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Abstract. NAPL contaminants introduced into the unsaturated zone spread as a liquid phase; however, they can also vaporize

and migrate in a gaseous state. Heavy vapors preferentially migrate downward due to their greater density and, thus, pose

a potential threat to underlying aquifers. Large-scale column experiments were performed to quantify partitioning processes

responsible for the retardation of carbon disulfide (CS2) vapor in partially saturated porous media. The results were compared

with a theoretical approach taking into account the partitioning into the aqueous phase. The experiments were conducted5

in large, vertical columns (i.d. = 0.109 m) of 2 m length packed with different porous media. A slug of CS2 vapor and the

conservative tracer argon was injected at the bottom of the column followed by a nitrogen chase. Different seepage velocities

were applied to characterize the transport and to evaluate their impact on retardation. Concentrations of CS2 and argon were

measured at the top outlet of the column using two gas chromatographs. The temporal-moment analysis for step input was

employed to evaluate concentration breakthrough curves and to quantify diffusion/dispersion and retardation. The experiments10

conducted showed a pronounced retardation of CS2 in moist porous media as a function of porous medium and water saturation.

An increase in the retardation coefficient with increasing water saturation was observed. Thus, the novel vapor-retardation

experiments demonstrated that migrating CS2 vapor is retarded as a result of partitioning into the aqueous phase. Moreover,

CS2 which is dissolved in the pore water is amenable to biodegradation. First evidence of CS2 decay by biodegradation was

found in the experiments. The findings contribute to the understanding of vapor plume transport in the unsaturated zone and15

provides valuable experimental data for the transfer to field like conditions.

1 Introduction

Subsurface contamination is a major concern in industrialized as well as in developing and emerging countries. NAPL contam-

inants introduced into the unsaturated zone spread as a liquid phase; however, they can also vaporize and migrate in a gaseous

state. In particular, vapor (gas) plumes migrate easily in the unsaturated zone (Barber and Davis, 1991; Davis et al., 2005, 2009;20

Höhener et al., 2006). Vapors heavier than air preferentially migrate downward, posing a potential threat to aquifers. When

assessing the danger of groundwater contamination by migrating vapor plumes, retention effects on transport are of major in-

terest. Processes such as partitioning to soil water or adsorption on sand grains affect the migration of vapors in the unsaturated
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zone. Vapor retardation could potentially slow down migration and reduce the total contaminant mass eventually reaching, and

thus endangering the groundwater. While fate and transport of vapor plumes have attracted a great deal of attention over the

past years, further (contaminant-specific) investigations are necessary to improve the process understanding required to assess

the threat to the environment (Rivett et al., 2011). The contaminant used in this work was carbon disulfide (CS2), an industrial,

non-polar solvent among many used to manufacture viscose rayon. It is highly volatile and characterized by a very high density5

(1.6 times the air density) in a gaseous state. CS2 has been found in 139 (11.2 %) contaminated sites on the U.S. EPA National

Priority List (NPL), according to McGeough et al. (2007).

Experimental studies (e.g. Brusseau et al., 1997; Kim et al., 1998) have been conducted to investigate retardation of the

most common VOC in unsaturated porous media. Experimental results have been compared with standard as well as advanced

advection-dispersion models (Popovičová and Brusseau, 1998; Toride et al., 2003). Corley et al. (1996) showed that low con-10

centrations of volatile organic compounds distribute in the bulk phases (air, water and solid), adsorb to the air-water interface,

and partition into intraparticle pores in unsaturated and saturated porous media. While it has been demonstrated in experiments

that the gas-water interface poses a high potential for retardation (Brusseau et al., 1997), determining the size of interfacial

areas and partitioning parameters in theoretical approaches is considered a challenge (Hoff et al., 1993; Kim et al., 1997, 1998).

Mayes et al. (2003) stated that immobile water in pores could act as a short-term sink and as a long-term source of potential15

contaminants. The effect of moisture content on vapor retention has also been described by Cabbar and Bostanci (2001) and

Maxfield et al. (2005) who discovered retardation to be negatively correlated to water saturation due to preferred adsorption on

the solid matrix of certain components. The latter has additionally shown the dependency of retardation on the properties of

the chemical compound of interest. For instance, noble gases show no retardation behavior at all.

This component and water-saturation-dependent behavior of gas-phase retention emphasizes the necessity for a thorough20

investigation into retardation of carbon disulfide (CS2) in partially saturated porous media. Thereby, fundamental knowledge

regarding its potential to delay or prevent a contamination of an underlying aquifer is gained. Large-scale column experiments

were designed and conducted to quantitatively characterize retardation of CS2 with clearly-defined and controlled boundary

conditions. The experiments were conducted in vertical columns (i.d. = 0.109 m) of 2 m length packed with a porous medium.

They were carried out under dry conditions and at static water saturations. Reproducible water saturations (initial conditions)25

were obtained by saturation with water and subsequent drainage under controlled conditions at predetermined capillary pres-

sures. A finite slug containing gaseous CS2 as well as a non-retarding, conservative tracer (argon) was injected via an injection

section at the bottom of the column. Effluent concentrations of CS2 and argon were measured online at the top outlet of the

column. Tensiometers installed along the column measured capillary pressures to monitor the drainage process and to obtain

water-saturation profiles of the porous medium. Gas flow rates were controlled by mass-flow controllers and additionally mea-30

sured by a bubble flow meter. This novel experiment set-up enabled for the quantification of CS2 retardation as a function of

porous medium, water saturation, and seepage velocity.
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Table 1. Physicochemical properties of contaminant carbon disulfide (CS2) at 20◦C, 1013.15 hPa.

Parameter Value Reference

CAS number 75-15-0

Molecular weight (MCS2), g mol-1 76.1 Budavari (1996)

Density of liquid (ρ), kg m-1 1263 Budavari (1996)

Solubility in water (cw,sat), g L-1 2.1 Riddick et al. (1986)

Henry coefficient (Hcc), dimensionless 1.04 De Bruyn et al. (1995)

Boiling point (TB), °C 46.5 Budavari (1996)

Vapor pressure (Psat), hPa 396.9 Wagner equation

Saturation concentration in gas phase (ca,sat), kg m-3 1.239 Ideal gas law

CS2-Air vapor mixture density (ρvap), kg m-3 1.971 Ideal gas law

Diffusion coefficient in air (DCS2Air), cm2 s-1 9.71e-02 Chapman-Enskog

2 Materials and methods

This work focused on the experimental investigation into the retardation of CS2 vapor in partially saturated porous media. This

sections addresses the experimental set-up, the procedures, and data evaluation methods used in this study. Table 1 shows the

physicochemical properties of the contaminant carbon disulfide (CS2) at 20◦C, 1013.15 hPa.

2.1 Experimental set-up5

The experiments were conducted in vertical, stainless steel columns of 2 m length packed with two different types of porous

media (Figure 1). The column (length = 2 m, i.d. = 0.109m) consisted of two custom-built, 1 m long sections. The ports along

the column at a distance of 25 cm allowed for the installation of tensiometers to monitor capillary pressures. At the bottom

of the column, the injection section with a base plate was installed. Into this base plate, a porous plate made of recrystallized

silicon carbid was glued to act as a suction plate for the water drainage. The bottom of the column was realized as a constant-10

mass-flux boundary while the top is open to the surroundings, hence, at constant pressure.

Two different types of porous media (Table 2) were used in the experiments: fine glass beads (soda-lime glass, Sigmund

Lindner, Warmensteinach, Germany) and Geba fine sand (Quarzsande GmbH, Eferding, Austria). Their grain-size distribu-

tions as well as capillary pressure - water saturation relationships are shown in Figure 2. The columns were packed by dry

pluviation using a sand rainer. The design of the rainer was adopted from Rad and Tumay (1987) with modifications according15

to Lagioia et al. (2006). The columns consisting of two column sections were filled section after section, each with an overfill of

around 30 cm. This prevented additional layering of the porous medium. The columns were sealed with cover plates equipped

with 1/8" tube fittings (SS-6M0-1-4RT, Swagelok). The experiments were carried out under dry conditions as well as at irre-

ducible, static water saturation. Comparable initial conditions for each experiment were guaranteed by a set-up controlling and

monitoring saturation and drainage. The drainage of the porous media was realized by means of the porous plate at the bottom20
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Figure 1. Flowchart of vapor-retardation experiment showing column, injection and saturation/drainage set-up.

of the column exclusively permeable for water when fully saturated. This allowed for setting the water Table lower than the

bottom of the column or flume. The saturations followed the capillary pressure–saturation relationship (Fig. 2) measured in the

laboratory. The water saturation was monitored using the installed tensiometers at the column ports. The tensiometer used for

measuring capillary pressures consisted of a ceramic frit (length = 8 mm, o.d. = 6.5 mm, pore size = 2.5 um, porosity = 45 %,

Porous Ceramics, Soilmoisture Equipment Corp., Santa Barbara, USA) glued in a stainless steel capillary (length = 200 mm,5

o.d. = 6 mm, i.d. = 4 mm). In addition, the column was placed on a scale to permanently monitor its weight and thus the total

amount of pore water.
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Table 2. Characteristic properties of the porous media used for the experiments.

Parameter Fine glass beads Geba fine sand

Bulk density, kg m-3 1420 1390

Grain size, mm 0.1 – 0.2 0.06 – 0.35

Permeability, m2 1·10-11 1·10-11

Grain diameter d50, um 162 140

Pore diameter (median), um 66 39

Knudsen number (CS2) 1.51·10-4 2.56·10-4

van Genuchten (constrained)

α, cm-1 0.0193 0.0145

n, dimensionless 17.783 10.305

θs, cm3 cm-3 0.392 0.460

θr , cm3 cm-3 0.043 0.071
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Figure 2. Grains-size distribution, capillary pressure–saturation relationship, and relative permeabilities (for the wetting phase) of materials

used in experiments.

The injection section at the bottom of the column allowed for the injection of a gas-mixture slug at a predefined mass flux

and, in addition, for a controlled upward flow stabilizing the vapor front. The CS2 vapor was prepared prior to injection. A

predefined amount of liquid CS2 was injected into a barrel (V = 50 L) and pressurized to an excess pressure of about 2 bar

with nitrogen to ensure defined vapor properties. The tracer argon was provided from a gas cylinder (Westfalen AG, Münster,

Germany). Constant mass fluxes of the injected CS2 vapor and of the conservative tracer (argon) were critical to the experi-5

ment. Mass fluxes of argon, CS2 vapor, and nitrogen were controlled by mass-flow controllers (EL-FLOW, Qmax = 3, 50, and

10 mL m−1, Bronkhorst High-Tech B.V., Ruurlo, Netherlands). Complete gas tightness of the entire set-up was ensured by

using 1/8" stainless steel capillaries throughout. The slug of the gas mixture (CS2, argon, and the carrier nitrogen) was injected

5
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and then pushed through the column using a nitrogen chase at the same flow rate. Prior to injection into the column, argon

(approximately QAr/Qtotal = 1.4 %) was added to the total flow. The mass balance was closed based on the measured flow rate,

and the injection and effluent concentrations. The second objective of the nitrogen chase was to observe the recovery of the

contaminant and reversibility of partitioning processes. In the case of moist experiments, the gas mixture slug was humidified

with ultra-pure water (RH = 100 %) to avoid a drying-up of the moist porous medium. For the preparation of the gas-mixture5

slug, a custom-built miniature vaporizer (ICTV, University of Stuttgart, Germany) with an ultra-low volume pump (M6, VICI

AG International, Schenkon, Switzerland) was used. The nitrogen used for the chase was bubbled through a gas scrubber filled

with ultra-pure water. The inlet steel capillary loop (length = 4 m) and the scrubber were placed in a temperature-controlled

water bath (Ministat 125, Huber Kältemaschinenbau GmbH, Germany) to minimize temperature-induced fluctuations during

the experiments.10

In the column outflow, CS2 and argon concentration were measured to quantify retardation in dry and moist porous media.

Two gas chromatographs were directly connected in-line to the column outlet. CS2 concentrations were determined using a

gas chromatograph with a photoionization detector (GC-PID HE1, Meta Messtechnische Systeme GmbH, Dresden, Germany)

and argon concentrations were determined using a gas chromatograph with thermal conductivity detector (GC-TCD, Multiple

gas analyzer 8610-0270, SRI Instruments Europe GmbH, Bad Honnef, Germany). Single-point calibrations were conducted15

prior to and after each run. Measurement intervals were set depending on the flow velocity such that a high temporal resolution

(0.021 to 0.065 PV) of the breakthrough curves was obtained. Prior to the start of the slug injection, the concentration of CS2

and argon in the slug mixture was measured as a base to normalize concentrations. A relative pressure transducer connected to

the column inlet before the injection section was used to monitor the injection pressure. Since the top column outlet was open

to the atmosphere (Patm), this corresponded to the pressure loss caused by the flow through the porous medium. Temperature20

sensors and absolute pressure transducer continuously measured and recorded ambient and water bath temperature as well as

atmospheric pressure in the vicinity of the experiment.

2.2 Experimental procedure

Various experiment series were conducted in two different porous media (fine glass beads and Geba fine sand) under both dry

and partially saturated (moist) conditions. Within each series the columns were not repacked and no saturation-and-drainage25

cycle (SD) was carried out since first tests proved that the partitioning processes were fully reversible. The water saturation

or total amount of pore water was monitored throughout the experiment. The slug of the gas mixture was injected with a

predefined mass flux into the bottom of the 2 m long column such that it resulted in the designed migration velocity. In each

series, experiments were performed with different velocities including 25, 50, 100, and 200 cm h−1 (approx. 0.125, 0.25,

0.5, and 1.0 PV h−1) to observe effects on retardation by kinetics. A slug of about 3.5 PV was used which corresponded to30

injection durations of approx. 3.5, 7, 14, and 28 h depending on the respective velocities. This ensured a residence time (plus

safety factor) sufficient to attain steady-state conditions and for partitioning processes to reach equilibrium.

The experiments were conducted in four steps. In the first step, the flow rates (slug and chase) were adjusted to match the

target migration velocity. In the second step, the column was flushed with nitrogen. While maintaining constant flux, the inflow
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was switched to the slug injection of the gas mixture in the third step. After injecting 3.5 PV it was switched back to the

nitrogen chase (fourth step).

2.3 Data evaluation

The objective of the experiments was to quantify the retardation of CS2 vapor. Possible influences on the determined retardation

factors due to experimental artifacts such as a deviation between theoretical and actual gas-effective pore volume had to be5

taken into consideration. Hence, for each experiment the breakthrough curve of CS2 was related to that of argon. Concentrations

were normalized with respect to the steady-state concentrations (c = cexp/css). Mass balance was calculated from concentration

data and measured gas flow rates. Data was evaluated based on elapsed time and then correlated via flow rate, resulting from

mass flux, to gas-effective pore volume. Moreover, both the slug itself and the nitrogen chase were considered which allowed

for an separate evaluation of the slug front and tail (front of nitrogen chase). Breakthrough curves were evaluated using the10

temporal-moment analysis (TMA) for a step input (slug) as proposed by Yu et al. (1999) and Luo et al. (2006). The advantage

of TMA "is that no underlying physical model is needed for calculating the travel times" (Yu et al. (1999), p. 3571), and the

breakthrough curves of the CS2-Ar mixture (slug front) as well as the nitrogen chase (or slug tail) can be evaluated individually.

Moreover, TMA can also be applied to asymmetrical BTCs resulting from non-equilibrium sorption processes during transport.

Hence, retardation of CS2 in moist and dry porous media could be compared and the impact of water saturation on retardation15

of CS2 could be delineated.

TMA was applied to obtain transport parameters (seepage velocity [Eq. A9] and dispersion coefficient [Eq. A10]) and

mean breakthrough arrival (Eq. A7) time from concentration breakthrough curves. The retardation factor R of CS2 vapor was

calculated from the ratio of the respective moments or mean breakthrough arrival time.

R=
τCS2

τAr
=
M1,CS2

M1,Ar
(1)20

This ensured the independence from experimentally-induced deviations and thus allowed to quantify the influence of water

saturation and migration velocity on retardation. Experimental retardation factors were compared with a theoretical factor.

Brusseau et al. (1997) used carbon dioxide (CO2) as a tracer whose predominant source of retardation was the partitioning into

the aqueous phase. The similarity of CS2 and CO2 regarding solubility in water and Henry constant suggests a comparable

retardation behavior for CS2. Hence, partitioning into the aqueous phase is considered the only contribution. Adsorption on25

grains (3) and at the gas-water interface (4) (terms on the right hand-side of Eq. A11) will be neglected. This then yields the

adapted theoretical retardation coefficient.

Rt = 1 +
θw

θaKH
(2)

where θw is volumetric water content, θa is gas-filled porosity, KH (dimensionless) is Henry’s constant.
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Table 3. Experimental conditions of vapor-retardation experiments in fine glass beads and Geba fine sand in dry and moist conditions (series).

Series 1 2 3 4

Condition dry moist moist moist

Fine glass beads

Porosity (φ) 0.40 0.40 0.40 0.40

Mean water saturation (Sw) 0.0 0.088 0.154 0.073

Eff. pore volume, L 7.72 7.04 6.53 7.16

Geba fine sand

Porosity (φ) 0.40 0.40 0.40 -

Mean water saturation (Sw) 0.0 0.162 0.150 -

Eff. pore volume, L 7.58 6.35 6.45 -

3 Results and discussion

Column experiments were conducted with dry and moist porous media to characterize retardation of CS2 vapor. Table 3 shows

the experimental conditions of each series performed in fine glass beads and Geba fine sand. Several series of experiments were

performed in each porous medium to quantify retardation. Series 1 refers to the experiments conducted in dry porous media

while Series 2 to 4 refer to the experiments in moist conditions. A saturation-and-drainage cycle was performed prior to each5

moist series. A slug of 3.5 PV of the gas mixture was injected ensuring, even for high flow rates, a sufficient residence time

to reach equilibrium in the 2 m long column. Different seepage velocities (25, 50, 100, and 200 cm h−1) were applied, based

on previously conducted experiments investigating density-driven vapor migration (Kleinknecht et al., 2015). Breakthrough

curves under the prevailing experimental conditions were determined from concentration measurements at the column out-

let. The temporal-moment analysis (Sec. 2.3) was applied to the breakthrough curves (BTC) to quantify diffusion/dispersion10

and retardation as a function of the porous media, the water saturation, and the flow conditions. A detailed summary of all

experiments (experimental conditions, injected mass, and mass recovery) is given in Tables 5 and 6 in the appendix.

3.1 Water saturations

The moist porous medium required for this investigation was obtained by saturation and subsequent drainage. The suction

applied at the bottom of the column during drainage was responsible for the observed water saturation profiles. The capillary15

pressure was measured with the tensiometers installed at the column ports to derive water saturations along the column (Pc–Sw,

Fig. 2). Mean water saturations of the moist series are given in Table 3.

Figure 3 (left-hand) shows the initial water saturation profiles along the column measured in fine glass beads (only Series 4)

and Geba fine sand (Series 2 and 3). Unfortunately, no tensiometer measurement data was available for Series 2 and 3 in fine

glass beads. However, the available profile of Series 4 revealed a uniform saturation along the column, only slightly increasing20
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Figure 3. Initial water saturation and progression of water saturation in experiment with Geba fine sand (Series 2).

toward the bottom from Sw = 0.07 to 0.14. The very narrow and uniform grain-size distribution of the fine glass beads was

responsible for a sharp transition from full to irreducible saturation (see Pc–Sw curve in Fig. 2), thus favoring a uniform

saturation profile. In Geba fine sand, a constant water saturation of Sw = 0.15 above a column height of 70 cm was measured.

However, both profiles showed a pronounced increase in the water saturation toward the bottom of the column, apparently

reaching fully-saturated conditions according to the Pc–Sw relationship of Geba fine sand (Fig. 2). Still, capillary pressures5

of Pc = 55 and 65 hPa were measured at the lowest port. The suction applied via the porous plate was limited by its air entry

pressure. A further decrease of pressure would have resulted in a breakthrough of air (continuous gas phase). The mean water

saturation (Table 3) but also the observed profiles were expected to have an impact on the retardation behavior of CS2, as

discussed in Sec. 3.3.

Figure 3 (right-hand) shows an exemplary progression of water saturations measured in Experiment 28 of Series 2 with10

Geba fine sand (Table 6). The saturations were based on tensiometers along the column during the injection of the slug and the

subsequent nitrogen chase. The tensiometers suggested an apparent change in water saturation during active gas flow through

the porous medium. This was most likely provoked by the pressure increase due to the injection and the gas flow around

the tensiometer. It is important to note that the tensiometers measured the suction at a very spatially-limited location in the

porous medium due to the small size of their tips (o.d. = 6 mm, length = 8 mm). In addition, the pressure transducers of the15

tensiometers showed periodic fluctuations as a result of daily temperature changes in the laboratory hall and due to varying

ambient pressure. However, a drying-out of the porous medium was prevented by the humidification of all gases (slug and

chase) prior to injection. This was confirmed by the water mass balance by means of the continuous weight measurement

of the entire column throughout all experiments conducted within a series. Hence, the initial water-saturation profile could

9
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be maintained throughout the experiments. These experiments allowed for the characterization of transport behavior under

different initial and controlled boundary conditions.

3.2 Impact of velocity on breakthrough

The impact of the seepage velocity on the concentration breakthroughs of argon and CS2 was investigated. Thus, different

velocities were applied to characterize the transport. Figure 4 and 5 show breakthrough curves of CS2 and argon as a function5

of pore volume for different flow conditions (velocities) in moist fine glass beads and Geba fine sand. The breakthrough curves

were adapted to the actual gas-effective pore volume determined from the mean breakthrough arrival time τAr (Eq. A7) of the

conservative tracer argon. Seepage velocities of about 25, 50, 100, and 200 cm h−1 (residence time of about 8, 4, 2, and 1 h)

were applied successively in the same column and under similar initial conditions. The lines represent measured concentrations

(c/css) normalized to steady-state concentration. The graphs are split and the right-hand side shows the outflow concentrations10

after the injection was switched from the gas-mixture slug to the nitrogen chase. Thus, these experiments allowed for the

individual evaluation of the slug and of the nitrogen chase breakthroughs. The skewness of a BTC is a result of the longitudinal

molecular diffusion and the mechanical mixing. The BTCs of argon and CS2 shown in the graphs illustrate that the skewness

increased with decreasing seepage velocity as a result of increased diffusion during the longer residence time. Since argon

was used as a conservative tracer, its breakthrough was a function of the seepage velocity only. CS2 was additionally affected15

by retardation, hence its breakthrough depended on seepage velocity as well as water saturation. The retardation of CS2 is

discussed in detail in the following Section 3.3. The repetitions with a velocity of about 50 cm h−1 proved that equilibrium

was reached and they showed good reproducibility of the experiments.

The BTCs were evaluated with the temporal-moment analysis (TMA, see Sec. A3) to obtain dispersion coefficients (Eq. A10)

of argon and CS2 for different flow conditions. Figure 6 shows dispersion coefficients as a function of velocity of these ex-20

periments in moist porous media. Dispersion coefficients of argon and CS2 increased from DAr = 0.089 to 0.142 cm2 s−1 and

DCS2 = 0.033 to 0.074 cm2 s−1 as a function of the seepage velocity and the porous medium. The dispersion coefficient is de-

fined asD =D∗+αv (Eq. A5). Under static conditions (v = 0 cm h−1), the effective binary diffusion coefficientsD∗ in porous

media should apply.D∗ is defined as the product of the binary diffusion coefficient (Eq. A1) of the component in nitrogen and a

tortuosity factor (Eq. A4). In the case of flow, the dispersion coefficient increases due to mechanical mixing which is a measure25

of the heterogeneity of the porous medium or the flow region, respectively. It is defined as the product of the dispersivity α and

the velocity.

The effective binary diffusion coefficients D∗ and the dispersivity α were determined from the breakthrough curves of

the experiments. Based on the equation above, a linear regression was fitted to the dispersion coefficients as a function of

the velocity for each porous medium. The y-intercepts of the regression lines represent the coefficient D∗ and the slopes30

express dispersivity α of the respective porous medium. The theoretical coefficient D∗t was determined according to the

Chapman-Enskog theory and the approach by Millington and Quirk (1961) which accounts for tortuosity due to porous ma-

trix and water saturation (see Sec. A1). Table 4 compares theoretical with experimental effective binary diffusion coefficients

of CS2 and argon in fine glass beads and Geba fine sand under the given experimental conditions (water saturation Sw and
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Figure 4. Breakthrough curves of CS2 and Ar in moist fine glass beads (Sw = 0.088) for different velocities.
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Figure 6. Dispersion coefficients of CS2 and Ar determined from TMA as a function of velocity. Experiments were conducted in fine glass

beads (Sw = 0.088, Series 2) and Geba fine sand (Sw = 0.154, Series 2).

Table 4. Theoretical and experimental effective binary diffusion coefficient D∗ of argon and CS2, dispersivity α, and coefficient of determi-

nation R2 of linear regression determined from experiments in moist porous media (Series 2).

Porous medium Fine glass beads Geba fine sand

Water saturation Sw 0.088 0.154

Tortuosity τ 0.220 0.161

Argon

D∗t , cm2 s-1 0.0386 0.0284

D∗, cm2 s-1 0.0909 0.0966

α, cm 1.029 0.313

R2 (lin. regression) 0.919 0.254

CS2

D∗t , cm2 s-1 0.0213 0.0157

D∗, cm2 s-1 0.0263 0.0332

α, cm 0.888 0.552

R2 (lin. regression) 0.987 0.952

tortuosity tau). In fine glass beads, effective binary diffusion coefficients of argon were D∗Ar = 0.0909 cm2 s−1 compared to

D∗t,Ar = 0.0386 cm2 s−1 and of CS2 wereD∗CS2
= 0.0263 cm2 s−1 compared toD∗t,CS2

= 0.0213 cm2 s−1. In Geba fine sand, co-
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efficients of argon were D∗Ar = 0.0966 cm2 s−1 compared to D∗t,Ar = 0.0284 cm2 s−1 and of CS2 were D∗CS2
= 0.0332 cm2 s−1

compared to D∗t,CS2
= 0.0157 cm2 s−1. The experimental coefficients D∗ differed from the theoretical effective binary diffu-

sion coefficient D∗t calculated for the prevailing conditions. This could result from the choice of porous media, since both

media were characterized by a uniform and narrow grain-size distribution, as well as the observed water-saturation profiles.

Werner et al. (2004) reported that theoretical approaches are often sensitive since the majority of their parameters are raised5

to a high power and do not apply satisfactorily to a wide variety of soils. Furthermore, the theoretical approach does not take

into account material characteristics such as the pore-size distribution which may vary for similar porosities and hence affect

the tortuosity factor. Dispersion coefficients shown in Figure 6 varied for a given velocity due to minor differences between

the experiments and to variations arising from the temporal-moment analysis. The equation used to determine the dispersion

coefficient (Eq. A10) from TMA raises the velocity to the power of three, thus minor deviations had a great impact on the final10

values.

The increase in the dispersion coefficient in Figure 6 from the effective binary diffusion coefficient (at v = 0 cm h-1) with

increasing velocity resulted from mechanical mixing due to flow through the moist porous medium. This was observed in all

experiments. The increase is determined by the slope of the linear regression representing the dispersivity α which should be

a parameter of the porous medium only and should be independent of the components (gases) and flow conditions. A slight15

difference was found between CS2 and argon for both materials, resulting in a mean dispersivity of αGBfine = 0.958 cm in fine

glass beads and αGeba = 0.432 cm in Geba fine sand. The difference could be due to dispersivity transforming from a physical

system to a lumped parameter, because of e.g. diffusional or nonequilibrium effects. This then results in a component-dependent

dispersivity according to Costanza-Robinson and Brusseau (2002), who reported that dispersivity ranges from approx. 0.1

to 5.0 cm. Since argon is a conservative tracer and CS2 is affected by retardation, greater reliability was attributed to the20

dispersivity αAr determined from BTCs of argon. The results of the experiments in this work demonstrate the impact of

seepage velocities on the diffusion/dispersion of CS2 vapor and of argon. Thus, an influence of the velocity on the retardation

of CS2 was expected.

3.3 Retardation of CS2

Different series of experiments were conducted to quantify retardation of CS2 as a function of water saturation and seepage25

velocity. Figure 7 and 8 compare breakthrough curves (BTC) of argon and CS2 in dry (black) and moist (red) porous medium

for the same seepage velocity (v = 50 cm h−1). Two to three repetitions of each run in dry and moist conditions, respectively,

are shown. The graphs show normalized concentrations as a function of effective pore volume (total pore volume minus water

content after drainage).

The BTCs of argon showed excellent reproducibility in repetition experiments in both materials at the same conditions30

(v = 50 cm h−1). In fine glass beads, argon showed very similar BTCs for dry and moist experiments. This thus confirmed that

argon experiences no retardation and may be used as a conservative tracer and as a reference for CS2. In Geba fine sand, a

different skewness was observed between dry and moist conditions as a result of the reduced pore space in moist conditions.

Hence, a comparison of the BTCs revealed that the effective-flow region in fine glass beads was similar in dry and moist
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Figure 7. Breakthrough curves of CS2 and Ar in dry and moist (Sw = 0.088) fine glass beads under identical slug and flow conditions (v =

50 cm h-1).

conditions, whereas in Geba fine sand it was reduced in moist conditions. This resulted in BTCs which were less affected by

diffusion due to a shorter residence time. Since the experiments were conducted with a constant-flow-rate boundary condition

based on the calculated effective pore volume, a shorter residence time i.e. higher seepage velocity occurred when the actual

effective pore volume available for gas flow is smaller than the calculated volume.

The BTCs of CS2 showed, in general, good reproducibility for all experiments. In fine glass beads, a later breakthrough of5

CS2 compared to argon can be observed in Figure 7, demonstrating the retardation of CS2 due to partitioning into the water

phase. The different effective pore volume due to the pore water and possible reduced residence time (actual vs. calculated

PV) resulted in less skewed BTCs compared to the dry experiments. In Geba fine sand, a more pronounced retardation of CS2

was observed compared to experiments in fine glass beads. The later breakthrough becomes evident when comparing BTCs

in dry (black) with moist (red) conditions in Figure 8. This could be ascribed to the overall higher water saturation and the10

increase in saturation toward the bottom of the column (see Fig. 3). In two of the three BTCs in moist experiments (Fig. 8), CS2

concentrations leveled at around c/css = 0.9 followed by an increase to steady-state (plateau) concentrations toward the end of

the slug. This behavior might be a consequence of the water saturation over column height affecting the partitioning processes.

The retardation coefficients of CS2 as a function of porous medium, water saturation, and seepage velocity were determined

using the temporal-moment analysis (TMA) of the breakthrough curves (see Sec. 2.3). The coefficients were normalized with15

respect to the BTCs from dry porous medium. Thereby, errors due to set-up or other systematic errors could be eliminated
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Figure 8. Breakthrough curves of CS2 and Ar in dry and moist (Sw = 0.154) Geba fine sand under identical slug and flow conditions (v =

50 cm h-1).

and allowed for the comparison with theoretical values. Figure 9 shows retardation coefficients of CS2 as a function of water

saturation (upper) and seepage velocity (lower) in fine glass beads (black) and Geba fine sand (red). The coefficients of the

slug (circle) and the chase (rectangle) are given and their size represents seepage velocity or water saturation. Note the broken

x-axis (water saturation) between Sw = 0.10 and 0.13 in the upper graph indicated by the vertical, dashed lines.

In fine glass beads, a non-linear increase in the retardation coefficient from RGBfine = 1.09 to 1.16 with increasing water5

saturation from Sw = 0.075 to 0.155 was observed. Of course, partitioning to the water phase is dependent on the gas-water

interfacial area which should decrease with increasing water saturation. Thus an extrapolation of the retardation coefficient

to higher water saturations might be difficult. The retardation of the slug and of the chase were different in fine glass beads,

the chase being more prone to retardation than the slug. The breakthrough of the nitrogen chase (removal of the CS2 vapor)

showed a higher retardation by a factor (average) of 1.05 compared to the breakthrough of the slug throughout all experiments10

in fine glass beads. This behavior can be also seen when comparing the BTCs of CS2 in the upper graph of Figure 7.

In Geba fine sand, higher retardation coefficients compared to fine glass beads were measured in the experiments. These

ranged between RGeba = 1.29 and 1.34 at a mean water saturation of Sw = 0.162. This was due to the higher water saturation and

its increase toward the bottom (discussed in Sec. 3.1), the different gas-water interfacial area, and the pore space available for

gas flow. Series 3 in Geba fine sand had to be excluded from these graphs due to mass balance issues discussed later. Hence,15
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Figure 9. Retardation coefficients of CS2 determined from experiments with different seepage velocities in fine glass beads and in Geba fine

sand at different water saturations (evaluated with temporal-moment analysis).

results were only available for one particular water saturation in Geba fine sand. The ratio between the retardation coefficient of

the slug and that of the chase did not show a clear trend as observed in fine glass beads despite the differences seen in Figure 9.

The retardation coefficients gained from the experiments were compared to a theoretical approach. The adapted theoretical

retardation coefficient (Eq. 2) is shown as a line in the upper graph. The theoretical coefficient is calculated taking into account

the porosity of the porous medium, the water saturation, and the Henry coefficient. Hence, only one function is shown in the5
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upper graph of Figure 9, since the porosities of the fine glass beads and the Geba fine sand used were similar. In fine glass beads,

the theoretical coefficient compared very well with the values from the experiments. It slightly overpredicted the retardation

of the slug while it underpredicted that of the chase, however it reproduced satisfactorily the mean retardation coefficient

and its increase with water saturation. In Geba fine sand, the theoretical coefficient significantly underestimated the observed

retardation. This could be due to the fairly simple theoretical approach only taking into account the porosity of the porous5

medium. It is obvious that the pore-size distribution depending on the grain-size distribution of the porous medium determines

the gas-water interfacial area and thus has a significant impact on retardation. However, such material characteristics are not

factored in by the theoretical coefficient. Moreover, the non-uniform water-saturation profile along the column height could be

responsible for varying partitioning. Finally, deviations could occur due to adsorption processes or higher-order kinetics during

partitioning which were neglected in the theoretical factor. These findings suggest that retardation may vary along the depth of10

the unsaturated zone due to spatially-varying water saturations and especially around the capillary fringe in the vicinity of the

groundwater level.

The experiments were conducted with different seepage velocities to evaluate their impact on retardation. The lower graph

in Figure 9 shows the retardation coefficients as a function of seepage velocity. A mean retardation coefficient of RGBfine =

1.100±0.0096 and RGeba = 1.315±0.0152 was measured in the experiments with fine glass beads (Sw = 0.088) and Geba fine15

sand (Sw = 0.162), respectively. In general, no significant change of the retardation behavior with increasing seepage velocity

was observed. This confirmed that the mass transport rate was low enough and the residence time of the slug was sufficient for

the partitioning processes to reach equilibrium. Concluding from the experiment with v = 200 cm h−1 it seems likely that there

was a slight tendency toward a reduced retardation. In fact, retardation may reduce at higher seepage velocities due to limiting

contaminant diffusion. If no equilibrium is reached in case of high velocities, the retardation coefficient reflects an apparent20

coefficient since in this case it is a function of the experimental system used (i.e. length of the column). Additional experimen-

tal repetitions would have been required to provide proof. However, this experimental investigation aimed at characterizing

retardation of CS2 in the range of seepage velocities observed during vapor-plume migration experiments (v� 200 cm h−1).

Hence, the focus laid on the velocities used and higher values were beyond the scope.

Mass balance analyses were performed to obtain mass recovery (r) from each breakthrough curve. Mass recovery was25

calculated from concentration and flow measurements and were normalized with respect to the injected mass. In general,

mass recoveries of argon and CS2 showed good results. The mean recovery of argon calculated from all vapor-retardation

experiments conducted yielded rAr = 0.995±0.007 and confirmed complete mass recovery. The mean recovery of CS2 was

rCS2 = 0.981±0.084 (without the experiments of Series 3), thus only suggesting slight mass losses. Mass recoveries of all ex-

periments are given in Tables 5 and 6 in the appendix. The mass balance and complete recovery proved the reliability and30

quality of the results gained from these column experiments.

The results discussed above excluded Series 3 conducted in Geba fine sand. Series 3 was the second saturation and drainage

cycle which was carried out to establish a different static water saturation than in Series 2. However, significant CS2 mass losses

became more pronounced with each experiment in this series, eventually leading to its exclusion from the results.
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Recoveries of CS2 decreased from rCS2 = 0.854 in the first experiment of Series 3 down to rCS2 = 0.010. This mass loss of CS2

was caused by biodegradation which was confirmed by the smell of hydrogen sulfide in the column outflow. Cox et al. (2013)

found carbonyl sulfide (COS) and hydrogen sulfide (H2S) as by-products during CS2 biodegradation in their experiments. The

mass balance analysis of the experiments enabled for determining mean degradation rates of CS2 which were calculated from

the CS2 mass rate and the recovery. The mean degradation rates ranged from 0.12 to 1.28 mg h−1 depending on the respective5

seepage velocity applied in the experiments. The experiments showed that biodegradation may have a considerable potential

for mitigating the contaminant mass transfer by vapor migration to the underlying aquifer. However, the quantification of

biodegradation of CS2 was beyond the scope of this work but should be addressed in future research.

4 Conclusions

– The retardation of CS2 vapor was quantified in 2 m long column experiments as a function of porous medium, water sat-10

uration, and seepage velocity. The novel set-up and methods applied additionally allowed for characterizing the transport

of CS2 and argon.

– The versatile temporal-moment analysis (TMA) was successfully applied to quantify diffusion/dispersion of CS2 and

argon as well as retardation of CS2 from concentration breakthrough curves by comparison with the conservative tracer

argon.15

– Dispersion coefficients as a function of seepage velocity were obtained from the TMA for experiments in moist condi-

tions. Linear regressions of these data sets yielded effective binary dispersion coefficients and dispersivity values at the

prevailing experimental conditions. The effective binary diffusion coefficient at the given experimental conditions was

found to be slightly higher than theoretical values based on the approach by Millington and Quirk (1961). The theoretical

approach takes into account the porosity only and neglects material characteristics such as grain-size or pore-size distri-20

bution which affect diffusion/dispersion. Thus, the experiments confirm that theoretical approaches do not satisfactorily

apply to a wide variety of porous media (Werner et al., 2004).

– The impact of different seepage velocities on the breakthrough curves and thus on the dispersion coefficient was ob-

served. The experiments showed that the velocities affected diffusion/dispersion of the gases due to the corresponding

residence time in the porous medium and due to mechanical mixing. This effect was illustrated by the skewness of the25

breakthrough curves which were negatively correlated to the seepage velocity.

– The retardation coefficient of CS2 increased with increasing water saturation and compared very well with the theoretical

approach for fine glass beads. A slightly higher retardation of the chase by a factor of 1.05 compared to that of the slug

was observed. A pronounced higher retardation was observed in Geba fine sand due to the different grain-size distribution

and the particular water-saturation profile. Moreover, the theoretical coefficient underpredicted retardation in Geba fine30

sand. Retardation coefficients as a function of (seepage) velocity revealed only a minor dependency and suggested a

slight tendency toward a reduced retardation at higher velocities.
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– Clear evidence of the biodegradation of CS2 was found in the last series of experiments in Geba fine sand confirmed by

the concentration measurements and the mass balance analysis. These findings demonstrate the potential of biodegra-

dation to reduce the total CS2 mass in case of a contamination in the unsaturated zone and of migrating vapor plumes

eventually threating the underlying aquifer.

– The experiments conducted clearly proved that a migrating CS2-vapor plume in the unsaturated zone is retarded and that5

dissolved CS2 is amenable to biodegradation. The breakthrough of the slug and of the chase was observed and evaluated,

the latter demonstrating a complete removal of the gaseous CS2 confirmed by mass balance analyses. This observation

clearly promotes the remediation of a liquid CS2 spill in the unsaturated zone using soil-vapor extraction.

Data availability

The experimental data used to produce the results and graphs presented in this manuscript is available at http://dx.doi.org/10.10

4228/ZALF.2013.295 (Kleinknecht, 2016).

Appendix A: Materials and methods

A1 Binary diffusion coefficient

The Chapman-Enskog formula is used to estimate the binary diffusion coefficient of component A in B at low density.

DAB = 1.8583× 10−3

√
T 3
(

1
MA

+ 1
MB

)

pσ2
ABΩD,AB

(A1)15

with DAB (cm2 s-1), temperature T (K), pressure p (atm), the Lennard-Jones parameter σAB (angstrom), and the collision

integral ΩD,AB which can be approximated with the Lennard-Jones potential. Component-specific values to determine σAB as

well as ΩD,AB as a function of kT/ε can be found in Bird et al. (1960).

Porous media affect diffusion of gases since space is occupied by grains and possibly by additional fluid phases. Therefore,

Fick’s law is often modified by the factor β to account for these deviations.20

D∗ = βDAB (A2)

while β is defined as

β = φSgτ (A3)

where D∗AB is the effective diffusion coefficient in porous media, φ is the porosity, Sg the gas saturation (equal to 1 for all-gas

condition), and τ is the tortuosity. According to Millington and Quirk (1961), tortuosity can be approximated by25

τ = φ1/3S7/3
g (A4)
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A2 Dispersion coefficient

Flow of fluids in a porous medium may vary significantly on a micro scale due to the velocity field in pores, irregularities of the

pore size, flow restrictions, or dead-end pores resulting in additional spreading denoted as dispersion. These influences have to

be taken into account in analytical or numerical solutions of flow in porous media. This is done by introducing the longitudinal

dispersion coefficient5

D = βDAB +αv =D∗ +αv (A5)

with the dispersion coefficient D (cm2 s-1), effective binary diffusion coefficient D∗AB (cm2 s-1) according to Eq. A2, gas-phase

longitudinal dispersivity α (cm), and average gas velocity v (cm s-1).

A3 Temporal-moment analysis

The measured breakthrough curve (BTC) data had to be prepared to allow for the usage of the temporal-moment analysis10

(TMA) generally applied to responses from dirac input. The breakthrough curves of the step-input boundary condition (1)

were transformed to a dirac-input boundary condition (2) (Yu et al., 1999). This was achieved by using the derivative of the

original step-input BTC data.

∂c1
∂t

= c2 (A6)

This transformation then allowed for analyzing the original breakthrough curves and required adapted definitions of the tem-15

poral moments. The first order normalized moment M1 representing the mean breakthrough arrival time (τ ) is then defined as

τ =M1 =
m1

m0
=

1∫

0

tdc1

1∫

0

dc1

, (A7)

where c1 (-) is normalized concentration of measured BTC and t (second or PV) is elapsed time. The second central moment

µ2 corresponds to the variance of travel times at the location of measurement and is given by20

µ2 =

1∫

0

(t−M1)2 dc1. (A8)

These two moments can be used to directly infer seepage migration velocity v and dispersion coefficient D from BTC data for

a one-dimensional system (Cirpka and Kitanidis, 2000).

v =
z

M1
(A9)

25

D =
µ2v

3

2z
(A10)
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A4 Theoretical retardation coefficient

Brusseau et al. (1997) defined the retardation factor to be the sum of various processes including adsorption and partitioning

processes

R= 1 +
θw

θaKH
+
ρbKDsat

θaKH
+
KIAAIA

θa
(A11)

where θw is volumetric water content, θa is gas-filled porosity, KH (dimensionless) is Henry’s constant, KDsat (cm3 g-1) is5

the sorption coefficient for water-saturated conditions, ρb (g cm-3) is the dry soil bulk density, KIA (cm) is the adsorption

coefficient between gas and the gas-water interface and AIA (cm2 cm-3) is the specific surface area of the gas-water interface.

The terms on the right-hand side describe retardation by the gas phase (1), partitioning into the aqueous phase (2), adsorption

on the grains (3) and the last term accounts for gas-water interfacial adsorption (4).

Appendix B: Detailed experimental results10

Tables 5 and 6 show the theoretical migration velocity, the injection duration (slug), the injected mass, and the normalized

recovery of the components CS2 and argon. The tables list all experiments in order according to the conducted series.

Author contributions. Simon M. Kleinknecht designed and conducted this experimental study. Holger Class and Jürgen Braun were respon-

sible for the scientific and experimental supervision. Simon M. Kleinknecht prepared the manuscript with contributions from both co-authors.

The authors declare that they have no conflict of interest.15
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Table 5. Experimental conditions of vapor-retardation experiments in fine glass beads: series, experiment, theoretical seepage velocity,

injection duration, and injected mass and recovery of CS2 and argon.

Series Exp. v tinj mAr mCS2 rAr rCS2

# # cm h-1 h mg mg - -

Fine glass beads

1 1 25 27.80 667.8 2671.4 0.994 1.123

2 50 13.92 677.7 2710.9 1.011 1.066

3 50 14.10 675.9 2703.5 0.996 1.005

4 50 13.65 677.7 542.2 0.992 1.033

5 50 14.29 690.3 13.8 0.988 0.822

6 50 14.07 687.0 13.7 0.984 0.753

7 50 13.82 673.3 13.5 0.987 0.770

2 8 25 28.35 619.9 12.4 0.989 1.022

9 50 14.40 617.8 12.4 0.993 0.983

10 50 12.83 615.2 12.3 0.997 1.010

11 100 7.22 620.8 12.4 1.000 0.941

12 200 3.56 617.1 12.3 0.998 0.941

3 13 50 14.38 635.0 12.7 0.995 1.054

14 50 14.22 634.0 12.7 1.000 1.032

15 50 14.43 635.4 12.7 0.989 1.013

4 16 50 14.06 626.0 12.5 0.994 1.039
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Table 6. Experimental conditions of vapor-retardation experiments in Geba fine sand: series, experiment, theoretical seepage velocity, injec-

tion duration, and injected mass and recovery of CS2 and argon.

Series Exp. v tinj mAr mCS2 rAr rCS2

# # cm h-1 h mg mg - -

Geba fine sand

1 17 25 28.71 673.9 13.5 0.982 0.964

18 25 40.97 944.5 18.9 0.992 0.942

19 50 14.30 599.2 12.0 0.985 1.006

20 50 14.31 597.5 12.0 0.983 0.970

21 100 7.20 664.8 13.3 0.999 0.994

22 100 7.32 665.9 13.3 0.999 1.062

23 200 3.83 706.2 14.1 1.000 0.994

24 200 3.54 657.7 13.2 0.995 0.962

2 25 25 41.17 795.7 15.9 0.984 1.009

26 50 14.33 552.8 11.1 1.000 0.955

27 50 20.28 767.3 15.3 0.992 1.115

28 50 20.62 799.5 16.0 0.997 0.973

29 100 10.12 797.6 16.0 0.987 0.965

30 200 4.67 800.8 16.0 1.000 1.013

3 31 50 20.54 815.8 16.3 0.994 0.854

32 50 24.04 955.8 19.1 0.998 0.684

33 100 11.02 864.1 17.3 1.000 0.534

34 200 5.16 782.9 15.7 1.008 0.689

35 25 49.26 957.3 19.1 1.012 0.010

36 100 10.28 793.0 15.9 1.000 0.174

37 50 23.81 944.0 18.9 0.996 0.016
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