-limited months is based on 905 

the corresponding monthly PET/P ratios. 906 

 907 
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 908 
 909 

Figure 7: Sobol’ first-order sensitivity indices of the Penman-Monteith model for changes in the four climate 910 

variables (colored) and their interaction effects (grey), plotted against the ranking of the average level of each climate 911 

variable at 30 study sites 912 

  913 
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 914 
 915 
Figure 8: Sobol’ first-order sensitivity indices of the Priestley-Taylor model for changes in the four climate variables 916 

(colored) and their interaction effects (grey), plotted against the ranking of the average level of each climate variable 917 

at 30 study sites 918 

  919 
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Table 1: Names, locations and average climate conditions of the 30 weather stations over the study period (1995-920 

2004). 921 

No. Study site 
name 

Köppen 
class1 

Lat  
(°S) 

Long 
(°E) 

Elev 
(m) 

T  
(°C) 

RH  
(%) 

Rs 
(MJ m-2  
day-1) 

uz  
(m s-1) 

Annual 
P (mm) 

Annual 
PET 
(mm) 

Annual 
PET/P 

1 Broome 
airport 

13 -17.95 122.2 7.4 26.37 65.15 21.55 3.684 865 2003 2.317 

2 Perth  8 -31.93 116.0 15.4 18.54 61.72 18.95 4.519 721 1751 2.429 

3 Albany  4 -34.94 117.8 68 15.08 73.59 15.20 4.382 752 1126 1.498 

4 Giles  24 -25.03 128.3 598 22.70 38.40 20.29 4.380 394 2344 5.947 

5 Darwin  35 -12.42 130.9 30.4 27.42 69.27 20.33 3.393 1976 1864 0.944 

6 Gove  35 -12.27 136.8 51.6 26.29 75.93 19.45 3.500 1607 1660 1.033 

7 Tennant 
Creek  

13 -19.64 134.2 375.7 25.73 37.21 21.64 4.759 539 2634 4.886 

8 Alice Springs  15 -23.80 133.9 546 21.18 44.53 20.79 2.352 331 1822 5.503 

9 Woomera  24 -31.16 136.8 166.6 19.41 46.57 19.40 5.057 151 2153 14.24 

10 Ceduna 11 -32.13 133.7 15.3 16.92 62.04 18.20 5.450 266 1723 6.478 

11 Adelaide 
airport 

12 -34.95 138.5 2 16.37 63.04 16.91 4.213 454 1410 3.107 

12 Adelaide 
(kent town) 

12 -34.92 138.6 48 16.95 61.20 16.88 3.161 569 1372 2.409 

13 Loxton  12 -34.44 140.6 30.1 16.50 59.41 17.59 3.250 255 1490 5.847 

14 Mount 
Gambier  

4 -37.75 140.8 63 13.45 72.77 14.91 4.460 731 1116 1.526 

15 Weipa  41 -12.68 141.9 18 26.87 72.21 19.31 3.271 2154 1782 0.827 

16 Cairns  36 -16.87 145.7 3 24.80 73.00 18.98 4.352 1985 1678 0.845 

17 Townsville  35 -19.25 146.8 4.3 24.53 69.45 20.27 4.304 1099 1802 1.641 

18 Cobar  15 -31.48 145.8 260 19.08 50.64 19.05 2.458 398 1565 3.936 

19 Williamtown 9 -32.79 151.8 9 17.84 70.57 16.07 3.927 1145 1309 1.143 

20 Sydney  9 -33.94 151.2 6 18.19 67.69 15.97 5.311 1017 1393 1.369 

21 Canberra  6 -35.30 149.2 578.4 13.36 65.82 16.86 3.302 590 1226 2.078 

22 Wagga 
Wagga  

9 -35.16 147.5 212 15.77 61.78 17.48 3.288 552 1436 2.602 

23 Mildura  12 -34.24 142.1 50 17.11 55.62 18.24 3.604 246 1645 6.681 

24 East sale  6 -38.12 147.1 4.6 13.77 72.32 14.92 4.062 529 1093 2.067 

25 Scottsdale  3 -41.17 147.5 197.5 13.19 70.55 14.23 2.921 931 912 0.980 

26 Bicheno  3 -41.87 148.3 11 14.69 66.68 13.69 3.319 690 966 1.401 

27 Lake Leake  3 -42.01 147.8 575 9.96 75.40 13.44 3.358 732 774 1.056 

28 Hobart  3 -42.83 147.5 4 12.77 65.67 14.04 4.367 483 1097 2.273 

29 Strathgordon 
village 

3 -42.77 146.0 322 10.70 77.95 11.65 2.473 2626 699 0.266 
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30 Flinders 
Island  

3 -40.09 148.0 9 13.54 73.59 14.34 6.399 654 1064 1.626 

Note:  922 
1The Köppen classes are presented with their corresponding identifiers from Stern et al. (2000), as: 3. Temperate - no 923 

dry season (mild summer); 4. Temperate - distinctly dry (and warm) summer; 6. Temperate - no dry season (warm 924 

summer); 8. Temperate - moderately dry winter (hot summer); 9. Temperate - no dry season (hot summer); 11. 925 

Grassland - warm (summer drought); 12. Grassland - warm (persistently dry); 13. Grassland - hot (winter drought); 15. 926 

Grassland - hot (persistently dry); 24. Desert - hot (persistently dry); 35. Tropical - savanna; 36. Tropical - rainforest 927 

(monsoonal); 41 Equatorial - savanna. 928 
2T  = temperature, RH = relative humidity, Rs = incoming solar radiation, uz = wind speed, P = rainfall, PET = potential 929 

evapotranspiration calculated using the Penman-Monteith model. 930 

  931 
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Table 2: Plausible perturbation bounds for each climate variable relative to their current levels. 932 

Climate variable Perturbation range 

T 0 to +8 °C 

RH -10 % to +10 % 

Rs -10 % to +10 % 

uz -20 % to +20 % 
Note: T = daily temperature, RH = daily relative humidity, Rs = daily incoming solar radiation, uz = daily wind 933 

speed. 934 

  935 
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Table 3: Maximum, minimum and average of all possible changes in annual average PET in response to the full set of 936 

climate perturbations from the Penman-Monteith and Priestley-Taylor models at the 30 study sites (as % changes to 937 

baseline PET relative to the 1995-2004 baseline). The maximum and minimum changes from each model across all 938 

locations are shaded in grey. 939 

No. Study site name Penman-Monteith Priestley-Taylor 

Min. Max. Avg. Min. Max. Avg. 

1 Broome airport -12.33 39.10 11.16 -9.61 33.75 9.59 

2 Perth  -13.20 46.67 13.52 -7.98 34.17 10.62 

3 Albany  -15.04 54.67 15.21 -7.28 35.49 11.63 

4 Giles  -12.30 37.57 10.68 -7.73 25.83 7.27 

5 Darwin  -12.73 39.10 10.92 -9.82 33.84 9.50 

6 Gove  -13.10 41.34 11.53 -9.74 33.67 9.61 

7 Tennant Creek  -12.28 36.45 10.21 -8.35 26.31 7.09 

8 Alice Springs  -10.88 34.00 9.80 -8.00 27.41 7.92 

9 Woomera  -12.84 43.48 12.73 -7.48 30.35 9.18 

10 Ceduna -13.97 49.61 14.39 -7.62 33.82 10.67 

11 Adelaide airport -14.47 49.80 14.17 -7.22 34.55 11.09 

12 Adelaide (kent town) -13.10 45.43 13.17 -7.15 33.70 10.78 

13 Loxton  -12.55 44.05 12.96 -7.18 33.34 10.67 

14 Mount Gambier  -15.33 57.97 16.00 -6.58 35.54 12.02 

15 Weipa  -12.42 39.06 10.95 -9.66 32.98 9.36 

16 Cairns  -14.80 44.74 12.08 -9.42 33.84 9.73 

17 Townsville  -13.77 43.21 12.10 -9.43 34.26 9.90 

18 Cobar  -10.62 37.49 11.36 -7.64 31.19 9.49 

19 Williamtown -13.64 47.99 13.68 -7.66 34.11 10.76 

20 Sydney  -16.24 53.71 14.46 -7.61 35.24 10.98 

21 Canberra  -12.41 46.17 13.85 -6.95 33.24 10.92 

22 Wagga Wagga  -13.00 46.34 13.43 -7.09 33.27 10.74 

23 Mildura  -12.61 44.50 13.05 -7.24 32.75 10.38 

24 East sale  -14.43 53.82 15.34 -6.51 36.32 12.19 

25 Scottsdale  -13.64 51.53 15.02 -5.42 40.00 13.47 

26 Bicheno  -14.81 52.11 14.87 -4.91 46.38 15.68 

27 Lake Leake  -16.06 60.36 16.45 -5.11 36.03 12.84 

28 Hobart  -15.97 56.29 15.78 -4.57 50.36 17.77 

29 Strathgordon village -13.08 52.11 15.29 -4.66 33.83 12.35 

30 Flinders Island  -18.05 64.07 17.15 -6.19 38.66 13.02 

Average -13.66 47.09 13.38 -7.39 34.47 10.91 
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 941 


