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Abstract 17	
The phase of precipitation when it reaches the Earth surface is a first-order driver of hydrologic 18	

processes in a watershed. The presence of snow, rain, or mixed phase precipitation affect the 19	

initial and boundary conditions that drive hydrological models. Despite their foundational 20	

importance to terrestrial hydrology, typical phase prediction methods (PPM) specify phase based 21	

on near-surface air temperature only. Our review conveys the diversity of tools available for 22	

PPM in hydrological modeling and the advancements needed to improve predictions in complex 23	

terrain with large spatiotemporal variations in precipitation phase.  Initially, we review the 24	

processes and physics that control precipitation phase as relevant to hydrologists, focusing on the 25	

importance of processes occurring aloft. There are a wide range of options for field observations 26	

of precipitation phase, but a lack of a robust observation networks in complex terrain. New 27	

remote sensing observations have potential to increase PPM fidelity, but generally require 28	

assumptions typical of other PPM and field validation before they are operational. We review 29	

common PPM and find that accuracy is generally increased at finer measurement intervals and 30	

by including humidity information. One important tool for PPM development is atmospheric 31	

modeling, which include microphysical schemes that have not been effectively linked to 32	

hydrological models or validated against near-surface precipitation phase observations. The 33	

review concludes by describing key research gaps and recommendations to improve PPM, 34	

including better incorporation of atmospheric information, improved validation datasets, and 35	

regional-scale gridded data products. Two key points emerge from this synthesis for the 36	

hydrologic community: 1) current PPM algorithms are too simple and are not well-validated for 37	

most locations, 2) lack of sophisticated PPM increases the uncertainty in estimation of 38	

hydrological sensitivity to changes in precipitation phase at local to regional scales. PPM are a 39	

critical research frontier in hydrology that requires scientific cooperation between hydrological 40	

and atmospheric modelers and field hydrologists. 41	

 42	
Keywords: precipitation phase, snow, rain, hydrological modeling 43	
 44	

1. Introduction and Motivation 45	
As climate warms, a major hydrologic shift in precipitation phase from snow to rain is expected 46	

to occur across temperate regions that are reliant on mountain snowpack for water resources 47	

(Bales et al., 2006; Barnett et al., 2005). Continued changes in precipitation phase are expected 48	
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to alter snowpack dynamics and streamflow timing and amounts (Cayan et al., 2001; Fritze et al., 49	

2011; Luce and Holden, 2009; Klos et al., 2014; Berghuijs et al., 2014; Jepsen et al., 2016), 50	

increase rain-on snow flooding (McCabe et al., 2007), and challenge our ability to make accurate 51	

water supply forecasts (Milly et al., 2008). Accurate estimations of precipitation inputs are 52	

required for effective hydrological modeling in both applied and research settings. Snow storage 53	

delays the transfer of precipitation into surface runoff and subsurface infiltration (Figure 1), 54	

affecting the timing and magnitude of peak flows (Wang et al., 2016), hydrograph recession 55	

(Yarnell et al., 2010) and the magnitude and duration of summer baseflow (Safeeq et al., 2014; 56	

Godsey et al., 2014). Moreover, the altered timing and rate of snow versus rain inputs can 57	

modify the partitioning of water to evapotranspiration versus runoff (Wang et al., 2013). 58	

Misrepresentation of precipitation phase within hydrologic models thus propagates into spring 59	

snowmelt dynamics (Harder and Pomeroy, 2013; Mizukami et al., 2013; White et al., 2002; Wen 60	

et al., 2013) and streamflow estimates used in water resource forecasting (Figure 1). The 61	

persistence of streamflow error is particularly problematic for hydrological models that are 62	

calibrated on observed streamflow because this error can be compensated for by altering 63	

parameters that control other states and fluxes in the model (Minder, 2010; Shamir and 64	

Georgakakos, 2006; Kirchner, 2006). Expected changes in precipitation phase from climate 65	

warming presents a new set of challenges for effective hydrological modeling (Figure 1). A 66	

simple yet essential issue for nearly all runoff generation questions is this: Is precipitation falling 67	

as rain, snow, or a mix of both phases? 68	

 69	

Despite advances in terrestrial process-representation within hydrological models in the past 70	

several decades (Fatichi et al., 2016), most state-of-the-art models rely on simple empirical 71	

algorithms to predict precipitation phase. For example, nearly all operational models used by the 72	

National Weather Service River Forecast Centers in the United States use some type of 73	

temperature-based precipitation phase partitioning methods (PPM) (Pagano et al., 2014). These 74	

are often single or double temperature threshold models that do not consider other conditions 75	

important to the hydrometeor’s energy balance. Although forcing datasets for hydrological 76	

models are rapidly being developed for a suite of meteorological variables, to date no gridded 77	

precipitation phase product has been developed over a regional to global scale. Widespread 78	

advances in both simulation of terrestrial hydrological processes and computational capabilities 79	
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may have limited improvements on water resources forecasts without commensurate advances in 80	

PPM.  81	

 82	

Recent advances in PPM incorporate effects of humidity (Harder and Pomeroy, 2013; Marks et 83	

al., 2013), atmospheric temperature profiles (Froidurot et al., 2014), and remote sensing of phase 84	

in the atmosphere (Minder, 2010; Lundquist et al., 2008). A challenge to improving and selecting 85	

PPM is the lack of validation data. In particular, reliable ground-based observations of phase are 86	

sparse, collected at the point scale over limited areas, and are typically limited to research rather 87	

than operational applications (Marks et al., 2013). The lack of observations is particularly 88	

problematic in mountain regions where snow-rain transitions are widespread and critical for 89	

regional water resource evaluations (Klos et al., 2014). For example, direct visual observations 90	

have been widely used (Froidurot et al., 2014; Knowles et al., 2006; U.S. Army Corps of 91	

Engineers, 1956), but are decreasing in number in favor of automated measurement systems. 92	

Automated systems use indirect methods to accurately estimate precipitation phase from 93	

hydrometeor characteristics (i.e. disdrometers), as well as coupled measurements that infer 94	

precipitation phase based on multiple lines of evidence (e.g. co-located snow depth and 95	

precipitation). Remote sensing is another indirect method that typically uses radar returns from 96	

the ground and space-borne platforms to infer hydrometeor temperature and phase. A 97	

comprehensive description of the advantages and disadvantages of current measurement 98	

strategies, and their correspondence with conventional PPM, is needed to determine critical 99	

knowledge gaps and research opportunities. 100	

 101	

New efforts are needed to advance PPM to better inform hydrological models by integrating new 102	

observations, expanding the current observation networks, and testing techniques over regional 103	

variations in hydroclimatology. While calls to integrate atmospheric information are an 104	

important avenue for advancement (Feiccabrino et al., 2013), hydrological models ultimately 105	

require accurate and validated phase determination at the land surface. Moreover, any 106	

advancement that relies on integrating new information or developing a new PPM technique will 107	

require validation and training using ground-based observations. To make tangible advancements 108	

in hydrological modeling, new techniques and datasets must be integrated with current modeling 109	

tools. The first step towards improved hydrological modeling in areas with mixed precipitation 110	
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phase is educating the scientific community about current techniques and limitations that convey 111	

towards gaps where research is needed.  112	

 113	

Our review paper is motivated by a lack of a comprehensive description of the state-of-the-art 114	

PPM and observation tools. Therefore, we describe the current state of the science in a way that 115	

clarifies the correspondence between techniques and observations and highlights current 116	

strengths and weaknesses in the science. Specifically, subsequent sections will review: 1) the 117	

processes and physics that control precipitation phase as relevant to field hydrologists, 2) current 118	

options available for observing precipitation phase and related measurements common in remote 119	

field settings, 3) existing methods for predicting and modeling precipitation phase, and 4) 120	

research gaps that exist regarding precipitation phase estimation. The overall objective is to 121	

convey a clear understanding of the diversity of tools available for PPM in hydrological 122	

modeling and the advancements needed to improve predictions in complex terrain characterized 123	

by large spatiotemporal variations in precipitation phase. 124	

 125	

2. Processes and Physics Controlling Precipitation Phase 126	

Precipitation formed in the atmosphere is typically a solid in the mid-latitudes and its phase at 127	

the land surface is determined by whether it melts during its fall (Stewart et al., 2015). Most 128	

hydrologic models do not simulate atmospheric processes and specify precipitation phase based 129	

on surface conditions alone (see Section 4.1), ignoring phase transformations in the atmosphere.  130	

 131	

Several important properties that influence phase changes in the atmosphere are not included in 132	

hydrological models (Feiccabrino et al., 2012), such as temperature and precipitation 133	

characteristics (Theriault and Stewart, 2010), stability of the atmosphere (Theriault and Stewart, 134	

2007), position of the 0 °C isotherm (Minder, 2010; Theriault and Stewart, 2010), interaction 135	

between hydrometeors (Stewart, 1992), and the atmospheric humidity profile (Harder and 136	

Pomeroy, 2013). The vertical temperature and humidity (represented by the mixing ratio) profile 137	

through which the hydrometeor falls typically consists of three layers, a top layer that is frozen 138	

(T <0 °C) in winter in temperate areas (Stewart, 1992), potentially a mixed layer with T >0 °C, 139	

and a surface layer that can be above or below 0 °C (Figure 2). The phase of precipitation at the 140	

surface partly depends on the phase reaching the top of the surface layer, which is defined as the 141	
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critical height. The temperature profile and depth of the surface layer controls the precipitation 142	

phase reaching the ground surface. For example, in Figure 2a, if rain reaches the critical height, it 143	

may reach the surface as rain or ice pellets depending on small differences in temperature in the 144	

surface layer (Theriault and Stewart, 2010). Similarly, in Figure 2b, if snow reaches the critical 145	

height, it may reach the surface as snow if the temperature in the surface layer is below freezing. 146	

However, in Figure 2c, when the surface layer temperatures are close to freezing and the mixing 147	

ratios are neither close to saturation or very dry the phase at the surface is not easily determined 148	

by the surface conditions alone. 149	

 150	

In addition to strong dependence on the vertical temperature and humidity profiles, precipitation 151	

phase is also a function of fall rate and hydrometeor size because they affect energy exchange 152	

with the atmosphere (Theriault et al., 2010). Precipitation rate influences the precipitation phase; 153	

for example, a precipitation rate of 10 mm h-1 reduces the amount of freezing rain by a factor of 154	

three over a precipitation rate of 1 mm h-1 (Theriault and Stewart, 2010) because there is less 155	

time for exchange of turbulent heat with the hydrometeor. A solid hydrometeor that originates in 156	

the top layer and falls through the mixed layer can reach the surface layer as wet snow, sleet, or 157	

rain. This phase transition in the mixed layer is primarily a function of latent heat exchange 158	

driven by vapor pressure gradients and sensible heat exchange driven by temperature gradients. 159	

Temperature generally increases from the mixed layer to the surface layer causing sensible heat 160	

inputs to the hydrometeor. If these gains in sensible heat are combined with minimal latent heat 161	

losses resulting from low vapor pressure deficits, it is likely the hydrometeor will reach the 162	

surface layer as rain (Figure 2). However, vapor pressure in the mixed layer is often below 163	

saturation leading to latent energy losses and cooling of the hydrometeor coupled with diabatic 164	

cooling of the local atmosphere, which can produce snow or other forms of frozen precipitation 165	

at the surface even when temperatures are above 0 °C. Likewise, surface energetics affect local 166	

atmospheric conditions and dynamics, especially in complex terrain. For example, melting of the 167	

snowpack can cause diabatic cooling of the local atmosphere and affect the phase of 168	

precipitation, especially when air temperatures are very close to 0 °C (Theriault et al., 2012). 169	

Many conditions lead to a combination of latent heat losses and sensible heat gains by 170	

hydrometeors (Figure 2). Under these conditions it can be difficult to predict the phase of 171	



	

 7 

precipitation without sufficient information about humidity and temperature profiles, turbulence, 172	

hydrometeor size, and precipitation intensity. 173	

 174	

Stability of the atmosphere can also influence precipitation phase. Stability is a function of the 175	

vertical temperature structure which can be altered by vertical air movement and hence influence 176	

precipitation phase (Theriault and Stewart, 2007). Vertical air velocity changes the temperature 177	

structure by adiabatic warming or cooling due to pressure changes of descending and ascending, 178	

air parcels, respectively. These changes in temperature will generate under-saturated and 179	

supersaturated conditions in the atmosphere that can also alter the precipitation phase. Even a 180	

very weak vertical air velocity (< 10 cm/s) significantly influences the phase and amount of 181	

precipitation formed in the atmosphere (Theriault and Stewart, 2007). The rain-snow line 182	

predicted by atmospheric models is very sensitive to these microphysics (Minder, 2010) and 183	

validating the microphysics across locations with complex physiography is challenging. 184	

Incorporation and validation of atmospheric microphysics is rarely achieved in hydrological 185	

applications (Feiccabrino et al., 2015). 186	

 187	

3. Current Tools for Observing Precipitation Phase 188	
3.1 In situ observations 189	
In situ observations refer to methods wherein a person or instrument onsite records precipitation 190	

phase. We identify 3 classes of approaches that are used to observe precipitation phase including 191	

1) direct observations, 2) coupled observations, and 3) proxy observations. 192	

 193	

Direct observations simply involve a person on-site noting the phase of falling precipitation. 194	

Such data form the basis of many of the predictive methods that are widely used (Dai, 2008; 195	

Ding et al., 2014; U.S. Army Corps of Engineers, 1956). Direct observations are useful for 196	

“manned” stations such as those operated by the U.S. National Weather Service. Few research 197	

stations, however, have this benefit, particularly in many remote regions and in complex terrain. 198	

Direct observations are also limited in their temporal resolution and are typically reported only 199	

once per day, with some exceptions (Froidurot et al., 2014). Citizen scientist networks have 200	

historically provided valuable data to supplement primary instrumented observation networks. 201	

The National Weather Service Cooperative Observer Program 202	

(http://www.nws.noaa.gov/om/coop/what-is-coop.html, accessed 10/12/2016) is comprised of a 203	
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network of volunteers recording daily observations of temperature and precipitation, including 204	

phase. The NOAA National Severe Storms Laboratory used citizen scientist observations of rain 205	

and snow occurrence to evaluate the performance of the Multi-Radar Multi-Sensor (MRMS) 206	

system in the meteorological Phenomena Identification Near the Ground (mPING) project (Chen 207	

et al., 2015). The Colorado Climate Center initiated Community Collaborative Rain, Hail and 208	

Snow Network (CoCoRaHS) supplies volunteers with low cost instrumentation to observe 209	

precipitation characteristics, including phase, and enables observations to be reported on the 210	

project website (http://www.cocorahs.org/, accessed 10/12/2016). Although highly valuable, 211	

some limitations of this system include the imperfect ability of observers to identify mixed phase 212	

events and the temporal extent of storms, as well as the lack of observations in both remote areas 213	

and during low light conditions. 214	

 215	

Coupled observations link synchronous measurements of precipitation with secondary 216	

observations to indicate phase. Secondary observations can include photographs of surrounding 217	

terrain, snow depth measurements, and measurements of ancillary meteorological variables. 218	

Photographs of vertical scales emplaced in the snow have been used to estimate snow 219	

accumulation depth, which can then be coupled with precipitation mass to determine density and 220	

phase (Berris and Harr, 1987; Floyd and Weiler, 2008; Garvelmann et al., 2013; Hedrick and 221	

Marshall, 2014; Parajka et al., 2012). Mixed phase events, however, are difficult to quantify 222	

using coupled depth- and photographic-based techniques (Floyd and Weiler, 2008). Acoustic 223	

distance sensors, which are now commonly used to monitor the accumulation of snow (e.g. Boe, 224	

2013), have similar drawbacks in mixed phase events, but have been effectively applied to 225	

separate snow from rain (Rajagopal and Harpold, 2016). Meteorological information such as 226	

temperature and relative humidity can be used to compute the phase of precipitation measured by 227	

bucket-type gauges. Unfortunately, this approach generally requires incorporating assumptions 228	

about the meteorological conditions that determine phase (see section 4.1). Harder and Pomeroy 229	

(2013) used a comprehensive approach to determine the phase of precipitation. Every 15 minutes 230	

during their study period phase was determined by evaluating weighing bucket mass, tipping 231	

bucket depth, albedo, snow depth, and air temperature. Similarly, Marks et al. (2013) used a 232	

scheme based on co-located precipitation and snow depth to discriminate phase. A more 233	

involved expert decision making approach by L'hôte et al. (2005) was based on six recorded 234	
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meteorological parameters: precipitation intensity, albedo of the ground, air temperature, ground 235	

surface temperature, reflected long-wave radiation, and soil heat flux. The intent of most of these 236	

coupled observations was to develop datasets to evaluate PPM algorithms. However, if these 237	

observation systems were sufficiently simple they may have the potential to be applied 238	

operationally across larger meteorological monitoring networks encompassing complex terrain 239	

where snow comprises a large component of annual precipitation (Rajagopal and Harpold, 2016).  240	

 241	

Proxy observations measure geophysical properties of precipitation to infer phase. The hot plate 242	

precipitation gauge introduced by Rasmussen et al. (2012), for example, uses a heated thin disk 243	

to accumulate precipitation and then measures the amount of energy required to melt snow or 244	

evaporate liquid water. This technique, however, requires a secondary measurement of air 245	

temperature to determine if the energy is used to melt snow or only evaporate rain. Disdrometers 246	

measure the size and velocity of hydrometeors. Although the most common application of 247	

disdrometer data is to determine the drop size distribution (DSD) and other properties of rain, the 248	

phase of hydrometeors can be inferred by relating velocity and size to density. Some disdrometer 249	

technologies, which can be grouped into impact, imaging, and scattering approaches (Loffler-250	

Mang et al., 1999), are better suited for describing snow than others. Impact disdrometers, first 251	

introduced by Joss and Waldvogel (1967), use an electromechanical sensor to convert the 252	

momentum of a hydrometeor into an electric pulse. The amplitude of the pulse is a function of 253	

drop diameter. Impact disdrometers have not been commonly used to measure solid precipitation 254	

due to the different functional relationships between drop size and momentum for solid and 255	

liquid precipitation. Imaging disdrometers use basic photographic principles to acquire images of 256	

the distribution of particles (Borrmann and Jaenicke, 1993; Knollenberg, 1970). The 2D Video 257	

Disdrometer (2DVD) described by Kruger and Krajewski (2002) records the shadows cast by 258	

hydrometeors onto photodetectors as they pass through two sheets of light. The shape of the 259	

shadows enables computation of particle size, and shadows are tracked through both light sheets 260	

to determine velocity. Although initially designed to describe liquid precipitation, recent work 261	

has shown that the 2DVD can be used to classify snowfall according to microphysical properties 262	

of single hydrometeors (Bernauer et al., 2016). The 2DVD has been used to classify known rain 263	

or snow events individually, but little work has been performed to distinguish between liquid and 264	

solid precipitation. Scattering disdrometers, or optical disdrometers, measure the extinction of 265	
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light passing between a source and a sensor (Hauser et al., 1984; Loffler-Mang et al., 1999). Like 266	

the other types, optical disdrometers were originally designed for rain, but have been periodically 267	

applied to snow (Battaglia et al., 2010; Lempio et al., 2007). In a comparison study by 268	

Caracciolo et al. (2006), the PARSIVEL optical disdrometer, originally described by Loffler-269	

Mang et al. (1999) did not perform well against a 2DVD because of problems related to the 270	

detection of slow fall velocities for snow. It may be possible to use optical disdrometers to 271	

distinguish between rain, sleet, and snow based on the existence of distinct shapes of the size 272	

spectra for each precipitation type. More research on the relationship between air temperature 273	

and the size spectra produced by the optical disdrometer is needed (Lempio et al., 2007). In 274	

summary, disdrometers of various types are valuable tools for describing the properties of rain 275	

and snow, but require further testing and development to distinguish between rain and snow, as 276	

well as mixed phase events. 277	

 278	

3.2 Ground-based remote sensing observations 279	

Ground-based remote sensing observations have been available for several decades to detect 280	

precipitation phase using radar. Until recently, most ground-based radar stations were operated 281	

as conventional Doppler systems that transmit and receive radio waves with single horizontal 282	

polarization. Developments in dual polarization ground radar such as those that function as part 283	

of the U.S. National Weather Service NEXRAD network (NOAA, 2016), have resulted in 284	

systems that transmit radio signals with both horizontal and vertical polarizations. In general, 285	

ground-based remote sensing observation, either single or dual-pol, remain underutilized for 286	

detecting precipitation phase and are challenging to apply in complex terrain (Table 2). 287	

 288	

Ground-based remote sensing of precipitation phase using single-polarized radar systems 289	

depends on detecting the radar bright band. Radio waves transmitted by the radar system, are 290	

scattered by hydrometeors in the atmosphere, with a certain proportion reflected back towards 291	

the radar antenna. The magnitude of the measured reflectivity (Z) is related to the size and the 292	

dielectric constant of falling hydrometeors (White et al., 2002). Ice particles aggregate as they 293	

descend through the atmosphere and their dielectric constant increases, in turn increasing Z 294	

measured by the radar, creating the bright band, a layer of enhanced reflectivity just below the 295	

elevation of the melting level (Lundquist et al., 2008). Therefore, bright band elevation can be 296	
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used as a proxy for the “snow level”, the bottom of the melting layer where falling snow 297	

transforms to rain (White et al., 2010;White et al., 2002). 298	

 299	

Doppler vertical velocity (DVV) is another variable that can be estimated from single-polarized 300	

vertically profiling radar. DVV gives an estimate of the velocity of falling particles; as 301	

snowflakes melt and become liquid raindrops, the fall velocity of the altered hydrometeors 302	

increases. When combined with reflectivity profiles, DVV helps reduce false positive detection 303	

of the bright band, which may be caused by phenomena other than snow melting to rain (White 304	

et al., 2002). First, DVV and Z are combined to detect the elevation of the bottom of the bright 305	

band. Then the algorithm searches for maximum Z above the bottom of the bright band and 306	

determines that to be the bright band elevation (White et al., 2002). However, a test of this 307	

algorithm on data from a winter storm over the Sierra Nevada found root mean square errors of 308	

326 to 457 m compared to ground observations when bright band elevation was assumed to 309	

represent the surface transition from snow to rain (Lundquist et al., 2008). Snow levels in 310	

mountainous areas, however, may also be overestimated by radar profiler estimates if they are 311	

unable to resolve spatial variations close to mountain fronts, since snow levels have been noted 312	

to persistently drop on windward slopes (Minder and Kingsmill, 2013). Despite the potential 313	

errors, the elevation of maximum Z may be a useful proxy variable for snow level in 314	

hydrometeorological applications in mountainous watersheds because maximum Z will always 315	

occur below the freezing level (Lundquist et al., 2008; White et al., 2010) 316	

 317	

Few published studies have explored the value of bright band-derived phase data for hydrologic 318	

modeling. Maurer and Mass (2006) compared the melting level from vertically pointing radar 319	

reflectivity against temperature-based methods to assess whether the radar approach could 320	

improve determination of precipitation phase at the ground level. In that study, the altitude of the 321	

top of the bright band was detected and applied across the study basin. Frozen precipitation was 322	

assumed to be falling in model pixels above the altitude of the melting level and liquid 323	

precipitation was assumed to be falling in pixels below the altitude of the melting layer (Maurer 324	

and Mass, 2006). Maurer and Mass (2006) found that incorporating radar-detected melting layer 325	

altitude improved streamflow simulation results. A similar study that used bright band altitude to 326	

classify pixels according to surface precipitation type was not as conclusive; bright band altitude 327	
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data did not improve hydrologic model simulation results over those based on a temperature 328	

threshold (Mizukami et al., 2013). Also, the potential of the method is limited to the availability 329	

of vertically pointing radar; in complex, mountainous terrain the ability to estimate melting level 330	

becomes increasingly challenging with distance from the radar.  331	

 332	

Dual-polarized radar systems generate more variables than traditional single-polarized systems. 333	

These polarimetric variables include differential reflectivity, reflectivity difference, the 334	

correlation coefficient, and specific differential phase. Polarimetric variables respond to 335	

hydrometeor properties such as shape, size, orientation, phase state, and fall behavior and can be 336	

used to assign hydrometeors to specific categories (Chandrasekar et al., 2013;Grazioli et al., 337	

2015), or to improve bright band detection (Giangrande et al., 2008). 338	

 339	

Various hydrometeor classification algorithms have been applied to X-, C- and S-band 340	

wavelengths. Improvements in these algorithms over recent years have seen hydrometeor 341	

classification become an operational meteorological product (see Grazioli et al., 2015 for an 342	

overview). For example, the U.S. National Severe Storms Laboratory (NSSL) developed a fuzzy-343	

logic hydrometeor classification algorithm for warm-season convective weather (Park et al., 344	

2009) and this algorithm has also been tested for cold-season events (Elmore, 2011). Its skill was 345	

tested against surface observations of precipitation type but the algorithm did not perform well in 346	

classifying winter precipitation because it could not account for re-freezing of hydrometeors 347	

below the melting level (Figure 2, Elmore, 2011). Unlike warm season convective precipitation, 348	

the freezing level during a cold-season precipitation event can vary spatially. This phenomenon 349	

has prompted the use of polarimetric variables to first detect the melting layer, and then classify 350	

hydrometeors (Boodoo et al., 2010; Thompson et al., 2014). Although there has been some 351	

success in developing two-stage cold-season hydrometeor classification algorithms, there is little 352	

in the published literature that explores the potential contributions of these algorithms for 353	

partitioning snow and rain for hydrological modeling.  354	

 355	

3.3 Space-based remote sensing observations 356	
Spaceborne remote sensing observations typically use passive or active microwave sensors to 357	

determine precipitation phase (Table 2). Many of the previous passive microwave systems were 358	
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challenged by coarse resolutions and difficulties retrieving snowfall over snow-covered areas. 359	

More recent active microwave systems have advantage for detecting phase in terms of accuracy 360	

and spatial resolution, but remain largely unverified. Table 2 provides and overview of these 361	

space-based remote sensing technologies that are described in more detail below. 362	

 363	

Passive microwave radiometers detect microwave radiation emitted by the Earth’s surface or 364	

atmosphere. Passive microwave remote sensing has potential for discriminating between rainfall 365	

and snowfall because microwave radiation emitted by the Earth’s surface propagates through all 366	

but the densest precipitating clouds, meaning that radiation at microwave wavelengths directly 367	

interacts with hydrometeors within clouds (Olson et al., 1996; Ardanuy, 1989). However, the 368	

remote sensing of precipitation in microwave wavelengths and the development of operational 369	

algorithms is dominated by research focused on rainfall (Arkin and Ardanuy, 1989); by 370	

comparison, snowfall detection and observation has received less attention (Noh et al., 2009; 371	

Kim et al., 2008). This is partly explained by examining the physical processes within clouds that 372	

attenuate the microwave signal. Raindrops emit low levels of microwave radiation increasing the 373	

level of radiance measured by the sensor; in contrast, ice hydrometeors scatter microwave 374	

radiation, decreasing the radiance measured by a sensor (Kidd and Huffman, 2011). Land 375	

surfaces have a much higher emissivity than water surfaces, meaning that emission-based 376	

detection of precipitation is challenging over land because the high microwave emissions mask 377	

the emission signal from raindrops (Kidd, 1998; Kidd and Huffman, 2011). Thus, scattering-378	

based techniques using medium to high frequencies are used to detect precipitation over land. 379	

Moreover, microwave observations at higher frequencies (> 89 GHz) have been shown to 380	

discriminate between liquid and frozen hydrometeors (Wilheit et al., 1982). 381	

 382	

Retrieving snowfall over land areas from spaceborne microwave sensors can be even more 383	

challenging than for liquid precipitation because existing snow cover increases microwave 384	

emission. Depression of the microwave signal caused by scattering from airborne ice particles 385	

may be obscured by increased emission of microwave radiation from the snow covered land 386	

surface. Kongoli et al. (2003) demonstrated an operational snowfall detection algorithm that 387	

accounts for the problem of existing snow cover. This group used data from the Advanced 388	

Microwave Sounding Unit-A (AMSU-A), a 15-channel atmospheric temperature sounder with a 389	
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single high frequency channel at 89 GHz), and AMSU-B, a 5-channel high frequency microwave 390	

humidity sounder. Both sensors were mounted on the NOAA-16 and -17 polar-orbiting satellites. 391	

While the algorithm worked well for warmer, opaque atmospheres, it was found to be too noisy 392	

for colder, clear atmospheres. Additionally, some snowfall events occur under warmer conditions 393	

than those that were the focus of the study (Kongoli et al., 2003). Kongoli et al. (2015) further 394	

adapted their methodology for the Advanced Technology Microwave Sounder (ATMS - onboard 395	

the polar-orbiting Suomi National Polar-orbiting Partnership satellite) a descendant of the 396	

AMSU sounders. The latest algorithm assesses the probability of snowfall using the logistic 397	

regression and the principal components of seven high frequency bands at 89 GHz and above. In 398	

testing, the Kongoli et al. (2015) algorithm has shown skill in detecting snowfall both at variable 399	

rates and when snowfall is lighter and occurs in colder conditions. An alternative algorithm by 400	

Noh et al., 2009 used physically-based, radiative transfer modeling in an attempt to improve 401	

snowfall retrieval over land. In this case, radiative transfer modeling was used to construct an a 402	

priori database of observed snowfall profiles and corresponding brightness temperatures. The 403	

radiative transfer procedure yields likely brightness temperatures from modeling how ice 404	

particles scatter microwave radiation at different wavelengths. A Bayesian retrieval algorithm 405	

was then used to estimate snowfall over land by comparing measurements of brightness 406	

temperature with modeled brightness temperature (Noh et al., 2009). The algorithm was tested 407	

during the early and late winter for heavier snowfall events. Late winter retrievals indicated that 408	

the algorithm overestimated snowfall over surfaces with significant snow accumulation. 409	

 410	

While results have been promising, the spatial resolution at which ATMS and other passive 411	

microwave data are acquired is very coarse (15.8 to 74.8 km at nadir), making passive 412	

microwave approaches more applicable for regional to continental scales. Temporal resolution of 413	

the data acquisition is another challenge. AMSU instruments are mounted on 8 satellites; the 414	

related ATMS is mounted on a single satellite and planned for two additional satellites. 415	

However, the satellites are polar-orbiting, not geostationary, so it is probable that a precipitation 416	

event could occur outside the field of view of one of the instruments. 417	

 418	

Spaceborne active microwave or radar sensors measure the backscattered signal from pulses of 419	

microwave energy emitted by the sensor itself. Much like the ground based radar systems, the 420	
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propagated microwave signal interacts with liquid and solid particles in the atmosphere and the 421	

degree to which the measured return signal is attenuated provides information on the 422	

atmospheric constituents. The advantage offered by spaceborne radar sensors over passive 423	

microwave is the capability to acquire more detailed sampling of the vertical profile of the 424	

atmosphere (Kulie and Bennartz, 2009). The first spaceborne radar capable of observing 425	

snowfall is the Cloud Profiling Radar (CPR) onboard CloudSat (2006 – present). The CPR 426	

operates at 94 GHz with an along-track (or vertical) resolution of ~1.5 km. Retrieval of dry 427	

snowfall rate from CPR measurements of reflectivity have been shown to correspond with 428	

estimates of snowfall from ground-based radar at elevations of 2.6 and 3.6 km above mean sea 429	

level (Matrosov et al., 2008). Estimates at lower elevations, especially those in the lowest 1 km, 430	

are contaminated by ground clutter. Alternative approaches, combining CPR data with ancillary 431	

data have been formulated to account for this challenge (Kulie and Bennartz, 2009; Liu, 2008). 432	

Known relationships between CPR reflectivity data and the scattering properties of non-spherical 433	

ice crystals are used to derive snowfall at a given elevation above mean sea level; below this 434	

elevation a temperature threshold derived from surface data is used to discriminate between rain 435	

and snow events. Liu (2008) used <2 °C as the snow/rain threshold, whereas Kulie and Bennartz 436	

(2009) used 0 °C as the snow/rain threshold. Temperature thresholds have been the subject of 437	

much research and debate for discriminating precipitation phase, as is further discussed in 438	

section 4.1.  439	

 440	

CloudSat is part of the A-train or afternoon constellation of satellites, which includes Aqua, with 441	

the Moderate Resolution Imaging Spectrometer (MODIS) and the Cloud–Aerosol Lidar and 442	

Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft with cloud-profiling Lidar. The 443	

sensors onboard A-train satellites provided the unique combination of data to create an 444	

operational snow retrieval product. The CPR Level 2 snow profile product (2C-SNOW-445	

PROFILE) uses vertical profile data from the CPR, input from MODIS and the cloud profiling 446	

radar, as well as weather forecast data to estimate near surface snowfall (Kulie et al., 2016; 447	

Wood et al., 2013). The performance of 2C-SNOW-PROFILE was tested by Cao et al. (2014). 448	

This group found the product worked well in detecting light snow but performed less 449	

satisfactorily under conditions of moderate to heavy snow because of the non-stationary effects 450	

of attenuation on the returned radar signal.  451	
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 452	

The launch of the Global Precipitation Mission (GPM) core observatory in February 2014 holds 453	

promise for the future deployment of operational snow detection products. Building on the 454	

success of the Tropical Rainfall Monitoring Mission (TRMM), the GPM core observatory 455	

sensors include precipitation radar (DPR) and microwave imager (GMI). The GMI has two 456	

millimeter wave channels (166 and 183 GHz) that are specifically designed to detect and retrieve 457	

light rain and snow precipitation. These are more advanced than the sensors onboard the TRMM 458	

spacecraft and permit better quantification of the physical properties of precipitating particles, 459	

particularly over land at middle to high latitudes (Hou et al., 2014). Algorithms for the GPM 460	

mission are still under development, and is partly being driven by data collected during the GPM 461	

Cold Season Experiment (GCPEx) (Skofronick-Jackson et al., 2015). Using airborne sensors to 462	

simulate GPM and DPR measurements, one of the questions that the GCPEx hoped to address 463	

concerned the potential capability of data from the DPR and GMI to discriminate falling snow 464	

from rain or clear air (Skofronick-Jackson et al., 2015). The initial results reported by the GCPEx 465	

study echo some of the challenges recognized for ground-based single polarized radar detection 466	

of snowfall. The relationship between radar reflectivity and snowfall is not unique. For the GPM 467	

mission, it will be necessary to include more variables from dual frequency radar measurements, 468	

multiple frequency passive microwave measurements, or a combination of radar and passive 469	

microwave measurements (Skofronick-Jackson et al., 2015). 470	

 471	

4. Current Tools for Predicting Precipitation Phase 472	

4.1 Prediction Techniques from Ground-Based Observations 473	

Discriminating between solid and liquid precipitation is often based on a near-surface air 474	

temperature threshold (Martinec and Rango, 1986;U.S. Army Corps of Engineers, 1956;L'hôte et 475	

al., 2005). Four prediction methods have been developed that use near-surface air temperature 476	

for discriminating precipitation phase: 1) static threshold, 2) linear transition, 3) minimum and 477	

maximum temperature, and 4) sigmoidal curve (Table 1). A static temperature threshold applies 478	

a single temperature value, such as mean daily temperature, where all of the precipitation above 479	

the threshold is rain, and all below that threshold is snow. Typically this threshold temperature is 480	

near 0 °C (Lynch-Stieglitz, 1994; Motoyama, 1990), but was shown to be highly variable across 481	

both space and time (Kienzle, 2008; Motoyama, 1990; Braun, 1984; Ye et al., 2013). For 482	
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example, Rajagopal and Harpold (2016) optimized a single temperature threshold at Snow 483	

Telemetry (SNOTEL) sites across the western U.S. to show regional variability from -4 to 3 °C 484	

(Figure 3). A second discrimination technique is to linearly scale the proportion of snow and rain 485	

between a temperature for all rain (Train) and a temperature for all snow (Tsnow) (Pipes and Quick, 486	

1977;McCabe and Wolock, 2010;Tarboton et al., 1995). Linear threshold models have been 487	

parameterized slightly differently across studies, e.g.: Tsnow =-1.0 °C, Train = 3.0 °C (McCabe and 488	

Wolock, 2010), Tsnow =-1.1 °C and Train =3.3 °C (Tarboton et al., 1995), and Tsnow =0 °C and Train 489	

=5 °C (McCabe and Wolock, 1999b). A third technique specifies a threshold temperature based 490	

on daily minimum and maximum temperatures to classify rain and snow, respectively, with a 491	

threshold temperature between the daily minimum and maximum producing a proportion of rain 492	

and snow (Leavesley et al., 1996). This technique can have a time-varying temperature threshold 493	

or include a Train that is independent of daily maximum temperature. A fourth technique applies a 494	

sigmoidal relationship between mean daily (or sub daily) temperature and the proportion or 495	

probability of snow versus rain. For example, one method derived for southern Alberta, Canada 496	

employs a curvilinear relationship defined by two variables, a mean daily temperature threshold 497	

where 50% of precipitation is snow, and a temperature range where mixed-phase precipitation 498	

can occur (Kienzle, 2008). Another sigmoidal-based empirical model identified a hyperbolic 499	

tangent function defined by four parameters to estimate the conditional snow (or rain) frequency 500	

based on a global analysis of precipitation phase observations from over 15,000 land-based 501	

stations (Dai, 2008). Selection between temperature-based techniques is typically based on 502	

available data, with a limited number of studies quantifying their relative accuracy for 503	

hydrological applications (Harder and Pomeroy, 2014). 504	

 505	

Several studies have compared the accuracy of temperature-based PPM to one another and/or 506	

against an independent validation of precipitation phase. Sevruk (1984) found that only about 507	

68% of the variability in monthly observed snow proportion in Switzerland could be explained 508	

by threshold temperature based methods near 0 °C. An analysis of data from fifteen stations in 509	

southern Alberta, Canada with an average of >30 years of direct observations noted over-510	

estimations in the mean annual snowfall for static threshold (8.1%), linear transition (8.2%), 511	

minimum and maximum (9.6%), and sigmoidal transition (7.1%) based methods (Kienzle, 2008). 512	

An evaluation of PPM at three sites in the Canadian Rockies by Harder and Pomeroy (2013) 513	
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found the largest percent error to occur using a static threshold (11% to 18%), followed by linear 514	

relationships (-8% to 11%), followed by a sigmoidal relationships (-3 to 11%). Another study 515	

using 824 stations in China with >30 years of direct observations found accuracies of 51.4% 516	

using a static 2.2 °C threshold and 35.7% to 47.4% using linear temperature-based thresholds 517	

(Ding et al., 2014). Lastly, for multiple sites across the rain-snow transition in southwestern 518	

Idaho, static temperature thresholds produced the lowest proportion (68%) whereas a linear-519	

based model produced the highest proportion (75%) of snow, respectively (Marks et al., 2013). 520	

Generally these accuracy assessments demonstrated that static threshold methods produced the 521	

greatest errors, whereas sigmoidal relationships produced the smallest errors, although variations 522	

to this general rule existed across sites. 523	

 524	

Near surface humidity also influences precipitation phase (see Section 2). Three humidity-525	

dependent precipitation phase identification methods are found in the literature: 1) dewpoint 526	

temperature (Td), 2) wet bulb temperature (Tw), and 3) psychometric energy balance. The 527	

dewpoint temperature is the temperature at which an air parcel with a fixed pressure and 528	

moisture content would be saturated. In one approach to account for measurement and 529	

instrument calibration uncertainties of ±0.25 °C each, Td and Tw below -0.5 °C was assumed to 530	

be all snow and above +0.5 °C all rain, with a linear relationship between the two being a 531	

proportional mix of snow and rain (Marks et al., 2013). Td of 0.0 °C performed consistently 532	

better than Ta in one study by Marks et al. (2001) while a Td of 0.1°C for multiple stations in 533	

Sweden was less accurate than a Ta of 1.0 °C (Feiccabrino et al., 2013). The wet or ice bulb 534	

temperature (Tw) is the temperature at which an air parcel would become saturated by 535	

evaporative cooling in the absence of other sources of sensible heat, and is the lowest 536	

temperature that falling precipitation can reach. Few studies have investigated the feasibility of 537	

Tw for precipitation phase prediction (Olsen, 2003; Ding et al., 2014; Marks et al., 2013). Tw 538	

significantly improved prediction of precipitation phase over Ta at 15-minute time steps, but only 539	

marginally improved prediction at daily time steps (Marks et al., 2013). Ding et al. (2014) 540	

developed a sigmoidal phase probability curve based on Tw and elevation that outperformed Ta 541	

threshold-based methods across a network of sites in China. Conceptually, the hydrometeor 542	

temperature (Ti) is similar to Tw but is calculated using the latent heat and vapor density gradient. 543	
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Use of computed Ti value significantly improved precipitation phase estimates over Ta, 544	

particularly as time scales approached one day (Harder and Pomeroy, 2013). 545	

  546	

There has been limited validation of humidity-based precipitation phase prediction techniques 547	

against ground-truth observations. Ding et al. (2014) showed that a method based on Tw and 548	

elevation increased accuracy by 4.8% to 8.9% over several temperature-based methods. Their 549	

method was more accurate than a simpler Tw based method by (Yamazaki, 2001). Feiccabrino et 550	

al. (2013) showed that Td misclassified 3.0% of snow and rain (excluding mixed phased 551	

precipitation), whereas Ta only misclassified 2.4%. Ye et al. (2013) found Td less sensitive to 552	

phase discrimination under diverse environmental conditions and seasons than Ta. Froidurot et 553	

al. (2014) evaluated several techniques with a critical success index (CSI) at sites across 554	

Switzerland to show the highest CSI were associated with variables that included Tw or relative 555	

humidity (CSI=84%-85%) compared to Ta (CSI=78%). Marks et al. (2013) evaluated the time at 556	

which phase transitioned from snow to rain against field observations across a range of 557	

elevations and found that Td most closely predicted the timing of phase change, whereas both Ta 558	

and Tw estimated earlier phase changes than observed. Harder and Pomeroy (2013) compared Ti 559	

with field observations and found that error was <10% when Ti was allowed to vary with each 560	

daily time-step and >10% when Ti was fixed at 0 °C. The Ti accuracy increased appreciably (i.e. 561	

5%-10% improvement) when the temporal resolution was decreased from daily to hourly or 15-562	

minute time steps. The validation studies consistently showed improvements in accuracy by 563	

including humidity over PPM based only on temperature. 564	

 565	

Hydrological models employ a variety of techniques for phase prediction using ground based 566	

observations (Table 1). All discrete hydrological models (i.e. not coupled to an atmospheric 567	

model) investigated used temperature based thresholds that did not consider the near-surface 568	

humidity. Moreover, most models use a single static temperature threshold, which was 569	

consistently shown to produce lower accuracy than multiple temperature methods. Hydrological 570	

models that are coupled to atmospheric models were more able to consider important controls on 571	

precipitation phase, such as humidity and atmospheric profiles. This compendium of model PPM 572	

highlights the current shortcomings in phase prediction in conventional discrete hydrological 573	

models. 574	
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 575	

4.2 Prediction Techniques Incorporating Atmospheric Information 576	

While many hydrologic models have their own formulations for determining precipitation phase 577	

at the ground, it is also possible to initialize hydrologic models with precipitation phase fraction, 578	

intensity, and volume from numerical weather simulation model output. Here we discuss the 579	

limitations of precipitation phase simulation inherent to WRF (Kaplan et al., 2012; Skamarock et 580	

al., 2008) and other atmospheric simulation models. The finest scale spatial resolution employed 581	

in atmospheric simulation models is ~1 km and these models generate data at hourly or finer 582	

temporal resolutions. Regional climate models (RCM) and global climate models (GCM) are 583	

typically coarser than local mesoscale models. The physical processes driving both the removal 584	

of moisture from the air and the precipitation phase (Section 2) occur at much finer spatial and 585	

temporal resolutions in the real atmosphere than models typically resolve, i.e. <1 km. As with all 586	

numerical models, the representation of sub-grid scale processes requires parameterization. At 587	

typical scales considered, characterization of mixed phase processes within a condensing cloud 588	

depends on both cloud microphysics and kinematics of the surrounding atmosphere. Replicating 589	

cloud physics at the multi-kilometer scale requires empiricism. The 30+ cloud microphysics 590	

parameterization options in the research version of WRF (Skamarock et al., 2008) vary in the 591	

number of classes described (cloud ice, cloud liquid, snow, rain, graupel, hail, etc.), and may or 592	

may not accurately resolve changes in hydrometeor phase and horizontal spatial location (due to 593	

wind) during precipitation. All microphysical schemes predict cloud water and cloud ice based 594	

on internal cloud processes that include a variety of empirical formulations or even simple 595	

lookup tables. These schemes vary greatly in their accuracy with “mixed phase” schemes 596	

generally producing the most accurate simulations of precipitation phase in complex terrain 597	

where much of the water is supercooled (Lin, 2007; Reisner et al., 1998; Thompson et al., 2004; 598	

Thompson et al., 2008; Morrison et al., 2005; Zängl, 2007; Kaplan et al., 2012). Comprehensive 599	

validation of the microphysical schemes over different land surface types (e. g. warm maritime, 600	

flat prairie, etc.) with a focus on different snowfall patterns is lacking. In particular, in transition 601	

zones between mountains and plains or along coastlines, the complexity of the microphysics 602	

becomes even more extreme due the dynamics and interactions of differing air masses with 603	

distinct characteristics. The autoconversion and growth processes from cloud water or ice to 604	

hydrometeors contain a strong component of empiricism, in particular the nucleation media and 605	
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their chemical composition. Different microphysical parameterizations lead to different spatial 606	

distributions of precipitation and produce varying vertical distributions of hydrometeors 607	

(Gilmore et al., 2004). Regardless, precipitation rates for each grid cell are averages requiring 608	

hydrological modelers to consider the effects of elevation, aspect, etc. in resolving precipitation 609	

phase fractions for finer-scale models. 610	

 611	

Numerical models that contain sophisticated cloud microphysics schemes allow assimilation of 612	

additional remote sensing data beyond conventional synoptic/large scale observations (balloon 613	

data). This is because the coarse spatial and temporal nature of radiosonde data results in the 614	

atmosphere being sensed imperfectly/incompletely compared with the scale of motion that 615	

weather simulation models can numerically resolve. These observational inadequacies are 616	

exacerbated in complex terrain, where precipitation phase fraction can vary on small scales but 617	

radar can be blocked by topography and therefore, rendered useless in the model initialization. 618	

Accurate generation of liquid and frozen precipitation from vapor requires accurate depiction of 619	

initial atmospheric moisture conditions (Kalnay and Cai, 2003; Lewis et al., 2006). In 620	

acknowledgement of the difficulty and uncertainty of initializing numerical simulation models, 621	

atmospheric modelers use the term “bogusing” to describe incorporation of individual 622	

observations at a point location into large scale initial conditions in an effort to enhance the 623	

accuracy of the simulation (Eddington, 1989). They also employ complex assimilation 624	

methodologies to force the early period of the model solutions during the time integration 625	

towards fine scale observations (Kalnay and Cai, 2003; Lewis et al., 2006). These asynoptic or 626	

fine scale data sources often substantially improve the accuracy of the simulations as time 627	

progresses.  628	

 629	

Hydrologists are increasingly using output from atmospheric models to drive hydrologic models 630	

from daily to climate or multi-decadal timescales (Tung and Haith, 1995; Pachauri, 2002; Wood 631	

et al., 2004; Rojas et al., 2011; Yucel et al., 2015). These atmospheric models suffer from the 632	

same data paucity and scale issues that likewise challenge the implementation and validation of 633	

hydrologic models. Uncertainties in their output, including precipitation volume and phase, 634	

begins with the initialization of the atmospheric model from measurements, increases with model 635	

choice and microphysics as well as turbulence parameterizations, and is a strong function of the 636	
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scale of the model. The significance of these uncertainties varies by application, but should be 637	

acknowledged. Furthermore, these uncertainties are highly variable in character and magnitude 638	

from day to day and location to location. Thus, there has been very little published concerning 639	

how well atmospheric models predict precipitation phase. Finally, lack of ground measurements 640	

leaves hydrologists with no means to assess and validate atmospheric model predictions. 641	

 642	

5. Research Gaps 643	

The incorrect prediction of precipitation phase leads to cascading effects on hydrological 644	

modeling (Figure 1). Meeting the challenge of accurately predicting precipitation phase requires 645	

the closing of several critical research gaps (Figure 4). Perhaps the most pressing challenge for 646	

improving PPM is developing and employing new and improved sources of data. However, new 647	

data sources will not yield much benefit without effective incorporation of data into predictive 648	

models (Figure 4). Additionally, both the scientific and management communities lack data 649	

products that can be readily understood and broadly used. Addressing these research gaps 650	

requires simultaneous engagement both within and between the hydrology and atmospheric 651	

observation and modeling communities. Changes to atmospheric temperature and humidity 652	

profiles from regional climate change will likely challenge conventional precipitation phase 653	

prediction in ways that demand additional observations and improved forecasts. 654	

 655	

5.1 Conduct focused field campaigns 656	

Intensive field campaigns are extremely effective approaches to address fundamental research 657	

gaps focused on the discrimination between rain, snow, and mixed-phase precipitation at the 658	

ground by providing opportunities to test novel sensors, and detailed datasets to develop remote 659	

sensing retrieval algorithms, and improve PPM estimation methods. The recent Global 660	

Precipitation Measurement (GPM) Cold Season Precipitation Experiment (GCPEx) is an 661	

example of such a campaign in non-complex terrain where simultaneous observations using 662	

arrays of both airborne and ground-based sensors were used to measure and characterize both 663	

solid and liquid precipitation (e.g. Skofronick-Jackson et al., 2015). Similar intensive field 664	

campaigns are needed in complex terrain that is frequently characterized by highly dynamic and 665	

spatially variable hydrometeorological conditions. Such campaigns are expensive to conduct, but 666	

can be implemented as part of operational nowcasting to develop rich data resources to advance 667	
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scientific understanding as was very effectively done during the Vancouver Olympic Games in 668	

2010 (Isaac et al., 2014; Joe et al., 2014). The research community should utilize existing 669	

datasets and capitalize on similar opportunities and expand environmental monitoring networks 670	

to simultaneously advance both atmospheric and hydrological understanding, especially in 671	

complex terrain spanning the rain-snow transition zone.  672	

 673	

5.2 Incorporate humidity information 674	

Atmospheric humidity affects the energy budget of falling hydrometeors (Section 4.1), but is 675	

rarely considered in precipitation phase prediction. The difficulty in incorporating humidity 676	

mainly arises from a lack of observations, both as point measurements and distributed gridded 677	

products. For example, while some reanalysis products have humidity information (i.e. National 678	

Centers for Environmental Prediction, NCEP reanalysis) they are at spatial scales (i.e. > 1 679	

degree) too coarse for resolving precipitation phase in complex topography. Addition of high-680	

quality aspirated humidity sensors at snow monitoring stations, such as the SNOTEL network, 681	

would advance our understanding of humidity and its effects on precipitation phase in the 682	

mountains. Because dry air masses have regional variations controlled by storm tracks and 683	

proximity to water bodies, sensitivity of precipitation phase to humidity variations driven by 684	

regional warming remains relatively unexplored. 685	

 686	

Although humidity datasets are relatively rare in mountain environments, some gridded data 687	

products exist that can be used to investigate the importance of humidity information. Most 688	

interpolated gridded data products either do not include any measure of humidity (e.g. Daymet or 689	

WorldClim) or use daily temperature measurements to infer humidity conditions (e.g. PRISM). 690	

In complex terrain, air temperature can also vary dramatically at relatively small scales from 691	

ridgetops to valley bottoms due to cold air drainage (Whiteman et al., 1999) and hence can 692	

introduce errors into inferential techniques such as these. Potentially more useful are data 693	

assimilation products, such as NLDAS-2, that provide humidity and temperature values at 1/8th 694	

of a degree scale over the continental U.S. In addition, several data reanalysis products are often 695	

available at 1 to 3 year lags from present, including NCEP/NCAR, NARR, and the 20th Century 696	

reanalysis. Given the relatively sparse observations of humidity in mountain environments, the 697	

accuracy of gridded humidity products is rarely rigorously evaluated (Abatzoglou, 2013). More 698	
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work is needed to understand the added skill provided by humidity datasets for predicting 699	

precipitation phase and its distribution over time and space. 700	

 701	

5.2 Incorporate atmospheric information 702	

We echo the call of  Feiccabrino et al. (2015) for greater incorporation of atmospheric 703	

information into phase prediction and additional verification of the skill in phase prediction 704	

provided by atmospheric information. 705	

 706	

Several avenues exist to better incorporate atmospheric information into precipitation phase 707	

prediction, including direct observations, remote sensing observations, and model products. 708	

Radiosonde measurements made daily at many airports and weather forecasting centers have 709	

shown some promise for supplying atmospheric profiles of temperature and humidity (Froidurot 710	

et al., 2014). However, these data are only useful to initialize the larger scale structure of 711	

temperature and water vapor, and may not capture local-scale variations in complex terrain. It is 712	

also their lack of temporal and spatial frequency that prevents their use in accurate precipitation 713	

phase prediction, which is inherently a mesoscale problem, i.e., scales of motion <100 km. 714	

Atmospheric information on the bright-band height from Doppler radar has been utilized for 715	

predicting the altitude of the rain-snow transition (Lundquist et al., 2008; Minder, 2010), but has 716	

rarely been incorporated into hydrological modeling applications (Maurer and Mass, 2006; 717	

Mizukami et al., 2013). In addition to atmospheric observations, modeling products that 718	

assimilate observations or are fully physically-based may provide additional information for 719	

precipitation phase prediction. Numerous reanalysis products (described in Section 2.2) provide 720	

temperature and humidity at different pressure levels within the atmosphere. To our knowledge, 721	

information from reanalysis products has yet to be incorporated into precipitation phase 722	

prediction for hydrological applications. Bulk microphysical schemes used by meteorological 723	

models (i.e. Weather Research and Forecasting WRF model) provide a physically-based estimate 724	

of precipitation phase. These schemes capture a wide-variety of processes, including 725	

evaporation, sublimation, condensation, and aggradation, and output between two and ten 726	

precipitation types. Historically, meteorological models have not been run at spatial scales 727	

capable of resolving convective dynamics (e.g. <2 km), which can exacerbate error in 728	

precipitation phase prediction in complex terrain with a moist neutral atmosphere. Coarse 729	
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meteorological models also struggle to produce pockets of frozen precipitation from advection of 730	

moisture plumes between mountain ranges and cold air wedged between topographic barriers. 731	

However, reduced computational restrictions on running these models at finer spatial scales and 732	

over large geographic extents (Rasmussen et al., 2012) are enabling further investigations into 733	

precipitation phase change under historical and future climate scenarios. This suggests that finer 734	

dynamical downscaling is necessary to resolve precipitation phase which is consistent with 735	

similar work attempting to resolve winter precipitation amount in complex terrain (Gutmann et 736	

al., 2012). A potentially impactful area of research is to integrate this information into novel 737	

approaches to improve precipitation phase prediction skill. 738	

 739	

5.3 Disdrometer networks operating at high temporal resolutions 740	

An increase in the types and reliability of disdrometers over the last decade has provided a new 741	

suite of tools to more directly measure precipitation phase. Despite this new potential resource 742	

for distinguishing snow and rain, very limited deployments of disdrometers have occurred at the 743	

scale necessary to improve hydrologic modeling and rain-snow elevation estimates. The lack of 744	

disdrometer deployment likely arises from a number of potential limitations: 1) known issues 745	

with accuracy, 2) cost of these systems, and 3) power requirements needed for heating elements. 746	

These limitations are clearly a factor in procuring large networks and deploying disdrometers in 747	

complex terrain that is remote and frequently difficult to access. However, we advise that 748	

disdrometers offer numerous benefits that cannot be substituted with other measurements: 1) 749	

they operate at fine temporal scales, 2) they operate in low light conditions that limit other direct 750	

observations, and 3) they provide land surface observations rather than precipitation phase in the 751	

atmosphere (as compared to more remote methods). Moreover, improvements in disdrometer and 752	

power supply technologies that address these limitations would remove restrictions on increased 753	

disdrometer deployment. 754	

 755	

Transects of disdrometers spanning the rain-snow elevations of key mountain areas could add 756	

substantially to both prediction of precipitation phase for modeling purposes, as well as 757	

validating typical predictive models. We advocate for transects over key mountain passes where 758	

power is generally available and weather forecasts for travel are particularly important. In 759	

addition, co-locating disdrometers at long-term research stations where precipitation phase 760	
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observations could be tied to micro-meteorological and hydrological observations has distinct 761	

advantages. These areas often have power supplies and instrumentation expertise to operate and 762	

maintain disdrometer networks. 763	

 764	

5.4 Compare different indirect phase measurement methods 765	

There is an important need to evaluate the accuracy of different PPM to assess tradeoffs between 766	

model complexity and skill (Figure 4). Given the potential for several types of observations to 767	

improve precipitation phase prediction (section 5.1-5.3), quantifying the relative skill provided 768	

by these different lines of evidence is a critical research gap. Although assessing relative 769	

differences between methods is potentially informative, comparison to ground truth 770	

measurements is critical for assessing accuracy. Disdrometer measurements and video imaging 771	

(Newman et al., 2009) are ideal ground truthing methods that can be employed at fine time steps 772	

and under a variety of conditions (section 5.3). Less ideal for accuracy assessment studies are 773	

direct visual observations that are harder to collect at fine time steps and in low light conditions. 774	

Similarly, employing coupled observations of precipitation and snow depth has been used to 775	

assess accuracy of different precipitation phase prediction methods (Marks et al., 2013; Harder 776	

and Pomeroy, 2013), but accuracy assessment of these techniques themselves are lacking under a 777	

wide range of different conditions. 778	

 779	

A variety of accuracy assessments are needed that will require co-located distributed 780	

measurements. One critical accuracy assessment involves the consistency of different 781	

precipitation phase prediction methods under different climate and atmospheric conditions. 782	

Assessing the effects of climate and atmospheric conditions requires measurements from a 783	

variety of sites covering a range of hydroclimatic conditions and record lengths that span the 784	

conceivable range of atmospheric conditions at a given site. Another important evaluation metric 785	

is the performance over different time steps. Harder and Pomeroy (2013) showed that 786	

hydrometeor and temperature-based prediction methods had errors that substantially decreased 787	

across shorter time steps. Identifying the effects of time step length on the accuracy of different 788	

prediction methods has been relatively unexplored, but is critical to selecting the proper method 789	

for different hydrological applications. Finally, the performance metrics used to assess accuracy 790	

should be carefully considered. The applications of precipitation phase prediction methods are 791	
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diverse, necessitating a wide variety of performance metrics, including the probability of snow 792	

versus rain (Dai, 2008), the error in annual or total snow/rain accumulation (Rajagopal and 793	

Harpold, 2016), performance under extreme conditions of precipitation amount and intensity, 794	

determination of the snow-rain elevation (Marks et al., 2013), and uncertainty arising from 795	

measurement error and accuracy. Comparison of different metrics across a wide-variety of sites 796	

and conditions is lacking but is greatly needed to advance cold-region hydrologic science. 797	

 798	

5.5 Develop spatially resolved products 799	

Many hydrological applications will benefit from gridded data products that are easily integrated 800	

into standard hydrological models. Currently, very few options exist for gridded data 801	

precipitation phase products. Instead, most hydrological models have some type of submodel or 802	

simple scheme that specifies precipitation phase as rain, snow, or mixed (see Section 4). While 803	

testing PPM with ground based observations could lead to improved submodels, we believe 804	

development of gridded forcing data may be an easier and more effective solution for many 805	

hydrological modeling applications. 806	

 807	

Gridded data products could be derived from a combination of remote sensing and existing 808	

model products, but would need to be extensively evaluated. The NASA GPM mission is 809	

beginning to produce gridded precipitation phase products at 3-hour and 0.1 degree resolution. 810	

However, GPM phase is measured at the top of the atmosphere, typically relies on simple 811	

temperature-thresholds, and is yet to be validated with ground based observations. Another 812	

existing product is the Snow Data Assimilation System (SNODAS) that estimates liquid and 813	

solid precipitation at the 1 km scale. However, the developers of SNODAS caution that it is not 814	

suitable for estimating storm totals or regional differences. Furthermore, to our knowledge the 815	

precipitation phase product from SNODAS has not been validated with ground observations. We 816	

suggest the development of new gridded data products that utilize new PPM (i.e. Harder and 817	

Pomeroy, 2013) and new and expanded observational datasets, such as atmospheric information 818	

and radar estimates. We advocate for the development of multiple gridded products that can be 819	

evaluated with ground observations to compare and contrast their strengths. Accurate gridded 820	

phase products rely on the ability to represent the physics of water vapor and energy flows in 821	

complex terrain (e.g. Holden et al., 2010) where statistical downscaling methods are typically 822	
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insufficient (Gutmann et al., 2012). This would also allow for ensembles of phase estimates to be 823	

used in hydrological models, similar to what is currently being done with gridded precipitation 824	

estimates.  825	

 826	

5.6 Characterization of regional variability and response to climate change 827	

The inclusion of new datasets, better validation of PPM, and development of gridded data 828	

products will poise the hydrologic community to improve hydrological predictions and better 829	

quantify regional sensitivity of phase change to climate changes. Because broad-scale techniques 830	

applied to assess changes in precipitation phase and snowfall have relied on temperature, both 831	

regionally (Klos et al., 2014; Pierce and Cayan, 2013; Knowles et al., 2006) and globally 832	

(Kapnick and Delworth, 2013; O’Gorman, 2014), they have not fully considered the potential 833	

non-linearities created by the absence of wet bulb depressions and humidity in assessment of 834	

sensitivity to changes in phase. Consequently, the effects of changes from snow to rain from 835	

warming and corresponding changes in humidity will be difficult to predict with the current 836	

PPM. Recent efforts by Rajagopal and Harpold (2016) have demonstrated that simple 837	

temperature thresholds are insufficient to characterize snow-rain transition across the western 838	

U.S. (Figure 3), perhaps because of differences in humidity. An increased focus on future 839	

humidity trends, patterns, and GCM simulation errors (Pierce et al., 2013) and availability of 840	

downscaled humidity products at increasingly finer scales (e.g.: Abatzoglou, 2013; Pierce and 841	

Cayan, 2016) will enable detailed assessments of the relative role of temperature and humidity in 842	

future precipitation phase changes. Recent remote sensing platforms, such as GPM, may offer an 843	

additional tool to assess regional variability, however, the current GPM precipitation phase 844	

product relies on wet bulb temperatures based on model output and not microwave-based 845	

observations (Huffman et al., 2015). Besides issues with either spatial or temporal resolution or 846	

coverage, one of the main challenges in using remotely sensed data for distinguishing between 847	

frozen and liquid hydrometeors is the lack of validation. Where products have been validated, the 848	

results are usually only relevant for the locale of the study area. Spaceborne radar combined with 849	

ground-based radar offers perhaps the most promising solution, but given the non-unique 850	

relationship between radar reflectivity and snowfall, further testing is necessary in order to 851	

develop reliable algorithms.  852	

 853	
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Future work is needed to improve projections of changes in snowpack and water availability 854	

from regional to global scales. This local to sub-regional characterization is needed for water 855	

resource prediction and to better inform decision and policy makers. In particular, the ability to 856	

predict the transitional rain-snow elevations and its uncertainty is critical information for a 857	

variety of end-users, including state and municipal water agencies, flood forecasters, agricultural 858	

water boards, transportation agencies, and wildlife, forest, and land managers. Fundamental 859	

advancements in characterizing regional variability are possible by addressing the research 860	

challenges detailed in sections 5.1-5.5. 861	

 862	

6. Conclusions 863	
Our review paper is a step towards communicating the potential bottlenecks in hydrological 864	

modeling caused by poor representation of precipitation phase (Figure 1). Our goals are to 865	

demonstrate that major research gaps in our ability to PPM are contributing to error and reducing 866	

predictive skill in hydrological modeling. By highlighting the research gaps that could advance 867	

the science of PPM, we provide a roadmap for future advances (Figure 4). While many of the 868	

research gaps are recognized by the community and are being pursued, including incorporating 869	

atmospheric and humidity information, while others remain essentially unexplored (e.g. 870	

production of gridded data, widespread ground validation, and remote sensing validation). 871	

 872	

The key points that must be communicated to the hydrologic community and its funding 873	

agencies can be distilled into the following two statements: 1) current PPM algorithms are too 874	

simple and are not well-validated for most locations, 2) the lack of sophisticated PPM increases 875	

the uncertainty in estimation of hydrological sensitivity to changes in precipitation phase at local 876	

to regional scales. We advocate for better incorporation of new information (5.1-5.2) and 877	

improved validation methods (5.3-5.4) to advance our current PPM methods and observations. 878	

These improved PPM algorithms and remote-sensing observations will be capable of developing 879	

gridded datasets (5.5) and providing new insight that reduce the uncertainty of predicting 880	

regional changes from snow to rain (5.6). A concerted effort by the hydrological and atmospheric 881	

science communities to address the PPM challenge will remedy current limitations in 882	

hydrological modeling of precipitation phase, advance of understanding of cold regions 883	

hydrology, and provide better information to decision makers. 884	
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 1334	

Figure 1: Precipitation phase has numerous implications for modeling the magnitude, storage, 1335	

partitioning, and timing of water inputs and outputs. Potentially affecting important 1336	

ecohydrological and streamflow quantities important for prediction. 1337	

1338	
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 1339	

Figure 2: The phase of precipitation at the ground surface is strongly controlled by atmospheric 1340	

profiles of temperature and humidity. While conditions exist that are relatively easy to predict 1341	

rain (a) and snow (b), many conditions lead to complex heat exchanges that are difficult to 1342	

predict with ground based observations alone (c). The blue dotted line represents the mixing 1343	

ratio. H, LE, f(sat), and r are abbreviations for sensible heat, latent heat of evaporation, function 1344	

of saturation and mixing ratio respectively. The arrow after H or LE indicate the energy of the 1345	

hydrometeor either increasing (up) or decreasing (down) which is controlled by other 1346	

atmospheric conditions.  1347	

 1348	

1349	
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	1350	

Figure 3: The optimized critical maximum daily temperature threshold that produced the lowest 1351	
Root Mean Square Error (RMSE) in the prediction of snowfall at Snow Telemetry (SNOTEL) 1352	
stations across the western US (adapted from Rajagopal and Harpold, 2016). b) Precipitation day 1353	
relative humidity averaged over 1981-2015 based on the Gridmet dataset (Abatzoglou, 2013).   1354	
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 1357	

Figure 4: Conceptual representation of the research gaps and workflows needed to advance PPM 1358	

and improve hydrological modeling. 1359	

	 	1360	

Developing/testing/
validating phase prediction 

techniques 

Incorporate new 
information into phase 
prediction techniques 

Atmospheric info.  
(reanalysis, WRF, RADAR) 

Near-surface humidity 
(observations, reanalysis) 

Improve ground-based 
observations of phase 

Disdrometers 
(NOAA, others) 

Coupled observations 
(SNOTEL, others) 

Direct observations  
(COOP stations, CoCORAHS)  

Developing and testing 
gridded phase products 

Improve hydrological 
modeling 

Quantify and understand 
regional variability/

sensitivity 

Communicate importance 
to hydrological community 

Focused field campaigns 
(e.g. GCPEx)  



	

 51 

Table 1. Common hydrological models and the precipitation phase prediction (PPM) technique 1361	
employed. The citation referring to the original publication of the model is given. 1362	

	1363	

* by default. Temperature-phase-density relationship explicitly specified by user.  1364	

+ A flag is specified which switches between, static threshold,	linear	transition.	1365	

	1366	

	1367	

	1368	

	1369	

	1370	

	1371	

	1372	

Model PPM technique Citations 
Discrete Models (not coupled) 
HBV Static Threshold Bergström, 1995 
Snowmelt Runoff Model Static Threshold Martinec et al., 2008 
SLURP Static Threshold Kite, 1995 
UBC Watershed Model Linear Transition Pipes and Quick, 1977 
PRMS model Minimum & Maximum Temperature Leavesley et al., 1996 
USGS water budget Linear transition between two mean temps McCabe and Wolock, 1999a 
SAC-SMA (SNOW-17) Static Threshold Anderson, 2006 
DHSVM Linear transition (double check) Wigmosta et al., 1994 
SWAT Threshold Model Arnold et al., 2012 
RHESSys Linear transition or input phase Tague and Band, 2004 
HSPF Air and dew point temperature thresholds Bicknell et al., 1997 
THE ARNO MODEL Static Threshold Todini, 1996 
HEC-1 Static Threshold HEC-1, 1998 
MIKE SHE Static Threshold MIKE-SHE User Manual 
SWAP Static Threshold Gusev and Nasonova, 1998 
BATS Static Threshold Yang et al., 1997 
Utah Energy Balance Linear Transition Tarboton and Luce, 1996 
SNOBAL/ISNOBAL Linear Transition* Marks et al., 2013 
CRHM Static Threshold Fang et al., 2013 
GEOTOP Linear Transition Zanotti et al. 2004 
SNTHERM Linear Transition SNTHERM Online Documentation 
Offline LS models 
Noah Static Threshold Mitchell et al., 2005 
VIC Static Threshold VIC Documentation 
CLASS Multiple Methods+ Verseghy, 2009 
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Table 2: Remote sensing technologies useful to precipitation phase discrimination organized into 1373	
ground-based, spaceborne with passive microwave, and passive with active microwave. The 1374	
table describes the variables of interest, their temporal and spatial coverage, and associated 1375	
references. 1376	

Technology Variables  Spatial resolution; 
coverage 

Temporal 
resolution, period of 
record 

References  

Ground-based systems    

Vertically pointing, 
single polarized 915-
MHz Doppler wind 
profilers 

Reflectivity, brightband 
height, Doppler vertical 
velocity 

100 m vertical 
resolution; deployed 
locally in Sierra 
Nevada basins 

Hourly, Winters 
1998, 2001 - 2005 

White et al., 2002; 
Lundquist et al., 2008 

     
NEXRAD  
Dual polarized radar 

Reflectivity1, hydrometeor 
classification1, melting 
layer1, hybrid hydrometeor 
classification1 

0.5° azimuthal by 
250 m; range 460 
km; 
Nationwide2 

5 - 10 minutes; 20113 
- present 

Giangrande et al., 
2008; Park et al., 
2009; Elmore, 2011; 
Grazioli et al., 2015 

     
Spaceborne systems: Passive microwave    

NOAA-15,  
NOAA-16, 
NOAA-17 Advanced 
Microwave Sounding 
Unit-A, B 

Brightness temperature 48 km (AMSU-A), 
16 km (AMSU-B); 
global coverage, 
with 22000 km 
swath  

For two platforms, 6 
hours revisit time; 
three platforms, 4 
hours revisit time4; 
1998 - present 

Kongoli et al., 2003 

     
SUOMI-NPP 
Advanced Technology 
Microwave Sounder 

Brightness temperature 15 - 50 km; global 
coverage, with 2200 
km swath  

Daily; 2011 - present Kongoli et al., 2015 

     
GPM Core 
Observatory 
Microwave Imager 
 

Brightness temperature 4.4 km by 7.3 km; 
global coverage, 
904 km swath 

2014 to present Skofronick-Jackson 
et al., 2015 

Spaceborne systems: Active microwave     

Cloud Profiling Radar 
(CPR) 

Radar reflectivity, 
2C-SNOW-PROFILE 

1.4 by 1.7 km; 
swath 1.4 km 

16 days; 2006 to 
present 

Wood et al., 2013; Cao 
et al., 2014; Kulie et al., 
2016; 

     
GPM Core 
Observatory Dual-
frequency Precipitation 
Radar 

Radar reflectivity 5 km; global 
coverage, 120 - 245 
km swath 

2 – 4 hours; 2014 to 
present 

Skofronick-Jackson et 
al., 2015 

      
Notes: 1377	
1. Operational products available from NOAA (2016). The operational products are not ground validated, except 1378	
where analyzed for specific studies.  1379	
2. The dates given here represent the first deployments. Data temporal coverage will vary by station.  1380	
3. Gaps in coverage exist, particularly in Western States. 1381	
4. Similar instruments mounted on the NASA Aqua satellite and the European EUMETSAT MetOp series. Taking 1382	
into account the similar instrumentation on multiple platforms increases the temporal spatial resolution 1383	


