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Abstract 17	
The phase of precipitation when it reaches the ground is a first-order driver of hydrologic 18	

processes in a watershed. The presence of snow, rain, or mixed phase precipitation affects the 19	

initial and boundary conditions that drive hydrological models. Despite their foundational 20	

importance to terrestrial hydrology, typical phase prediction methods (PPM) specify phase based 21	

on near-surface air temperature only. Our review conveys the diversity of tools available for 22	

PPM in hydrological modeling and the advancements needed to improve predictions in complex 23	

terrain with large spatiotemporal variations in precipitation phase.  Initially, we review the 24	

processes and physics that control precipitation phase as relevant to hydrologists, focusing on the 25	

importance of processes occurring aloft. There is a wide range of options for field observations 26	

of precipitation phase, but there is a lack of a robust observation networks in complex terrain. 27	

New remote sensing observations have potential to increase PPM fidelity, but generally require 28	

assumptions typical of other PPM and field validation before they are operational. We review 29	

common PPM and find that accuracy is generally increased at finer measurement intervals and 30	

by including humidity information. One important tool for PPM development is atmospheric 31	

modeling, which includes microphysical schemes that have not been effectively linked to 32	

hydrological models or validated against near-surface precipitation phase observations. The 33	

review concludes by describing key research gaps and recommendations to improve PPM, 34	

including better incorporation of atmospheric information, improved validation datasets, and 35	

regional-scale gridded data products. Two key points emerge from this synthesis for the 36	

hydrologic community: 1) current PPM are too simple to capture important processes and are not 37	

well-validated for most locations, 2) lack of sophisticated PPM increases the uncertainty in 38	

estimation of hydrological sensitivity to changes in precipitation phase at local to regional scales. 39	

The advancement of PPM is a critical research frontier in hydrology that requires scientific 40	

cooperation between hydrological and atmospheric modelers and field scientists. 41	

 42	
Keywords: precipitation phase, snow, rain, hydrological modeling 43	
 44	

1. Introduction and Motivation 45	
As climate warms, a major hydrologic shift in precipitation phase from snow to rain is expected 46	

to occur across temperate regions that are reliant on mountain snowpacks for water resource 47	

provisioning (Bales et al., 2006; Barnett et al., 2005). Continued changes in precipitation phase 48	
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are expected to alter snowpack dynamics and both streamflow timing and amounts (Cayan et al., 49	

2001; Fritze et al., 2011; Luce and Holden, 2009; Klos et al., 2014; Berghuijs et al., 2014; Jepsen 50	

et al., 2016), increase rain-on snow flooding (McCabe et al., 2007), and challenge our ability to 51	

make accurate water supply forecasts (Milly et al., 2008). Accurate estimations of precipitation 52	

inputs are required for effective hydrological modeling in both applied and research settings. 53	

Snow storage delays the transfer of precipitation to surface runoff, infiltration, and generation of 54	

streamflows (Figure 1), affecting the timing and magnitude of peak flows (Wang et al., 2016), 55	

hydrograph recession (Yarnell et al., 2010) and the magnitude and duration of summer baseflow 56	

(Safeeq et al., 2014; Godsey et al., 2014). Moreover, the altered timing and rate of snow versus 57	

rain inputs can modify the partitioning of water to evapotranspiration versus runoff (Wang et al., 58	

2013). Misrepresentation of precipitation phase within hydrologic models thus propagates into 59	

spring snowmelt dynamics (Harder and Pomeroy, 2013; Mizukami et al., 2013; White et al., 60	

2002; Wen et al., 2013) and streamflow estimates used in water resource forecasting (Figure 1). 61	

The persistence of streamflow error is particularly problematic for hydrological models that are 62	

calibrated on observed streamflows because this error can be compensated for by altering 63	

parameters that control other states and fluxes in the model (Minder, 2010; Shamir and 64	

Georgakakos, 2006; Kirchner, 2006). Expected changes in precipitation phase from climate 65	

warming presents a new set of challenges for effective hydrological modeling (Figure 1). A 66	

simple yet essential issue for nearly all runoff generation questions is this: Is precipitation falling 67	

as rain, snow, or a mix of both phases? 68	

 69	

Despite advances in terrestrial process-representation within hydrological models in the past 70	

several decades (Fatichi et al., 2016), most state-of-the-art models rely on simple empirical 71	

algorithms to predict precipitation phase. For example, nearly all operational models used by the 72	

National Weather Service River Forecast Centers in the United States use some type of 73	

temperature-based precipitation phase partitioning method (PPM) (Pagano et al., 2014). These 74	

are often single or double temperature threshold models that do not consider other conditions 75	

important to the hydrometeor’s energy balance. Although forcing datasets for hydrological 76	

models are rapidly being developed for a suite of meteorological variables, to date no gridded 77	

precipitation phase product has been developed over regional to global scales. Widespread 78	

advances in both simulation of terrestrial hydrological processes and computational capabilities 79	



	

 4 

may have limited improvements on water resources forecasts without commensurate advances in 80	

PPM.  81	

 82	

Recent advances in PPM incorporate effects of humidity (Harder and Pomeroy, 2013; Marks et 83	

al., 2013), atmospheric temperature profiles (Froidurot et al., 2014), and remote sensing of phase 84	

in the atmosphere (Minder, 2010; Lundquist et al., 2008). A challenge to improving and selecting 85	

PPM is the lack of validation data. In particular, reliable ground-based observations of phase are 86	

sparse, collected at the point scale over limited areas, and are typically limited to research rather 87	

than operational applications (Marks et al., 2013). The lack of observations is particularly 88	

problematic in mountain regions where snow-rain transitions are widespread and critical for 89	

regional water resource evaluations (Klos et al., 2014). For example, direct visual observations 90	

have been widely used (Froidurot et al., 2014; Knowles et al., 2006; U.S. Army Corps of 91	

Engineers, 1956), but are decreasing in number in favor of automated measurement systems. 92	

Automated systems use indirect methods to accurately estimate precipitation phase from 93	

hydrometeor characteristics (i.e. disdrometers), as well as coupled measurements that infer 94	

precipitation phase based on multiple lines of evidence (e.g. co-located snow depth and 95	

precipitation). Remote sensing is another indirect method that typically uses radar returns from 96	

ground and space-borne platforms to infer hydrometeor temperature and phase. A comprehensive 97	

description of the advantages and disadvantages of current measurement strategies, and their 98	

correspondence with conventional PPM, is needed to determine critical knowledge gaps and 99	

research opportunities. 100	

 101	

New efforts are needed to advance PPM to better inform hydrological models by integrating new 102	

observations, expanding the current observation networks, and testing techniques over regional 103	

variations in hydroclimatology. While calls to integrate atmospheric information are an 104	

important avenue for advancement (Feiccabrino et al., 2013), hydrological models ultimately 105	

require accurate and validated phase determination at the land surface. Moreover, any 106	

advancement that relies on integrating new information or developing a new PPM technique will 107	

require validation and training using ground-based observations. To make tangible hydrological 108	

modeling advancements, new techniques and datasets must be integrated with current modeling 109	

tools. The first step towards improved hydrological modeling in areas with mixed precipitation 110	
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phase is educating the scientific community about current techniques and limitations that convey 111	

the areas where research is most needed.  112	

 113	

Our review paper is motivated by a lack of a comprehensive description of the state-of-the-art 114	

PPM and observation tools. Therefore, we describe the current state of the science in a way that 115	

clarifies the correspondence between techniques and observations, and highlights strengths and 116	

weaknesses in the current scientific understanding. Specifically, subsequent sections will review: 117	

1) the processes and physics that control precipitation phase as relevant to field hydrologists, 2) 118	

current available options for observing precipitation phase and related measurements common in 119	

remote field settings, 3) existing methods for predicting and modeling precipitation phase, and 4) 120	

research gaps that exist regarding precipitation phase estimation. The overall objective is to 121	

convey a clear understanding of the diversity of tools available for PPM in hydrological 122	

modeling and the advancements needed to improve predictions in complex terrain characterized 123	

by large spatiotemporal variations in precipitation phase. 124	

 125	

2. Processes and Physics Controlling Precipitation Phase 126	

Precipitation formed in the atmosphere is typically a solid in the mid-latitudes and its phase at 127	

the land surface is determined by whether it melts during its fall (Stewart et al., 2015). Most 128	

hydrologic models do not simulate atmospheric processes and specify precipitation phase based 129	

on surface conditions alone (see Section 4.1), ignoring phase transformations in the atmosphere.  130	

 131	

Several important properties that influence phase changes in the atmosphere are not included in 132	

hydrological models (Feiccabrino et al., 2012), such as temperature and precipitation 133	

characteristics (Theriault and Stewart, 2010), stability of the atmosphere (Theriault and Stewart, 134	

2007), position of the 0 °C isotherm (Minder, 2010; Theriault and Stewart, 2010), interaction 135	

between hydrometeors (Stewart, 1992), and the atmospheric humidity profile (Harder and 136	

Pomeroy, 2013). The vertical temperature and humidity (represented by the mixing ratio) profile 137	

through which the hydrometeor falls typically consists of three layers, a top layer that is frozen 138	

(T <0 °C) in winter in temperate areas (Stewart, 1992), a mixed layer where T can exceed 0 °C, 139	

and a surface layer that can be above or below 0 °C (Figure 2). The phase of precipitation at the 140	

surface partly depends on the phase reaching the top of the surface layer, which is defined as the 141	
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critical height. The temperature profile and depth of the surface layer control the precipitation 142	

phase reaching the ground surface. For example, in Figure 2a, if rain reaches the critical height, it 143	

may reach the surface as rain or ice pellets depending on small differences in temperature in the 144	

surface layer (Theriault and Stewart, 2010). Similarly, in Figure 2b, if snow reaches the critical 145	

height, it may reach the surface as snow if the temperature in the surface layer is below freezing. 146	

However, in Figure 2c, when the surface layer temperatures are close to freezing and the mixing 147	

ratios are neither close to saturation nor very dry, the phase at the surface is not easily 148	

determined by the surface conditions alone. 149	

 150	

In addition to strong dependence on the vertical temperature and humidity profiles, precipitation 151	

phase is also a function of fall rate and hydrometeor size because they affect energy exchange 152	

with the atmosphere (Theriault et al., 2010). Precipitation rate influences the precipitation phase; 153	

for example, a precipitation rate of 10 mm h-1 reduces the amount of freezing rain by a factor of 154	

three over a precipitation rate of 1 mm h-1 (Theriault and Stewart, 2010) because there is less 155	

time for turbulent heat exchange with the hydrometeor. A solid hydrometeor that originates in 156	

the top layer and falls through the mixed layer can reach the surface layer as wet snow, sleet, or 157	

rain. This phase transition in the mixed layer is primarily a function of latent heat exchange 158	

driven by vapor pressure gradients and sensible heat exchange driven by temperature gradients. 159	

Temperature generally increases from the mixed layer to the surface layer causing sensible heat 160	

inputs to the hydrometeor. If these gains in sensible heat are combined with minimal latent heat 161	

losses resulting from low vapor pressure deficits, it is likely that the hydrometeor will reach the 162	

surface layer as rain (Figure 2). However, vapor pressure in the mixed layer is often below 163	

saturation leading to latent energy losses and cooling of the hydrometeor coupled with diabatic 164	

cooling of the local atmosphere, which can produce snow or other forms of frozen precipitation 165	

at the surface even when temperatures are above 0 °C. Likewise, surface energetics affect local 166	

atmospheric conditions and dynamics, especially in complex terrain. For example, melting of the 167	

snowpack can cause diabatic cooling of the local atmosphere and affect the phase of 168	

precipitation, especially when air temperatures are very close to 0 °C (Theriault et al., 2012). 169	

Many conditions lead to a combination of latent heat losses and sensible heat gains by 170	

hydrometeors (Figure 2). Under these conditions it can be difficult to predict the phase of 171	
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precipitation without sufficient information about humidity and temperature profiles, turbulence, 172	

hydrometeor size, and precipitation intensity. 173	

 174	

Stability of the atmosphere can also influence precipitation phase. Stability is a function of the 175	

vertical temperature structure which can be altered by vertical air movement and hence influence 176	

precipitation phase (Theriault and Stewart, 2007). Vertical air velocity changes the temperature 177	

structure by adiabatic warming or cooling due to pressure changes of descending and ascending 178	

air parcels, respectively. These changes in temperature can generate under-saturated or 179	

supersaturated conditions in the atmosphere that can also alter the precipitation phase. Even a 180	

very weak vertical air velocity (< 10 cm/s) significantly influences the phase and amount of 181	

precipitation formed in the atmosphere (Theriault and Stewart, 2007). The rain-snow line 182	

predicted by atmospheric models is very sensitive to these microphysics (Minder, 2010) and 183	

validating the microphysics across locations with complex physiography is challenging. 184	

Incorporation and validation of atmospheric microphysics is rarely achieved in hydrological 185	

applications (Feiccabrino et al., 2015). 186	

 187	

3. Current Tools for Observing Precipitation Phase 188	
3.1 In situ observations 189	
In situ observations refer to methods wherein a person or instrument onsite records precipitation 190	

phase. We identify 3 classes of approaches that are used to observe precipitation phase including 191	

1) direct observations, 2) coupled observations, and 3) proxy observations. 192	

 193	

Direct observations simply involve a person on-site noting the phase of falling precipitation. 194	

Such data form the basis of many of the predictive methods that are widely used (Dai, 2008; 195	

Ding et al., 2014; U.S. Army Corps of Engineers, 1956). Direct observations are useful for 196	

“manned” stations such as those operated by the U.S. National Weather Service. Few research 197	

stations however, have this benefit, particularly in many remote regions and in complex terrain. 198	

Direct observations are also limited in their temporal resolution and are typically reported only 199	

once per day, with some exceptions (Froidurot et al., 2014). Citizen scientist networks have 200	

historically provided valuable data to supplement primary instrumented observation networks. 201	

The National Weather Service Cooperative Observer Program 202	

(http://www.nws.noaa.gov/om/coop/what-is-coop.html, accessed 10/12/2016) is comprised of a 203	
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network of volunteers recording daily observations of temperature and precipitation, including 204	

phase. The NOAA National Severe Storms Laboratory used citizen scientist observations of rain 205	

and snow occurrence to evaluate the performance of the Multi-Radar Multi-Sensor (MRMS) 206	

system in the meteorological Phenomena Identification Near the Ground (mPING) project (Chen 207	

et al., 2015). The mPING project has recently been expanded to allow citizen scientists 208	

worldwide to easily report precipitation phase and characteristics using GPS-enabled smartphone 209	

applications (http://mping.nssl.noaa.gov, accessed 12/4/2016).  The Colorado Climate Center 210	

initiated the Community Collaborative Rain, Hail and Snow Network (CoCoRaHS) which 211	

supplies volunteers with low cost instrumentation to observe precipitation characteristics, 212	

including phase, and enables observations to be reported on the project website 213	

(http://www.cocorahs.org/, accessed 10/12/2016). Although highly valuable, some limitations of 214	

this system include the imperfect ability of observers to identify mixed phase events and the 215	

temporal extent of storms, as well as the lack of observations in both remote areas and during 216	

low light conditions. 217	

 218	

Coupled observations link synchronous measurements of precipitation with secondary 219	

observations to indicate phase. Secondary observations can include photographs of surrounding 220	

terrain, snow depth measurements, and/or measurements of ancillary meteorological variables. 221	

Photographs of vertical scales emplaced in the snow have been used to estimate snow 222	

accumulation depth, which can then be coupled with precipitation mass to determine density and 223	

phase (Berris and Harr, 1987; Floyd and Weiler, 2008; Garvelmann et al., 2013; Hedrick and 224	

Marshall, 2014; Parajka et al., 2012). Mixed phase events however, are difficult to quantify using 225	

coupled depth- and photographic-based techniques (Floyd and Weiler, 2008). Acoustic distance 226	

sensors, which are now commonly used to monitor the accumulation of snow (e.g. Boe, 2013), 227	

have similar drawbacks in mixed phase events, but have been effectively applied to discriminate 228	

between snow and rain (Rajagopal and Harpold, 2016). Meteorological information such as 229	

temperature and relative humidity can be used to compute the phase of precipitation measured by 230	

bucket-type gauges. Unfortunately, this approach generally requires incorporating assumptions 231	

about the meteorological conditions that determine phase (see section 4.1). Harder and Pomeroy 232	

(2013) used a comprehensive approach to determine the phase of precipitation. Every 15 minutes 233	

during their study period phase was determined by evaluating weighing bucket mass, tipping 234	
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bucket depth, albedo, snow depth, and air temperature. Similarly, Marks et al. (2013) used a 235	

scheme based on co-located precipitation and snow depth to discriminate phase. A more 236	

involved expert decision making approach by L'hôte et al. (2005) was based on six recorded 237	

meteorological parameters: precipitation intensity, albedo of the ground, air temperature, ground 238	

surface temperature, reflected long-wave radiation, and soil heat flux. The intent of most of these 239	

coupled observations was to develop datasets to evaluate PPM. However, if observation systems 240	

such as these were sufficiently simple, they could have the potential to be applied operationally 241	

across larger meteorological monitoring networks encompassing complex terrain where snow 242	

comprises a large component of annual precipitation (Rajagopal and Harpold, 2016).  243	

 244	

Proxy observations measure geophysical properties of precipitation to infer phase. The hot plate 245	

precipitation gauge introduced by Rasmussen et al. (2012), for example, uses a thin heated disk 246	

to accumulate precipitation and then measures the amount of energy required to melt snow or 247	

evaporate liquid water. This technique however, requires a secondary measurement of air 248	

temperature to determine if the energy is used to melt snow or only evaporate rain. Disdrometers 249	

measure the size and velocity of hydrometeors. Although the most common application of 250	

disdrometer data is to determine the drop size distribution (DSD) and other properties of rain, the 251	

phase of hydrometeors can be inferred by relating velocity and size to density. Some disdrometer 252	

technologies, which can be grouped into impact, imaging, and scattering approaches (Loffler-253	

Mang et al., 1999), are better suited for describing snow than others. Impact disdrometers, first 254	

introduced by Joss and Waldvogel (1967), use an electromechanical sensor to convert the 255	

momentum of a hydrometeor into an electric pulse. The amplitude of the pulse is a function of 256	

drop diameter. Impact disdrometers have not been commonly used to measure solid precipitation 257	

due to the different functional relationships between drop size and momentum for solid and 258	

liquid precipitation. Imaging disdrometers use basic photographic principles to acquire images of 259	

the distribution of particles (Borrmann and Jaenicke, 1993; Knollenberg, 1970). The 2D Video 260	

Disdrometer (2DVD) described by Kruger and Krajewski (2002) records the shadows cast by 261	

hydrometeors onto photodetectors as they pass through two sheets of light. The shape of the 262	

shadows enables computation of particle size, and shadows are tracked through both light sheets 263	

to determine velocity. Although initially designed to describe liquid precipitation, recent work 264	

has shown that the 2DVD can be used to classify snowfall according to microphysical properties 265	
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of single hydrometeors (Bernauer et al., 2016). The 2DVD has been used to classify known rain 266	

and snow events, but little work has been performed to distinguish between liquid and solid 267	

precipitation. Scattering or optical disdrometers, measure the extinction of light passing between 268	

a source and a sensor (Hauser et al., 1984; Loffler-Mang et al., 1999). Like the other types, 269	

optical disdrometers were originally designed for rain, but have been periodically applied to 270	

snow (Battaglia et al., 2010; Lempio et al., 2007). In a comparison study by Caracciolo et al. 271	

(2006), the PARSIVEL optical disdrometer, originally described by Loffler-Mang et al. (1999) 272	

did not perform well against a 2DVD because of problems related to the detection of slow fall 273	

velocities for snow. It may be possible to use optical disdrometers to distinguish between rain, 274	

sleet, and snow based on the existence of distinct shapes of the size spectra for each precipitation 275	

type. More research on the relationship between air temperature and the size spectra produced by 276	

the optical disdrometer is needed (Lempio et al., 2007). In summary, disdrometers of various 277	

types are valuable tools for describing the properties of rain and snow, but require further testing 278	

and development to distinguish between rain and snow, as well as mixed phase events. 279	

 280	

3.2 Ground-based remote sensing observations 281	

Ground-based remote sensing observations have been available for several decades to detect 282	

precipitation phase using radar. Until recently, most ground-based radar stations were operated 283	

as conventional Doppler systems that transmit and receive radio waves with single horizontal 284	

polarization. Developments in dual polarization ground radar such as those that function as part 285	

of the U.S. National Weather Service NEXRAD network (NOAA, 2016), have resulted in 286	

systems that transmit radio signals with both horizontal and vertical polarizations. In general, 287	

ground-based remote sensing observations, either single or dual-pol, remain underutilized for 288	

detecting precipitation phase and are challenging to apply in complex terrain (Table 3). 289	

 290	

Ground-based remote sensing of precipitation phase using single-polarized radar systems 291	

depends on detecting the radar bright band. Radio waves transmitted by the radar system, are 292	

scattered by hydrometeors in the atmosphere, with a certain proportion reflected back towards 293	

the radar antenna. The magnitude of the measured reflectivity (Z) is related to the size and the 294	

dielectric constant of falling hydrometeors (White et al., 2002). Ice particles aggregate as they 295	

descend through the atmosphere and their dielectric constant increases, in turn increasing Z 296	
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measured by the radar, creating the bright band, a layer of enhanced reflectivity just below the 297	

elevation of the melting level (Lundquist et al., 2008). Therefore, bright band elevation can be 298	

used as a proxy for the “snow level”, the bottom of the melting layer where falling snow 299	

transforms to rain (White et al., 2010;White et al., 2002). 300	

 301	

Doppler vertical velocity (DVV) is another variable that can be estimated from single-polarized 302	

vertically profiling radar. DVV gives an estimate of the velocity of falling particles; as 303	

snowflakes melt and become liquid raindrops, the fall velocity of the hydrometeors increases. 304	

When combined with reflectivity profiles, DVV helps reduce false positive detection of the 305	

bright band, which may be caused by phenomena other than snow melting to rain (White et al., 306	

2002). First, DVV and Z are combined to detect the elevation of the bottom of the bright band. 307	

The algorithm then searches for maximum Z above the bottom of the bright band and determines 308	

that to be the bright band elevation (White et al., 2002). However, a test of this algorithm on data 309	

from a winter storm over the Sierra Nevada found root mean square errors of 326 to 457 m 310	

compared to ground observations when the bright band elevation was assumed to represent the 311	

surface transition from snow to rain (Lundquist et al., 2008). Snow levels in mountainous areas 312	

however, may also be overestimated by radar profiler estimates if they are unable to resolve 313	

spatial variations close to mountain fronts, since snow levels have been noted to persistently drop 314	

on windward slopes (Minder and Kingsmill, 2013). Despite the potential errors, the elevation of 315	

maximum Z may be a useful proxy for snow level in hydrometeorological applications in 316	

mountainous watersheds because maximum Z will always occur below the freezing level 317	

(Lundquist et al., 2008; White et al., 2010) 318	

 319	

Few published studies have explored the value of bright band-derived phase data for hydrologic 320	

modeling. Maurer and Mass (2006) compared the melting level from vertically pointing radar 321	

reflectivity against temperature-based methods to assess whether the radar approach could 322	

improve determination of precipitation phase at the ground level. In that study, the altitude of the 323	

top of the bright band was detected and applied across the study basin. Frozen precipitation was 324	

assumed to be falling in model pixels above the altitude of the melting level and liquid 325	

precipitation was assumed to be falling in pixels below the altitude of the melting layer (Maurer 326	

and Mass, 2006). Maurer and Mass (2006) found that incorporating radar-detected melting layer 327	
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altitude improved streamflow simulation results. A similar study that used bright band altitude to 328	

classify pixels according to surface precipitation type was not as conclusive; bright band altitude 329	

data did not improve hydrologic model simulation results over those based on a temperature 330	

threshold (Mizukami et al., 2013). Also, the potential of the method is limited to the availability 331	

of vertically pointing radar; in complex, mountainous terrain the ability to estimate melting level 332	

becomes increasingly challenging with distance from the radar.  333	

 334	

Dual-polarized radar systems generate more variables than traditional single-polarized systems. 335	

These polarimetric variables include differential reflectivity, reflectivity difference, the 336	

correlation coefficient, and specific differential phase. Polarimetric variables respond to 337	

hydrometeor properties such as shape, size, orientation, phase state, and fall behavior and can be 338	

used to assign hydrometeors to specific categories (Chandrasekar et al., 2013; Grazioli et al., 339	

2015), or to improve bright band detection (Giangrande et al., 2008). 340	

 341	

Various hydrometeor classification algorithms have been applied to X-, C-, and S-band 342	

wavelengths. Improvements in these algorithms over recent years have seen hydrometeor 343	

classification become an operational meteorological product (see Grazioli et al., 2015 for an 344	

overview). For example, the U.S. National Severe Storms Laboratory (NSSL) developed a fuzzy-345	

logic hydrometeor classification algorithm for warm-season convective weather (Park et al., 346	

2009) and this algorithm has also been tested for cold-season events (Elmore, 2011). Its skill was 347	

tested against surface observations of precipitation type but the algorithm did not perform well in 348	

classifying winter precipitation because it could not account for re-freezing of hydrometeors 349	

below the melting level (Figure 2, Elmore, 2011). Unlike warm season convective precipitation, 350	

the freezing level during a cold-season precipitation event can vary spatially. This phenomenon 351	

has prompted the use of polarimetric variables to first detect the melting layer, and then classify 352	

hydrometeors (Boodoo et al., 2010; Thompson et al., 2014). Although there has been some 353	

success in developing two-stage cold-season hydrometeor classification algorithms, there is little 354	

in the published literature that explores the potential contributions of these algorithms for 355	

partitioning snow and rain for hydrological modeling.  356	

 357	
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3.3 Space-based remote sensing observations 358	
Spaceborne remote sensing observations typically use passive or active microwave sensors to 359	

determine precipitation phase (Table 3). Many of the previous passive microwave systems were 360	

challenged by coarse resolutions and difficulties retrieving snowfall over snow-covered areas. 361	

More recent active microwave systems are advantageous for detecting phase in terms of 362	

accuracy and spatial resolution, but remain largely unverified. Table 3 provides and overview of 363	

these space-based remote sensing technologies that are described in more detail below. 364	

 365	

Passive microwave radiometers detect microwave radiation emitted by the Earth’s surface or 366	

atmosphere. Passive microwave remote sensing has the potential for discriminating between 367	

rainfall and snowfall because microwave radiation emitted by the Earth’s surface propagates 368	

through all but the densest precipitating clouds, meaning that radiation at microwave 369	

wavelengths directly interacts with hydrometeors within clouds (Olson et al., 1996; Ardanuy, 370	

1989). However, the remote sensing of precipitation in microwave wavelengths and the 371	

development of operational algorithms is dominated by research focused on rainfall (Arkin and 372	

Ardanuy, 1989); by comparison, snowfall detection and observation has received less attention 373	

(Noh et al., 2009; Kim et al., 2008). This is partly explained by examining the physical processes 374	

within clouds that attenuate the microwave signal. Raindrops emit low levels of microwave 375	

radiation increasing the level of radiance measured by the sensor; in contrast, ice hydrometeors 376	

scatter microwave radiation, decreasing the radiance measured by a sensor (Kidd and Huffman, 377	

2011). Land surfaces have a much higher emissivity than water surfaces, meaning that emission-378	

based detection of precipitation is challenging over land because the high microwave emissions 379	

mask the emission signal from raindrops (Kidd, 1998; Kidd and Huffman, 2011). Thus, 380	

scattering-based techniques using medium to high frequencies are used to detect precipitation 381	

over land. Moreover, microwave observations at higher frequencies (> 89 GHz) have been 382	

shown to discriminate between liquid and frozen hydrometeors (Wilheit et al., 1982). 383	

 384	

Retrieving snowfall over land areas from spaceborne microwave sensors can be even more 385	

challenging than for liquid precipitation because existing snow cover increases microwave 386	

emission. Depression of the microwave signal caused by scattering from airborne ice particles 387	

may be obscured by increased emission of microwave radiation from the snow covered land 388	
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surface. Kongoli et al. (2003) demonstrated an operational snowfall detection algorithm that 389	

accounts for the problem of existing snow cover. This group used data from the Advanced 390	

Microwave Sounding Unit-A (AMSU-A), a 15-channel atmospheric temperature sounder with a 391	

single high frequency channel at 89 GHz), and AMSU-B, a 5-channel high frequency microwave 392	

humidity sounder. Both sensors were mounted on the NOAA-16 and -17 polar-orbiting satellites. 393	

While the algorithm worked well for warmer, opaque atmospheres, it was found to be too noisy 394	

for colder, clear atmospheres. Additionally, some snowfall events occur under warmer conditions 395	

than those that were the focus of the study (Kongoli et al., 2003). Kongoli et al. (2015) further 396	

adapted their methodology for the Advanced Technology Microwave Sounder (ATMS - onboard 397	

the polar-orbiting Suomi National Polar-orbiting Partnership satellite) a descendant of the 398	

AMSU sounders. The latest algorithm assesses the probability of snowfall using the logistic 399	

regression and the principal components of seven high frequency bands at 89 GHz and above. In 400	

testing, the Kongoli et al. (2015) algorithm has shown skill in detecting snowfall both at variable 401	

rates and when snowfall is lighter and occurs in colder conditions. An alternative algorithm by 402	

Noh et al. (2009) used physically-based, radiative transfer modeling in an attempt to improve 403	

snowfall retrieval over land. In this case, radiative transfer modeling was used to construct an a 404	

priori database of observed snowfall profiles and corresponding brightness temperatures. The 405	

radiative transfer procedure yields likely brightness temperatures from modeling how ice 406	

particles scatter microwave radiation at different wavelengths. A Bayesian retrieval algorithm is 407	

then used to estimate snowfall over land by comparing measured and modeled brightness 408	

temperatures (Noh et al., 2009). The algorithm was tested during the early and late winter for 409	

large snowfall events (e.g. 60 cm depth in 12 hours). Late winter retrievals indicated that the 410	

algorithm overestimated snowfall over surfaces with significant snow accumulation. 411	

 412	

While results have been promising, the spatial resolution at which ATMS and other passive 413	

microwave data are acquired is very coarse (15.8 to 74.8 km at nadir), making passive 414	

microwave approaches more applicable for regional to continental scales. Temporal resolution of 415	

the data acquisition is another challenge. AMSU instruments are mounted on 8 satellites; the 416	

related ATMS is mounted on a single satellite and planned for two additional satellites. 417	

However, the satellites are polar-orbiting, not geostationary, so it is probable that a precipitation 418	

event could occur outside the field of view of one of the instruments. 419	
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 420	

Spaceborne active microwave or radar sensors measure the backscattered signal from pulses of 421	

microwave energy emitted by the sensor itself. Much like the ground based radar systems, the 422	

propagated microwave signal interacts with liquid and solid particles in the atmosphere and the 423	

degree to which the measured return signal is attenuated provides information on the 424	

atmospheric constituents. The advantage offered by spaceborne radar sensors over passive 425	

microwave is the capability to acquire more detailed sampling of the vertical profile of the 426	

atmosphere (Kulie and Bennartz, 2009). The first spaceborne radar capable of observing 427	

snowfall is the Cloud Profiling Radar (CPR) onboard CloudSat (2006 – present). The CPR 428	

operates at 94 GHz with an along-track (or vertical) resolution of ~1.5 km. Retrieval of dry 429	

snowfall rate from CPR measurements of reflectivity have been shown to correspond with 430	

estimates of snowfall from ground-based radars at elevations of 2.6 and 3.6 km above mean sea 431	

level (Matrosov et al., 2008). Estimates at lower elevations, especially those in the lowest 1 km, 432	

are contaminated by ground clutter. Alternative approaches, combining CPR data with ancillary 433	

data have been formulated to account for this challenge (Kulie and Bennartz, 2009; Liu, 2008). 434	

Known relationships between CPR reflectivity data and the scattering properties of non-spherical 435	

ice crystals are used to derive snowfall at a given elevation above mean sea level; below this 436	

elevation a temperature threshold derived from surface data is used to discriminate between rain 437	

and snow events. Liu (2008) used 2 °C as the snow/rain threshold, whereas Kulie and Bennartz 438	

(2009) used 0 °C as the snow/rain threshold. Temperature thresholds have been the subject of 439	

much research and debate for discriminating precipitation phase, as is further discussed in 440	

section 4.1.  441	

 442	

CloudSat is part of the A-train or afternoon constellation of satellites, which includes Aqua, with 443	

the Moderate Resolution Imaging Spectrometer (MODIS) and the Cloud–Aerosol Lidar and 444	

Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft with cloud-profiling Lidar. The 445	

sensors onboard A-train satellites provided the unique combination of data to create an 446	

operational snow retrieval product. The CPR Level 2 snow profile product (2C-SNOW-447	

PROFILE) uses vertical profile data from the CPR, input from MODIS and the cloud profiling 448	

radar, as well as weather forecast data to estimate near surface snowfall (Kulie et al., 2016; 449	

Wood et al., 2013). The performance of 2C-SNOW-PROFILE was tested by Cao et al. (2014). 450	
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This group found the product worked well in detecting light snow but performed less 451	

satisfactorily under conditions of moderate to heavy snow because of the non-stationary effects 452	

of attenuation on the returned radar signal.  453	

 454	

The launch of the Global Precipitation Mission (GPM) core observatory in February 2014 holds 455	

promise for the future deployment of operational snow detection products. Building on the 456	

success of the Tropical Rainfall Monitoring Mission (TRMM), the GPM core observatory 457	

sensors include the Dual-frequency Precipitation Radar (DPR) and GPM Microwave Imager 458	

(GMI). The GMI has two millimeter wave channels (166 and 183 GHz) that are specifically 459	

designed to detect and retrieve light rain and snow precipitation. These are more advanced than 460	

the sensors onboard the TRMM spacecraft and permit better quantification of the physical 461	

properties of precipitating particles, particularly over land at middle to high latitudes (Hou et al., 462	

2014). Algorithms for the GPM mission are still under development, and are partly being driven 463	

by data collected during the GPM Cold Season Experiment (GCPEx) (Skofronick-Jackson et al., 464	

2015). Using airborne sensors to simulate GPM and DPR measurements, one of the questions 465	

that the GCPEx hoped to address concerned the potential capability of data from the DPR and 466	

GMI to discriminate falling snow from rain or clear air (Skofronick-Jackson et al., 2015). The 467	

initial results reported by the GCPEx study echo some of the challenges recognized for ground-468	

based single polarized radar detection of snowfall. The relationship between radar reflectivity 469	

and snowfall is not unique. For the GPM mission, it will be necessary to include more variables 470	

from dual frequency radar measurements, multiple frequency passive microwave measurements, 471	

or a combination of radar and passive microwave measurements (Skofronick-Jackson et al., 472	

2015). 473	

 474	

4. Current Tools for Predicting Precipitation Phase 475	

4.1 Prediction Techniques from Ground-Based Observations 476	

Discriminating between solid and liquid precipitation is often based on a near-surface air 477	

temperature threshold (Martinec and Rango, 1986; U.S. Army Corps of Engineers, 1956; L'hôte 478	

et al., 2005). Four prediction methods have been developed that use near-surface air temperature 479	

for discriminating precipitation phase: 1) static threshold, 2) linear transition, 3) minimum and 480	

maximum temperature, and 4) sigmoidal curve (Table 1). A static temperature threshold applies 481	
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a single temperature value, such as mean daily temperature, where all of the precipitation above 482	

the threshold is rain, and all below the threshold is snow. Typically this threshold temperature is 483	

near 0 °C (Lynch-Stieglitz, 1994; Motoyama, 1990), but was shown to be highly variable across 484	

both space and time (Kienzle, 2008; Motoyama, 1990; Braun, 1984; Ye et al., 2013). For 485	

example, Rajagopal and Harpold (2016) optimized a single temperature threshold at Snow 486	

Telemetry (SNOTEL) sites across the western U.S. to show regional variability from -4 to 3 °C 487	

(Figure 3). A second discrimination technique is to linearly scale the proportion of snow and rain 488	

between a temperature for all rain (Train) and a temperature for all snow (Tsnow) (Pipes and Quick, 489	

1977; McCabe and Wolock, 2010; Tarboton et al., 1995). Linear threshold models have been 490	

parameterized slightly differently across studies, e.g.: Tsnow =-1.0 °C, Train = 3.0 °C (McCabe and 491	

Wolock, 2010), Tsnow =-1.1 °C and Train =3.3 °C (Tarboton et al., 1995), and Tsnow =0 °C and Train 492	

=5 °C (McCabe and Wolock, 1999b). A third technique specifies a threshold temperature based 493	

on daily minimum and maximum temperatures to classify rain and snow, respectively, with a 494	

threshold temperature between the daily minimum and maximum producing a proportion of rain 495	

and snow (Leavesley et al., 1996). This technique can have a time-varying temperature threshold 496	

or include a Train that is independent of daily maximum temperature. A fourth technique applies a 497	

sigmoidal relationship between mean daily (or sub daily) temperature and the proportion or 498	

probability of snow versus rain. For example, one method derived for southern Alberta, Canada 499	

employs a curvilinear relationship defined by two variables, a mean daily temperature threshold 500	

where 50% of precipitation is snow, and a temperature range where mixed-phase precipitation 501	

can occur (Kienzle, 2008). Another sigmoidal-based empirical model identified a hyperbolic 502	

tangent function defined by four parameters to estimate the conditional snow (or rain) frequency 503	

based on a global analysis of precipitation phase observations from over 15,000 land-based 504	

stations (Dai, 2008). Selection of temperature-based techniques is typically based on available 505	

data, with a limited number of studies quantifying their relative accuracy for hydrological 506	

applications (Harder and Pomeroy, 2014). 507	

 508	

Several studies have compared the accuracy of temperature-based PPM to one another and/or 509	

against an independent validation of precipitation phase. Sevruk (1984) found that only about 510	

68% of the variability in monthly observed snow proportion in Switzerland could be explained 511	

by threshold temperature based methods near 0 °C. An analysis of data from fifteen stations in 512	
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southern Alberta, Canada with an average of >30 years of direct observations noted over-513	

estimations in the mean annual snowfall for static threshold (8.1%), linear transition (8.2%), 514	

minimum and maximum (9.6%), and sigmoidal transition (7.1%) based methods (Kienzle, 2008). 515	

An evaluation of PPM at three sites in the Canadian Rockies by Harder and Pomeroy (2013) 516	

found the largest percent error to occur using a static threshold (11% to 18%), followed by linear 517	

relationships (-8% to 11%), followed by sigmoidal relationships (-3 to 11%). Another study 518	

using 824 stations in China with >30 years of direct observations found accuracies of 51.4% 519	

using a static 2.2 °C threshold and 35.7% to 47.4% using linear temperature-based thresholds 520	

(Ding et al., 2014). Lastly, for multiple sites across the rain-snow transition in southwestern 521	

Idaho, static temperature thresholds produced the lowest proportion (68%) whereas a linear-522	

based model produced the highest proportion (75%) of snow, respectively (Marks et al., 2013). 523	

These accuracy assessments generally demonstrated that static threshold methods produced the 524	

greatest errors, whereas sigmoidal relationships produced the smallest errors, although variations 525	

to this general rule existed across sites. 526	

 527	

Near surface humidity also influences precipitation phase (see Section 2). Three humidity-528	

dependent precipitation phase identification methods are found in the literature: 1) dewpoint 529	

temperature (Td), 2) wet bulb temperature (Tw), and 3) psychometric energy balance. The 530	

dewpoint temperature is the temperature at which an air parcel with a fixed pressure and 531	

moisture content would be saturated. In one approach to account for measurement and 532	

instrument calibration uncertainties of ±0.25 °C each, Td and Tw below -0.5 °C was assumed to 533	

be all snow and above +0.5 °C all rain, with a linear relationship between the two being a 534	

proportional mix of snow and rain (Marks et al., 2013). Td of 0.0 °C performed consistently 535	

better than Ta in one study by Marks et al. (2001) while a Td of 0.1°C for multiple stations in 536	

Sweden was less accurate than a Ta of 1.0 °C (Feiccabrino et al., 2013). The wet or ice bulb 537	

temperature (Tw) is the temperature at which an air parcel would become saturated by 538	

evaporative cooling in the absence of other sources of sensible heat, and is the lowest 539	

temperature that falling precipitation can reach. Few studies have investigated the feasibility of 540	

Tw for precipitation phase prediction (Olsen, 2003; Ding et al., 2014; Marks et al., 2013). Tw 541	

significantly improved prediction of precipitation phase over Ta at 15-minute time steps, but only 542	

marginally improved predictions at daily time steps (Marks et al., 2013). Ding et al. (2014) 543	
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developed a sigmoidal phase probability curve based on Tw and elevation that outperformed Ta 544	

threshold-based methods across a network of sites in China. Conceptually, the hydrometeor 545	

temperature (Ti) is similar to Tw but is calculated using the latent heat and vapor density gradient. 546	

Use of computed Ti values significantly improved precipitation phase estimates over Ta, 547	

particularly as time scales approached one day (Harder and Pomeroy, 2013). 548	

  549	

There has been limited validation of humidity-based precipitation phase prediction techniques 550	

against ground-truth observations. Ding et al. (2014) showed that a method based on Tw and 551	

elevation increased accuracy by 4.8% to 8.9% over several temperature-based methods. Their 552	

method was more accurate than a simpler Tw based method by Yamazaki (2001). Feiccabrino et 553	

al. (2013) showed that Td misclassified 3.0% of snow and rain (excluding mixed phase 554	

precipitation), whereas Ta only misclassified 2.4%. Ye et al. (2013) found Td less sensitive to 555	

phase discrimination under diverse environmental conditions and seasons than Ta. Froidurot et 556	

al. (2014) evaluated several techniques with a critical success index (CSI) at sites across 557	

Switzerland to show the highest CSI values were associated with variables that included Tw or 558	

relative humidity (CSI=84%-85%) compared to Ta (CSI=78%). Marks et al. (2013) evaluated the 559	

time at which precipitation transitioned from snow to rain against field observations across a 560	

range of elevations and found that Td most closely predicted the timing of phase change, whereas 561	

both Ta and Tw estimated earlier phase changes than observed. Harder and Pomeroy (2013) 562	

compared Ti with field observations and found that error was <10% when Ti was allowed to vary 563	

with each daily time-step and >10% when Ti was fixed at 0 °C. The Ti accuracy increased 564	

appreciably (i.e. 5%-10% improvement) when the temporal resolution was decreased from daily 565	

to hourly or 15-minute time steps. The validation studies consistently showed improvements in 566	

accuracy by including humidity over PPM based only on temperature. 567	

 568	

Hydrological models employ a variety of techniques for phase prediction using ground-based 569	

observations (Table 2). All discrete hydrological models (i.e. not coupled to an atmospheric 570	

model) investigated used temperature based thresholds that did not consider the near-surface 571	

humidity. Moreover, most models use a single static temperature threshold that typically 572	

produces lower accuracy than multiple temperature methods. It should be noted that many of 573	

these hydrological models lump by elevation zone, which improves estimates of the snow to rain 574	
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transition elevation and phase prediction accuracy in complex terrain compared to models 575	

without elevation zones.  Hydrological models that are coupled to atmospheric models were 576	

more able to consider important controls on precipitation phase, such as humidity and 577	

atmospheric profiles. This compendium of model PPM highlights the current shortcomings in 578	

phase prediction in conventional discrete hydrological models. 579	

 580	

4.2 Prediction Techniques Incorporating Atmospheric Information 581	

While many hydrologic models have their own formulations for determining precipitation phase 582	

at the ground, it is also possible to initialize hydrologic models with precipitation phase fraction, 583	

intensity, and volume from numerical weather simulation model output. Here we discuss the 584	

limitations of precipitation phase simulation inherent to the Weather Research and Forecasting  585	

(WRF) model (Kaplan et al., 2012; Skamarock et al., 2008) and other atmospheric simulation 586	

models. The finest scale spatial resolution employed in atmospheric simulation models is ~1 km 587	

and these models generate data at hourly or finer temporal resolutions. Regional climate models 588	

(RCM) and global climate models (GCM) are typically coarser than local mesoscale models. The 589	

physical processes driving both the removal of moisture from the air and the precipitation phase 590	

(Section 2) occur at much finer spatial and temporal resolutions in the real atmosphere than 591	

models typically resolve, i.e. <1 km. As with all numerical models, the representation of sub-grid 592	

scale processes requires parameterization. At typical scales considered, characterization of mixed 593	

phase processes within a condensing cloud depends on both cloud microphysics and kinematics 594	

of the surrounding atmosphere. Replicating cloud physics at the multi-kilometer scale requires 595	

empiricism. The 30+ cloud microphysics parameterization options in the research version of 596	

WRF (Skamarock et al., 2008) vary in the number of classes described (cloud ice, cloud liquid, 597	

snow, rain, graupel, hail, etc.), and may or may not accurately resolve changes in hydrometeor 598	

phase and horizontal spatial location (due to wind) during precipitation. All microphysical 599	

schemes predict cloud water and cloud ice based on internal cloud processes that include a 600	

variety of empirical formulations or even simple lookup tables. These schemes vary greatly in 601	

their accuracy with “mixed phase” schemes generally producing the most accurate simulations of 602	

precipitation phase in complex terrain where much of the water is supercooled (Lin, 2007; 603	

Reisner et al., 1998; Thompson et al., 2004; Thompson et al., 2008; Morrison et al., 2005; Zängl, 604	

2007; Kaplan et al., 2012). Comprehensive validation of the microphysical schemes over 605	
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different land surface types (e. g. warm maritime, flat prairie, etc.) with a focus on different 606	

snowfall patterns is lacking. In particular, in transition zones between mountains and plains or 607	

along coastlines, the complexity of the microphysics becomes even more extreme due the 608	

dynamics and interactions of differing air masses with distinct characteristics. The 609	

autoconversion and growth processes from cloud water or ice to hydrometeors contain a strong 610	

component of empiricism, and in particular, the nucleation media and their chemical 611	

composition. Different microphysical parameterizations lead to different spatial distributions of 612	

precipitation and produce varying vertical distributions of hydrometeors (Gilmore et al., 2004). 613	

Regardless, precipitation rates for each grid cell are averages requiring hydrological modelers to 614	

consider the effects of elevation, aspect, etc. in resolving precipitation phase fractions for finer-615	

scale models. 616	

 617	

Numerical models that contain sophisticated cloud microphysics schemes allow assimilation of 618	

additional remote sensing data beyond conventional synoptic/large scale observations (balloon 619	

data). This is because the coarse spatial and temporal nature of radiosonde data results in the 620	

atmosphere being sensed imperfectly/incompletely compared with the scale of motion that 621	

weather simulation models can numerically resolve. These observational inadequacies are 622	

exacerbated in complex terrain, where precipitation phase fraction can vary on small scales and 623	

radar can be blocked by topography and therefore rendered useless in the model initialization. 624	

Accurate generation of liquid and frozen precipitation from vapor requires accurate depiction of 625	

initial atmospheric moisture conditions (Kalnay and Cai, 2003; Lewis et al., 2006). In 626	

acknowledgement of the difficulty and uncertainty of initializing numerical simulation models, 627	

atmospheric modelers use the term “bogusing” to describe incorporation of individual 628	

observations at a point location into large scale initial conditions in an effort to enhance the 629	

accuracy of the simulation (Eddington, 1989). They also employ complex assimilation 630	

methodologies to force the early period of the model solutions during the time integration 631	

towards fine scale observations (Kalnay and Cai, 2003; Lewis et al., 2006). These asynoptic or 632	

fine scale data sources often substantially improve the accuracy of the simulations as time 633	

progresses.  634	

 635	
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Hydrologists are increasingly using output from atmospheric models to drive hydrologic models 636	

from daily to climatic or multi-decadal timescales (Tung and Haith, 1995; Pachauri, 2002; Wood 637	

et al., 2004; Rojas et al., 2011; Yucel et al., 2015). These atmospheric models suffer from the 638	

same data paucity and scale issues that likewise challenge the implementation and validation of 639	

hydrologic models. Uncertainties in their output, including precipitation volume and phase, 640	

begins with the initialization of the atmospheric model from measurements, increases with model 641	

choice and microphysics as well as turbulence parameterizations, and is a strong function of the 642	

scale of the model. The significance of these uncertainties varies by application, but should be 643	

acknowledged. Furthermore, these uncertainties are highly variable in character and magnitude 644	

from day to day and location to location. Thus, there has been very little published concerning 645	

how well atmospheric models predict precipitation phase. Finally, lack of ground measurements 646	

leaves hydrologists with no means to assess and validate atmospheric model predictions. 647	

 648	

5. Research Gaps 649	

The incorrect prediction of precipitation phase leads to cascading effects on hydrological 650	

simulations (Figure 1). Meeting the challenge of accurately predicting precipitation phase 651	

requires the closing of several critical research gaps (Figure 4). Perhaps the most pressing 652	

challenge for improving PPM is developing and employing new and improved sources of data. 653	

However, new data sources will not yield much benefit without effective incorporation into 654	

predictive models (Figure 4). Additionally, both the scientific and management communities 655	

lack data products that can be readily understood and broadly used. Addressing these research 656	

gaps requires simultaneous engagement both within and between the hydrology and atmospheric 657	

observation and modeling communities. Changes to atmospheric temperature and humidity 658	

profiles from regional climate change will likely challenge conventional precipitation phase 659	

prediction in ways that demand additional observations and improved forecasts. 660	

 661	

We also highlight research gaps to improve relatively simple hydrological models without 662	

adding unnecessary complexity associated with sophisticated PPM approaches.  For example, 663	

more efforts to verify the existing PPM in different climatic environments and during specific 664	

hydrometeorological events could help determine various temperature thresholds (Table 1) to 665	

apply in existing models (section 5.3).  In addition, developing gridded precipitation phase 666	
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products may eliminate the need to make existing models more complex by applying more 667	

complex PPM outside of those models, e.g. similar to precipitation distribution in existing 668	

gridded products used by many hydrological models.  Ultimately, recognizing the sensitivity of 669	

hydrological model outcomes to PPM and identifying what climates and applications require 670	

higher phase prediction accuracy are crucial steps to determining the complexity of PPM 671	

required for specific applications. 672	

 673	

5.1 Conduct focused field campaigns 674	

Intensive field campaigns are extremely effective approaches to address fundamental research 675	

gaps focused on the discrimination between rain, snow, and mixed-phase precipitation at the 676	

ground by providing opportunities to test novel sensors, collect detailed datasets to develop 677	

remote sensing retrieval algorithms and improve PPM estimation methods. The recent Global 678	

Precipitation Measurement (GPM) Cold Season Precipitation Experiment (GCPEx) is an 679	

example of such a campaign in non-complex terrain where simultaneous observations using 680	

arrays of both airborne and ground-based sensors were used to measure and characterize both 681	

solid and liquid precipitation (e.g. Skofronick-Jackson et al., 2015). Similar intensive field 682	

campaigns are needed in complex terrain that is frequently characterized by highly dynamic and 683	

spatially variable hydrometeorological conditions. Such campaigns are expensive to conduct, but 684	

can be implemented as part of operational nowcasting to develop rich data resources to advance 685	

scientific understanding as was very effectively done during the Vancouver Olympic Games in 686	

2010 (Isaac et al., 2014; Joe et al., 2014). The research community should utilize existing 687	

datasets and capitalize on similar opportunities and expand environmental monitoring networks 688	

to simultaneously advance both atmospheric and hydrological understanding, especially in 689	

complex terrain spanning the rain-snow transition zone.  690	

 691	

5.2 Incorporate humidity information 692	

Atmospheric humidity affects the energy budget of falling hydrometeors (Section 4.1), but is 693	

rarely considered in precipitation phase prediction. The difficulty in incorporating humidity 694	

mainly arises from a lack of observations, both as point measurements and distributed gridded 695	

products. For example, while some reanalysis products have humidity information (i.e. National 696	

Centers for Environmental Prediction, NCEP reanalysis) they are at spatial scales (i.e. > 1 697	
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degree) that are too coarse for resolving precipitation phase in complex topography. Addition of 698	

high-quality aspirated humidity sensors at snow monitoring stations, such as the SNOTEL 699	

network, would advance our understanding of humidity and its effects on precipitation phase in 700	

the mountains. Because dry air masses have regional variations controlled by storm tracks and 701	

proximity to water bodies, sensitivity of precipitation phase to humidity variations driven by 702	

regional warming remains relatively unexplored. 703	

 704	

Although humidity datasets are relatively rare in mountain environments, some gridded data 705	

products exist that can be used to investigate the importance of humidity information. Most 706	

interpolated gridded data products either do not include any measure of humidity (e.g. Daymet or 707	

WorldClim) or use daily temperature measurements to infer humidity conditions (e.g. PRISM). 708	

In complex terrain, air temperature can also vary dramatically at relatively small scales from 709	

ridgetops to valley bottoms due to cold air drainage (Whiteman et al., 1999) and hence can 710	

introduce errors into inferential techniques such as these. Potentially more useful are data 711	

assimilation products, such as NLDAS-2, that provide humidity and temperature values at 1/8th 712	

of a degree scale over the continental U.S. In addition, several data reanalysis products are often 713	

available at 1 to 3 year lags from present, including NCEP/NCAR, NARR, and the 20th Century 714	

reanalysis. Given the relatively sparse observations of humidity in mountain environments, the 715	

accuracy of gridded humidity products is rarely rigorously evaluated (Abatzoglou, 2013). More 716	

work is needed to understand the added skill provided by humidity datasets for predicting 717	

precipitation phase and its distribution over time and space. 718	

 719	

5.2 Incorporate atmospheric information 720	

We echo the call of  Feiccabrino et al. (2015) for greater incorporation of atmospheric 721	

information into phase prediction and additional verification of the skill in phase prediction 722	

provided by atmospheric information. 723	

 724	

Several avenues exist to better incorporate atmospheric information into precipitation phase 725	

prediction, including direct observations, remote sensing observations, and synthetic products. 726	

Radiosonde measurements made daily at many airports and weather forecasting centers have 727	

shown some promise for supplying atmospheric profiles of temperature and humidity (Froidurot 728	
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et al., 2014). However, these data are only useful to initialize the larger scale structure of 729	

temperature and water vapor, and may not capture local-scale variations in complex terrain. It is 730	

also their lack of temporal and spatial frequency that prevents their use in accurate precipitation 731	

phase prediction, which is inherently a mesoscale problem, i.e., scales of motion <100 km. 732	

Atmospheric information on the bright-band height from Doppler radar has been utilized for 733	

predicting the altitude of the rain-snow transition (Lundquist et al., 2008; Minder, 2010), but has 734	

rarely been incorporated into hydrological modeling applications (Maurer and Mass, 2006; 735	

Mizukami et al., 2013). In addition to atmospheric observations, modeling products that 736	

assimilate observations or are fully physically-based may provide additional information for 737	

precipitation phase prediction. Numerous reanalysis products (described in Section 2.2) provide 738	

temperature and humidity at different pressure levels within the atmosphere. To our knowledge, 739	

information from reanalysis products has yet to be incorporated into precipitation phase 740	

prediction for hydrological applications. Bulk microphysical schemes used by meteorological 741	

models (e.g. WRF) provide physically-based estimates of precipitation phase. These schemes 742	

capture a wide-variety of processes, including evaporation, sublimation, condensation, and 743	

aggradation, and output between two and ten precipitation types. Historically, meteorological 744	

models have not been run at spatial scales capable of resolving convective dynamics (e.g. <2 745	

km), which can exacerbate error in precipitation phase prediction in complex terrain with a moist 746	

neutral atmosphere. Coarse meteorological models also struggle to produce pockets of frozen 747	

precipitation from advection of moisture plumes between mountain ranges and cold air wedged 748	

between topographic barriers. However, reduced computational restrictions on running these 749	

models at finer spatial scales and over large geographic extents (Rasmussen et al., 2012) are 750	

enabling further investigations into precipitation phase change under historical and future climate 751	

scenarios. This suggests that finer dynamical downscaling is necessary to resolve precipitation 752	

phase which is consistent with similar work attempting to resolve winter precipitation amount in 753	

complex terrain (Gutmann et al., 2012). A potentially impactful area of research is to integrate 754	

this information into novel approaches to improve precipitation phase prediction skill. 755	

 756	

5.3 Disdrometer networks operating at high temporal resolutions 757	

An increase in the types and reliability of disdrometers over the last decade has provided a new 758	

suite of tools to more directly measure precipitation phase. Despite this new potential resource 759	
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for distinguishing snow and rain, very limited deployments of disdrometers have occurred at the 760	

scale necessary to improve hydrologic modeling and rain-snow elevation estimates. The lack of 761	

disdrometer deployment likely arises from a number of potential limitations: 1) known issues 762	

with accuracy, 2) cost of these systems, and 3) power requirements needed for heating elements. 763	

These limitations are clearly a factor in procuring large networks and deploying disdrometers in 764	

complex terrain that is remote and frequently difficult to access. However, we advise that 765	

disdrometers offer numerous benefits that cannot be substituted with other measurements: 1) 766	

they operate at fine temporal scales, 2) they operate in low light conditions that limit other direct 767	

observations, and 3) they provide land surface observations rather than precipitation phase in the 768	

atmosphere (as compared to more remote methods). Moreover, improvements in disdrometer and 769	

power supply technologies that address these limitations would remove restrictions on increased 770	

disdrometer deployment. 771	

 772	

Transects of disdrometers spanning the rain-snow elevations of key mountain areas could add 773	

substantially to both prediction of precipitation phase for modeling purposes, as well as 774	

validating typical predictive models. We advocate for transects over key mountain passes where 775	

power is generally available and weather forecasts for travel are particularly important. In 776	

addition, co-locating disdrometers at long-term research stations where precipitation phase 777	

observations could be tied to micro-meteorological and hydrological observations has distinct 778	

advantages. These areas often have power supplies and instrumentation expertise to operate and 779	

maintain disdrometer networks. 780	

 781	

5.4 Compare different indirect phase measurement methods 782	

There is an important need to evaluate the accuracy of different PPM to assess tradeoffs between 783	

model complexity and skill (Figure 4). Given the potential for several types of observations to 784	

improve precipitation phase prediction (section 5.1-5.3), quantifying the relative skill provided 785	

by these different lines of evidence is a critical research gap. Although assessing relative 786	

differences between methods is potentially informative, comparison to ground truth 787	

measurements is critical for assessing accuracy. Disdrometer measurements and video imaging 788	

(Newman et al., 2009) are ideal ground truthing methods that can be employed at fine time steps 789	

and under a variety of conditions (section 5.3). Less ideal for accuracy assessment studies are 790	
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direct visual observations that are harder to collect at fine time steps and in low light conditions. 791	

Similarly, employing coupled observations of precipitation and snow depth has been used to 792	

assess accuracy of different precipitation phase prediction methods (Marks et al., 2013; Harder 793	

and Pomeroy, 2013), but accuracy assessment of these techniques themselves are lacking under a 794	

wide range of contrasting hydrometeorological conditions. 795	

 796	

A variety of accuracy assessments are needed that will require co-located distributed 797	

measurements. One critical accuracy assessment involves the consistency of different 798	

precipitation phase prediction methods under different climate and atmospheric conditions. 799	

Assessing the effects of climate and atmospheric conditions requires measurements from a 800	

variety of sites covering a range of hydroclimatic conditions and record lengths that span the 801	

conceivable range of atmospheric conditions at a given site. Another important evaluation metric 802	

is the performance over different time steps. Harder and Pomeroy (2013) showed that 803	

hydrometeor and temperature-based prediction methods had errors that substantially decreased 804	

across shorter time steps. Identifying the effects of time step length on the accuracy of different 805	

prediction methods has been relatively unexplored, but is critical to select the most appropriate 806	

method for specific hydrological applications. Finally, the performance metrics used to assess 807	

accuracy should be carefully considered. The applications of precipitation phase prediction 808	

methods are diverse, necessitating a wide variety of performance metrics, including the 809	

probability of snow versus rain (Dai, 2008), the error in annual or total snow/rain accumulation 810	

(Rajagopal and Harpold, 2016), performance under extreme conditions of precipitation amount 811	

and intensity, determination of the snow-rain elevation (Marks et al., 2013), and uncertainty 812	

arising from measurement error and accuracy. Comparison of different metrics across a wide-813	

variety of sites and conditions is lacking but is greatly needed to advance hydrologic science in 814	

cold regions. 815	

 816	

5.5 Develop spatially resolved products 817	

Many hydrological applications will benefit from gridded data products that are easily integrated 818	

into standard hydrological models. Currently, very few options exist for gridded data 819	

precipitation phase products. Instead, most hydrological models have some type of submodel or 820	

simple scheme that specifies precipitation phase as rain, snow, or mixed-phase precipitation (see 821	
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Section 4). While testing PPM with ground based observations could lead to improved 822	

submodels, we believe development of gridded forcing data may be an easier and more effective 823	

solution for many hydrological modeling applications. 824	

 825	

Gridded data products could be derived from a combination of remote sensing and existing 826	

synthetic products, but would need to be extensively evaluated. The NASA GPM mission is 827	

beginning to produce gridded precipitation phase products at 3-hour and 0.1 degree resolution. 828	

However, GPM phase is measured at the top of the atmosphere, typically relies on simple 829	

temperature-thresholds, and has yet to be validated with ground based observations. Another 830	

existing product is the Snow Data Assimilation System (SNODAS) that estimates liquid and 831	

solid precipitation at the 1 km scale. However, the developers of SNODAS caution that it is not 832	

suitable for estimating storm totals or regional differences. Furthermore, to our knowledge the 833	

precipitation phase product from SNODAS has not been validated with ground observations. We 834	

suggest the development of new gridded data products that utilize new PPM (i.e. Harder and 835	

Pomeroy, 2013) and new and expanded observational datasets, such as atmospheric information 836	

and radar estimates. We advocate for the development of multiple gridded products that can be 837	

evaluated with surface observations to compare and contrast their strengths. Accurate gridded 838	

phase products rely on the ability to represent the physics of water vapor and energy flows in 839	

complex terrain (e.g. Holden et al., 2010) where statistical downscaling methods are typically 840	

insufficient (Gutmann et al., 2012). This would also allow for ensembles of phase estimates to be 841	

used in hydrological models, similar to what is currently being done with gridded precipitation 842	

estimates.  843	

 844	

5.6 Characterization of regional variability and response to climate change 845	

The inclusion of new datasets, better validation of PPM, and development of gridded data 846	

products will poise the hydrologic community to improve hydrological predictions and better 847	

quantify regional sensitivity of phase change to climate changes. Because broad-scale techniques 848	

applied to assess changes in precipitation phase and snowfall have relied on temperature, both 849	

regionally (Klos et al., 2014; Pierce and Cayan, 2013; Knowles et al., 2006) and globally 850	

(Kapnick and Delworth, 2013; O’Gorman, 2014), they have not fully considered the potential 851	

non-linearities created by the absence of wet bulb depressions and humidity in assessment of 852	
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sensitivity to changes in phase. Consequently, the effects of changes from snow to rain from 853	

warming and corresponding changes in humidity will be difficult to predict with current PPM. 854	

Recent efforts by Rajagopal and Harpold (2016) have demonstrated that simple temperature 855	

thresholds are insufficient to characterize snow-rain transition across the western U.S. (Figure 3), 856	

perhaps because of differences in humidity. An increased focus on future humidity trends, 857	

patterns, GCM simulation errors (Pierce et al., 2013) and availability of downscaled humidity 858	

products at increasingly finer scales (e.g.: Abatzoglou, 2013; Pierce and Cayan, 2016) will 859	

enable detailed assessments of the relative role of temperature and humidity in future 860	

precipitation phase changes. Recent remote sensing platforms, such as GPM, may offer an 861	

additional tool to assess regional variability, however, the current GPM precipitation phase 862	

product relies on wet bulb temperatures based on model output and not microwave-based 863	

observations (Huffman et al., 2015). In addition to issues with either spatial or temporal 864	

resolution or coverage, one of the main challenges in using remotely sensed data for 865	

distinguishing between frozen and liquid hydrometeors is the lack of validation. Where products 866	

have been validated, the results are usually only relevant for the locale of the study area. 867	

Spaceborne radar combined with ground-based radar offers perhaps the most promising solution, 868	

but given the non-unique relationship between radar reflectivity and snowfall, further testing is 869	

necessary in order to develop reliable algorithms.  870	

 871	

Future work is needed to improve projections of changes in snowpack and water availability 872	

from regional to global scales. This local to sub-regional characterization is needed for water 873	

resource prediction and to better inform decision and policy makers. In particular, the ability to 874	

predict the transitional rain-snow elevations and its uncertainty is critical for a variety of end-875	

users, including state and municipal water agencies, flood forecasters, agricultural water boards, 876	

transportation agencies, and wildlife, forest, and land managers. Fundamental advancements in 877	

characterizing regional variability are possible by addressing the research challenges detailed in 878	

sections 5.1-5.5. 879	

 880	

6. Conclusions 881	
This review paper is a step towards communicating the potential bottlenecks in hydrological 882	

modeling caused by poor representation of precipitation phase (Figure 1). Our goals are to 883	
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demonstrate that major research gaps in our ability to PPM are contributing to errors and 884	

reducing the predictive skill of hydrological models. By highlighting the research gaps that could 885	

advance the science of PPM, we provide a roadmap for future advances (Figure 4). While many 886	

of the research gaps are recognized by the community and are being pursued, including 887	

incorporating atmospheric and humidity information, others remain essentially unexplored (e.g. 888	

production of gridded data, widespread ground validation, and remote sensing validation). 889	

 890	

The key points that must be communicated to the hydrologic community and its funding 891	

agencies can be distilled into the following two statements: 1) current PPM are too simple to 892	

capture important processes and are not well-validated for most locations, 2) the lack of 893	

sophisticated PPM increases the uncertainty in estimation of hydrological sensitivity to changes 894	

in precipitation phase at local to regional scales. We advocate for better incorporation of new 895	

information (5.1-5.2) and improved validation methods (5.3-5.4) to advance our current PPM 896	

and observations. These improved PPM and remote-sensing observations will be capable of 897	

developing gridded datasets (5.5) and providing new insight that reduce the uncertainty of 898	

predicting regional changes from snow to rain (5.6).  Improved PPM and existing phase products 899	

will also facilitate improvement of simpler hydrological models for which more complex PPM 900	

are not justified.  A concerted effort by the hydrological and atmospheric science communities to 901	

address the PPM challenge will remedy current limitations in hydrological modeling of 902	

precipitation phase, advance of understanding of cold regions hydrology, and provide better 903	

information to decision makers. 904	
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 1355	

Figure 1: Precipitation phase has numerous implications for modeling the magnitude, storage, 1356	

partitioning, and timing of water inputs and outputs. Potentially affecting important 1357	

ecohydrological and streamflow quantities important for prediction. 1358	

1359	



	

 49 

 1360	

Figure 2: The phase of precipitation at the ground surface is strongly controlled by atmospheric 1361	

profiles of temperature and humidity. While conditions exist that are relatively easy to predict 1362	

rain (a) and snow (b), many conditions lead to complex heat exchanges that are difficult to 1363	

predict with ground based observations alone (c). The blue dotted line represents the mixing 1364	

ratio. H, LE, f(sat), and r are abbreviations for sensible heat, latent heat of evaporation, function 1365	

of saturation and mixing ratio respectively. The arrows after H or LE indicate the energy of the 1366	

hydrometeor either increasing (up) or decreasing (down) which is controlled by other 1367	

atmospheric conditions.  1368	

 1369	

1370	
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	1371	

Figure 3: The optimized critical maximum daily temperature threshold that produced the lowest 1372	
Root Mean Square Error (RMSE) in the prediction of snowfall at Snow Telemetry (SNOTEL) 1373	
stations across the western US (adapted from Rajagopal and Harpold, 2016). b) Precipitation day 1374	
relative humidity averaged over 1981-2015 based on the Gridmet dataset (Abatzoglou, 2013).   1375	
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	1376	

	1377	

 1378	

Figure 4: Conceptual representation of the research gaps and workflows needed to advance PPM 1379	

and improve hydrological modeling. 1380	

	 	1381	
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Table 1. Mathematical expression for the four common temperature-based PPM to estimate snow 1382	
fraction (S) or snow frequency (F) using the mean air temperature (Ta), max daily air 1383	
temperature (Ta-max), and/or minimum daily air temperature (Ta-min).  The variable Tsnow is air 1384	
temperature when all precipitation (P) is snow and Train is the air temperature when all air 1385	
precipitation is rain. 1386	

 1387	

Type Mathematical expression for snow fraction (S) or snow frequency 
(F) 

Reference(s) 

Static 
threshold 𝑆 = 𝑃 𝑓𝑜𝑟 𝑇! ≤ 𝑇!"#$

0 𝑓𝑜𝑟 𝑇! ≥ 𝑇!"#$
 Motoyama, 

1990 

Linear 
transition 𝑆 =

𝑃 𝑓𝑜𝑟 𝑇! ≤ 𝑇!"#$

𝑃
𝑇!"#$ − 𝑇!

𝑇!"#$ − 𝑇!"#$
 𝑓𝑜𝑟 𝑇!"#$ <

0 𝑓𝑜𝑟 𝑇! ≥ 𝑇!"#$

𝑇! < 𝑇!"#$ 

McCabe and 
Wolock, 1998b 

Minimum and 
maximum 

temperature 
𝑆 =

𝑃 𝑓𝑜𝑟 𝑇!!!"# ≤ 𝑇!"#$

1 − 𝑃
𝑇!!!"# − 𝑇!"#$
𝑇!!!"# − 𝑇!!!"#

𝑓𝑜𝑟 𝑇!"#$ < 𝑇!!!"# < 𝑇!"#$

0 𝑓𝑜𝑟 𝑇!!!!" ≥ 𝑇!"#$

 

Leavesley, 1996 

Sigmoidal 
curve 

𝑆 = 𝑃 ∗ 𝑎 tanh 𝑏 𝑇! − 𝑐 − 𝑑  
𝐹 = 𝑎 tanh 𝑏 𝑇! − 𝑐 − 𝑑  

Dai, 2008 

 1388	

 1389	

1390	
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  1391	

Table 2. Common hydrological models and the precipitation phase prediction (PPM) technique 1392	
employed. The citation referring to the original publication of the model is given. 1393	

	1394	

* by default. Temperature-phase-density relationship explicitly specified by user.  1395	

+ A flag is specified which switches between, static threshold,	linear	transition.	1396	

	1397	

	1398	

	1399	

	1400	

	1401	

	1402	

Model PPM technique Citations 
Discrete Models (not coupled) 
HBV Static Threshold Bergström, 1995 
Snowmelt Runoff Model Static Threshold Martinec et al., 2008 
SLURP Static Threshold Kite, 1995 
UBC Watershed Model Linear Transition Pipes and Quick, 1977 
PRMS model Minimum & Maximum Temperature Leavesley et al., 1996 
USGS water budget Linear transition between two mean temps McCabe and Wolock, 1999a 
SAC-SMA (SNOW-17) Static Threshold Anderson, 2006 
DHSVM Linear transition (double check) Wigmosta et al., 1994 
SWAT Threshold Model Arnold et al., 2012 
RHESSys Linear transition or input phase Tague and Band, 2004 
HSPF Air and dew point temperature thresholds Bicknell et al., 1997 
THE ARNO MODEL Static Threshold Todini, 1996 
HEC-1 Static Threshold HEC-1, 1998 
MIKE SHE Static Threshold MIKE-SHE User Manual 
SWAP Static Threshold Gusev and Nasonova, 1998 
BATS Static Threshold Yang et al., 1997 
Utah Energy Balance Linear Transition Tarboton and Luce, 1996 
SNOBAL/ISNOBAL Linear Transition* Marks et al., 2013 
CRHM Static Threshold Fang et al., 2013 
GEOTOP Linear Transition Zanotti et al. 2004 
SNTHERM Linear Transition SNTHERM Online Documentation 
Offline LS models 
Noah Static Threshold Mitchell et al., 2005 
VIC Static Threshold VIC Documentation 
CLASS Multiple Methods+ Verseghy, 2009 
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	1403	

Table 3: Remote sensing technologies useful to precipitation phase discrimination organized into 1404	
ground-based, spaceborne with passive microwave, and passive with active microwave. The 1405	
table describes the variables of interest, their temporal and spatial coverage, and associated 1406	
references. 1407	

Technology Variables  Spatial resolution; 
coverage 

Temporal 
resolution, period of 
record 

References  

Ground-based systems    

Vertically pointing, 
single polarized 915-
MHz Doppler wind 
profilers 

Reflectivity, brightband 
height, Doppler vertical 
velocity 

100 m vertical 
resolution; deployed 
locally in Sierra 
Nevada basins 

Hourly, Winters 
1998, 2001 - 2005 

White et al., 2002; 
Lundquist et al., 2008 

     
NEXRAD  
Dual polarized radar 

Reflectivity1, hydrometeor 
classification1, melting 
layer1, hybrid hydrometeor 
classification1 

0.5° azimuthal by 
250 m; range 460 
km; 
Nationwide2 

5 - 10 minutes; 20113 
- present 

Giangrande et al., 
2008; Park et al., 
2009; Elmore, 2011; 
Grazioli et al., 2015 

     
Spaceborne systems: Passive microwave    

NOAA-15,  
NOAA-16, 
NOAA-17 Advanced 
Microwave Sounding 
Unit-A, B 

Brightness temperature 48 km (AMSU-A), 
16 km (AMSU-B); 
global coverage, 
with 22000 km 
swath  

For two platforms, 6 
hours revisit time; 
three platforms, 4 
hours revisit time4; 
1998 - present 

Kongoli et al., 2003 

     
SUOMI-NPP 
Advanced Technology 
Microwave Sounder 

Brightness temperature 15 - 50 km; global 
coverage, with 2200 
km swath  

Daily; 2011 - present Kongoli et al., 2015 

     
GPM Core 
Observatory 
Microwave Imager 
 

Brightness temperature 4.4 km by 7.3 km; 
global coverage, 
904 km swath 

2014 to present Skofronick-Jackson 
et al., 2015 

Spaceborne systems: Active microwave     

Cloud Profiling Radar 
(CPR) 

Radar reflectivity, 
2C-SNOW-PROFILE 

1.4 by 1.7 km; 
swath 1.4 km 

16 days; 2006 to 
present 

Wood et al., 2013; Cao 
et al., 2014; Kulie et al., 
2016; 

     
GPM Core 
Observatory Dual-
frequency Precipitation 
Radar 

Radar reflectivity 5 km; global 
coverage, 120 - 245 
km swath 

2 – 4 hours; 2014 to 
present 

Skofronick-Jackson et 
al., 2015 

      
Notes: 1408	
1. Operational products available from NOAA (2016). The operational products are not ground validated, except 1409	
where analyzed for specific studies.  1410	
2. The dates given here represent the first deployments. Data temporal coverage will vary by station.  1411	
3. Gaps in coverage exist, particularly in Western States. 1412	
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4. Similar instruments mounted on the NASA Aqua satellite and the European EUMETSAT MetOp series. Taking 1413	
into account the similar instrumentation on multiple platforms increases the temporal spatial resolution 1414	


