1
2

Rain or Snow: Hydrologic Processes, Observations, Prediction, and Research Needs

- 3
- 4 Adrian A. Harpold*, University of Nevada, Reno, aharpold@cabnr.unr.edu
- 5 Michael Kaplan, Desert Research Institute, michael.kaplan@dri.edu
- 6 P. Zion Klos, University of Idaho, zion.klos@gmail.com
- 7 Timothy Link, University of Idaho, tlink@uidaho.edu
- 8 James P. McNamara, Boise State University, jmcnamar@boisestate.edu
- 9 Seshadri Rajagopal, Desert Research Institute, Seshadri.Rajagopal@dri.edu
- 10 Rina Schumer, Desert Research Institute, rina@dri.edu
- 11 Caitriana M. Steele, New Mexico State University, caiti@nmsu.edu
- 12
- 13
- 14 *Corresponding author
- 15
- 16

17 Abstract

18	The phase of precipitation when it reaches the Earth surface is a first-order driver of hydrologic
19	processes in a watershed. The presence of snow, rain, or mixed phase precipitation affect the
20	initial and boundary conditions that drive hydrological models. Despite their foundational
21	importance to terrestrial hydrology, typical phase prediction methods (PPM) specify phase based
22	on near-surface air temperature, only. Our review conveys the diversity of tools available for
23	PPM in hydrological modeling and the advancements needed to improve predictions in complex
24	terrain with large spatiotemporal variations in precipitation phase. Initially, we review the
25	processes and physics that control precipitation phase as relevant to hydrologists, focusing on the
26	importance of processes occurring aloft. There are a wide range of options for field observations
27	of precipitation phase, but a lack of a robust observation networks in complex terrain. New
28	remote sensing observations have potential to increase PPM fidelity, but generally require
29	assumptions typical of other PPM and field validation before they are operational. We review
30	common PPM and find that accuracy is generally increased at finer measurement intervals and
31	by including humidity, information. One important tool for PPM development is atmospheric
32	modeling, which include microphysical schemes that have not been effectively linked to
33	hydrological models or validated against near-surface precipitation phase observations. The
34	review concludes by describing key research gaps and recommendations to improve PPM
35	including better incorporation of atmospheric information, improved validation datasets, and
36	regional-scale gridded data products. Two key points emerge from this synthesis for the
37	hydrologic community: 1) current PPM algorithms are too simple and are not well-validated for
38	most locations, 2) lack of sophisticated PPM increases the uncertainty in estimation of
39	hydrological sensitivity to changes in precipitation phase at local to regional scales. PPM are a
40	critical research frontier in hydrology that requires scientific cooperation between hydrological
41	and atmospheric modelers and field hydrologists.
42 43 44	Keywords: precipitation phase, snow, rain, hydrological modeling
45 46	1. Introduction and Motivation As climate warms, a major hydrologic shift in precipitation phase from snow to rain is expected
47	to occur across temperate regions that are reliant on mountain snowpack for water resources

48 (Bales et al., 2006; Barnett et al., 2005). Continued changes in precipitation phase are expected

Adrian Harpold 11/20/16 2:22 PM Deleted: as snow or rain controls numerous Adrian Harpold 11/20/16 2:22 PM Deleted: are fundamental to effective Adrian Harpold 11/20/16 2:22 PM Deleted: ing Adrian Harpold 11/20/16 2:22 PM Deleted: its Adrian Harpold 11/20/16 2:22 PM Deleted: use overly simplistic estimates Adrian Harpold 11/20/16 2:22 PM Deleted: The Adrian Harpold 11/20/16 2:22 PM Deleted: characterized by Adrian Harpold 11/20/16 2:22 PM Deleted: the Adrian Harpold 11/20/16 2:22 PM Deleted: underlying Adrian Harpold 11/20/16 2:22 PM **Deleted:** the types and accuracy of Adrian Harpold 11/20/16 2:22 PM Deleted: to show Adrian Harpold 11/20/16 2:22 PM Deleted: time steps Adrian Harpold 11/20/16 2:22 PM Deleted: Adrian Harpold 11/20/16 2:22 PM Deleted: offers numerous models and Adrian Harpold 11/20/16 2:22 PM Deleted: One important tool for PPM development is atmospheric modeling, which offers numerous models and microphysical schemes that have not been effectively linked to hydrological models or validated against near-surface precipitation phase observations. Adrian Harpold 11/20/16 2:22 PM Deleted: . Recommendations include incorporate humidity $\ensuremath{\textbf{Deleted:}}$ and atmospheric information into

models, develop observation networks at high temporal resolutions, compare and validate different PPM, develop spatially resolved Adrian Harpold 11/20/16 2:22 PM **Deleted:** , and characterize regional variability. Adrian Harpold 11/20/16 2:22 PM

Adrian Harpold 11/20/16 2:22 PM

2

Deleted: is

Deleted: with

78	to alter snowpack dynamics and streamflow timing and amounts (Cayan et al., 2001; Fritze et al.,	
79	2011; Luce and Holden, 2009; Klos et al., 2014; Berghuijs et al., 2014; Jepsen et al., 2016),	
80	increase rain-on snow flooding (McCabe et al., 2007), and challenge our ability to make accurate	
81	water supply forecasts (Milly et al., 2008). Accurate estimations of precipitation inputs are	
82	required for effective hydrological modeling in both applied and research settings. Snow storage	
83	delays the transfer of precipitation into surface runoff and subsurface infiltration (Figure 1),	
84	affecting the timing and magnitude of peak flows (Wang et al., 2016), hydrograph recession	
85	(Yarnell et al., 2010) and the magnitude and duration of summer baseflow (Safeeq et al., 2014;	Deleted: (Wang et al., 2016)
86	Godsey et al., 2014). Moreover, the altered timing and rate of snow versus rain inputs can	
87	modify the partitioning of water to evapotranspiration versus runoff (Wang et al., 2013).	
88	Misrepresentation of precipitation phase within hydrologic models thus propagates into spring	Deleted: (Wang et al., 2016).
89	snowmelt dynamics (Harder and Pomeroy, 2013; Mizukami et al., 2013; White et al., 2002; Wen	
90	et al., 2013) and streamflow estimates used in water resource forecasting, (Figure 1). The	Advien Hernold 44/00/46 2:22 DM
91	persistence of streamflow error is particularly problematic for hydrological models that are	Deleted:
92	calibrated on observed streamflow because this error can be compensated for by altering	
93	parameters that control other states and fluxes in the model (Minder, 2010; Shamir and	
94	Georgakakos, 2006; Kirchner, 2006). Expected changes in precipitation phase from climate	
95	warming presents a new set of challenges for effective hydrological modeling, (Figure 1). A	Advise Hernold 11/20/16 2:22 DM
96	simple yet essential issue for nearly all runoff generation questions is this: Is precipitation falling	Deleted:
97	as rain, snow, or a mix of both phases?	Adrian Harpold 11/20/16 2:22 DM
98		Deleted: snow
99	Despite advances in terrestrial process-representation within hydrological models in the past	
100	several decades (Fatichi et al., 2016), most state-of-the-art models rely on simple empirical	Adrian Harpold 11/20/16 2:22 PM
101	algorithms to predict precipitation phase. For example, nearly all operational models used by the	Deleted: the
102	National Weather Service River Forecast Centers in the United States use some type of	Adrian Harpold 11/20/16 2:22 PM Deleted: are reliant
103	temperature-based precipitation phase partitioning methods (PPM) (Pagano et al., 2014). These	Adrian Harpold 11/20/16 2:22 PM
104	are often single or double temperature threshold models that do not consider other conditions	Deleted: -
105	important to the hydrometeor's energy balance. Although forcing datasets for hydrological	
106	models are rapidly being developed for a suite of meteorological variables, to date no gridded	
107	precipitation phase product has been developed over a regional to global scale. Widespread	
108	advances in both simulation of terrestrial hydrological processes and computational capabilities	

117 may have limited improvements on w	vater resources forecasts without commensurate advances in
--	--

PPM.

1	- 1	a
-		

120	Recent advances in PPM incorporate effects of humidity (Harder and Pomeroy, 2013; Marks et	
121	al., 2013), atmospheric temperature profiles (Froidurot et al., 2014), and remote sensing of phase	
122	in the atmosphere (Minder, 2010; Lundquist et al., 2008). A challenge to improving and selecting	
123	PPM is the lack of validation data. In particular, reliable ground-based observations of phase are	
124	sparse, collected at the point scale over limited areas, and are typically limited to research rather	
125	than operational applications (Marks et al., 2013). The lack of observations is particularly	
126	problematic in mountain regions where snow-rain transitions are widespread and critical for	
127	regional water resource evaluations (Klos et al., 2014). For example, direct visual observations	
128	have been widely used (Froidurot et al., 2014; Knowles et al., 2006; U.S. Army Corps of	
129	Engineers, 1956), but are decreasing in number in favor of automated measurement systems.	
130	Automated systems use indirect methods to accurately estimate precipitation phase from	
131	hydrometeor characteristics (i.e. disdrometers), as well as coupled measurements that infer	
132	precipitation phase based on multiple lines of evidence (e.g. co-located snow depth and	
133	precipitation). Remote sensing is another indirect method that typically uses radar returns from	
134	the ground and space-borne platforms to infer hydrometeor temperature and phase. A	
135	comprehensive description of the advantages and disadvantages of current measurement	
136	strategies, and their correspondence with conventional PPM, is needed to determine critical	
137	knowledge gaps and research opportunities.	
138		
139	New efforts are needed to advance PPM to better inform hydrological models by integrating new	
140	observations, expanding the current observation networks, and testing techniques over regional	
141	variations in hydroclimatology. While calls to integrate atmospheric information are an	
142	important avenue for advancement (Feiccabrino et al., 2013), hydrological models ultimately	
143	require accurate and validated phase determination at the land surface. Moreover, any	Adrian Harpold 11/20/16 2:22 PM Deleted: 2
144	advancement that relies on integrating new information or developing a new PPM technique will	
145	require validation and training using ground-based observations. To make tangible advancements	
146	in hydrological modeling, new techniques and datasets must be integrated with current modeling	Adrian Harpold 11/20/16 2:22 PM Deleted: on
147	tools. The first step towards improved hydrological modeling in areas with mixed precipitation	Adrian Harpold 11/20/16 2:22 PM Deleted: or

151	phase is educating the scientific community about current techniques and limitations that <u>convey</u>	
152	towards gaps where research is needed.	D
153		A
154	Our review paper is motivated by a lack of a comprehensive description of the state-of-the-art	
155	PPM and observation tools. Therefore, we describe the current state of the science in a way that	A D
156	clarifies the correspondence between techniques and observations and highlights current	
157	strengths and weaknesses in the science. Specifically, subsequent sections will review: 1) the	
158	processes and physics that control precipitation phase as relevant to field hydrologists, 2) current	
159	options available for observing precipitation phase and related measurements common in remote	
160	field settings, 3) existing methods for predicting and modeling precipitation phase, and 4)	
161	research gaps that exist regarding precipitation phase estimation. The overall objective is to	
162	convey a clear understanding of the diversity of tools available for PPM in hydrological	
163	modeling and the advancements needed to improve predictions in complex terrain characterized	
164	by large spatiotemporal variations in precipitation phase.	
165		
166	2. Processes and Physics Controlling Precipitation Phase	
167	Precipitation formed in the atmosphere is typically a solid in the mid-latitudes and its phase at	
168	the land surface is determined by whether it melts during its fall (Stewart et al., 2015). Most	
169	hydrologic models do not simulate atmospheric processes and specify precipitation phase based	A
170	on surface conditions alone (see Section 4.1), ignoring phase transformations in the atmosphere.	
171		
172	Several important properties that influence phase changes in the atmosphere are not included in	
173	hydrological models (Feiccabrino et al., 2012), such as temperature and precipitation	
174	characteristics (Theriault and Stewart, 2010), stability of the atmosphere (Theriault and Stewart,	
175	2007), position of the 0 °C isotherm (Minder, 2010; Theriault and Stewart, 2010), interaction	
176	between hydrometeors (Stewart, 1992), and the atmospheric humidity profile (Harder and	A
177	Pomeroy, 2013). The vertical temperature and humidity (represented by the mixing ratio) profile	A
178	through which the hydrometeor falls typically consists of three layers, a top layer that is frozen	D
179	$(T_{\star} \leq 0 \text{ °C})$ in winter in temperate areas (Stewart, 1992), <u>potentially</u> a mixed layer with T > 0 °C_{\star}	
180	and a surface layer that can be above or below 0 $^{\circ}C_{*}$ (Figure 2). The phase of precipitation at the	A
181	surface partly depends on the phase reaching the top of the surface layer, which is defined as the	A

Adrian Harpold 11/20/16 2:22 PM Deleted: point Adrian Harpold 11/20/16 2:22 PM Deleted: knowledge

Adrian Harpold 11/20/16 2:22 PM Deleted: This

Adrian Harpold 11/20/16 2:22 PM Deleted: is typically Adrian Harpold 11/20/16 2:22 PM Deleted: as

Adrian Harpold 11/20/16 2:22 PM Deleted: < Adrian Harpold 11/20/16 2:22 PM Deleted: (Adrian Harpold 11/20/16 2:22 PM Deleted:), Adrian Harpold 11/20/16 2:22 PM Deleted: (T >= Adrian Harpold 11/20/16 2:22 PM Deleted:)

192	critical height.	The temperature	profile and de	pth of the surface la	iver controls the	precipitation
					1	

- 193 phase reaching the ground surface. For example, in Figure 2a, if rain reaches the critical height, it
- 194 may reach the surface as rain or ice pellets depending on small differences in temperature in the
- surface layer (Theriault and Stewart, 2010). Similarly, in Figure 2b, if snow reaches the critical
- 196 | height, it may reach the surface as snow if the temperature in the surface layer is below freezing.
- 197 However, in Figure 2c, when the surface layer temperatures are close to freezing and the mixing
- ratios are neither close to saturation or very dry the phase at the surface is not easily determined

199 by the surface conditions alone.

200

In addition to strong dependence on the vertical temperature and humidity profiles, precipitation 201 phase is also a function of fall rate and hydrometeor size because they affect energy exchange 202 203 with the atmosphere (Theriault et al., 2010). Precipitation rate influences the precipitation phase; for example, a precipitation rate of 10 mm h⁻¹ reduces the amount of freezing rain by a factor of 204 three over a precipitation rate of 1 mm h⁻¹ (Theriault and Stewart, 2010) because there is less 205 time for exchange of turbulent heat with the hydrometeor. A solid hydrometeor that originates in 206 the top layer and falls through the mixed layer can reach the surface layer as wet snow, sleet, or 207 208 rain. This phase transition in the mixed layer is primarily a function of latent heat exchange driven by vapor pressure gradients and sensible heat exchange driven by temperature gradients. 209 210 Temperature generally increases from the mixed layer to the surface layer causing sensible heat 211 inputs to the hydrometeor. If these gains in sensible heat are combined with minimal latent heat 212 losses resulting from low vapor pressure deficits, it is likely the hydrometeor will reach the 213 surface layer as rain (Figure 2). However, vapor pressure in the mixed layer is often below saturation leading to latent energy losses and cooling of the hydrometeor coupled with diabatic 214 cooling of the local atmosphere, which can produce snow or other forms of frozen precipitation 215 at the surface even when temperatures are above 0_{\bullet}° C. Likewise, surface energetics affect local 216 atmospheric conditions and dynamics, especially in complex terrain. For example, melting of the 217 snowpack can cause diabatic cooling of the local atmosphere and affect the phase of 218 precipitation, especially when air temperatures are very close to 0 °C (Theriault et al., 2012). 219 220 Many conditions lead to a combination of latent heat losses and sensible heat gains by 221 hydrometeors (Figure 2). Under these conditions it can be difficult to predict the phase of

Adrian Harpold 11/20/16 2:22 PM Deleted: since

Adrian Harpold 11/20/16 2:22 PM Deleted: °

Adrian Harpold 11/20/16 2:22 PM Deleted: of

225	precipitation	without suf	ficient infor	mation about	humidity an	id tempera	ture profiles,	turbulence,
-----	---------------	-------------	---------------	--------------	-------------	------------	----------------	-------------

- 226 hydrometeor size, and precipitation intensity.
- 227

Stability of the atmosphere can also influence precipitation phase. Stability is a function of the	
vertical temperature structure which can be altered by vertical air movement and hence influence	
precipitation phase (Theriault and Stewart, 2007). Vertical air velocity changes the temperature	
structure by adiabatic warming or cooling due to pressure changes of descending and ascending,	
air parcels, respectively. These changes in temperature will generate under-saturated and	
supersaturated conditions in the atmosphere that can also alter the precipitation phase. Even \underline{a}	
very weak vertical air velocity (< 10 cm/s) significantly influences the phase and amount of	
precipitation formed in the atmosphere (Theriault and Stewart, 2007). The rain-snow line	
predicted by atmospheric models is very sensitive to these microphysics (Minder, 2010), and	
validating the microphysics across locations with complex physiography is challenging.	
Incorporation and validation of atmospheric microphysics is rarely <u>achieved</u> in hydrological	
applications (Feiccabrino et al., 201 <u>5</u>).	
3. Current Tools for Observing Precipitation Phase	
3.1 In situ observations	
In situ observations refer to methods wherein a person or instrument onsite records precipitation	
phase. We identify 3 classes of approaches that are used to observe precipitation phase including	
1) direct observations, 2) coupled observations, and 3) proxy observations.	
Direct observations simply involve a person on-site noting the phase of falling precipitation.	
Such data form the basis of many of the predictive methods that are widely used (Dai, 2008;	
Ding et al., 2014; U.S. Army Corps of Engineers, 1956). Direct observations are useful for	
"manned" stations such as those operated by the U.S. National Weather Service. Few research	
stations, however, have this benefit, particularly in many remote regions and in complex terrain.	
Direct observations are also limited in their temporal resolution and are typically reported only	
once per day, with some exceptions (Froidurot et al., 2014). Citizen scientist networks have	
historically provided valuable data to supplement primary instrumented observation networks.	
The National Weather Service Cooperative Observer Program	
(http://www.nws.noaa.gov/om/coop/what-is-coop.html, accessed 10/12/2016) is comprised of a	
	Stability of the atmosphere can also influence precipitation phase. Stability is a function of the vertical temperature structure which can be altered by vertical air movement and hence influence precipitation phase (Theriault and Stewart, 2007). Vertical air velocity changes the temperature structure by adiabatic warming or cooling due to pressure changes of descending and ascending, air parcels, respectively. These changes in temperature will generate under-saturated and supersaturated conditions in the atmosphere that can also alter the precipitation phase. Even a very weak vertical air velocity (< 10 cm/s) significantly influences the phase and amount of precipitation formed in the atmosphere (Theriault and Stewart, 2007). The rain-snow line predicted by atmospheric models is very sensitive to these microphysics (Minder, 2010), and validating the microphysics across locations with complex physiography is challenging. Incorporation and validation of atmospheric microphysics is rarely achieved in hydrological applications (Feiceabrino et al., 2015).

Adrian Harpold 11/20/16 2:22 PM Deleted: .

Adrian Harpold 11/20/16 2:22 PM Deleted: incorporated Adrian Harpold 11/20/16 2:22 PM Deleted: 2

Adrian Harpold 11/20/16 2:22 PM Deleted: (http://www.nws.noaa.gov/om/coop/ what-is-coop.html

262	network of volunteers recording daily observations of temperature and precipitation, including
263	phase. The NOAA National Severe Storms Laboratory used citizen scientist observations of rain
264	and snow occurrence to evaluate the performance of the Multi-Radar Multi-Sensor (MRMS)
265	system in the meteorological Phenomena Identification Near the Ground (mPING) project (Chen
266	et al., 2015). The Colorado Climate Center initiated Community Collaborative Rain, Hail and
267	Snow Network (CoCoRaHS) supplies volunteers with low cost instrumentation to observe
268	precipitation characteristics, including phase, and enables observations to be reported on the
269	project website (http://www.cocorahs.org/, accessed 10/12/2016). Although highly valuable,
270	some limitations of this system include the imperfect ability of observers to identify mixed phase
271	events and the temporal extent of storms, as well as the lack of observations in both remote areas
272	and during low light conditions.
273	
274	Coupled observations link synchronous measurements of precipitation with secondary
275	observations to indicate phase. Secondary observations can include photographs of surrounding
276	terrain, snow depth measurements, and measurements of ancillary meteorological variables.
277	Photographs of vertical scales emplaced in the snow have been used to estimate snow
278	accumulation depth, which can then be coupled with precipitation mass to determine density and
279	phase (Berris and Harr, 1987; Floyd and Weiler, 2008; Garvelmann et al., 2013; Hedrick and
280	Marshall, 2014; Parajka et al., 2012). Mixed phase events, however, are difficult to quantify
281	using coupled depth- and photographic-based techniques (Floyd and Weiler, 2008). Acoustic
282	distance sensors, which are now commonly used to monitor the accumulation of snow (e.g. Boe,
283	2013), have similar drawbacks in mixed phase events, but have been effectively applied to
284	separate snow from rain (Rajagopal and Harpold, 2016). Meteorological information such as
285	temperature and relative humidity can be used to compute the phase of precipitation measured by
286	bucket-type gauges. Unfortunately, this approach generally requires incorporating assumptions
287	about the meteorological conditions that determine phase (see section 4.1). Harder and Pomeroy
288	(2013) used a comprehensive approach to determine the phase of precipitation. Every 15 minutes
289	during their study period phase was determined by evaluating weighing bucket mass, tipping
290	bucket depth, albedo, snow depth, and air temperature. Similarly, Marks et al. (2013) used a
291	scheme based on co-located precipitation and snow depth to discriminate phase. A more
292	involved expert decision making approach by <u>L'hôte</u> et al. (2005) was based on six recorded

Adrian Harpold 11/20/16 2:22 PM Deleted: (http://www.cocorahs.org/).

Adrian Harpold 11/20/16 2:22 PM Deleted: Lejeune Adrian Harpold 11/20/16 2:22 PM Deleted: 3

meteorological parameters: precipitation intensity, albedo of the ground, air temperature, ground 296 surface temperature, reflected long-wave radiation, and soil heat flux. The intent of most of these 297 298 coupled observations was to develop datasets to evaluate PPM algorithms. However, if these 299 observation systems were sufficiently simple they may have the potential to be applied operationally across larger meteorological monitoring networks encompassing complex terrain 300 301 where snow comprises a large component of annual precipitation (Rajagopal and Harpold, 2016). 302 Proxy observations measure geophysical properties of precipitation to infer phase. The hot plate 303 304 precipitation gauge introduced by Rasmussen et al. (2012), for example, uses a heated thin disk to accumulate precipitation and then measures the amount of energy required to melt snow or 305 evaporate liquid water. This technique, however, requires a secondary measurement of air 306 307 temperature to determine if the energy is used to melt snow or only evaporate rain. Disdrometers measure the size and velocity of hydrometeors. Although the most common application of 308 disdrometer data is to determine the drop size distribution (DSD) and other properties of rain, the 309 310 phase of hydrometeors can be inferred by relating velocity and size to density. Some disdrometer technologies, which can be grouped into impact, imaging, and scattering approaches (Loffler-311 312 Mang et al., 1999), are better suited for describing snow than others. Impact disdrometers, first introduced by Joss and Waldvogel (1967), use an electromechanical sensor to convert the 313 314 momentum of a hydrometeor into an electric pulse. The amplitude of the pulse is a function of 315 drop diameter. Impact disdrometers have not been commonly used to measure solid precipitation due to the different functional relationships between drop size and momentum for solid and 316 317 liquid precipitation. Imaging disdrometers use basic photographic principles to acquire images of the distribution of particles (Borrmann and Jaenicke, 1993; Knollenberg, 1970). The 2D Video 318 Disdrometer (2DVD) described by Kruger and Krajewski (2002) records the shadows cast by 319 320 hydrometeors onto photodetectors as they pass through two sheets of light. The shape of the shadows enables computation of particle size, and shadows are tracked through both light sheets 321 to determine velocity. Although initially designed to describe liquid precipitation, recent work 322 has shown that the 2DVD can be used to classify snowfall according to microphysical properties 323 324 of single hydrometeors (Bernauer et al., 2016). The 2DVD has been used to classify known rain 325 or snow events individually, but little work has been performed to distinguish between liquid and solid precipitation. Scattering disdrometers, or optical disdrometers, measure the extinction of 326

Adrian Harpold 11/20/16 2:22 PM Deleted: soil

Adrian Harpold 11/20/16 2:22 PM Deleted: (Adrian Harpold 11/20/16 2:22 PM Deleted: ,

330	light passing between a source and a sensor (Hauser et al., 1984; Loffler-Mang et al., 1999). Like
331	the other types, optical disdrometers were originally designed for rain, but have been periodically
332	applied to snow (Battaglia et al., 2010; Lempio et al., 2007). In a comparison study, by
333	Caracciolo et al. (2006), the PARSIVEL optical disdrometer, originally described by Loffler-
334	Mang et al. (1999) did not perform well against a 2DVD because of problems related to the
335	detection of slow fall velocities for snow. It may be possible to use optical disdrometers to
336	distinguish between rain, sleet, and snow based on the existence of distinct shapes of the size
337	spectra for each precipitation type. More research on the relationship between air temperature
338	and the size spectra produced by the optical disdrometer is needed (Lempio et al., 2007). In
339	summary, disdrometers of various types are valuable tools for describing the properties of rain
340	and snow, but require further testing and development to distinguish between rain and snow, as
341	well as mixed phase events.
342	
343	3.2 Ground-based remote sensing observations
344	Ground-based remote sensing observations have been available for several decades to detect
345	precipitation phase using radar. Until recently, most ground-based radar stations were operated
346	as conventional Doppler systems that transmit and receive radio waves with single horizontal
347	polarization. Developments in dual polarization ground radar such as those that function as part
348	of the U.S. National Weather Service NEXRAD network (NOAA, 2016), have resulted in
349	systems that transmit radio signals with both horizontal and vertical polarizations. In general,
350	ground-based remote sensing observation, either single or dual-pol, remain underutilized for
351	detecting precipitation phase and are challenging to apply in complex terrain (Table 2).
352	
353	Ground-based remote sensing of precipitation phase using single-polarized radar systems
354	depends on detecting the radar bright band. Radio waves transmitted by the radar system, are
355	scattered by hydrometeors in the atmosphere, with a certain proportion reflected back towards
356	the radar antenna. The magnitude of the measured reflectivity (Z) is related to the size and the
357	dielectric constant of falling hydrometeors (White et al., 2002). Ice particles aggregate as they
358	descend through the atmosphere and their dielectric constant increases, in turn increasing Z
359	measured by the radar, creating the bright band, a layer of enhanced reflectivity just below the
360	elevation of the melting level (Lundquist et al., 2008). Therefore, bright band elevation can be

Adrian Harpold 11/20/16 2:22 PM Deleted: (Battaglia et al., 2010; Lempio et al., 2007). Adrian Harpold 11/20/16 2:22 PM Deleted: ,

Adrian Harpold 11/20/16 2:22 PM Deleted: , Adrian Harpold 11/20/16 2:22 PM Deleted: This section will review techniques Adrian Harpold 11/20/16 2:22 PM Deleted: rm Adrian Harpold 11/20/16 2:22 PM Deleted: in

Adrian Harpold 11/20/16 2:22 PM Deleted: used with data from single-Adrian Harpold 11/20/16 2:22 PM Deleted: dual-pol systems.

370 used as a proxy for the "snow level", the bottom of the melting layer where falling snow

transforms to rain (White et al., 2010; White et al., 2002).

372

373		Doppler vertical velocity (DVV) is another variable that can be estimated from single-polarized	
374	I	vertically profiling radar, DVV gives an estimate of the velocity of falling particles; as	
375	I	snowflakes melt and become liquid raindrops, the fall velocity of the altered hydrometeors	
376		increases. When combined with reflectivity profiles, DVV helps reduce false positive detection	
377		of the bright band, which may be caused by phenomena other than snow melting to rain (White	
378		et al., 2002). First, DVV and Z are combined to detect the elevation of the bottom of the bright	
379		band. Then the algorithm searches for maximum Z above the bottom of the bright band and	
380		determines that to be the bright band elevation (White et al., 2002). However, a test of this	
381		algorithm on data from a winter storm over the Sierra Nevada found root mean square errors of	
382		326 to 457 m compared to ground observations when bright band elevation was assumed to	
383	l	represent the surface transition from snow to rain (Lundquist et al., 2008). Snow levels in	
384	1	mountainous areas, however, may also be overestimated by radar profiler estimates if they are	
385		unable to resolve spatial variations close to mountain fronts, since snow levels have been noted	
386		to persistently drop on windward slopes (Minder and Kingsmill, 2013). Despite the potential	
387		errors, the elevation of maximum Z may be a useful proxy variable for snow level in	
388		hydrometeorological applications in mountainous watersheds because maximum Z will always	
389	l	occur below the freezing level (Lundquist et al., 2008; White et al., 2010)	
390	1		
391		Few published studies have explored the value of bright band-derived phase data for hydrologic	
392		modeling. Maurer and Mass (2006) compared the melting level from vertically pointing radar	
393		reflectivity against temperature-based methods to assess whether the radar approach could	
394		improve determination of precipitation phase at the ground level. In that study, the altitude of the	
395		top of the bright band was detected and applied across the study basin. Frozen precipitation was	
396		assumed to be falling in model pixels above the altitude of the melting level and liquid	
397		precipitation was assumed to be falling in pixels below the altitude of the melting layer Maurer	
398		and Mass, 2006). Maurer and Mass (2006) found that incorporating radar-detected melting layer	
399	•	altitude improved streamflow simulation results. A similar study that used bright band altitude to	
400		classify pixels according to surface precipitation type was not as conclusive; bright band altitude	

Adrian Harpold 11/20/16 2:22 PM Deleted: radar. It is derived from Adrian Harpold 11/20/16 2:22 PM Deleted: s

Adrian Harpold 11/20/16 2:22 PM Deleted: [Adrian Harpold 11/20/16 2:22 PM Deleted:].

Adrian Harpold 11/20/16 2:22 PM Deleted: White et al., 2010;

Adrian Harpold 11/20/16 2:22 PM **Deleted:** (Maurer and Mass, 2006).

407	data did not improve hydrologic model simulation results over those based on a temperature	
408	threshold (Mizukami et al., 2013). Also, the potential of the method is limited to the availability	
409	of vertically pointing radar; in complex, mountainous terrain the ability to estimate melting level	
410	becomes increasingly challenging with distance from the radar.	
411		
412	Dual-polarized radar systems generate more variables than traditional single-polarized systems.	
413	These polarimetric variables include differential reflectivity, reflectivity difference, the	
414	correlation coefficient, and specific differential phase. Polarimetric variables respond to	
415	hydrometeor properties such as shape, size, orientation, phase state, and fall behavior and can be	
416	used to assign hydrometeors to specific categories (Chandrasekar et al., 2013;Grazioli et al.,	A
417	2015), or to improve bright band detection (Giangrande et al., 2008).	
418		D
419	Various hydrometeor classification algorithms have been applied to X-, C- and S-band	
420	wavelengths. Improvements in these algorithms over recent years have seen hydrometeor	
421	classification become an operational meteorological product (see Grazioli et al., 2015 for an	
422	overview). For example, the U.S. National Severe Storms Laboratory (NSSL) developed a fuzzy-	
423	logic hydrometeor classification algorithm for warm-season convective weather (Park et al.,	
424	2009) and this algorithm has also been tested for cold-season events (Elmore, 2011). Its skill was	
425	tested against surface observations of precipitation type but the algorithm did not perform well in	
426	classifying winter precipitation because it could not account for re-freezing of hydrometeors	D
427	below the melting level (Figure 2, Elmore, 2011). Unlike warm season convective precipitation,	
428	the freezing level during a cold-season precipitation event can vary spatially. This phenomenon	
429	has prompted the use of polarimetric variables to first detect the melting layer, and then classify	
430	hydrometeors (Boodoo et al., 2010; Thompson et al., 2014). Although there has been some	
431	success in developing two-stage cold-season hydrometeor classification algorithms, there is little	
432	in the published literature that explores the potential contributions of these algorithms for	
433	partitioning snow and rain for hydrological modeling.	
434		
435	3.3 Space-based remote sensing observations	
436	Spaceborne remote sensing observations typically use passive or active microwave sensors to	

437 determine precipitation phase (Table 2). Many of the previous passive microwave systems were

 $\label{eq:constraint} \begin{array}{l} \mbox{Adrian Harpold 11/20/16 2:22 PM} \\ \mbox{Deleted: } (Z_{DR}), \\ \mbox{Adrian Harpold 11/20/16 2:22 PM} \\ \mbox{Deleted: } (Z_{DP}), \\ \mbox{Adrian Harpold 11/20/16 2:22 PM} \\ \mbox{Deleted: } (\rho_{nv}), \\ \mbox{Adrian Harpold 11/20/16 2:22 PM} \\ \mbox{Deleted: } (K_{DP}). \end{array}$

Adrian Harpold 11/20/16 2:22 PM **Deleted:** it was found that

challenged by coarse resolutions and difficulties retrieving snowfall over snow-covered areas. 443 More recent active microwave systems have advantage for detecting phase in terms of accuracy 444 445 and spatial resolution, but remain largely unverified. Table 2 provides and overview of these 446 space-based remote sensing technologies that are described in more detail below. 447 Passive microwave radiometers detect microwave radiation emitted by the Earth's surface or 448 atmosphere. Passive microwave remote sensing has potential for discriminating between rainfall 449 and snowfall because microwave radiation emitted by the Earth's surface propagates through all 450 but the densest precipitating clouds, meaning that radiation at microwave wavelengths directly 451 interacts with hydrometeors within clouds (Olson et al., 1996; Ardanuy, 1989). However, the 452 remote sensing of precipitation in microwave wavelengths and the development of operational 453 454 algorithms is dominated by research focused on rainfall (Arkin and Ardanuy, 1989); by comparison, snowfall detection and observation has received less attention (Noh et al., 2009; 455 Kim et al., 2008). This is partly explained by examining the physical processes within clouds that 456 attenuate the microwave signal. Raindrops emit low levels of microwave radiation increasing the 457 level of radiance measured by the sensor; in contrast, ice hydrometeors scatter microwave 458 radiation, decreasing the radiance measured by a sensor (Kidd and Huffman, 2011). Land 459 surfaces have a much higher emissivity than water surfaces, meaning that emission-based 460 461 detection of precipitation is challenging over land because the high microwave emissions mask 462 the emission signal from raindrops (Kidd, 1998; Kidd and Huffman, 2011). Thus, scatteringbased techniques using medium to high frequencies are used to detect precipitation over land. 463 464 Moreover, microwave observations at higher frequencies (> 89 GHz) have been shown to discriminate between liquid and frozen hydrometeors (Wilheit et al., 1982). 465 466 Retrieving snowfall over land areas from spaceborne microwave sensors can be even more 467 challenging than for liquid precipitation because existing snow cover increases microwave 468 emission. Depression of the microwave signal caused by scattering from airborne ice particles 469 may be obscured by increased emission of microwave radiation from the snow covered land 470 471 surface. Kongoli et al. (2003) demonstrated an operational snowfall detection algorithm that accounts for the problem of existing snow cover. This group used data from the Advanced 472 Microwave Sounding Unit-A (AMSU-A), a 15-channel atmospheric temperature sounder with a 473

Adrian Harpold 11/20/16 2:22 PM Deleted: and

Adrian Harpold 11/20/16 2:22 PM Deleted: (Wilheit et al., 1982)

476	single high frequency channel at 89 GHz), and AMSU-B, a 5-channel high frequency microwave	
477	humidity sounder. Both sensors were mounted on the NOAA-16 and -17 polar-orbiting satellites.	
478	While the algorithm worked well for warmer, opaque atmospheres, it was found to be too noisy	
479	for colder, clear atmospheres. Additionally, some snowfall events occur under warmer conditions	
480	than those that were the focus of the study (Kongoli et al., 2003). Kongoli et al. (2015) further	
481	adapted their methodology for the Advanced Technology Microwave Sounder (ATMS, - onboard	
482	the polar-orbiting Suomi National Polar-orbiting Partnership satellite) a descendant of the	Adri Dele
483	AMSU sounders. The latest algorithm assesses the probability of snowfall using the logistic	Adri
484	regression and the principal components of seven high frequency bands at 89 GHz and above. In	Dele
485	testing, the Kongoli et al. (2015) algorithm has shown skill in detecting snowfall both at variable	
486	rates and when snowfall is lighter and occurs in colder conditions. An alternative algorithm by	
487	Noh et al., 2009 used physically-based, radiative transfer modeling in an attempt to improve	
488	snowfall retrieval over land. In this case, radiative transfer modeling was used to construct an a	
489	priori database of observed snowfall profiles and corresponding brightness temperatures. The	
490	radiative transfer procedure yields likely brightness temperatures from modeling how ice	
491	particles scatter microwave radiation at different wavelengths. A Bayesian retrieval algorithm	
492	was then used to estimate snowfall over land by comparing measurements of brightness	
493	temperature with modeled brightness temperature (Noh et al., 2009). The algorithm was tested	
494	during the early and late winter for heavier snowfall events. Late winter retrievals indicated that	
495	the algorithm overestimated snowfall, over surfaces with significant snow accumulation.	Adri
496		Dele
497	While results have been promising, the spatial resolution at which ATMS and other passive	
498	microwave data are acquired is very coarse (15.8 to 74.8 km at nadir), making passive	
499	microwave approaches more applicable for regional to continental scales. Temporal resolution of	
500	the data acquisition is another challenge. AMSU instruments are mounted on 8 satellites; the	
501	related ATMS is mounted on a single satellite and planned for two additional satellites.	Adr
502	However, the satellites are polar-orbiting, not geostationary, so it is probable that a precipitation	Dele
503	event could occur outside the field of view of one of the instruments.	
504		
505	Spaceborne active microwave or radar sensors measure the backscattered signal from pulses of	
506	microwave energy emitted by the sensor itself. Much like the ground based radar systems, the	

Adrian Harpold 11/20/16 2:22 PM Deleted:), Adrian Harpold 11/20/16 2:22 PM Deleted: ,

Adrian Harpold 11/20/16 2:22 PM Deleted: ,

Adrian Harpold 11/20/16 2:22 PM Deleted: t

511	propagated microwave signal interacts with liquid and solid particles in the atmosphere and the	
512	degree to which the measured return signal is attenuated provides information on the	
513	atmospheric constituents. The advantage offered by spaceborne radar sensors over passive	
514	microwave is the capability to acquire more detailed sampling of the vertical profile of the	
515	atmosphere (Kulie and Bennartz, 2009). The first spaceborne radar capable of observing	
516	snowfall is the Cloud Profiling Radar (CPR) onboard CloudSat (2006 - present). The CPR	Deleted: (Ku
517	operates at 94 GHz with an along-track (or vertical) resolution of ~1.5 km. Retrieval of dry	
518	snowfall rate from CPR measurements of reflectivity have been shown to correspond with	
519	estimates of snowfall from ground-based radar at elevations of 2.6 and 3.6 km above mean sea	
520	level (Matrosov et al., 2008). Estimates at lower elevations, especially those in the lowest 1 km,	
521	are contaminated by ground clutter. Alternative approaches, combining CPR data with ancillary	
522	data have been formulated to account for this challenge (Kulie and Bennartz, 2009; Liu, 2008).	Advisor Llas
523	Known relationships between CPR reflectivity data and the scattering properties of non-spherical	Deleted: (Li
524	ice crystals are used to derive snowfall at a given elevation above mean sea level; below this	2009).
525	elevation a temperature threshold derived from surface data is used to discriminate between rain	
526	and snow events. Liu (2008) used <2 °C as the snow/rain threshold, whereas Kulie and Bennartz	Advisor Llas
527	(2009) used 0 °C as the snow/rain threshold. Temperature thresholds have been the subject of	Deleted: Ku
528	much research and debate for discriminating precipitation phase, as is further discussed in	as the snow/ temperature
529	section 4.1.	these latter a
530		
531	CloudSat is part of the A-train or afternoon constellation of satellites, which includes Aqua, with	
532	the Moderate Resolution Imaging Spectrometer (MODIS) and the Cloud-Aerosol Lidar and	
533	Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft with cloud-profiling Lidar. The	
534	sensors onboard A-train satellites provided the unique combination of data to create an	
535	operational snow retrieval product. The CPR Level 2 snow profile product (2C-SNOW-	
536	PROFILE) uses vertical profile data from the CPR, input from MODIS and the cloud profiling	
537	radar, as well as weather forecast data to estimate near surface snowfall (Kulie et al., 2016;	Adrian Harr
538	Wood et al., 2013). The performance of 2C-SNOW-PROFILE was tested by Cao et al. (2014).	Deleted: (W
539	This group found the product worked well in detecting light snow but performed less	2016).
540	satisfactorily under conditions of moderate to heavy snow because of the non-stationary effects	
541	of attenuation on the returned radar signal.	

Adrian Harpold 11/20/16 2:22 PM **Deleted:** (Liu 2008; Kulie and Bennartz, 2009)

drian Harpold 11/20/16 2:22 PM

Deleted: Kulie and Bennartz (2009) used 0 °C as the snow/rain threshold. Despite the fact that temperature thresholds are incorporated into these latter approaches, they

Adrian Harpold 11/20/16 2:22 PM Deleted: (Wood et al., 2013;Kulie et al., 2016).

551 The launch of the Global Precipitation Mission (GPM) core observatory in February 2014 holds 552 553 promise for the future deployment of operational snow detection products. Building on the 554 success of the Tropical Rainfall Monitoring Mission (TRMM), the GPM core observatory sensors include precipitation radar (DPR) and microwave imager (GMI). The GMI has two 555 millimeter wave channels (166 and 183 GHz) that are specifically designed to detect and retrieve 556 light rain and snow precipitation. These are more advanced than the sensors onboard the TRMM 557 spacecraft and permit better quantification of the physical properties of precipitating particles, 558 particularly over land at middle to high latitudes (Hou et al., 2014). Algorithms for the GPM 559 mission are still under development, and is partly being driven by data collected during the GPM 560 Cold Season Experiment (GCPEx) (Skofronick-Jackson et al., 2015). Using airborne sensors to 561 562 simulate GPM and DPR measurements, one of the questions that the GCPEx hoped to address concerned the potential capability of data from the DPR and GMI to discriminate falling snow 563 from rain or clear air (Skofronick-Jackson et al., 2015). The initial results reported by the GCPEx 564 study echo some of the challenges recognized for ground-based single polarized radar detection 565 of snowfall. The relationship between radar reflectivity and snowfall is not unique. For the GPM 566 mission, it will be necessary to include more variables from dual frequency radar measurements, 567 multiple frequency passive microwave measurements, or a combination of radar and passive 568 569 microwave measurements (Skofronick-Jackson et al., 2015). 570 4. Current Tools for Predicting Precipitation Phase 571 572 4.1 Prediction Techniques from Ground-Based Observations 573 Discriminating between solid and liquid precipitation is often based on a near-surface air temperature threshold (Martinec and Rango, 1986;U.S. Army Corps of Engineers, 1956;L'hôte et 574 575 al., 2005). Four prediction methods have been developed that use near-surface air temperature for discriminating precipitation phase: 1) static threshold, 2) linear transition, 3) minimum and 576 maximum temperature, and 4) sigmoidal curve (Table 1). A static temperature threshold applies 577 a single temperature value, such as mean daily temperature, where all of the precipitation above 578 579 the threshold is rain, and all below that threshold is snow. Typically this threshold temperature is near 0 °C (Lynch-Stieglitz, 1994; Motoyama, 1990), but was shown to be highly variable across 580 both space and time (Kienzle, 2008; Motoyama, 1990; Braun, 1984; Ye et al., 2013). For 581

Adrian Harpold 11/20/16 2:22 PM Deleted: (Motoyama, 1990; Lynch-Stieglitz, 1994) Adrian Harpold 11/20/16 2:22 PM Deleted: a

example, Rajagopal and Harpold (2016) optimized a single temperature threshold at Snow 585 Telemetry (SNOTEL) sites across the western U.S. to show regional variability from -4 to 3 °C 586 587 (Figure 3). A second discrimination technique is to linearly scale the proportion of snow and rain 588 between a temperature for all rain (T_{rain}) and a temperature for all snow (T_{snow}) (Pipes and Quick, 1977; McCabe and Wolock, 2010; Tarboton et al., 1995). Linear threshold models have been 589 parameterized slightly differently across studies, e.g.: T_{snow} =-1.0 °C, T_{rain} = 3.0 °C (McCabe and 590 Wolock, 2010), T_{snow} =-1.1 °C and T_{rain} =3.3 °C (Tarboton et al., 1995), and T_{snow} =0 °C and T_{rain} 591 =5 °C (McCabe and Wolock, 1999b). A third technique specifies a threshold temperature based 592 593 on daily minimum and maximum temperatures to classify rain and snow, respectively, with a threshold temperature between the daily minimum and maximum producing a proportion of rain 594 and snow (Leavesley et al., 1996). This technique can have a time-varying temperature threshold 595 596 or include a T_{rain} that is independent of daily maximum temperature. A fourth technique applies a sigmoidal relationship between mean daily (or sub daily) temperature and the proportion or 597 probability of snow versus rain. For example, one method derived for southern Alberta, Canada 598 599 employs a curvilinear relationship defined by two variables, a mean daily temperature threshold where 50% of precipitation is snow, and a temperature range where mixed-phase precipitation 600 can occur (Kienzle, 2008). Another sigmoidal-based empirical model identified a hyperbolic 601 tangent function defined by four parameters to estimate the conditional snow (or rain) frequency 602 603 based on a global analysis of precipitation phase observations from over 15,000 land-based 604 stations (Dai, 2008). Selection between temperature-based techniques is typically based on available data, with a limited number of studies quantifying their relative accuracy for 605 606 hydrological applications (Harder and Pomeroy, 2014). 607 Several studies have compared the accuracy of temperature-based PPM to one another and/or 608 609 against an independent validation of precipitation phase. Sevruk (1984) found that only about 68% of the variability in monthly observed snow proportion in Switzerland could be explained 610 by threshold temperature based methods near 0 °C. An analysis of data from fifteen stations in 611 southern Alberta, Canada with an average of >30 years of direct observations noted over-612 613 estimations in the mean annual snowfall for static threshold (8.1%), linear transition (8.2%), minimum and maximum (9.6%), and sigmoidal transition (7.1%) based methods (Kienzle, 2008). 614 An evaluation of PPM at three sites in the Canadian Rockies by Harder and Pomeroy (2013) 615

found the largest percent error to occur using a static threshold (11% to 18%), followed by linear 616 relationships (-8% to 11%), followed by a sigmoidal relationships (-3 to 11%). Another study 617 618 using 824 stations in China with >30 years of direct observations found accuracies of 51.4% 619 using a static 2.2 °C threshold and 35.7% to 47.4% using linear temperature-based thresholds (Ding et al., 2014). Lastly, for multiple sites across the rain-snow transition in southwestern 620 621 Idaho, static temperature thresholds produced the lowest proportion (68%) whereas a linearbased model produced the highest proportion (75%) of snow, respectively (Marks et al., 2013). 622 Generally these accuracy assessments demonstrated that static threshold methods produced the 623 624 greatest errors, whereas sigmoidal relationships produced the smallest errors, although variations to this general rule existed across sites. 625 626 Near surface humidity also influences precipitation phase (see Section 2). Three humidity-627 dependent precipitation phase identification methods are found in the literature: 1) dewpoint 628 629 temperature (T_d) , 2) wet bulb temperature (T_w) , and 3) psychometric energy balance. The 630 dewpoint temperature is the temperature at which an air parcel with a fixed pressure and moisture content would be saturated. In one approach to account for measurement and 631 instrument calibration uncertainties of ± 0.25 °C each, T_d and T_w below -0.5 °C was assumed to 632 633 be all snow and above +0.5 °C all rain, with a linear relationship between the two being a proportional mix of snow and rain (Marks et al., 2013). T_d of 0.0 °C performed consistently 634 better than T_a in one study by Marks et al. (2001) while a T_d of 0.1°C for multiple stations in 635 636 Sweden was less accurate than a T_a of 1.0 °C (Feiccabrino et al., 2013). The wet or ice bulb temperature (T_w) is the temperature at which an air parcel would become saturated by 637 638 evaporative cooling in the absence of other sources of sensible heat, and is the lowest 639 temperature that falling precipitation can reach. Few studies have investigated the feasibility of T_w for precipitation phase prediction (Olsen, 2003; Ding et al., 2014; Marks et al., 2013). T_w 640 significantly improved prediction of precipitation phase over T_a at 15-minute time steps, but only 641

642 marginally improved prediction at daily time steps (Marks et al., 2013). Ding et al. (2014) developed a sigmoidal phase probability curve based on T_w and elevation that outperformed T_a 643 threshold-based methods across a network of sites in China. Conceptually, the hydrometeor 644 645 temperature (T_i) is similar to T_w but is calculated using the latent heat and vapor density gradient.

646 Use of computed T_i value significantly improved precipitation phase estimates over T_a,

647 particularly as time scales approached one day (Harder and Pomeroy, 2013).

648

649	There has been limited validation of humidity-based precipitation phase prediction techniques
650	against ground-truth observations. Ding et al. (2014) showed that a method based on $T_{\rm w}$ and
651	elevation increased accuracy by 4.8% to 8.9% over several temperature-based methods. Their
652	method was more accurate than a simpler T_w based method by <u>(Yamazaki, 2001)</u> . Feiccabrino et
653	al. (2013) showed that T_d misclassified 3.0% of snow and rain (excluding mixed phased
654	precipitation), whereas T_a only misclassified 2.4%. <u>Ye et al. (2013)</u> found T_d less sensitive to
655	phase discrimination under diverse environmental conditions and seasons than Ta. Froidurot et
656	al. (2014) evaluated several techniques with a critical success index (CSI) at sites across
657	Switzerland to show the highest CSI were associated with variables that included $T_{\rm w} \text{or}$ relative
658	humidity (CSI=84%-85%) compared to T_a (CSI=78%). Marks et al. (2013) evaluated the time at
659	which phase transitioned from snow to rain against field observations across a range of
660	elevations and found that $T_{\rm d}$ most closely predicted the timing of phase change, whereas both $T_{\rm a}$
661	and $T_{\rm w}$ estimated earlier phase changes than observed. Harder and Pomeroy (2013) compared $T_{\rm i}$
662	with field observations and found that error was $<10\%$ when T _i was allowed to vary with each
663	daily time-step and $\geq 10\%$ when T _i was fixed at 0 °C. The T _i accuracy increased appreciably (i.e.
664	5%-10% improvement) when the temporal resolution was decreased from daily to hourly or 15-
665	minute time steps. The validation studies consistently showed improvements in accuracy by
666	including humidity over PPM based only on temperature.
667	
668	Hydrological models employ a variety of techniques for phase prediction using ground based
669	observations (Table 1). All discrete hydrological models (i.e. not coupled to an atmospheric
670	model) investigated used temperature based thresholds that did not consider the near-surface
671	humidity. Moreover, most models use a single static temperature threshold, which was
672	consistently shown to produce lower accuracy than multiple temperature methods. Hydrological
673	models that are coupled to atmospheric models were more able to consider important controls on
674	precipitation phase, such as humidity and atmospheric profiles. This compendium of model PPM
675	highlights the current shortcomings in phase prediction in conventional discrete hydrological

676 models.

Adrian Harpold 11/20/16 2:22 PM Deleted: (Yamazaki, 2001).

Adrian Harpold 11/20/16 2:22 PM Deleted: Ye et al. (2013b) Adrian Harpold 11/20/16 2:22 PM Deleted: Frudoiret et al. (2014)

- 680
- 4.2 Prediction Techniques Incorporating Atmospheric Information 681 682 While many hydrologic models have their own formulations for determining precipitation phase 683 at the ground, it is also possible to initialize hydrologic models with precipitation phase fraction, intensity, and volume from numerical weather simulation model output. Here we discuss the 684 limitations of precipitation phase simulation inherent to WRF (Kaplan et al., 2012; Skamarock et 685 al., 2008) and other atmospheric simulation models. The finest scale spatial resolution employed 686 in atmospheric simulation models is ~ 1 km and these models generate data at hourly or finer 687 688 temporal resolutions. Regional climate models (RCM) and global climate models (GCM) are typically coarser than local mesoscale models. The physical processes driving both the removal 689 of moisture from the air and the precipitation phase (Section 2) occur at much finer spatial and 690 691 temporal resolutions in the real atmosphere than models typically resolve, i.e. <1 km. As with all numerical models, the representation of sub-grid scale processes requires parameterization. At 692 typical scales considered, characterization of mixed phase processes within a condensing cloud 693 depends on both cloud microphysics and kinematics of the surrounding atmosphere. Replicating 694 cloud physics at the multi-kilometer scale requires empiricism. The 30+ cloud microphysics 695 parameterization options in the research version of WRF (Skamarock et al., 2008) vary in the 696 number of classes described (cloud ice, cloud liquid, snow, rain, graupel, hail, etc.), and may or 697 698 may not accurately resolve changes in hydrometeor phase and horizontal spatial location (due to 699 wind) during precipitation. All microphysical schemes predict cloud water and cloud ice based 700 on internal cloud processes that include a variety of empirical formulations or even simple 701 lookup tables. These schemes vary greatly in their accuracy with "mixed phase" schemes generally producing the most accurate simulations of precipitation phase in complex terrain 702 703 where much of the water is supercooled (Lin, 2007; Reisner et al., 1998; Thompson et al., 2004; Thompson et al., 2008; Morrison et al., 2005; Zängl, 2007; Kaplan et al., 2012), Comprehensive 704 validation of the microphysical schemes over different land surface types (e.g. warm maritime, 705 flat prairie, etc.) with a focus on different snowfall patterns is lacking. In particular, in transition 706 zones between mountains and plains or along coastlines, the complexity of the microphysics 707 708 becomes even more extreme due the dynamics and interactions of differing air masses with 709 distinct characteristics. The autoconversion and growth processes from cloud water or ice to hydrometeors contain a strong component of empiricism, in particular the nucleation media and 710
- Adrian Harpold 11/20/16 2:22 PM Deleted: e Adrian Harpold 11/20/16 2:22 PM Deleted: f Adrian Harpold 11/20/16 2:22 PM Deleted: rm Adrian Harpold 11/20/16 2:22 PM Deleted: best Adrian Harpold 11/20/16 2:22 PM Deleted:) Adrian Harpold 11/20/16 2:22 PM Deleted: . For example,

717 their chemical composition. Different microphysical parameterizations lead to different spatial

718 distributions of precipitation and produce varying vertical distributions of hydrometeors

(Gilmore et al., 2004). Regardless, precipitation rates for each grid cell are averages requiring

hydrological modelers to consider the effects of elevation, aspect, etc. in resolving precipitation

721 phase fractions for finer-scale models.

722

723 Numerical models that contain sophisticated cloud microphysics schemes allow assimilation of 724 additional remote sensing data beyond conventional synoptic/large scale observations (balloon 725 data). This is because the coarse spatial and temporal nature of radiosonde data results in the atmosphere being sensed imperfectly/incompletely compared with the scale of motion that 726 727 weather simulation models can numerically resolve. These observational inadequacies are 728 exacerbated in complex terrain, where precipitation phase fraction can vary on small scales but 729 radar can be blocked by topography and therefore, rendered useless in the model initialization. Accurate generation of liquid and frozen precipitation from vapor requires accurate depiction of 730 initial atmospheric moisture conditions (Kalnay and Cai, 2003; Lewis et al., 2006). In 731 732 acknowledgement of the difficulty and uncertainty of initializing numerical simulation models, 733 atmospheric modelers use the term "bogusing" to describe incorporation of individual 734 observations at a point location into large scale initial conditions in an effort to enhance the 735 accuracy of the simulation (Eddington, 1989). They also employ complex assimilation 736 methodologies to force the early period of the model solutions during the time integration 737 towards fine scale observations (Kalnay and Cai, 2003; Lewis et al., 2006). These asynoptic or 738 fine scale data sources often substantially improve the accuracy of the simulations as time 739 progresses. 740 Hydrologists are increasingly using output from atmospheric models to drive hydrologic models 741 from daily to climate or multi-decadal timescales (Tung and Haith, 1995; Pachauri, 2002; Wood 742 743 et al., 2004; Rojas et al., 2011; Yucel et al., 2015). These atmospheric models suffer from the same data paucity and scale issues that likewise challenge the implementation and validation of 744

hydrologic models. Uncertainties in their output, including precipitation volume and phase,

begins with the initialization of the atmospheric model from measurements, increases with model

choice and microphysics as well as turbulence parameterizations, and is a strong function of the

Adrian Harpold 11/20/16 2:22 PM Deleted: s

750	acknowledged. Furthermore, these uncertainties are highly variable in character and magnitude	
751	from day to day and location to location. Thus, there has been very little published concerning	
752	how well atmospheric models predict precipitation phase. Finally, lack of ground measurements	
753	leaves hydrologists with no means to assess and validate atmospheric model predictions.	
754		Deleted: the hydrologist
755	5. Research Gaps	
756	The incorrect prediction of precipitation phase leads to cascading effects on hydrological	
757	modeling (Figure 1). Meeting the challenge of accurately predicting precipitation phase requires	
758	the closing of several critical research gaps, (Figure 4). Perhaps the most pressing challenge for	
759	improving PPM is developing and employing new and improved sources of data. However, new	Deleted:
760	data sources will not yield much benefit without effective incorporation of data into predictive	
761	models, (Figure 4). Additionally, both the scientific and management communities lack data	
762	products that can be readily understood and broadly used. Addressing these research gaps	Deleted:
763	requires simultaneous engagement both within and between the hydrology and atmospheric	
764	observation and modeling communities. Changes to atmospheric temperature and humidity	
765	profiles from regional climate change will likely challenge conventional precipitation phase	
766	prediction in ways that demand additional observations and improved forecasts.	
767		
768	5.1 Conduct focused field campaigns	
769	Intensive field campaigns are extremely effective approaches to address fundamental research	Deleted: 5.1
770	gaps focused on the discrimination between rain, snow, and mixed-phase precipitation at the	
771	ground by providing opportunities to test novel sensors, and detailed datasets to develop remote	
772	sensing retrieval algorithms, and improve PPM estimation methods. The recent Global	
773	Precipitation Measurement (GPM) Cold Season Precipitation Experiment (GCPEx) is an	
774	example of such a campaign in non-complex terrain where simultaneous observations using	
775	arrays of both airborne and ground-based sensors were used to measure and characterize both	
776	solid and liquid precipitation (e.g. Skofronick-Jackson et al., 2015). Similar intensive field	
777	campaigns are needed in complex terrain that is frequently characterized by highly dynamic and	
778	spatially variable hydrometeorological conditions. Such campaigns are expensive to conduct, but	
779	can be implemented as part of operational nowcasting to develop rich data resources to advance	
I		

scale of the model. The significance of these uncertainties varies by application, but should be

749

784	scientific understanding as was very effectively done during the Vancouver Olympic Games in
785	2010 (Isaac et al., 2014; Joe et al., 2014). The research community should utilize existing
786	datasets and capitalize on similar opportunities and expand environmental monitoring networks
787	to simultaneously advance both atmospheric and hydrological understanding, especially in
788	complex terrain spanning the rain-snow transition zone.

790 <u>5.2</u> Incorporate humidity information

789

Atmospheric humidity affects the energy budget of falling hydrometeors (Section 4.1), but is 791 rarely considered in precipitation phase prediction. The difficulty in incorporating humidity 792 mainly arises from a lack of observations, both as point measurements and distributed gridded 793 products. For example, while some reanalysis products have humidity information (i.e. National 794 795 Centers for Environmental Prediction, NCEP reanalysis) they are at spatial scales (i.e. > 1 degree) too coarse for resolving precipitation phase in complex topography. Addition of high-796 quality aspirated humidity sensors at snow monitoring stations, such as the SNOTEL network, 797 would advance our understanding of humidity and its effects on precipitation phase in the 798 mountains. Because dry air masses have regional variations controlled by storm tracks and 799 800 proximity to water bodies, sensitivity of precipitation phase to humidity variations driven by 801 regional warming remains relatively unexplored. 802 Although humidity datasets are relatively rare in mountain environments, some gridded data 803 804 products exist that can be used to investigate the importance of humidity information. Most 805 interpolated gridded data products either do not include any measure of humidity (e.g. Daymet or WorldClim) or use daily temperature measurements to infer humidity conditions (e.g. PRISM). 806 In complex terrain, air temperature can also vary dramatically at relatively small scales from 807 ridgetops to valley bottoms due to cold air drainage (Whiteman et al., 1999) and hence can 808 introduce errors into inferential techniques such as these. Potentially more useful are data 809 assimilation products, such as NLDAS-2, that provide humidity and temperature values at 1/8th 810 of a degree scale over the continental U.S. In addition, several data reanalysis products are often 811 available at 1 to 3 year lags from present, including NCEP/NCAR, NARR, and the 20th Century 812

- reanalysis. Given the relatively sparse observations of humidity in mountain environments, the
- accuracy of gridded humidity products is rarely rigorously evaluated (Abatzoglou, 2013). More

Adrian Harpold 11/20/16 2:22 PM Deleted: i. Adrian Harpold 11/20/16 2:22 PM Deleted: i.

817 818	work is needed to understand the added skill provided by humidity datasets for predicting precipitation phase and its distribution over time and space.	
819		
820	5.2 Incorporate atmospheric information	
821	We echo the call of Feiccabrino et al. (2015) for greater incorporation of atmospheric	
822	information into phase prediction and additional verification of the skill in phase prediction	Adrian Harpold 11/20/16 2:22 PM Deleted: 2
823	provided by atmospheric information.	
824		
825	Several avenues exist to better incorporate atmospheric information into precipitation phase	
826	prediction, including direct observations, remote sensing observations, and model products.	
827	Radiosonde measurements made daily at many airports and weather forecasting centers have	
828	shown some promise for supplying atmospheric profiles of temperature and humidity (Froidurot	
829	et al., 2014). However, these data are only useful to initialize the larger scale structure of	
830	temperature and water vapor, and may not capture local-scale variations in complex terrain. It is	Advise Lloredd 11/20/16 2:22 DM
831	also their lack of temporal and spatial frequency that prevents their use in accurate precipitation	Deleted: and
832	phase prediction, which is inherently a mesoscale problem, i.e., scales of motion <100 km.	
833	Atmospheric information on the bright-band height from Doppler radar has been utilized for	
834	predicting the altitude of the rain-snow transition (Lundquist et al., 2008; Minder, 2010), but has	
835	rarely been incorporated into hydrological modeling applications (Maurer and Mass, 2006;	
836	Mizukami et al., 2013). In addition to atmospheric observations, modeling products that	
837	assimilate observations or are fully physically-based may provide additional information for	
838	precipitation phase prediction. Numerous reanalysis products (described in Section 2.2) provide	
839	temperature and humidity at different pressure levels within the atmosphere. To our knowledge,	
840	information from reanalysis products has yet to be incorporated into precipitation phase	
841	prediction for hydrological applications. Bulk microphysical schemes used by meteorological	
842	models (i.e. Weather Research and Forecasting WRF model) provide a physically-based estimate	
843	of precipitation phase. These schemes capture a wide-variety of processes, including	
844	evaporation, sublimation, condensation, and aggradation, and output between two and ten	
845	precipitation types. Historically, meteorological models have not been run at spatial scales	Adrian Harpold 11/20/16 2:22 PM
846 847	capable of resolving convective dynamics (e.g. <2 km), which can exacerbate error in precipitation phase prediction in complex terrain with a moist neutral atmosphere. Coarse	Deleted: Reduced computational restrictions on running these models over large geographi extents (Rasmussen et al., 2012)

- meteorological models also struggle to produce pockets of frozen precipitation from advection of
 moisture plumes between mountain ranges and cold air wedged between topographic barriers.
 However, reduced computational restrictions on running these models at finer spatial scales and
 over large geographic extents (Rasmussen et al., 2012) are enabling further investigations into
 precipitation phase change under historical and future climate scenarios. This suggests that finer
- 858 dynamical downscaling is necessary to resolve precipitation phase which is consistent with
- 859 similar work attempting to resolve winter precipitation amount in complex terrain (Gutmann et
- 860 <u>al., 2012).</u> A potentially impactful area of research is to integrate this information into novel
- approaches to improve precipitation phase prediction skill.
- 862
- 5.3 Disdrometer networks operating at high temporal resolutions
- 864 An increase in the types and reliability of disdrometers over the last decade has provided a new 865 suite of tools to more directly measure precipitation phase. Despite this new potential resource
- 866 for distinguishing snow and rain, very limited deployments of disdrometers have occurred at the
- scale necessary to improve hydrologic modeling and rain-snow elevation estimates. The lack of
- disdrometer deployment likely arises from a number of potential limitations: 1) known issues
- with accuracy, 2) cost of these systems, and 3) power requirements needed for heating elements.
- 870 These limitations are clearly a factor in procuring large networks and deploying disdrometers in
- 871 <u>complex terrain that is remote and frequently difficult to access.</u> However, we advise that
- disdrometers offer numerous benefits that cannot be substituted with other measurements: 1)
 they operate at fine temporal scales, 2) they operate in low light conditions that limit other direct
- observations, and 3) they provide land surface observations rather than precipitation phase in the
- atmosphere (as compared to more remote methods). Moreover, improvements in disdrometer and
- power supply technologies that address these limitations would remove restrictions on increased
- 877 disdrometer deployment.
- 878
- 879 Transects of disdrometers spanning the rain-snow elevations of key mountain areas could add
- substantially to both prediction of precipitation phase for modeling purposes, as well as
- validating typical predictive models. We advocate for transects over key mountain passes where
- 882 power is generally available and weather forecasts for travel are particularly important. In
- addition, co-locating disdrometers at long-term research stations where precipitation phase

Adrian Harpold 11/20/16 2:22 PM **Deleted:** remote areas.

- 885 observations could be tied to micro-meteorological and hydrological observations has distinct
- 886 advantages. These areas often have power supplies and instrumentation expertise to operate and
- 887 maintain disdrometer networks.
- 888
- 5.4 Compare different indirect phase measurement methods
- 890 There is an important need to evaluate the accuracy of different PPM to assess tradeoffs between model complexity and skill (Figure 4). Given the potential for several types of observations to 891 improve precipitation phase prediction (section 5.1-5.3), quantifying the relative skill provided 892 893 by these different lines of evidence is a critical research gap. Although assessing relative differences between methods is potentially informative, comparison to ground truth 894 measurements is critical for assessing accuracy. Disdrometer measurements and video imaging 895 896 (Newman et al., 2009) are ideal ground truthing methods that can be employed at fine time steps 897 and under a variety of conditions (section 5.3). Less ideal for accuracy assessment studies are direct visual observations that are harder to collect at fine time steps and in low light conditions. 898 899 Similarly, employing coupled observations of precipitation and snow depth has been used to assess accuracy of different precipitation phase prediction methods (Marks et al., 2013; Harder 900 901 and Pomeroy, 2013), but accuracy assessment of these techniques themselves are lacking under a 902 wide range of different conditions. 903 904 A variety of accuracy assessments are needed that will require co-located distributed 905 measurements. One critical accuracy assessment involves the consistency of different 906 precipitation phase prediction methods under different climate and atmospheric conditions. 907 Assessing the effects of climate and atmospheric conditions requires measurements from a variety of sites covering a range of hydroclimatic conditions and record lengths that span the 908 909 conceivable range of atmospheric conditions at a given site. Another important evaluation metric is the performance over different time steps. Harder and Pomeroy (2013) showed that 910 hydrometeor and temperature-based prediction methods had errors that substantially decreased 911 across shorter time steps. Identifying the effects of time step length on the accuracy of different 912 913 prediction methods has been relatively unexplored, but is critical to selecting the proper method for different hydrological applications. Finally, the performance metrics used to assess accuracy 914
- should be carefully considered. The applications of precipitation phase prediction methods are

Adrian Harpold 11/20/16 2:22 PM Deleted:

Adrian Harpold 11/20/16 2:22 PM Deleted: an Adrian Harpold 11/20/16 2:22 PM Deleted: truth Adrian Harpold 11/20/16 2:22 PM Deleted: collected

diverse, necessitating a wide variety of performance metrics, including the probability of snow 920 921 versus rain (Dai, 2008), the error in annual or total snow/rain accumulation (Rajagopal and 922 Harpold, 2016), performance under extreme conditions of precipitation amount and intensity, 923 determination of the snow-rain elevation (Marks et al., 2013), and uncertainty arising from measurement error and accuracy. Comparison of different metrics across a wide-variety of sites 924 925 and conditions is lacking but is greatly needed to advance cold-region hydrologic science. 926 927 5.5 Develop spatially resolved products 928 Many hydrological applications will benefit from gridded data products that are easily integrated 929 into standard hydrological models. Currently, very few options exist for gridded data precipitation phase products. Instead, most hydrological models have some type of submodel or 930 931 simple scheme that specifies precipitation phase as rain, snow, or mixed (see Section 4). While 932 testing PPM with ground based observations could lead to improved submodels, we believe development of gridded forcing data may be an easier and more effective solution for many 933 934 hydrological modeling applications. 935 Gridded data products could be derived from a combination of remote sensing and existing 936 937 model products, but would need to be extensively evaluated. The NASA GPM mission is 938 beginning to produce gridded precipitation phase products at 3-hour and 0.1 degree resolution. 939 However, GPM phase is measured at the top of the atmosphere, typically relies on simple 940 temperature-thresholds, and is yet to be validated with ground based observations. Another 941 existing product is the Snow Data Assimilation System (SNODAS) that estimates liquid and solid precipitation at the 1 km scale. However, the developers of SNODAS caution that it is not 942 suitable for estimating storm totals or regional differences. Furthermore, to our knowledge the 943 precipitation phase product from SNODAS has not been validated with ground observations. We 944 suggest the development of new gridded data products that utilize new PPM (i.e. Harder and 945 Pomeroy, 2013) and new and expanded observational datasets, such as atmospheric information 946 and radar estimates. We advocate for the development of multiple gridded products that can be 947 948 evaluated with ground observations to compare and contrast their strengths. Accurate gridded 949 phase products rely on the ability to represent the physics of water vapor and energy flows in complex terrain (e.g. Holden et al., 2010) where statistical downscaling methods are typically 950

951 <u>insufficient (Gutmann et al., 2012).</u> This would also allow for ensembles of phase estimates to be

used in hydrological models, similar to what is currently being done with gridded precipitation

- 952 953
- 954

estimates.

955	5.6 Characterization of regional variability and response to climate change
956	The inclusion of new datasets, better validation of PPM, and development of gridded data
957	products will poise the hydrologic community to improve hydrological predictions and better
958	quantify regional sensitivity of phase change to climate changes. Because broad-scale techniques
959	applied to assess changes in precipitation phase and snowfall have relied on temperature, both
960	regionally (Klos et al., 2014; Pierce and Cayan, 2013; Knowles et al., 2006), and globally
961	(Kapnick and Delworth, 2013; O'Gorman, 2014), they have not fully considered the potential
962	non-linearities created by the absence of wet bulb depressions and humidity in assessment of
963	sensitivity to changes in phase. Consequently, the effects of changes from snow to rain from
964	warming and corresponding changes in humidity will be difficult to predict with the current
965	PPM. Recent efforts by Rajagopal and Harpold (2016) have demonstrated that simple
966	temperature thresholds are insufficient to characterize snow-rain transition across the western
967	U.S. (Figure 3), perhaps because of differences in humidity. An increased focus on future
968	humidity trends, patterns, and GCM simulation errors (Pierce et al., 2013) and availability of
969	downscaled humidity products at increasingly finer scales (e.g.: assessments of the relative role
970	of temperature and humidity in future precipitation phase changes. Recent remote sensing
971	platforms, such as GPM, may offer an additional tool to assess regional variability, however, the
972	current GPM precipitation phase product relies on wet bulb temperatures based on model output
973	and not microwave-based observations (Huffman et al., 2015). Besides issues with either spatial
974	or temporal resolution or coverage, one of the main challenges in using remotely sensed data for
975	distinguishing between frozen and liquid hydrometeors is the lack of validation. Where products
976	have been validated, the results are usually only relevant for the locale of the study area.
977	Spaceborne radar combined with ground-based radar offers perhaps the most promising solution,
978	but given the non-unique relationship between radar reflectivity and snowfall, further testing is
979	necessary in order to develop reliable algorithms.
980	

Adrian Harpold 11/20/16 2:22 PM Deleted: the Adrian Harpold 11/20/16 2:22 PM Deleted: regional variability Adrian Harpold 11/20/16 2:22 PM Deleted: role of Adrian Harpold 11/20/16 2:22 PM Deleted: our Adrian Harpold 11/20/16 2:22 PM Deleted: regional

987	Future work is needed to improve projections of changes in snowpack and water availability	
988	from regional to global scales. This local to sub-regional characterization is needed for water	
989	resource prediction and to better inform decision and policy makers. In particular, the ability to	
990	predict the transitional rain-snow elevations and its uncertainty is critical information for a	
991	variety of end-users, including state and municipal water agencies, flood forecasters, agricultural	
992	water boards, transportation agencies, and wildlife, forest, and land managers. Fundamental	
993	advancements in characterizing regional variability are possible by addressing the research	
994	challenges detailed in sections 5.1-5.5.	
995		
996	6. Conclusions	
997	Our review paper is a step towards communicating the potential bottlenecks in hydrological	Adrian Harpold 11/20/16 2:22 F
998	modeling caused by poor representation of precipitation phase (Figure 1). Our goals are to	Deleted: This
999	demonstrate that major research gaps in our ability to PPM are contributing to error and reducing	Adrian Harpold 11/20/16 2:22 F
1000	predictive skill in hydrological modeling. By highlighting the research gaps that could advance	
1001	the science of PPM, we provide a roadmap for future advances (Figure 4). While many of the	Adrian Harpold 11/20/16 2:22 [
1002	research gaps are recognized by the community and are being pursued, including incorporating	Deleted: have provided
1003	atmospheric and humidity information, while others remain essentially unexplored (e.g.	
1004	production of gridded data, widespread ground validation, and remote sensing validation).	
1005		
1006	The key points that must be communicated to the hydrologic community and its funding	
1007	agencies can be distilled into the following two statements: 1) current PPM algorithms are too	
1008	simple and are not well-validated for most locations, 2) the lack of sophisticated PPM increases	
1009	the uncertainty in estimation of hydrological sensitivity to changes in precipitation phase at local	
1010	to regional scales. We advocate for better incorporation of new information (5.1-5.2) and	
1011	improved validation methods (5.3-5.4) to advance our current PPM methods, and observations.	
1012	These improved PPM algorithms and remote-sensing observations will be capable of developing	Deleted:
1013	gridded datasets (5.5) and providing new insight that reduce the uncertainty of predicting	
1014	regional changes from snow to rain (5.6). A concerted effort by the hydrological and atmospheric	
1015	science communities to address the PPM challenge will remedy current limitations in	
1016	hydrological modeling of precipitation phase, advance of understanding of cold regions	
1017	hydrology, and provide better information to decision makers.	

- 1022 Acknowledgements
- 1023 This work was conducted as a part of an Innovation Working Group supported by the Idaho,
- 1024 Nevada, and New Mexico EPSCoR Programs and by the National Science Foundation under
- award numbers IIA-1329469, IIA-1329470 and IIA-1329513. Adrian Harpold was partially
- 1026 supported by USDA NIFA NEV05293. Adrian Harpold and Rina Schumer were supported by
- 1027 the NASA EPSCOR Cooperative Agreement #NNX14AN24A. Timothy Link was partially
- 1028 supported by the Department of the Interior Northwest Climate Science Center (NW CSC)
- 1029 through a Cooperative Agreement #G14AP00153 from the United States Geological Survey
- 1030 (USGS). Seshadri Rajagopal was partially supported by research supported by NSF/USDA grant
- 1031 (#1360506/#1360507) and startup funds provided by Desert Research Institute. The contents of
- 1032 this manuscript are solely the responsibility of the authors and do not necessarily represent the
- 1033 views of the NW CSC or the USGS. This manuscript is submitted for publication with the
- 1034 <u>understanding that the United States Government is authorized to reproduce and distribute</u>
- 1035 reprints for Governmental purposes.

1036	References:
1037	Abatzoglou, J. T.: Development of gridded surface meteorological data for ecological
1038	applications and modelling, International Journal of Climatology, 33, 121-131,
1039	<u>10.1002/joc.3413, 2013.</u>
1040	Anderson, E., 2006, Snow Accumulation and Ablation Model – Snow-17, available online at
1041	http://www.nws.noaa.gov/oh/hrl/nwsrfs/users_manual/part2/_pdf/22snow17.pdf, accessed August,
1042	<u>2016.</u>
1043	Arkin, P. A., and Ardanuy, P. E.: Estimating climatic-scale precipitation from space: a review, J.
1044	<u>Climate, 2, 1229-1238, 1989.</u>
1045	Arnold, J.G., Kiniry, J.R., Srinivasan R., Williams, J.R, Haney, E.B., and Neitsch S.L., 2012,
1046	SWAT Input/Output Documentation, Texas Water Resources Institute, TR-439, available
1047	online at http://swat.tamu.edu/media/69296/SWAT-IO-Documentation-2012.pdf, accessed
1048	<u>August, 2016.</u>
1049	Bales, R. C., Molotch, N. P., Painter, T. H., Dettinger, M. D., Rice, R., and Dozier, J.: Mountain
1050	hydrology of the western United States, Water Resources Research, 42,
1051	<u>10.1029/2005wr004387, 2006.</u>
1052	Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on
1053	water availability in snow-dominated regions, Nature, 438, 303-309, 10.1038/nature04141,
1054	<u>2005.</u>
1055	Battaglia, A., Rustemeier, E., Tokay, A., Blahak, U., and Simmer, C.: PARSIVEL Snow
1056	Observations: A Critical Assessment, Journal of Atmospheric and Oceanic Technology, 27,
1057	<u>333-344, 10.1175/2009jtecha1332.1, 2010.</u>
1058	Berghuijs, W. R., Woods, R. A., and Hrachowitz, M.: A precipitation shift from snow towards
1059	rain leads to a decrease in streamflow, Nature Climate Change, 4, 583-586,
1060	10.1038/nclimate2246, 2014.
1061	Bernauer F Hurkamp K Ruhm W and Tschiersch J. Snow event classification with a 2D
1062	video disdrometer - A decision tree approach. Atmospheric Research. 172. 186-195. 2016.

Adrian Harpold 11/20/16 2:22 PM

1069	Bergström, S. 1995. The HBV model. In: Singh, V.P. (Ed.) Computer Models of Watershed
1070	Hydrology. Water Resources Publications, Highlands Ranch, CO., pp. 443-476.
1071	Berris, S. N., and Harr, R. D.: Comparative snow accumulation and melt during rainfall in
1072	forested and clear-cut plots in the Western Cascades of Oregon, Water Resources Research,
1073	23, 135-142, 10.1029/WR023i001p00135, 1987.
1074	Bicknell, B.R., Imhoff, J.C., Kittle, J.L., Jr., Donigian, A.S., Jr., and Johanson, R.C.,
1075	Hydrological Simulation ProgramFortran, User's manual for version 11: U.S.
1076	Environmental Protection Agency, National Exposure Research Laboratory, Athens, Ga.,
1077	EPA/600/R-97/080, 755 p., 1997.
1078	Boe, E. T.: Assessing Local Snow Variability Using a Network of Ultrasonic Snow Depth
1079	Sensors, Master of Science in Hydrologic Sciences, Geosciences, Boise State, 2013.
1080	Boodoo, S., Hudak, D., Donaldson, N., and Leduc, M.: Application of Dual-Polarization Radar
1081	Melting-Layer Detection Algorithm, Journal of Applied Meteorology and Climatology, 49,
1082	<u>1779-1793, 10.1175/2010jamc2421.1, 2010.</u>
1083	Borrmann, S., and Jaenicke, R.: Application of microholography for ground-based in-situ
1084	measurements in stratus cloud layers - a case study, Journal of Atmospheric and Oceanic
1085	Technology, 10, 277-293, 10.1175/1520-0426(1993)010<0277:aomfgb>2.0.co;2, 1993.
1086	Braun, L. N.: Simulation of snowmelt-runoff in lowland and lower alpine regions of Switzerland,
1087	Diss. Naturwiss. ETH Zürich, Nr. 7684, 0000. Ref.: Ohmura, A.; Korref.: Vischer, D.;
1088	Korref.: Lang, H., 1984.
1089	Cao, Q., Hong, Y., Chen, S., Gourley, J. J., Zhang, J., and Kirstetter, P. E.: Snowfall
1090	Detectability of NASA's CloudSat: The First Cross-Investigation of Its 2C-Snow-Profile
1091	Product and National Multi-Sensor Mosaic QPE (NMQ) Snowfall Data, Progress in
1092	Electromagnetics Research-Pier, 148, 55-61, 10.2528/pier14030405, 2014.
1093	Cayan, D. R., Kammerdiener, S. A., Dettinger, M. D., Caprio, J. M., and Peterson, D. H.:
1094	Changes in the onset of spring in the western United States, Bulletin of the American
1095	Meteorological Society, 82, 399-415, 10.1175/1520-0477(2001)082<0399:citoos>2.3.co;2,
1096	<u>2001.</u>

1097	Chandrasekar, V., Keranen, R., Lim, S., and Moisseev, D.: Recent advances in classification of
1098	observations from dual polarization weather radars, Atmospheric Research, 119, 97-111,
1099	<u>10.1016/j.atmosres.2011.08.014, 2013.</u>
1100	Chen, S., Gourley, J. J., Hong, Y., Cao, Q., Carr, N., Kirstetter, PE., Zhang, J., and Flamig, Z.:
1101	Using citizen science reports to evaluate estimates of surface precipitation type, Bulletin of
1102	the American Meteorological Society, 10.1175/BAMS-D-13-00247.1, 2015.
1103	Dai, A.: Temperature and pressure dependence of the rain-snow phase transition over land and
1104	ocean, Geophysical Research Letters, 35, 10.1029/2008gl033295, 2008.
1105	Ding, B., Yang, K., Qin, J., Wang, L., Chen, Y., and He, X.: The dependence of precipitation
1106	types on surface elevation and meteorological conditions and its parameterization, Journal
1107	of Hydrology, 513, 154-163, 10.1016/j.jhydrol.2014.03.038, 2014.
1108	Eddington, L. W.: Satellite-Derived Moisture-Bogusing Profiles for the North Atlantic Ocean,
1109	DTIC Document, 1989.
1110	Elmore, K. L.: The NSSL Hydrometeor Classification Algorithm in Winter Surface
1111	Precipitation: Evaluation and Future Development, Weather and Forecasting, 26, 756-765,
1112	<u>10.1175/waf-d-10-05011.1, 2011.</u>
1113	Fang, X., Pomeroy, J. W., Ellis, C. R., MacDonald, M. K., DeBeer, C. M., and Brown, T.: Multi-
1114	variable evaluation of hydrological model predictions for a headwater basin in the Canadian
1115	Rocky Mountains, Hydrol. Earth Syst. Sci., 17, 1635-1659, 10.5194/hess-17-1635-2013,
1116	2013.
1117	Fatichi, S., Vivoni, E. R., Ogden, F. L., Ivanov, V. Y., Mirus, B., Gochis, D., Downer, C. W.,
1118	Camporese, M., Davison, J. H., Ebel, B., Jones, N., Kim, J., Mascaro, G., Niswonger, R.,
1119	Restrepo, P., Rigon, R., Shen, C., Sulis, M., and Tarboton, D.: An overview of current
1120	applications, challenges, and future trends in distributed process-based models in hydrology,
1121	Journal of Hydrology, 537, 45-60, 2016.
1122	Feiccabrino, J., Lundberg, A., and Gustafsson, D.: Improving surface-based precipitation phase
1123	determination through air mass boundary identification, Hydrology Research, 43, 179-191,
1124	<u>10.2166/nh.2012.060, 2013.</u>

1125	Feiccabrino, J., Gustafsson, D., and Lundberg, A.: Surface-based precipitation phase
1126	determination methods in hydrological models, Hydrology Research, 44, 44-57, 2015.
1127	Floyd, W., and Weiler, M.: Measuring snow accumulation and ablation dynamics during rain-on-
1128	snow events: innovative measurement techniques, Hydrological Processes, 22, 4805-4812,
1129	<u>10.1002/hyp.7142, 2008.</u>
1130	Fritze, H., Stewart, I. T., and Pebesma, E.: Shifts in Western North American Snowmelt Runoff
1131	Regimes for the Recent Warm Decades, Journal of Hydrometeorology, 12, 989-1006,
1132	<u>10.1175/2011jhm1360.1, 2011.</u>
1133	Froidurot, S., Zin, I., Hingray, B., and Gautheron, A.: Sensitivity of Precipitation Phase over the
1134	Swiss Alps to Different Meteorological Variables, Journal of Hydrometeorology, 15, 685-
1135	<u>696, 10.1175/jhm-d-13-073.1, 2014.</u>
1136	Garvelmann, J., Pohl, S., and Weiler, M.: From observation to the quantification of snow
1137	processes with a time-lapse camera network, Hydrology and Earth System Sciences, 17,
1138	1415-1429, 10.5194/hess-17-1415-2013, 2013.
1139	Giangrande, S. E., Krause, J. M., and Ryzhkov, A. V.: Automatic designation of the melting
1140	layer with a polarimetric prototype of the WSR-88D radar, Journal of Applied Meteorology
1141	and Climatology, 47, 1354-1364, 10.1175/2007jamc1634.1, 2008.
1142	Gilmore, M. S., Straka, J. M., and Rasmussen, E. N.: Precipitation Uncertainty Due to Variations
1143	in Precipitation Particle Parameters within a Simple Microphysics Scheme, Monthly
1144	Weather Review, 132, 2610-2627, 10.1175/MWR2810.1, 2004.
1145	Godsey, S. E., Kirchner, J. W., and Tague, C. L.: Effects of changes in winter snowpacks on
1146	summer low flows: case studies in the Sierra Nevada, California, USA, Hydrological
1147	Processes, 28, 5048-5064, 10.1002/hyp.9943, 2014.
1148	Grazioli, J., Tuia, D., and Berne, A.: Hydrometeor classification from polarimetric radar
1149	measurements: a clustering approach, Atmospheric Measurement Techniques, 8, 149-170,
1150	<u>10.5194/amt-8-149-2015, 2015.</u>
1151	Gusev, E.M. and Nasonova, O.N., Parameterization of Heat and Water Exchange on Land
1152	Surface for Coupling Hydrologic and Climate Models, Water Resources., 25(4): 421-431,
1153	<u>1998.</u>

1154	Gutmann, E.D., Rasmussen, R.M., Liu, C., Ikeda, K., Gochis, D., Clark, P.P., Dudhia, J., and
1155	Gregory, T.: A comparison of statistical and dynamical downscaling of winter precipitation
1156	over complex terrain, Journal of Climate, 25(1): 262-281, 2012.
1157	Harder, P., and Pomeroy, J.: Estimating precipitation phase using a psychrometric energy
1158	balance method, Hydrological Processes, 27, 1901-1914, 10.1002/hyp.9799, 2013.
1159	Harder, P., and Pomeroy, J. W.: Hydrological model uncertainty due to precipitation-phase
1160	partitioning methods, Hydrological Processes, 28, 4311-4327, 2014.
1161	Hauser, D., Amayenc, P., and Nutten, B.: A new optical instrument for simultaneous
1162	measurement of raindrop diameter and fall speed distributions, Atmos. Oceanic Technol., 1,
1163	<u>256-259, 1984.</u>
1164	HEC-1, 1998, Flood Hydrograph Package, User's Manual, CPD-1A, Version 4.1, available
1165	online at, http://www.hec.usace.army.mil/publications/ComputerProgramDocumentation/HEC-
1166	1_UsersManual_(CPD-1a).pdf, accessed August, 2016.
1167	Hedrick, A. R., and Marshall, HP.: Automated Snow Depth Measurements in Avalanche
1168	Terrain Using Time-Lapse Photography, 2014 International Snow Science Workshop, 2014,
1169	Holden, Z. A., Abatzoglou, J. T., Luce, C. H., & Baggett, L. S. Empirical downscaling of daily
1170	minimum air temperature at very fine resolutions in complex terrain. Agricultural and
1171	Forest Meteorology, 151, 1066-1073. doi:10.1016/j.agrformet.2011.03.011, 2011.
1172	Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., Oki, R.,
1173	Nakamura, K., and Iguchi, T.: The global precipitation measurement mission, Bulletin of the
1174	American Meteorological Society, 95, 701-722, 2014.
1175	Isaac, G. A., Joe, P. I., Mailhot, J., Bailey, M., Bélair, S., Boudala, F. S., Wilson, L. J.
1176	Science of nowcasting Olympic weather for Vancouver 2010 (SNOW-V10): A World
1177	Weather Research Programme project. Pure and Applied Geophysics, 171(1-2), 1-24.
1178	<u>doi:10.1007/s00024-012-0579-0, 2014.</u>
1179	Jepsen, S. M., Harmon, T. C., Meadows, M. W., and Hunsaker, C. T.: Hydrogeologic influence
1180	on changes in snowmelt runoff with climate warming: Numerical experiments on a mid-
1181	elevation catchment in the Sierra Nevada, USA, Journal of Hydrology, 533, 332-342,
1182	10.1016/j.jhydrol.2015.12.010, 2016.
ļ	

1183	Joe, P., Scott, B., Doyle, C., Isaac, G., Gultepe, I., Forsyth, D., Boudala, F. The monitoring
1184	network of the Vancouver 2010 Olympics. Pure and Applied Geophysics, 171(1-2), 25-58,
1185	doi:10.1007/s00024-012-0588-z, 2014.
1186	Joss, J., and Waldvogel, A.: Ein Spektograph fuer Niederschlagstropfen mit automatischer
1187	Auswertung, Pure Appl. Geophys, 68, 240246, 1967.
1188	Kalnay, E., and Cai, M.: Impact of urbanization and land-use change on climate, Nature, 423,
1189	528-531, 10.1038/nature01675, 2003.
1190	Kaplan, M. L., Vellore, R. K., Marzette, P. J., and Lewis, J. M.: The role of windward-side
1191	diabatic heating in Sierra Nevada spillover precipitation, Journal of Hydrometeorology, 13,
1192	<u>1172-1194, 2012.</u>
1193	Kapnick, S. B. and Delworth, T. L.: Controls of global snow under a changed climate, Journal of
1194	<u>Climate, 26, 5537-5562, 2013.</u>
1195	Kidd, C.: On rainfall retrieval using polarization-corrected temperatures, International Journal of
1196	Remote Sensing, 19, 981-996, 10.1080/014311698215829, 1998.
1197	Kidd, C., and Huffman, G.: Global precipitation measurement, Meteorological Applications, 18,
1198	<u>334-353, 10.1002/met.284, 2011.</u>
1199	Kienzle, S. W.: A new temperature based method to separate rain and snow, Hydrological
1200	Processes, 22, 5067-5085, 10.1002/hyp.7131, 2008.
1201	Kim, M. J., Weinman, J. A., Olson, W. S., Chang, D. E., Skofronick-Jackson, G., and Wang, J.
1202	R.: A physical model to estimate snowfall over land using AMSU-B observations, Journal
1203	of Geophysical Research-Atmospheres, 113, 16, 10.1029/2007jd008589, 2008.
1204	Kirchner, J. W.: Getting the right answers for the right reasons: Linking measurements, analyses,
1205	and models to advance the science of hydrology, Water Resources Research, 42,
1206	10.1029/2005wr004362, 2006.
1207	Kite, G. 1995. The HBV model. In: Singh, V.P. (Ed.) Computer Models of Watershed
1208	Hydrology. Water Resources Publications, Highlands Ranch, CO., pp. 443-476.

1209	Klos, P. Z., Link, T. E., and Abatzoglou, J. T.: Extent of the rain-snow transition zone in the
1210	western US under historic and projected climate, Geophysical Research Letters, 41, 4560-
1211	4568, 10.1002/2014g1060500, 2014.
1212	Knollenberg, R. G.: Some results of measurements of latent heat released from seeded stratus,
1213	Bulletin of the American Meteorological Society, 51, 580-&, 1970.
1214	Knowles, N., Dettinger, M. D., and Cayan, D. R.: Trends in snowfall versus rainfall in the
1215	Western United States, Journal of Climate, 19, 4545-4559, 2006.
1216	Kongoli, C., Pellegrino, P., Ferraro, R. R., Grody, N. C., and Meng, H.: A new snowfall
1217	detection algorithm over land using measurements from the Advanced Microwave Sounding
1218	Unit (AMSU), Geophysical Research Letters, 30, 10.1029/2003gl017177, 2003.
1219	Kongoli, C., Meng, H., Dong, J., and Ferraro, R.: A snowfall detection algorithm over land
1220	utilizing high-frequency passive microwave measurements-Application to ATMS, Journal
1221	of Geophysical Research-Atmospheres, 120, 1918-1932, 10.1002/2014jd022427, 2015.
1222	Kruger, A., and Krajewski, W. F.: Two-dimensional video disdrometer: A description, Journal of
1223	Atmospheric and Oceanic Technology, 19, 602-617, 10.1175/1520-
1224	0426(2002)019<0602:tdvdad>2.0.co;2, 2002.
1225	Kulie, M. S., Milani, L., Wood, N. B., Tushaus, S. A., Bennartz, R., and L'Ecuyer, T. S.: A
1226	Shallow Cumuliform Snowfall Census Using Spaceborne Radar, Journal of
1227	Hydrometeorology, 17, 1261-1279, 10.1175/jhm-d-15-0123.1, 2016.
1228	L'hôte, Y., Chevallier, P., Coudrain, A., Lejeune, Y., and Etchevers, P.: Relationship between
1229	precipitation phase and air temperature: comparison between the Bolivian Andes and the
1230	Swiss Alps/Relation entre phase de précipitation et température de l'air: comparaison entre
1231	les Andes Boliviennes et les Alpes Suisses, Hydrological sciences journal, 50, 2005.
1232	Leavesley, G. H., Restrepo, P. J., Markstrom, S. L., Dixon, M., and Stannard, L. G.: The
1233	Modular Modeling System (MMS): User's Manual, U.S. Geological Survey, Denver,
1234	COOpen File Report 96-151, 1996.
1235	Lempio, G. E., Bumke, K., and Macke, A.: Measurement of solid precipitation with an optical
1236	disdrometer, Advances in Geosciences, 10, 91-97, 2007.

1237	Lewis, J., Lakshmivarahan, S., and Dhall, S.: Dynamic Data Assimilation: A Least Squares
1238	Approach, Cambridge Univ. Press, 745 pp., 2006.
1239	Lin, YL.: Mesoscale Dynamics, Cambridge University Press, 630 pp., 2007.
1240	Liu, G.: Deriving snow cloud characteristics from CloudSat observations, Journal of Geophysical
1241	Research-Atmospheres, 113, 10.1029/2007jd009766, 2008.
1242	Loffler-Mang, M., Kunz, M., and Schmid, W.: On the performance of a low-cost K-band
1243	Doppler radar for quantitative rain measurements, Journal of Atmospheric and Oceanic
1244	Technology, 16, 379-387, 10.1175/1520-0426(1999)016<0379:otpoal>2.0.co;2, 1999.
1245	Luce, C. H., and Holden, Z. A.: Declining annual streamflow distributions in the Pacific
1246	Northwest United States, 1948-2006, Geophysical Research Letters, 36,
1247	<u>10.1029/2009g1039407, 2009.</u>
1248	Lundquist, J. D., Neiman, P. J., Martner, B., White, A. B., Gottas, D. J., and Ralph, F. M.: Rain
1249	versus snow in the Sierra Nevada, California: Comparing Doppler profiling radar and
1250	surface observations of melting level, Journal of Hydrometeorology, 9, 194-211,
1251	<u>10.1175/2007jhm853.1, 2008.</u>
1252	Lynch-Stieglitz, M.: The development and validation of a simple snow model for the GISS
1253	GCM, Journal of Climate, 7, 1842-1855, 1994.
1254	Marks, D., Link, T., Winstral, A., and Garen, D.: Simulating snowmelt processes during rain-on-
1255	snow over a semi-arid mountain basin, Annals of Glaciology, 32, 195-202, 2001.
1256	Marks, D., Winstral, A., Reba, M., Pomeroy, J., and Kumar, M.: An evaluation of methods for
1257	determining during-storm precipitation phase and the rain/snow transition elevation at the
1258	surface in a mountain basin, Advances in Water Resources, 55, 98-110,
1259	http://dx.doi.org/10.1016/j.advwatres.2012.11.012, 2013.
1260	Martinec, J., and Rango, A.: Parameter values for snowmelt runoff modelling, Journal of
1261	Hydrology, 84, 197-219, http://dx.doi.org/10.1016/0022-1694(86)90123-X, 1986.
1262	Martinec J., Rango A., Roberts R., 2008, Snowmelt Runoff Model, User's Manual, available
1263	online at http://aces.nmsu.edu/pubs/research/weather_climate/SRMSpecRep100.pdf, accessed
1264	<u>August, 2016.</u>

Matrosov, S. Y., Shupe, M. D., and Djalalova, I. V.: Snowfall retrievals using millimeter-
wavelength cloud radars, Journal of Applied Meteorology and Climatology, 47, 769-777,
<u>10.1175/2007jamc1768.1, 2008.</u>
Maurer, E. P., and Mass, C.: Using radar data to partition precipitation into rain and snow in a
hydrologic model, Journal of Hydrologic Engineering, 11, 214-221, 10.1061/(asce)1084-
<u>0699(2006)11:3(214), 2006.</u>
McCabe, G. J., and Wolock, D. M.:General-circulation-model simulations of future snowpack in
the western United States1. JAWRA Journal of the American Water Resources Association,
<u>35(6), 1473-1484, 1999a.</u>
McCabe, G.J. and Wolock, D.M.: Recent Declines in Western U.S. Snowpack in the Context of
Twentieth-Century Climate Variability, Earth Interactions, 13, 1-15, DOI:
<u>10.1175/2009EI283.1, 1999b.</u>
McCabe, G. J., Clark, M. P., and Hay, L. E.: Rain-on-snow events in the western United States,
Bulletin of the American Meteorological Society, 88, 319-+, 10.1175/bams-88-3-319, 2007.
McCabe, G. J., and Wolock, D. M .: Long-term variability in Northern Hemisphere snow cover
and associations with warmer winters, Climatic Change, 99, 141-153, 2010.
MIKE-SHE User Manual, available online at
ftp://ftp.cgs.si/Uporabniki/UrosZ/mike/Manuals/MIKE_SHE/MIKE_SHE.htm, accessed August,
<u>2016.</u>
Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier,
D. P., and Stouffer, R. J.: Climate change - Stationarity is dead: Whither water
management?, Science, 319, 573-574, 10.1126/science.1151915, 2008.
Minder, J. R.: The Sensitivity of Mountain Snowpack Accumulation to Climate Warming,
Journal of Climate, 23, 2634-2650, 10.1175/2009jcli3263.1, 2010.
Minder, J. R., and Kingsmill, D. E.: Mesoscale Variations of the Atmospheric Snow Line over
the Northern Sierra Nevada: Multiyear Statistics, Case Study, and Mechanisms, Journal of

1292	Mitchell K., Ek, M., Wong, V., Lohmann, D., Koren, V., Schaake, J., Duan, Q., Gayno, G.,
1293	Moore, B., Grunmann, P., Tarpley, D., Ramsay, B., Chen, F., Kim, J., Pan, H.L., Lin, Y.,
1294	Marshall, C., Mahrt, L., Meyers, T., and Ruscher, P.: 2005, Noah Land-Surface Model,
1295	User's Guide, version 2.7.1, available at
1296	ftp://ftp.emc.ncep.noaa.gov/mmb/gcp/ldas/noahlsm/ver_2.7.1, accessed August, 2016.
1297	Mizukami, N., Koren, V., Smith, M., Kingsmill, D., Zhang, Z. Y., Cosgrove, B., and Cui, Z. T.:
1298	The Impact of Precipitation Type Discrimination on Hydrologic Simulation: Rain-Snow
1299	Partitioning Derived from HMT-West Radar-Detected Brightband Height versus Surface
1300	Temperature Data, Journal of Hydrometeorology, 14, 1139-1158, 10.1175/jhm-d-12-035.1,
1301	<u>2013.</u>
1302	Morrison, H., Curry, J., and Khvorostyanov, V.: A new double-moment microphysics
1303	parameterization for application in cloud and climate models. Part I: Description, Journal of
1304	the Atmospheric Sciences, 62, 1665-1677, 2005.
1305	Motoyama, H.: Simulation of seasonal snowcover based on air temperature and precipitation,
1306	Journal of Applied Meteorology, 29, 1104-1110, 1990.
1307	Newman, A. J., Kucera, P. A., & Bliven, L. F Presenting the snowflake video imager (SVI).
1308	Journal of Atmospheric and Oceanic Technology, 26(2), 167-179, 2009.
1309	doi:10.1175/2008jtecha1148.1
1310	NOAA, 2016. NEXRAD Data Archive, Inventory and Access, available online at
1311	https://www.ncdc.noaa.gov/nexradinv/ accessed 11/10/2016
1312	Noh, Y. J., Liu, G. S., Jones, A. S., and Haar, T. H. V.: Toward snowfall retrieval over land by
1313	combining satellite and in situ measurements, Journal of Geophysical Research-
1314	Atmospheres, 114, 10.1029/2009jd012307, 2009.
1315	O'Gorman, P.A.: Contrasting responses of mean and extreme snowfall to climate change,
1316	Nature, 512, 416-418, 2014.
1317	Olsen, A.: Snow or rain?—A matter of wet-bulb temperature, thesis, Uppsala Univ, Uppsala
1318	Sweden (Available at http://www.geo.uu.se/luva/exarb/2003/Arvid Olsen pdf) 2003
	Zarezza, zamane w mps. a a geo. wa beruture multipologization pui), 2005.

1319	Olson, W. S., Kummerow, C. D., Heymsfield, G. M., and Giglio, L.: A method for combined
1320	Meteorology, 35, 1763-1789, 10.1175/1520-0450(1996)035<1763:amfcpm>2.0.co;2, 1996.
1322	Pachauri, R. K.: Intergovernmental panel on climate change (IPCC): Keynote address,
1323	Environmental Science and Pollution Research, 9, 436-438, 2002.
1324	Pagano, T. C., Wood, A. W., Ramos, M. H., Cloke, H. L., Pappenberger, F., Clark, M. P.,
1325	Cranston, M., Kavetski, D., Mathevet, T., Sorooshian, S., and Verkade, J. S.: Challenges of
1326	Operational River Forecasting, Journal of Hydrometeorology, 15, 1692-1707, 10.1175/jhm-
1327	<u>d-13-0188.1, 2014.</u>
1328	Parajka, J., Haas, P., Kirnbauer, R., Jansa, J., and Bloeschl, G.: Potential of time-lapse
1329	photography of snow for hydrological purposes at the small catchment scale, Hydrological
1330	Processes, 26, 3327-3337, 10.1002/hyp.8389, 2012.
1331	Park, H., Ryzhkov, A. V., Zrnic, D. S., and Kim, KE.: The Hydrometeor Classification
1332	Algorithm for the Polarimetric WSR-88D: Description and Application to an MCS, Weather
1333	and Forecasting, 24, 730-748, 10.1175/2008waf2222205.1, 2009.
1334	Pierce, D. W. and Cayan, D. R.: The uneven response of different snow measures to human-
1335	induced climate warming. Journal of Climate, 26, 4148-4167, 2013.
1336	Pierce, D. W., Westerling, A. L., & Oyler, J Future humidity trends over the western united
1337	states in the CMIP5 global climate models and variable infiltration capacity hydrological
1338	modeling system. Hydrology and Earth System Sciences, 17(5), 1833-1850, 2013.
1339	Pierce, D. W. and Cayan, D. R. Downscaling humidity with localized constructed analogs
1340	(LOCA) over the conterminous united states. Climate Dynamics, 47, 411-431, 2016.
1341	Pipes, A., and Quick, M. C.: UBC watershed model users guide, Department of Civil
1342	Engineering, University of British Columbia, 1977.
1343	Rajagopal, S., and Harpold, A.: Testing and Improving Temperature Thresholds for Snow and
1344	Rain Prediction in the Western United States, Journal of American Water Resources
1345	Association, 2016.

1346	Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S., Fischer, A. P., Black, J.,
1347	Thériault, J. M., Kucera, P., Gochis, D., Smith, C., Nitu, R., Hall, M., Ikeda, K., and
1348	Gutmann, E .: How Well Are We Measuring Snow: The NOAA/FAA/NCAR Winter
1349	Precipitation Test Bed, Bulletin of the American Meteorological Society, 93, 811-829,
1350	<u>10.1175/BAMS-D-11-00052.1, 2012.</u>
1351	Reisner, J., Rasmussen, R. M., and Bruintjes, R.: Explicit forecasting of supercooled liquid water
1352	in winter storms using the MM5 mesoscale model, Quarterly Journal of the Royal
1353	Meteorological Society, 124, 1071-1107, 1998.
1354	Rojas, R., Feyen, L., Dosio, A., and Bavera, D.: Improving pan-European hydrological
1355	simulation of extreme eventsthrough statistical bias correction of RCM-driven
1356	climatesimulations, Hydrology and Earth System Sciences, 15, 2599, 2011.
1357	Safeeq, M., Mauger, G. S., Grant, G. E., Arismendi, I., Hamlet, A. F., and Lee, S. Y.: Comparing
1358	Large-Scale Hydrological Model Predictions with Observed Streamflow in the Pacific
1359	Northwest: Effects of Climate and Groundwater, Journal of Hydrometeorology, 15, 2501-
1360	<u>2521, 10.1175/jhm-d-13-0198.1, 2014.</u>
1361	Sevruk, B.: Assessment of snowfall proportion in monthly precipitation in Switzerland, Zbornik
1362	meteoroloskih i Hidroloskih Radovav Beograd, 10, 315-318, 1984.
1363	Shamir, E., and Georgakakos, K. P.: Distributed snow accumulation and ablation modeling in the
1364	American River basin, Advances in Water Resources, 29, 558-570,
1365	10.1016/j.advwatres.2005.06.010, 2006.
1366	Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X
1367	Y., Wang, W., and Powers, J. G.: A description of the advanced research WRF version
1368	3NCAR Tech. Note NCAR/TN-475+STR, 113, 2008.
1369	Skofronick-Jackson, G., Hudak, D., Petersen, W., Nesbitt, S. W., Chandrasekar, V., Durden, S.,
1370	Gleicher, K. J., Huang, GJ., Joe, P., Kollias, P., Reed, K. A., Schwaller, M. R., Stewart, R.,
1371	Tanelli, S., Tokay, A., Wang, J. R., and Wolde, M.: Global Precipitation Measurement Cold
1372	Season Precipitation Experiment (GCPEX): For Measurement's Sake, Let It Snow, Bulletin
1373	of the American Meteorological Society, 96, 1719-1741, doi:10.1175/BAMS-D-13-00262.1,
1374	<u>2015.</u>

1375	SNTHERM Online Documentation, available at
1376	http://www.geo.utexas.edu/climate/Research/SNOWMIP/SUPERSNOW2/rjordan.html, accessed
1377	<u>August, 2016.</u>
1378	Stewart, R. E.: Precipitation Types in the Transition Region of Winter Storms, Bulletin of the
1379	American Meteorological Society, 73, 287-296, 10.1175/1520-
1380	<u>0477(1992)073<0287:PTITTR>2.0.CO;2, 1992.</u>
1381	Stewart, R. E., Theriault, J. M., and Henson, W.: On the Characteristics of and Processes
1382	Producing Winter Precipitation Types near 0 degrees C, Bulletin of the American
1383	Meteorological Society, 96, 623-639, 10.1175/bams-d-14-00032.1, 2015.
1384	Tague, C.L, and Band, L.E.: RHESSys: Regional Hydro-Ecologic Simulation System-An
1385	Object Oriented Approach to Spatially Distributed Modeling of Carbon, Water, and Nutrient
1386	Cycling, Earth Interactions, 8, 19, 1-42, 2004.
1387	Tarboton, D.G., and Luce, C.H., 1996, Utah Energy Balance Snow Accumulation and Melt
1388	Model (UEB), available online at
1389	http://www.fs.fed.us/rm/boise/publications/watershed/rmrs_1996_tarbotond001.pdf, accessed
1390	August, 2016.
1391	Tarboton, D., Jackson, T., Liu, J., Neale, C., Cooley, K., and McDonnell, J.: A Grid Based
1392	Distributed Hydrologic Model: Testing Against Data from Reynolds Creek Experimental
1393	Watershed, Preprints AMS Conf. on Hydrol, 79-84, 1995.
1394	Theriault, J. M., and Stewart, R. E.: On the effects of vertical air velocity on winter precipitation
1395	types, Natural Hazards and Earth System Sciences, 7, 231-242, 2007.
1396	Theriault, J. M., and Stewart, R. E.: A Parameterization of the Microphysical Processes Forming
1397	Many Types of Winter Precipitation, Journal of the Atmospheric Sciences, 67, 1492-1508,
1398	10.1175/2009jas3224.1, 2010.
1399	Theriault, J. M., Stewart, R. E., and Henson, W.: On the Dependence of Winter Precipitation
1400	Types on Temperature, Precipitation Rate, and Associated Features, Journal of Applied
1401	Meteorology and Climatology, 49, 1429-1442, 10.1175/2010jamc2321.1, 2010.

1402	Theriault, J. M., Stewart, R. E., and Henson, W.: Impacts of terminal velocity on the trajectory of
1403	winter precipitation types, Atmospheric Research, 116, 116-129,
1404	10.1016/j.atmosres.2012.03.008, 2012.
1405	Thompson, E. J., Rutledge, S. A., Dolan, B., Chandrasekar, V., and Cheong, B. L.: A Dual-
1406	Polarization Radar Hydrometeor Classification Algorithm for Winter Precipitation, Journal
1407	of Atmospheric and Oceanic Technology, 31, 1457-1481, 10.1175/jtech-d-13-00119.1,
1408	2014.
1409	Thompson, G., Rasmussen, R. M., and Manning, K.: Explicit forecasts of winter precipitation
1410	using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis,
1411	Monthly Weather Review, 132, 519-542, 2004.
1412	Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.: Explicit forecasts of winter
1413	precipitation using an improved bulk microphysics scheme. Part II: Implementation of a
1414	new snow parameterization, Monthly Weather Review, 136, 5095-5115, 2008.
1415	Todini, E.: The ARNO Rainfall-runoff model, Journal of Hydrology, 175, 339-382, 1996.
1416	Tung, CP., and Haith, D. A.: Global-warming effects on New York streamflows, Journal of
1417	Water Resources Planning and Management, 121, 216-225, 1995.
1418	U.S. Army Corps of Engineers: Summary Report of the Snow Investigation Hydrological
1419	Practices, 3rd Edition, Chapter 2, 54-56, North Pacific Division, Portland, Oregon, 1956.
1420	Verseghy, D., 2009, CLASS-The Canadian Land Surface Scheme, Version 3.4, Technical
1421	Documentation, Version 1.1, Environment Canada, available online at
1422	http://www.usask.ca/ip3/download/CLASS_v3_4_Documentation_v1_1.pdf, accessed
1423	<u>August, 2016.</u>
1424	VIC Documentation, available online at https://vic.readthedocs.io/en/develop/, accessed August,
1425	2016.
1426	Wang, R., Kumar, M., and Marks, D. Anomalous trend in soil evaporation in a semi-arid, snow-
1427	dominated watershed. Advances in Water Resources, 57, 32-40, 2013.
1428	Wang, R., Kumar, M., and Link, T. E.: Potential trends in snowmelt generated peak streamflows
1429	in a warming climate, Geophys. Res. Lett. 43, 10.1002/2016GL068935, 2016.

1430	Wen, L., Nagabhatla, N., Lu, S., and Wang, SY.: Impact of rain snow threshold temperature on
1431	snow depth simulation in land surface and regional atmospheric models, Advances in
1432	Atmospheric Sciences, 30, 1449-1460, 10.1007/s00376-012-2192-7, 2013.
1433	White, A. B., Gottas, D. J., Strem, E. T., Ralph, F. M., and Neiman, P. J.: An automated
1434	brightband height detection algorithm for use with Doppler radar spectral moments, Journal
1435	of Atmospheric and Oceanic Technology, 19, 687-697, 10.1175/1520-
1436	0426(2002)019<0687:aabhda>2.0.co;2, 2002.
1437	White, A. B., Gottas, D. J., Henkel, A. F., Neiman, P. J., Ralph, F. M., and Gutman, S. I.:
1438	Developing a Performance Measure for Snow-Level Forecasts, Journal of
1439	Hydrometeorology, 11, 739-753, 10.1175/2009jhm1181.1, 2010.
1440	Whiteman, C. D., Bian, X., & Zhong, S Wintertime evolution of the temperature inversion in
1441	the colorado plateau basin. Journal of Applied Meteorology, 38(8), 1103-1117, 1999.
1442	Wigmosta, M.S., Vail, L.W., and Lettenmaier, D.P.: A distributed hydrology-vegetation model
1443	for complex terrain, Water Resources Research, 30(6), 1665-1679, 1994.
1444	Wilheit, T. T., Chang, A. T. C., King, J. L., Rodgers, E. B., Nieman, R. A., Krupp, B. M.,
1445	Milman, A. S., Stratigos, J. S., and Siddalingaiah, H.: Microwave radiometric observation
1446	nea 19.35, 92 and 183 GHz of precipitation in tropical storm Cora, Journal of Applied
1447	Meteorology, 21, 1137-1145, 10.1175/1520-0450(1982)021<1137:mronag>2.0.co;2, 1982.
1448	Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D.: Hydrologic implications of
1449	dynamical and statistical approaches to downscaling climate model outputs, Climatic
1450	<u>change, 62, 189-216, 2004.</u>
1451	Wood, N., L'Ecuyer, T. S., Vane, D., Stephens, G., and Partain, P.: Level 2C snow profile
1452	process description and interface control document, 2013.
1453	Yamazaki, T.: A One-dimensional Land Surface Model Adaptable to Intensely Cold Regions and
1454	its Applications in Eastern Siberia, 79, 1107-1118, 2001.
1455	Yang Z.L., Dickinson, R.E., Robock, A. and Vinniko, K.Y.: Validation of the Snow Submodel of
1456	the Biosphere-Atmosphere Transfer Scheme with Russian Snow Cover and Meteorological
1457	Observational Data, J. Climate, 10, 353-373, doi: 10.1175/1520-
1458	0442(1997)010<0353:VOTSSO>2.0.CO;2, 1997.

1459	Yarnell, S. M., Viers, J. H., and Mount, J. F.: Ecology and Management of the Spring Snowmelt
1460	Recession, Bioscience, 60, 114-127, 10.1525/bio.2010.60.2.6, 2010.
1461	Ye, H., Cohen, J., and Rawlins, M.: Discrimination of Solid from Liquid Precipitation over
1462	Northern Eurasia Using Surface Atmospheric Conditions, Journal of Hydrometeorology, 14,
1463	1345-1355, 10.1175/jhm-d-12-0164.1, 2013.
1464	Yucel, I., Onen, A., Yilmaz, K. K., and Gochis, D. J.: Calibration and evaluation of a flood
1465	forecasting sytem: Utility of numerical weather prediction model, data assimilate, and
1466	satellite-based rainfall, Journal of Hydrology, 523, 49-66, 10.1016/j.hydrol.2015.01.042,
1467	2015.
1468	Zängl, G.: Interaction between dynamics and cloud microphysics in orographic precipitation
1469	enhancement: A high-resolution modeling study of two North Alpine heavy-precipitation
1470	events, Monthly weather review, 135, 2817-2840, 2007.
1471	Zanotti, F., Endrizzi, S., Bertoldi, G. and Rigon, R.: The GEOTOP snow module, Hydrolgical
1472	Processes, 18, 3667–3679. doi:10.1002/hyp.5794, 2004.
1473	
1474	
1475	
1476	

-Page Break-

... [2]

Adrian Harpold 11/20/16 2:22 PM Deleted:

Figure 3: The optimized critical maximum daily temperature threshold that produced the lowest Root Mean Square Error (RMSE) in the prediction of snowfall at Snow Telemetry (SNOTEL) stations across the western US (adapted from Rajagopal and Harpold, 2016). b) Precipitation day relative humidity averaged over 1981-2015 based on the Gridmet dataset (Abatzoglou, 2013).

Adrian Harpold 11/20/16 2:22 PM Deleted: .

- 1512 Table 1. Common hydrological models and the precipitation phase prediction (PPM) technique
- 1513 employed. The citation referring to the original publication of the model is given.

Model	PPM technique	Citations			
Discrete Models (not coupled)					
HBV	Static Threshold	Bergström, 1995			
Snowmelt Runoff Model	Static Threshold	Martinec et al., 2008			
SLURP	Static Threshold	Kite, 1995			
UBC Watershed Model	Linear Transition	Pipes and Quick, 1977			
PRMS model	Minimum & Maximum Temperature	Leavesley et al., 1996			
USGS water budget	Linear transition between two mean temps	McCabe and Wolock, 1999a			
SAC-SMA (SNOW-17)	Static Threshold	Anderson, 2006			
DHSVM	Linear transition (double check)	Wigmosta et al., 1994			
SWAT	Threshold Model	Arnold et al., 2012			
RHESSys	Linear transition or input phase	Tague and Band, 2004			
HSPF	Air and dew point temperature thresholds	Bicknell et al., 1997			
THE ARNO MODEL	Static Threshold	Todini, 1996			
HEC-1	Static Threshold	HEC-1, 1998			
MIKE SHE	Static Threshold	MIKE-SHE User Manual			
SWAP	Static Threshold	Gusev and Nasonova, 1998			
BATS	Static Threshold	Yang et al., 1997			
Utah Energy Balance	Linear Transition	Tarboton and Luce, 1996			
SNOBAL/ISNOBAL	Linear Transition*	Marks et al., 2013			
CRHM	Static Threshold	Fang et al., 2013			
GEOTOP	Linear Transition	Zanotti et al. 2004			
SNTHERM	Linear Transition	SNTHERM Online Documentation			
Offline LS models					
Noah	Static Threshold	Mitchell et al., 2005			
VIC	Static Threshold	VIC Documentation			
CLASS	Multiple Methods ⁺	Verseghy, 2009			

1515 * by default. Temperature-phase-density relationship explicitly specified by user.

 $\label{eq:1516} \textbf{1516} \qquad + \mbox{ A flag is specified which switches between, static threshold, linear transition.}$

Table 2: Remote sensing technologies useful to precipitation phase discrimination organized into

ground-based, spaceborne with passive microwave, and passive with active microwave. The 1525

table describes the variables of interest, their temporal and spatial coverage, and associated 1526

1527 references.

Technology	Variables	Spatial resolution; coverage	Temporal resolution, period of record	References		
Ground-based systems						
Vertically pointing, single polarized 915- MHz Doppler wind profilers	Reflectivity, brightband height, Doppler vertical velocity	100 m vertical resolution; deployed locally in Sierra Nevada basins	Hourly, Winters 1998, 2001 - 2005	White et al., 2002; Lundquist et al., 2008		
NEXRAD Dual polarized radar	Reflectivity ¹ , hydrometeor classification ¹ , melting layer ¹ , hybrid hydrometeor classification ¹	0.5° azimuthal by 250 m; range 460 km; Nationwide ²	5 - 10 minutes; 2011 ³ - present	Giangrande et al., 2008; Park et al., 2009; Elmore, 2011; Grazioli et al., 2015		
Spaceborne systems: Passive microwave						
NOAA-15, NOAA-16, NOAA-17 Advanced Microwave Sounding Unit-A, B	Brightness temperature	48 km (AMSU-A), 16 km (AMSU-B); global coverage, with 22000 km swath	For two platforms, 6 hours revisit time; three platforms, 4 hours revisit time ⁴ ; 1998 - present	Kongoli et al., 2003		
SUOMI-NPP Advanced Technology Microwave Sounder	Brightness temperature	15 - 50 km; global coverage, with 2200 km swath	Daily; 2011 - present	Kongoli et al., 2015		
GPM Core Observatory Microwave Imager	Brightness temperature	4.4 km by 7.3 km; global coverage, 904 km swath	2014 to present	Skofronick-Jackson et al., 2015		
Spaceborne systems: Active microwave						
Cloud Profiling Radar (CPR)	Radar reflectivity, 2C-SNOW-PROFILE	1.4 by 1.7 km; swath 1.4 km	16 days; 2006 to present	Wood et al., 2013; Cao et al., 2014; Kulie et al., 2016;		
GPM Core Observatory Dual- frequency Precipitation Radar	Radar reflectivity	5 km; global coverage, 120 - 245 km swath	2 – 4 hours; 2014 to present	Skofronick-Jackson et al., 2015		

1528 Notes:

1529 1. Operational products available from NOAA (2016). The operational products are not ground validated, except

1530 where analyzed for specific studies.

1531 2. The dates given here represent the first deployments. Data temporal coverage will vary by station.

1532

 <u>3. Gaps in coverage exist, particularly in Western States.</u>
 <u>4. Similar instruments mounted on the NASA Aqua satellite and the European EUMETSAT MetOp series. Taking</u> 1533

into account the similar instrumentation on multiple platforms increases the temporal spatial resolution 1534

Response to reviewer #1

We appreciate the reviewer's positive overall comments on the manuscript. We make detailed responses below in **blue** and have made the editorial changes wherever possible. We also agree with the more major comments regarding validation of the microphysics schemes and the potential influence of temperature-only PPM in large-scale forecasting of phase under changing climate. Line numbers refer to track changes version of document.

Response to specific comments:

1) Line 21: Change "The review" to "This review" or "Our review". The previous sen tence structure made it unclear which review is being referred to and required the reader to go back to the previous sentence wondering what review is being mentioned.

This was changed. We also made similar changes on line 154 and 998.

2) Line 184: either here or elsewhere, it should be mentioned that it is important to validate these microphysics (or other properties if you move this to the discussion) over various land surfaces / types. A microphysics scheme that performs well in Iowa (flat prairie) may not perform well over Idaho (complete mountain terrain) or the Oregon Cascades (coastal warm snow).

This was expanded on line 235 to read "The rain-snow line predicted by atmospheric models is very sensitive to these microphysics (Minder, 2010) and validating the microphysics across locations with complex physiography is challenging."

We agree that a discussion of verifying the microphysics schemes, in particular for the complex terrain that is the focus of the paper, would strengthen the paper. We have a added several sentences beginning on line 701-709: "These schemes vary greatly in their accuracy with "mixed phase" schemes generally producing the most accurate simulations of precipitation phase in complex terrain where much of the water is supercooled (Lin, 2007; Reisner et al., 1998; Thompson et al., 2004; Thompson et al., 2008; Morrison et al., 2005; Zängl, 2007; Kaplan et al., 2012). Comprehensive validation of the microphysical schemes over different land surface types (e. g. warm maritime, flat prairie, etc.) with a focus on different snowfall patterns is lacking. In particular, in transition zones between mountains and plains or along coastlines, the complexity of the microphysics becomes even more extreme due the dynamics and interactions of differing air masses with distinct characteristics."

3) Line 248: The "(" should be moved to before 1967 based on how the reference is integrated into the sentence

This was corrected.

4) Line 303: need parenthesis instead of brackets

This was corrected. 5) Lines 433, 601: a space is needed between references

This was corrected.

6) Line 583: what is meant by "performing the best"? The best precipitation over mountains? Lowest errors in climatology? Lowest errors in variability? Please clarify.

This was clarified on line 701: "These schemes vary greatly in their accuracy with "mixed phase" schemes generally producing the most accurate simulations of precipitation phase in complex terrain where much of the water is supercooled (Lin, 2007; Reisner et al., 1998; Thompson et al., 2004; Thompson et al., 2008; Morrison et al., 2005; Zängl, 2007; Kaplan et al., 2012)."

7) Line 641: "too" not "to"

This was corrected.

8) Line 783 and Figure 3: The authors should consider adding an accompanying western U.S. climatology map of humidity to show it has significant spatial variability (implied by the statement here and similar ones elsewhere, but not presently shown).

This is a good suggestion. We will add a map as a second panel to Figure 3 using the University of Idaho Gridded Meteorological Datasets, which is essentially NLDAS-2 data downscaled to 4 km.

9) Conclusion/Discussion: I would like to see a paragraph added here or in the previous section (5.6) discussing the implications of this review / points raised for findings from climate change studies focused on snowfall. For example, there are several done at the global scale / continental scale (O'Gorman 2014; Cayan and Pierce. 2013; Kapnick and Delworth 2012). These studies present large-scale changes in snowfall mainly due to temperature (all use temperature-based metrics for phase partitioning), but based on this review, miss the non-temperature induced sensitivity of phase type, likely with nonlinear consequences. Should the changes found in these studies be expected as the temperature signal at some point overwhelms all other signals? Or might the differences due to climate change be non-linear in all cases? A nice final point of this manuscript would place this study within the framework of these larger scale studies / findings as it is implied that reviewing and exploring phase type will have consequences for understanding future water availability and change.

This is an excellent point that was hinted at in the discussion but not fully addressed. We expanded section 5.6 on line 861 to read: "Because broad-scale techniques applied to assess changes in precipitation phase and snowfall have relied on temperature, both regionally (Klos et al., 2014; Pierce and Cayan, 2013; Knowles et al., 2006) and globally (Kapnick and Delworth, 2013; O'Gorman, 2014), they have not fully considered the potential non-linearities created by the absence of wet bulb depressions and humidity in assessment of sensitivity to changes in phase."

The questions raised about the non-temperature induced sensitivity of phase type in the future is an excellent point for future work, and is beyond the scope of this review. Future work to address these questions is now called for in this paragraph with explicit references to studies and data products that could enable such investigations to proceed on line 867: "An increased focus on future humidity trends, patterns, and GCM simulation errors (Pierce et al., 2013) and availability of downscaled humidity products at increasingly finer scales (e.g.: Abatzoglou, 2013; Pierce and Cayan, 2016) will enable

detailed assessments of the relative role of temperature and humidity in future precipitation phase changes."

10) Figure 1: The arrows and curly bracket should be changed to be a different color (not grey) to provide contrast. Perhaps red or blue? They presently do not stand out easily / show the movement of information as presently shown. A more contrasting color choice will make this figure easier to read and understand.

We agree and have made these changes to a new figure.

Response to reviewer #2

We appreciate the reviewer's constructive and specific comments on the manuscript. We have addressed all the minor editorial comments and responded to the more detailed comments in **blue** text below. We agree that the sign of a good review paper is creating something new from the gathered information, which was the objective of Section 5. We will bolster that effort by following the reviewer's recommendation about more details on the incorporation of atmospheric models into PPM and better explaining the importance/role of complex terrain. Line numbers refer to track changes version of document.

2 Specific comments

2.1 Synopsis of remotely sensed information

Section 3.2 and 3.3 are quite long indicating an emphasis on remotely sensed observations. After reading the two sections I feel that a synopsis is missing with general information about the applicability of those observations for PPM, which seems a bit lost in the detailed description in these long sections. I would suggest a summarizing paragraph, or an overview table with the following items, for example: description, coverage, availability, resolution, validated, references. The remotely sensed observations do also hardly appear in section 5 (Research Gaps), while the need to validate these products, was mentioned in the abstract. This synopsis can also be placed in the very short Conclusion section, in which the remotely sensed observations are also only very briefly mentioned (line 800).

We agree that a reader could get lost in the details of this section and not see the bigger picture. To improve this section, we have added both a brief overview at the beginning of section 3.2 and 3.3, as well as a table that more succinctly summarizes the technologies. The research gaps section did discuss remote sensing in section 5.2 and 5.5. Section 5.6 had the following sentence added on line 970: "Recent remote sensing platforms, such as GPM, may offer an additional tool to assess regional variability, however, the current GPM precipitation phase product relies on wet bulb temperatures based on model output and not microwave-based observations (Huffman et al., 2015). Besides issues with either spatial or temporal resolution or coverage, one of the main challenges in using remotely sensed data for distinguishing between frozen and liquid hydrometeors is the lack of validation. Where products have been validated, the results are usually only relevant for the locale of the study area. Spaceborne radar combined with ground-based radar offers perhaps the most promising solution, but given the non-unique relationship between radar reflectivity and snowfall, further testing is necessary in order to develop reliable algorithms."

The first paragraph of section 3.2 now reads "Ground-based remote sensing observations have been available for several decades to detect precipitation phase using radar. Until recently, most ground-based radar stations were operated as conventional Doppler systems that transmit and receive radio waves with single horizontal polarization. Developments in dual polarization ground radar such as those that function as part of the

U.S. National Weather Service NEXRAD network (NOAA, 2016), have resulted in systems that transmit radio signals with both horizontal and vertical polarizations. In general, ground-based remote sensing observation, either single or dual-pol, remain underutilized for detecting precipitation phase and are challenging to apply in complex terrain (Table 2)."

The first paragraph is Section 3.3 now reads "Spaceborne remote sensing observations typically use passive or active microwave sensors to determine precipitation phase (Table 2). Many of the previous passive microwave systems were challenged by coarse resolutions and difficulties retrieving snowfall over snow-covered areas. More recent active microwave systems have advantage for detecting phase in terms of accuracy and spatial resolution, but remain largely unverified. Table 2 provides and overview of these space-based remote sensing technologies that are described in more detail below."

Table 2 has information on single polarized and dual-polarized ground radar, and spaceborne passive and active microwave sensors. The information in the table will include description, spatial resolution, temporal resolution, phase validation, and relevant references.

2.2 Incorporation of atmospheric information

The authors describe well in section 4.2 the problematic scale issue between kilometerscaled atmospheric models and processes influencing PP which act on a finer resolution. They emphasize that ". . .grid cells are averages requiring hydrological modellers to consider effects of elevation, aspect, etc. in resolving precipitation phase fractions for finer-scaled models." (1588ff). I think this is a very relevant topic and I would like to see this topic further discussed in the research gap section, maybe even with some conceptual ideas and/or reference to existing work, or – if not existent – references to similar work done by the downscaling community to represent unresolved variability on the sub-grid scale.

We agree that model scale is an important effect to consider and have added text to section 5.2 staring on line 845: "Historically, meteorological models have not been run at spatial scales capable of resolving convective dynamics (e.g. <2 km), which can exacerbate error in precipitation phase prediction in complex terrain with a moist neutral atmosphere. Coarse meteorological models also struggle to produce pockets of frozen precipitation from advection of moisture plumes between mountain ranges and cold air wedged between topographic barriers. However, reduced computational restrictions on running these models at finer spatial scales and over large geographic extents (Rasmussen et al., 2012) are enabling further investigations into precipitation phase change under historical and future climate scenarios. This suggests that finer dynamical downscaling is necessary to resolve precipitation phase which is consistent with similar work attempting to resolve winter precipitation amount in complex terrain (Gutmann et al., 2012)."

The authors also promote in section 5.5 (Develop spatially resolved products) the benefit of gridded products. Since these products probably suffer the same scale problems as mentioned in 1588 for atmospheric models, the authors may discuss this aspect of including sub-grid variability here as well.

We agree and add this sentence in section 5.5 beginning on line 948: "Accurate gridded phase products rely on the ability to represent the physics of water vapor and energy flows in complex terrain (e.g. Holden et al., 2010) where statistical downscaling methods are typically insufficient (Gutmann et al., 2012)."

2.3 Specific conclusions for complex terrain

The authors mention in the abstract that the manuscript "...conveys the advancements needed to improve predictions in complex terrain..." (l22f) and that in complex terrain robust observation networks are missing (l26f). I cannot find many details in the manuscript which allow formulating such a focus on complex terrain in the abstract. I suggest adding a paragraph in the research gap section summarizing specific issues in complex terrain.

The reviewer makes an important point that we address in numerous places within the manuscript. On line 235: "The rain-snow line predicted by atmospheric models is very sensitive to these microphysics (Minder, 2010) and validating the microphysics across locations with complex physiography is challenging." Line 250: "Few research stations, however, have this benefit, particularly in many remote regions and in complex terrain.". On line 349: "In general, ground-based remote sensing observation, either single or dualpol, remain underutilized for detecting precipitation phase and are challenging to apply in complex terrain (Table 2)." On line 701: "These schemes vary greatly in their accuracy with "mixed phase" schemes generally producing the most accurate simulations of precipitation phase in complex terrain where much of the water is supercooled (Lin, 2007; Reisner et al., 1998; Thompson et al., 2004; Thompson et al., 2008; Morrison et al., 2005; Zängl, 2007; Kaplan et al., 2012). Comprehensive validation of the microphysical schemes over different land surface types (e. g. warm maritime, flat prairie, etc.) with a focus on different snowfall patterns is lacking. In particular, in transition zones between mountains and plains or along coastlines, the complexity of the microphysics becomes even more extreme due the dynamics and interactions of differing air masses with distinct characteristics."

We add a new section (5.1) in at the beginning of the research gap section: "Intensive field campaigns are extremely effective approaches to address fundamental research gaps focused on the discrimination between rain, snow, and mixed-phase precipitation at the ground by providing opportunities to test novel sensors, and detailed datasets to develop remote sensing retrieval algorithms, and improve PPM estimation methods. The recent Global Precipitation Measurement (GPM) Cold Season Precipitation Experiment (GCPEx) is an example of such a campaign in non-complex terrain where simultaneous observations using arrays of both airborne and ground-based sensors were used to measure and characterize both solid and liquid precipitation (e.g. Skofronick-Jackson et al., 2015). Similar intensive field campaigns are needed in complex terrain that is frequently characterized by highly dynamic and spatially variable hydrometeorological conditions. Such campaigns are expensive to conduct, but can be implemented as part of operational nowcasting to develop rich data resources to advance scientific understanding as was very effectively done during the Vancouver Olympic Games in 2010 (Isaac et al., 2014: Joe et al., 2014). The research community should utilize existing datasets and capitalize on similar opportunities and expand environmental monitoring networks to simultaneously advance both atmospheric and hydrological understanding, especially in

complex terrain spanning the rain-snow transition zone." We also add this sentence to section 5.2: "In complex terrain, air temperature can also vary dramatically at relatively small scales from ridgetops to valley bottoms due to cold air drainage (Whiteman et al., 1999) and hence can introduce errors into inferential techniques such as these." Multiple sentences are added to section 5.3: "Historically, meteorological models have not been run at spatial scales capable of resolving convective dynamics (e.g. <2 km), which can exacerbate error in precipitation phase prediction in complex terrain with a moist neutral atmosphere. Coarse meteorological models also struggle to produce pockets of frozen precipitation from advection of moisture plumes between mountain ranges and cold air wedged between topographic barriers. However, reduced computational restrictions on running these models at finer spatial scales and over large geographic extents (Rasmussen et al., 2012) are enabling further investigations into precipitation phase change under historical and future climate scenarios. This suggests that finer dynamical downscaling is necessary to resolve precipitation phase which is consistent with similar work attempting to resolve winter precipitation amount in complex terrain (Gutmann et al., 2012)." And an additional sentence in section 5.5: "Accurate gridded phase products rely on the ability to represent the physics of water vapor and energy flows in complex terrain (e.g. Holden et al., 2010) where statistical downscaling methods are typically insufficient (Gutmann et al., 2012)."

2.4 Formality issues

I would in general like to see page numbers to relevant sections when citing a book (or similar). One prominent example is the book authored by the U.S. Army Corps of Engineers, which regularly is available as a non-searchable pdf document or as a hardcopy. It contains various topics relevant to snow hydrology. To find the cited paragraph without mentioning page numbers is nearly impossible. I think this example shows that the standard of including page numbers when citing books and similar long references should be used. Similarly, the authors have not included access dates for all cited URL (e.g. line 200, line 1077 and others). Some cited references appear different than others (sometimes white spaces between ";" sometimes italic "et al.", sometimes with square brackets). More importantly, there are a few citations which do not appear in the reference list. These points are mentioned in my section "Comments line by line" below.

We appreciate the reviewer's attention to detail and have corrected these in the text and references.

2.5 Motivate Figures in the text

Figure 1 and Figure 4 are hardly described in the text, although containing important information. I would suggest that the authors link their text closer to those Figures, especially to Figure 1 which shows the consequences of wrong PP in a hydrological model.

This is a good point by the reviewer. We add additional references to Figure 1 in the introduction. We also add this sentence to the beginning of section 5: "The cascading effects of incorrectly predicting precipitation phase lead to cascading effects on hydrological modeling (Figure 1)." We also better reference Figure 4 at the beginning of section 5 and within section 5.5.

2.6 Explain abbreviations and lines in Figure 2

It is not clear to me what the blue dotted line is (probably the mixing ratio). I would also suggest to add the used abbreviations for H, LE, f(sat), r etc in the caption. The arrow after H or LE should probably indicate that the energy of the hydrometeor is increasing because of a sensible heat transfer? Please clarify these uncertainties.

The following lines have been added to the caption for figure 2: "The blue dotted line represents the mixing ratio. H, LE, f(sat), and r are abbreviations for sensible heat, latent heat of evaporation, function of saturation and mixing ratio respectively. The arrow after H or LE indicate the energy of the hydrometeor either increasing (up) or decreasing (down) which is controlled by other atmospheric conditions."

3 Comments line-by-line

Line 33ff: This sentence is the same as the previous.

This was deleted.

Line 200/208: Please use access dates with URLs. I suggest putting the links in the reference list.

This was corrected throughout the document.

Line 231: Lejeune not in reference list.

This was incorrect and changed to L'hôte et al., 2005. Line 265. Not clear which the comparison study is.

This was corrected to read: In a comparison study by Caraccioloa et al., (2006), the PARSIVEL optical disdrometer, originally described by Loffler-Mang et al. (1999) did not perform well against a 2DVD because of problems related to the detection of slow fall velocities for snow.

Line 354. The cited study is called Arkin and Ardanuy (1998).

This was corrected to 1989.

Line 411 and elsewhere: Kulie and Bennartz (2003) not in reference list

This was corrected.

Line 539: Froidurot wrongly spelled.

This was corrected Line 945: no page numbers

This was corrected Line 973: Krug (1995) and Bergström (1995) refer to the same document.

This was corrected

Line 978: Missing page numbers

This was corrected Line 1037/1040: Please use McCabe and Wollock (1999a) and (1999b)

This was corrected.

Line 1213: two times YE et al. (2013) in reference list

This was corrected Line 1178: delete "publication info" and add page numbers

This was corrected Table 1: McCabe and Wollock (2009) not in reference list.

This was corrected