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Abstract 17	
The phase of precipitation when it reaches the Earth surface is a first-order driver of hydrologic 18	

processes in a watershed. The presence of snow, rain, or mixed phase precipitation affect the 19	

initial and boundary conditions that drive hydrological models. Despite their foundational 20	

importance to terrestrial hydrology, typical phase prediction methods (PPM) specify phase based 21	

on near-surface air temperature only. Our review conveys the diversity of tools available for 22	

PPM in hydrological modeling and the advancements needed to improve predictions in complex 23	

terrain with large spatiotemporal variations in precipitation phase.  Initially, we review the 24	

processes and physics that control precipitation phase as relevant to hydrologists, focusing on the 25	

importance of processes occurring aloft. There are a wide range of options for field observations 26	

of precipitation phase, but a lack of a robust observation networks in complex terrain. New 27	

remote sensing observations have potential to increase PPM fidelity, but generally require 28	

assumptions typical of other PPM and field validation before they are operational. We review 29	

common PPM and find that accuracy is generally increased at finer measurement intervals and 30	

by including humidity information. One important tool for PPM development is atmospheric 31	

modeling, which include microphysical schemes that have not been effectively linked to 32	

hydrological models or validated against near-surface precipitation phase observations. The 33	

review concludes by describing key research gaps and recommendations to improve PPM, 34	

including better incorporation of atmospheric information, improved validation datasets, and 35	

regional-scale gridded data products. Two key points emerge from this synthesis for the 36	

hydrologic community: 1) current PPM algorithms are too simple and are not well-validated for 37	

most locations, 2) lack of sophisticated PPM increases the uncertainty in estimation of 38	

hydrological sensitivity to changes in precipitation phase at local to regional scales. PPM are a 39	

critical research frontier in hydrology that requires scientific cooperation between hydrological 40	

and atmospheric modelers and field hydrologists. 41	

 42	
Keywords: precipitation phase, snow, rain, hydrological modeling 43	
 44	

1. Introduction and Motivation 45	
As climate warms, a major hydrologic shift in precipitation phase from snow to rain is expected 46	

to occur across temperate regions that are reliant on mountain snowpack for water resources 47	

(Bales et al., 2006; Barnett et al., 2005). Continued changes in precipitation phase are expected 48	
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to alter snowpack dynamics and streamflow timing and amounts (Cayan et al., 2001; Fritze et al., 78	

2011; Luce and Holden, 2009; Klos et al., 2014; Berghuijs et al., 2014; Jepsen et al., 2016), 79	

increase rain-on snow flooding (McCabe et al., 2007), and challenge our ability to make accurate 80	

water supply forecasts (Milly et al., 2008). Accurate estimations of precipitation inputs are 81	

required for effective hydrological modeling in both applied and research settings. Snow storage 82	

delays the transfer of precipitation into surface runoff and subsurface infiltration (Figure 1), 83	

affecting the timing and magnitude of peak flows (Wang et al., 2016), hydrograph recession 84	

(Yarnell et al., 2010) and the magnitude and duration of summer baseflow (Safeeq et al., 2014; 85	

Godsey et al., 2014). Moreover, the altered timing and rate of snow versus rain inputs can 86	

modify the partitioning of water to evapotranspiration versus runoff (Wang et al., 2013). 87	

Misrepresentation of precipitation phase within hydrologic models thus propagates into spring 88	

snowmelt dynamics (Harder and Pomeroy, 2013; Mizukami et al., 2013; White et al., 2002; Wen 89	

et al., 2013) and streamflow estimates used in water resource forecasting (Figure 1). The 90	

persistence of streamflow error is particularly problematic for hydrological models that are 91	

calibrated on observed streamflow because this error can be compensated for by altering 92	

parameters that control other states and fluxes in the model (Minder, 2010; Shamir and 93	

Georgakakos, 2006; Kirchner, 2006). Expected changes in precipitation phase from climate 94	

warming presents a new set of challenges for effective hydrological modeling (Figure 1). A 95	

simple yet essential issue for nearly all runoff generation questions is this: Is precipitation falling 96	

as rain, snow, or a mix of both phases? 97	

 98	

Despite advances in terrestrial process-representation within hydrological models in the past 99	

several decades (Fatichi et al., 2016), most state-of-the-art models rely on simple empirical 100	

algorithms to predict precipitation phase. For example, nearly all operational models used by the 101	

National Weather Service River Forecast Centers in the United States use some type of 102	

temperature-based precipitation phase partitioning methods (PPM) (Pagano et al., 2014). These 103	

are often single or double temperature threshold models that do not consider other conditions 104	

important to the hydrometeor’s energy balance. Although forcing datasets for hydrological 105	

models are rapidly being developed for a suite of meteorological variables, to date no gridded 106	

precipitation phase product has been developed over a regional to global scale. Widespread 107	

advances in both simulation of terrestrial hydrological processes and computational capabilities 108	
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may have limited improvements on water resources forecasts without commensurate advances in 117	

PPM.  118	

 119	

Recent advances in PPM incorporate effects of humidity (Harder and Pomeroy, 2013; Marks et 120	

al., 2013), atmospheric temperature profiles (Froidurot et al., 2014), and remote sensing of phase 121	

in the atmosphere (Minder, 2010; Lundquist et al., 2008). A challenge to improving and selecting 122	

PPM is the lack of validation data. In particular, reliable ground-based observations of phase are 123	

sparse, collected at the point scale over limited areas, and are typically limited to research rather 124	

than operational applications (Marks et al., 2013). The lack of observations is particularly 125	

problematic in mountain regions where snow-rain transitions are widespread and critical for 126	

regional water resource evaluations (Klos et al., 2014). For example, direct visual observations 127	

have been widely used (Froidurot et al., 2014; Knowles et al., 2006; U.S. Army Corps of 128	

Engineers, 1956), but are decreasing in number in favor of automated measurement systems. 129	

Automated systems use indirect methods to accurately estimate precipitation phase from 130	

hydrometeor characteristics (i.e. disdrometers), as well as coupled measurements that infer 131	

precipitation phase based on multiple lines of evidence (e.g. co-located snow depth and 132	

precipitation). Remote sensing is another indirect method that typically uses radar returns from 133	

the ground and space-borne platforms to infer hydrometeor temperature and phase. A 134	

comprehensive description of the advantages and disadvantages of current measurement 135	

strategies, and their correspondence with conventional PPM, is needed to determine critical 136	

knowledge gaps and research opportunities. 137	

 138	

New efforts are needed to advance PPM to better inform hydrological models by integrating new 139	

observations, expanding the current observation networks, and testing techniques over regional 140	

variations in hydroclimatology. While calls to integrate atmospheric information are an 141	

important avenue for advancement (Feiccabrino et al., 2013), hydrological models ultimately 142	

require accurate and validated phase determination at the land surface. Moreover, any 143	

advancement that relies on integrating new information or developing a new PPM technique will 144	

require validation and training using ground-based observations. To make tangible advancements 145	

in hydrological modeling, new techniques and datasets must be integrated with current modeling 146	

tools. The first step towards improved hydrological modeling in areas with mixed precipitation 147	
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phase is educating the scientific community about current techniques and limitations that convey 151	

towards gaps where research is needed.  152	

 153	

Our review paper is motivated by a lack of a comprehensive description of the state-of-the-art 154	

PPM and observation tools. Therefore, we describe the current state of the science in a way that 155	

clarifies the correspondence between techniques and observations and highlights current 156	

strengths and weaknesses in the science. Specifically, subsequent sections will review: 1) the 157	

processes and physics that control precipitation phase as relevant to field hydrologists, 2) current 158	

options available for observing precipitation phase and related measurements common in remote 159	

field settings, 3) existing methods for predicting and modeling precipitation phase, and 4) 160	

research gaps that exist regarding precipitation phase estimation. The overall objective is to 161	

convey a clear understanding of the diversity of tools available for PPM in hydrological 162	

modeling and the advancements needed to improve predictions in complex terrain characterized 163	

by large spatiotemporal variations in precipitation phase. 164	

 165	

2. Processes and Physics Controlling Precipitation Phase 166	

Precipitation formed in the atmosphere is typically a solid in the mid-latitudes and its phase at 167	

the land surface is determined by whether it melts during its fall (Stewart et al., 2015). Most 168	

hydrologic models do not simulate atmospheric processes and specify precipitation phase based 169	

on surface conditions alone (see Section 4.1), ignoring phase transformations in the atmosphere.  170	

 171	

Several important properties that influence phase changes in the atmosphere are not included in 172	

hydrological models (Feiccabrino et al., 2012), such as temperature and precipitation 173	

characteristics (Theriault and Stewart, 2010), stability of the atmosphere (Theriault and Stewart, 174	

2007), position of the 0 °C isotherm (Minder, 2010; Theriault and Stewart, 2010), interaction 175	

between hydrometeors (Stewart, 1992), and the atmospheric humidity profile (Harder and 176	

Pomeroy, 2013). The vertical temperature and humidity (represented by the mixing ratio) profile 177	

through which the hydrometeor falls typically consists of three layers, a top layer that is frozen 178	

(T <0 °C) in winter in temperate areas (Stewart, 1992), potentially a mixed layer with T >0 °C, 179	

and a surface layer that can be above or below 0 °C (Figure 2). The phase of precipitation at the 180	

surface partly depends on the phase reaching the top of the surface layer, which is defined as the 181	
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critical height. The temperature profile and depth of the surface layer controls the precipitation 192	

phase reaching the ground surface. For example, in Figure 2a, if rain reaches the critical height, it 193	

may reach the surface as rain or ice pellets depending on small differences in temperature in the 194	

surface layer (Theriault and Stewart, 2010). Similarly, in Figure 2b, if snow reaches the critical 195	

height, it may reach the surface as snow if the temperature in the surface layer is below freezing. 196	

However, in Figure 2c, when the surface layer temperatures are close to freezing and the mixing 197	

ratios are neither close to saturation or very dry the phase at the surface is not easily determined 198	

by the surface conditions alone. 199	

 200	

In addition to strong dependence on the vertical temperature and humidity profiles, precipitation 201	

phase is also a function of fall rate and hydrometeor size because they affect energy exchange 202	

with the atmosphere (Theriault et al., 2010). Precipitation rate influences the precipitation phase; 203	

for example, a precipitation rate of 10 mm h-1 reduces the amount of freezing rain by a factor of 204	

three over a precipitation rate of 1 mm h-1 (Theriault and Stewart, 2010) because there is less 205	

time for exchange of turbulent heat with the hydrometeor. A solid hydrometeor that originates in 206	

the top layer and falls through the mixed layer can reach the surface layer as wet snow, sleet, or 207	

rain. This phase transition in the mixed layer is primarily a function of latent heat exchange 208	

driven by vapor pressure gradients and sensible heat exchange driven by temperature gradients. 209	

Temperature generally increases from the mixed layer to the surface layer causing sensible heat 210	

inputs to the hydrometeor. If these gains in sensible heat are combined with minimal latent heat 211	

losses resulting from low vapor pressure deficits, it is likely the hydrometeor will reach the 212	

surface layer as rain (Figure 2). However, vapor pressure in the mixed layer is often below 213	

saturation leading to latent energy losses and cooling of the hydrometeor coupled with diabatic 214	

cooling of the local atmosphere, which can produce snow or other forms of frozen precipitation 215	

at the surface even when temperatures are above 0 °C. Likewise, surface energetics affect local 216	

atmospheric conditions and dynamics, especially in complex terrain. For example, melting of the 217	

snowpack can cause diabatic cooling of the local atmosphere and affect the phase of 218	

precipitation, especially when air temperatures are very close to 0 °C (Theriault et al., 2012). 219	

Many conditions lead to a combination of latent heat losses and sensible heat gains by 220	

hydrometeors (Figure 2). Under these conditions it can be difficult to predict the phase of 221	
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precipitation without sufficient information about humidity and temperature profiles, turbulence, 225	

hydrometeor size, and precipitation intensity. 226	

 227	

Stability of the atmosphere can also influence precipitation phase. Stability is a function of the 228	

vertical temperature structure which can be altered by vertical air movement and hence influence 229	

precipitation phase (Theriault and Stewart, 2007). Vertical air velocity changes the temperature 230	

structure by adiabatic warming or cooling due to pressure changes of descending and ascending, 231	

air parcels, respectively. These changes in temperature will generate under-saturated and 232	

supersaturated conditions in the atmosphere that can also alter the precipitation phase. Even a 233	

very weak vertical air velocity (< 10 cm/s) significantly influences the phase and amount of 234	

precipitation formed in the atmosphere (Theriault and Stewart, 2007). The rain-snow line 235	

predicted by atmospheric models is very sensitive to these microphysics (Minder, 2010) and 236	

validating the microphysics across locations with complex physiography is challenging. 237	

Incorporation and validation of atmospheric microphysics is rarely achieved in hydrological 238	

applications (Feiccabrino et al., 2015). 239	

 240	

3. Current Tools for Observing Precipitation Phase 241	
3.1 In situ observations 242	
In situ observations refer to methods wherein a person or instrument onsite records precipitation 243	

phase. We identify 3 classes of approaches that are used to observe precipitation phase including 244	

1) direct observations, 2) coupled observations, and 3) proxy observations. 245	

 246	

Direct observations simply involve a person on-site noting the phase of falling precipitation. 247	

Such data form the basis of many of the predictive methods that are widely used (Dai, 2008; 248	

Ding et al., 2014; U.S. Army Corps of Engineers, 1956). Direct observations are useful for 249	

“manned” stations such as those operated by the U.S. National Weather Service. Few research 250	

stations, however, have this benefit, particularly in many remote regions and in complex terrain. 251	

Direct observations are also limited in their temporal resolution and are typically reported only 252	

once per day, with some exceptions (Froidurot et al., 2014). Citizen scientist networks have 253	

historically provided valuable data to supplement primary instrumented observation networks. 254	

The National Weather Service Cooperative Observer Program 255	

(http://www.nws.noaa.gov/om/coop/what-is-coop.html, accessed 10/12/2016) is comprised of a 256	
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network of volunteers recording daily observations of temperature and precipitation, including 262	

phase. The NOAA National Severe Storms Laboratory used citizen scientist observations of rain 263	

and snow occurrence to evaluate the performance of the Multi-Radar Multi-Sensor (MRMS) 264	

system in the meteorological Phenomena Identification Near the Ground (mPING) project (Chen 265	

et al., 2015). The Colorado Climate Center initiated Community Collaborative Rain, Hail and 266	

Snow Network (CoCoRaHS) supplies volunteers with low cost instrumentation to observe 267	

precipitation characteristics, including phase, and enables observations to be reported on the 268	

project website (http://www.cocorahs.org/, accessed 10/12/2016). Although highly valuable, 269	

some limitations of this system include the imperfect ability of observers to identify mixed phase 270	

events and the temporal extent of storms, as well as the lack of observations in both remote areas 271	

and during low light conditions. 272	

 273	

Coupled observations link synchronous measurements of precipitation with secondary 274	

observations to indicate phase. Secondary observations can include photographs of surrounding 275	

terrain, snow depth measurements, and measurements of ancillary meteorological variables. 276	

Photographs of vertical scales emplaced in the snow have been used to estimate snow 277	

accumulation depth, which can then be coupled with precipitation mass to determine density and 278	

phase (Berris and Harr, 1987; Floyd and Weiler, 2008; Garvelmann et al., 2013; Hedrick and 279	

Marshall, 2014; Parajka et al., 2012). Mixed phase events, however, are difficult to quantify 280	

using coupled depth- and photographic-based techniques (Floyd and Weiler, 2008). Acoustic 281	

distance sensors, which are now commonly used to monitor the accumulation of snow (e.g. Boe, 282	

2013), have similar drawbacks in mixed phase events, but have been effectively applied to 283	

separate snow from rain (Rajagopal and Harpold, 2016). Meteorological information such as 284	

temperature and relative humidity can be used to compute the phase of precipitation measured by 285	

bucket-type gauges. Unfortunately, this approach generally requires incorporating assumptions 286	

about the meteorological conditions that determine phase (see section 4.1). Harder and Pomeroy 287	

(2013) used a comprehensive approach to determine the phase of precipitation. Every 15 minutes 288	

during their study period phase was determined by evaluating weighing bucket mass, tipping 289	

bucket depth, albedo, snow depth, and air temperature. Similarly, Marks et al. (2013) used a 290	

scheme based on co-located precipitation and snow depth to discriminate phase. A more 291	

involved expert decision making approach by L'hôte et al. (2005) was based on six recorded 292	
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meteorological parameters: precipitation intensity, albedo of the ground, air temperature, ground 296	

surface temperature, reflected long-wave radiation, and soil heat flux. The intent of most of these 297	

coupled observations was to develop datasets to evaluate PPM algorithms. However, if these 298	

observation systems were sufficiently simple they may have the potential to be applied 299	

operationally across larger meteorological monitoring networks encompassing complex terrain 300	

where snow comprises a large component of annual precipitation (Rajagopal and Harpold, 2016).  301	

 302	

Proxy observations measure geophysical properties of precipitation to infer phase. The hot plate 303	

precipitation gauge introduced by Rasmussen et al. (2012), for example, uses a heated thin disk 304	

to accumulate precipitation and then measures the amount of energy required to melt snow or 305	

evaporate liquid water. This technique, however, requires a secondary measurement of air 306	

temperature to determine if the energy is used to melt snow or only evaporate rain. Disdrometers 307	

measure the size and velocity of hydrometeors. Although the most common application of 308	

disdrometer data is to determine the drop size distribution (DSD) and other properties of rain, the 309	

phase of hydrometeors can be inferred by relating velocity and size to density. Some disdrometer 310	

technologies, which can be grouped into impact, imaging, and scattering approaches (Loffler-311	

Mang et al., 1999), are better suited for describing snow than others. Impact disdrometers, first 312	

introduced by Joss and Waldvogel (1967), use an electromechanical sensor to convert the 313	

momentum of a hydrometeor into an electric pulse. The amplitude of the pulse is a function of 314	

drop diameter. Impact disdrometers have not been commonly used to measure solid precipitation 315	

due to the different functional relationships between drop size and momentum for solid and 316	

liquid precipitation. Imaging disdrometers use basic photographic principles to acquire images of 317	

the distribution of particles (Borrmann and Jaenicke, 1993; Knollenberg, 1970). The 2D Video 318	

Disdrometer (2DVD) described by Kruger and Krajewski (2002) records the shadows cast by 319	

hydrometeors onto photodetectors as they pass through two sheets of light. The shape of the 320	

shadows enables computation of particle size, and shadows are tracked through both light sheets 321	

to determine velocity. Although initially designed to describe liquid precipitation, recent work 322	

has shown that the 2DVD can be used to classify snowfall according to microphysical properties 323	

of single hydrometeors (Bernauer et al., 2016). The 2DVD has been used to classify known rain 324	

or snow events individually, but little work has been performed to distinguish between liquid and 325	

solid precipitation. Scattering disdrometers, or optical disdrometers, measure the extinction of 326	
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light passing between a source and a sensor (Hauser et al., 1984; Loffler-Mang et al., 1999). Like 330	

the other types, optical disdrometers were originally designed for rain, but have been periodically 331	

applied to snow (Battaglia et al., 2010; Lempio et al., 2007). In a comparison study by 332	

Caracciolo et al. (2006), the PARSIVEL optical disdrometer, originally described by Loffler-333	

Mang et al. (1999) did not perform well against a 2DVD because of problems related to the 334	

detection of slow fall velocities for snow. It may be possible to use optical disdrometers to 335	

distinguish between rain, sleet, and snow based on the existence of distinct shapes of the size 336	

spectra for each precipitation type. More research on the relationship between air temperature 337	

and the size spectra produced by the optical disdrometer is needed (Lempio et al., 2007). In 338	

summary, disdrometers of various types are valuable tools for describing the properties of rain 339	

and snow, but require further testing and development to distinguish between rain and snow, as 340	

well as mixed phase events. 341	

 342	

3.2 Ground-based remote sensing observations 343	

Ground-based remote sensing observations have been available for several decades to detect 344	

precipitation phase using radar. Until recently, most ground-based radar stations were operated 345	

as conventional Doppler systems that transmit and receive radio waves with single horizontal 346	

polarization. Developments in dual polarization ground radar such as those that function as part 347	

of the U.S. National Weather Service NEXRAD network (NOAA, 2016), have resulted in 348	

systems that transmit radio signals with both horizontal and vertical polarizations. In general, 349	

ground-based remote sensing observation, either single or dual-pol, remain underutilized for 350	

detecting precipitation phase and are challenging to apply in complex terrain (Table 2). 351	

 352	

Ground-based remote sensing of precipitation phase using single-polarized radar systems 353	

depends on detecting the radar bright band. Radio waves transmitted by the radar system, are 354	

scattered by hydrometeors in the atmosphere, with a certain proportion reflected back towards 355	

the radar antenna. The magnitude of the measured reflectivity (Z) is related to the size and the 356	

dielectric constant of falling hydrometeors (White et al., 2002). Ice particles aggregate as they 357	

descend through the atmosphere and their dielectric constant increases, in turn increasing Z 358	

measured by the radar, creating the bright band, a layer of enhanced reflectivity just below the 359	

elevation of the melting level (Lundquist et al., 2008). Therefore, bright band elevation can be 360	
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used as a proxy for the “snow level”, the bottom of the melting layer where falling snow 370	

transforms to rain (White et al., 2010;White et al., 2002). 371	

 372	

Doppler vertical velocity (DVV) is another variable that can be estimated from single-polarized 373	

vertically profiling radar. DVV gives an estimate of the velocity of falling particles; as 374	

snowflakes melt and become liquid raindrops, the fall velocity of the altered hydrometeors 375	

increases. When combined with reflectivity profiles, DVV helps reduce false positive detection 376	

of the bright band, which may be caused by phenomena other than snow melting to rain (White 377	

et al., 2002). First, DVV and Z are combined to detect the elevation of the bottom of the bright 378	

band. Then the algorithm searches for maximum Z above the bottom of the bright band and 379	

determines that to be the bright band elevation (White et al., 2002). However, a test of this 380	

algorithm on data from a winter storm over the Sierra Nevada found root mean square errors of 381	

326 to 457 m compared to ground observations when bright band elevation was assumed to 382	

represent the surface transition from snow to rain (Lundquist et al., 2008). Snow levels in 383	

mountainous areas, however, may also be overestimated by radar profiler estimates if they are 384	

unable to resolve spatial variations close to mountain fronts, since snow levels have been noted 385	

to persistently drop on windward slopes (Minder and Kingsmill, 2013). Despite the potential 386	

errors, the elevation of maximum Z may be a useful proxy variable for snow level in 387	

hydrometeorological applications in mountainous watersheds because maximum Z will always 388	

occur below the freezing level (Lundquist et al., 2008; White et al., 2010) 389	

 390	

Few published studies have explored the value of bright band-derived phase data for hydrologic 391	

modeling. Maurer and Mass (2006) compared the melting level from vertically pointing radar 392	

reflectivity against temperature-based methods to assess whether the radar approach could 393	

improve determination of precipitation phase at the ground level. In that study, the altitude of the 394	

top of the bright band was detected and applied across the study basin. Frozen precipitation was 395	

assumed to be falling in model pixels above the altitude of the melting level and liquid 396	

precipitation was assumed to be falling in pixels below the altitude of the melting layer (Maurer 397	

and Mass, 2006). Maurer and Mass (2006) found that incorporating radar-detected melting layer 398	

altitude improved streamflow simulation results. A similar study that used bright band altitude to 399	

classify pixels according to surface precipitation type was not as conclusive; bright band altitude 400	
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data did not improve hydrologic model simulation results over those based on a temperature 407	

threshold (Mizukami et al., 2013). Also, the potential of the method is limited to the availability 408	

of vertically pointing radar; in complex, mountainous terrain the ability to estimate melting level 409	

becomes increasingly challenging with distance from the radar.  410	

 411	

Dual-polarized radar systems generate more variables than traditional single-polarized systems. 412	

These polarimetric variables include differential reflectivity, reflectivity difference, the 413	

correlation coefficient, and specific differential phase. Polarimetric variables respond to 414	

hydrometeor properties such as shape, size, orientation, phase state, and fall behavior and can be 415	

used to assign hydrometeors to specific categories (Chandrasekar et al., 2013;Grazioli et al., 416	

2015), or to improve bright band detection (Giangrande et al., 2008). 417	

 418	

Various hydrometeor classification algorithms have been applied to X-, C- and S-band 419	

wavelengths. Improvements in these algorithms over recent years have seen hydrometeor 420	

classification become an operational meteorological product (see Grazioli et al., 2015 for an 421	

overview). For example, the U.S. National Severe Storms Laboratory (NSSL) developed a fuzzy-422	

logic hydrometeor classification algorithm for warm-season convective weather (Park et al., 423	

2009) and this algorithm has also been tested for cold-season events (Elmore, 2011). Its skill was 424	

tested against surface observations of precipitation type but the algorithm did not perform well in 425	

classifying winter precipitation because it could not account for re-freezing of hydrometeors 426	

below the melting level (Figure 2, Elmore, 2011). Unlike warm season convective precipitation, 427	

the freezing level during a cold-season precipitation event can vary spatially. This phenomenon 428	

has prompted the use of polarimetric variables to first detect the melting layer, and then classify 429	

hydrometeors (Boodoo et al., 2010; Thompson et al., 2014). Although there has been some 430	

success in developing two-stage cold-season hydrometeor classification algorithms, there is little 431	

in the published literature that explores the potential contributions of these algorithms for 432	

partitioning snow and rain for hydrological modeling.  433	

 434	

3.3 Space-based remote sensing observations 435	
Spaceborne remote sensing observations typically use passive or active microwave sensors to 436	

determine precipitation phase (Table 2). Many of the previous passive microwave systems were 437	

Adrian Harpold� 11/20/16 2:22 PM
Deleted:	 (ZDR),438	
Adrian Harpold� 11/20/16 2:22 PM
Deleted:	 (ZDP),439	
Adrian Harpold� 11/20/16 2:22 PM
Deleted:	 (ρnv),440	
Adrian Harpold� 11/20/16 2:22 PM
Deleted:	 (KDP).441	

Adrian Harpold� 11/20/16 2:22 PM
Deleted:	 it was found that442	



	

 13 

challenged by coarse resolutions and difficulties retrieving snowfall over snow-covered areas. 443	

More recent active microwave systems have advantage for detecting phase in terms of accuracy 444	

and spatial resolution, but remain largely unverified. Table 2 provides and overview of these 445	

space-based remote sensing technologies that are described in more detail below. 446	

 447	

Passive microwave radiometers detect microwave radiation emitted by the Earth’s surface or 448	

atmosphere. Passive microwave remote sensing has potential for discriminating between rainfall 449	

and snowfall because microwave radiation emitted by the Earth’s surface propagates through all 450	

but the densest precipitating clouds, meaning that radiation at microwave wavelengths directly 451	

interacts with hydrometeors within clouds (Olson et al., 1996; Ardanuy, 1989). However, the 452	

remote sensing of precipitation in microwave wavelengths and the development of operational 453	

algorithms is dominated by research focused on rainfall (Arkin and Ardanuy, 1989); by 454	

comparison, snowfall detection and observation has received less attention (Noh et al., 2009; 455	

Kim et al., 2008). This is partly explained by examining the physical processes within clouds that 456	

attenuate the microwave signal. Raindrops emit low levels of microwave radiation increasing the 457	

level of radiance measured by the sensor; in contrast, ice hydrometeors scatter microwave 458	

radiation, decreasing the radiance measured by a sensor (Kidd and Huffman, 2011). Land 459	

surfaces have a much higher emissivity than water surfaces, meaning that emission-based 460	

detection of precipitation is challenging over land because the high microwave emissions mask 461	

the emission signal from raindrops (Kidd, 1998; Kidd and Huffman, 2011). Thus, scattering-462	

based techniques using medium to high frequencies are used to detect precipitation over land. 463	

Moreover, microwave observations at higher frequencies (> 89 GHz) have been shown to 464	

discriminate between liquid and frozen hydrometeors (Wilheit et al., 1982). 465	

 466	

Retrieving snowfall over land areas from spaceborne microwave sensors can be even more 467	

challenging than for liquid precipitation because existing snow cover increases microwave 468	

emission. Depression of the microwave signal caused by scattering from airborne ice particles 469	

may be obscured by increased emission of microwave radiation from the snow covered land 470	

surface. Kongoli et al. (2003) demonstrated an operational snowfall detection algorithm that 471	

accounts for the problem of existing snow cover. This group used data from the Advanced 472	

Microwave Sounding Unit-A (AMSU-A), a 15-channel atmospheric temperature sounder with a 473	
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single high frequency channel at 89 GHz), and AMSU-B, a 5-channel high frequency microwave 476	

humidity sounder. Both sensors were mounted on the NOAA-16 and -17 polar-orbiting satellites. 477	

While the algorithm worked well for warmer, opaque atmospheres, it was found to be too noisy 478	

for colder, clear atmospheres. Additionally, some snowfall events occur under warmer conditions 479	

than those that were the focus of the study (Kongoli et al., 2003). Kongoli et al. (2015) further 480	

adapted their methodology for the Advanced Technology Microwave Sounder (ATMS - onboard 481	

the polar-orbiting Suomi National Polar-orbiting Partnership satellite) a descendant of the 482	

AMSU sounders. The latest algorithm assesses the probability of snowfall using the logistic 483	

regression and the principal components of seven high frequency bands at 89 GHz and above. In 484	

testing, the Kongoli et al. (2015) algorithm has shown skill in detecting snowfall both at variable 485	

rates and when snowfall is lighter and occurs in colder conditions. An alternative algorithm by 486	

Noh et al., 2009 used physically-based, radiative transfer modeling in an attempt to improve 487	

snowfall retrieval over land. In this case, radiative transfer modeling was used to construct an a 488	

priori database of observed snowfall profiles and corresponding brightness temperatures. The 489	

radiative transfer procedure yields likely brightness temperatures from modeling how ice 490	

particles scatter microwave radiation at different wavelengths. A Bayesian retrieval algorithm 491	

was then used to estimate snowfall over land by comparing measurements of brightness 492	

temperature with modeled brightness temperature (Noh et al., 2009). The algorithm was tested 493	

during the early and late winter for heavier snowfall events. Late winter retrievals indicated that 494	

the algorithm overestimated snowfall over surfaces with significant snow accumulation. 495	

 496	

While results have been promising, the spatial resolution at which ATMS and other passive 497	

microwave data are acquired is very coarse (15.8 to 74.8 km at nadir), making passive 498	

microwave approaches more applicable for regional to continental scales. Temporal resolution of 499	

the data acquisition is another challenge. AMSU instruments are mounted on 8 satellites; the 500	

related ATMS is mounted on a single satellite and planned for two additional satellites. 501	

However, the satellites are polar-orbiting, not geostationary, so it is probable that a precipitation 502	

event could occur outside the field of view of one of the instruments. 503	

 504	

Spaceborne active microwave or radar sensors measure the backscattered signal from pulses of 505	

microwave energy emitted by the sensor itself. Much like the ground based radar systems, the 506	
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propagated microwave signal interacts with liquid and solid particles in the atmosphere and the 511	

degree to which the measured return signal is attenuated provides information on the 512	

atmospheric constituents. The advantage offered by spaceborne radar sensors over passive 513	

microwave is the capability to acquire more detailed sampling of the vertical profile of the 514	

atmosphere (Kulie and Bennartz, 2009). The first spaceborne radar capable of observing 515	

snowfall is the Cloud Profiling Radar (CPR) onboard CloudSat (2006 – present). The CPR 516	

operates at 94 GHz with an along-track (or vertical) resolution of ~1.5 km. Retrieval of dry 517	

snowfall rate from CPR measurements of reflectivity have been shown to correspond with 518	

estimates of snowfall from ground-based radar at elevations of 2.6 and 3.6 km above mean sea 519	

level (Matrosov et al., 2008). Estimates at lower elevations, especially those in the lowest 1 km, 520	

are contaminated by ground clutter. Alternative approaches, combining CPR data with ancillary 521	

data have been formulated to account for this challenge (Kulie and Bennartz, 2009; Liu, 2008). 522	

Known relationships between CPR reflectivity data and the scattering properties of non-spherical 523	

ice crystals are used to derive snowfall at a given elevation above mean sea level; below this 524	

elevation a temperature threshold derived from surface data is used to discriminate between rain 525	

and snow events. Liu (2008) used <2 °C as the snow/rain threshold, whereas Kulie and Bennartz 526	

(2009) used 0 °C as the snow/rain threshold. Temperature thresholds have been the subject of 527	

much research and debate for discriminating precipitation phase, as is further discussed in 528	

section 4.1.  529	

 530	

CloudSat is part of the A-train or afternoon constellation of satellites, which includes Aqua, with 531	

the Moderate Resolution Imaging Spectrometer (MODIS) and the Cloud–Aerosol Lidar and 532	

Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft with cloud-profiling Lidar. The 533	

sensors onboard A-train satellites provided the unique combination of data to create an 534	

operational snow retrieval product. The CPR Level 2 snow profile product (2C-SNOW-535	

PROFILE) uses vertical profile data from the CPR, input from MODIS and the cloud profiling 536	

radar, as well as weather forecast data to estimate near surface snowfall (Kulie et al., 2016; 537	

Wood et al., 2013). The performance of 2C-SNOW-PROFILE was tested by Cao et al. (2014). 538	

This group found the product worked well in detecting light snow but performed less 539	

satisfactorily under conditions of moderate to heavy snow because of the non-stationary effects 540	

of attenuation on the returned radar signal.  541	
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 551	

The launch of the Global Precipitation Mission (GPM) core observatory in February 2014 holds 552	

promise for the future deployment of operational snow detection products. Building on the 553	

success of the Tropical Rainfall Monitoring Mission (TRMM), the GPM core observatory 554	

sensors include precipitation radar (DPR) and microwave imager (GMI). The GMI has two 555	

millimeter wave channels (166 and 183 GHz) that are specifically designed to detect and retrieve 556	

light rain and snow precipitation. These are more advanced than the sensors onboard the TRMM 557	

spacecraft and permit better quantification of the physical properties of precipitating particles, 558	

particularly over land at middle to high latitudes (Hou et al., 2014). Algorithms for the GPM 559	

mission are still under development, and is partly being driven by data collected during the GPM 560	

Cold Season Experiment (GCPEx) (Skofronick-Jackson et al., 2015). Using airborne sensors to 561	

simulate GPM and DPR measurements, one of the questions that the GCPEx hoped to address 562	

concerned the potential capability of data from the DPR and GMI to discriminate falling snow 563	

from rain or clear air (Skofronick-Jackson et al., 2015). The initial results reported by the GCPEx 564	

study echo some of the challenges recognized for ground-based single polarized radar detection 565	

of snowfall. The relationship between radar reflectivity and snowfall is not unique. For the GPM 566	

mission, it will be necessary to include more variables from dual frequency radar measurements, 567	

multiple frequency passive microwave measurements, or a combination of radar and passive 568	

microwave measurements (Skofronick-Jackson et al., 2015). 569	

 570	

4. Current Tools for Predicting Precipitation Phase 571	

4.1 Prediction Techniques from Ground-Based Observations 572	

Discriminating between solid and liquid precipitation is often based on a near-surface air 573	

temperature threshold (Martinec and Rango, 1986;U.S. Army Corps of Engineers, 1956;L'hôte et 574	

al., 2005). Four prediction methods have been developed that use near-surface air temperature 575	

for discriminating precipitation phase: 1) static threshold, 2) linear transition, 3) minimum and 576	

maximum temperature, and 4) sigmoidal curve (Table 1). A static temperature threshold applies 577	

a single temperature value, such as mean daily temperature, where all of the precipitation above 578	

the threshold is rain, and all below that threshold is snow. Typically this threshold temperature is 579	

near 0 °C (Lynch-Stieglitz, 1994; Motoyama, 1990), but was shown to be highly variable across 580	

both space and time (Kienzle, 2008; Motoyama, 1990; Braun, 1984; Ye et al., 2013). For 581	
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example, Rajagopal and Harpold (2016) optimized a single temperature threshold at Snow 585	

Telemetry (SNOTEL) sites across the western U.S. to show regional variability from -4 to 3 °C 586	

(Figure 3). A second discrimination technique is to linearly scale the proportion of snow and rain 587	

between a temperature for all rain (Train) and a temperature for all snow (Tsnow) (Pipes and Quick, 588	

1977;McCabe and Wolock, 2010;Tarboton et al., 1995). Linear threshold models have been 589	

parameterized slightly differently across studies, e.g.: Tsnow =-1.0 °C, Train = 3.0 °C (McCabe and 590	

Wolock, 2010), Tsnow =-1.1 °C and Train =3.3 °C (Tarboton et al., 1995), and Tsnow =0 °C and Train 591	

=5 °C (McCabe and Wolock, 1999b). A third technique specifies a threshold temperature based 592	

on daily minimum and maximum temperatures to classify rain and snow, respectively, with a 593	

threshold temperature between the daily minimum and maximum producing a proportion of rain 594	

and snow (Leavesley et al., 1996). This technique can have a time-varying temperature threshold 595	

or include a Train that is independent of daily maximum temperature. A fourth technique applies a 596	

sigmoidal relationship between mean daily (or sub daily) temperature and the proportion or 597	

probability of snow versus rain. For example, one method derived for southern Alberta, Canada 598	

employs a curvilinear relationship defined by two variables, a mean daily temperature threshold 599	

where 50% of precipitation is snow, and a temperature range where mixed-phase precipitation 600	

can occur (Kienzle, 2008). Another sigmoidal-based empirical model identified a hyperbolic 601	

tangent function defined by four parameters to estimate the conditional snow (or rain) frequency 602	

based on a global analysis of precipitation phase observations from over 15,000 land-based 603	

stations (Dai, 2008). Selection between temperature-based techniques is typically based on 604	

available data, with a limited number of studies quantifying their relative accuracy for 605	

hydrological applications (Harder and Pomeroy, 2014). 606	

 607	

Several studies have compared the accuracy of temperature-based PPM to one another and/or 608	

against an independent validation of precipitation phase. Sevruk (1984) found that only about 609	

68% of the variability in monthly observed snow proportion in Switzerland could be explained 610	

by threshold temperature based methods near 0 °C. An analysis of data from fifteen stations in 611	

southern Alberta, Canada with an average of >30 years of direct observations noted over-612	

estimations in the mean annual snowfall for static threshold (8.1%), linear transition (8.2%), 613	

minimum and maximum (9.6%), and sigmoidal transition (7.1%) based methods (Kienzle, 2008). 614	

An evaluation of PPM at three sites in the Canadian Rockies by Harder and Pomeroy (2013) 615	
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found the largest percent error to occur using a static threshold (11% to 18%), followed by linear 616	

relationships (-8% to 11%), followed by a sigmoidal relationships (-3 to 11%). Another study 617	

using 824 stations in China with >30 years of direct observations found accuracies of 51.4% 618	

using a static 2.2 °C threshold and 35.7% to 47.4% using linear temperature-based thresholds 619	

(Ding et al., 2014). Lastly, for multiple sites across the rain-snow transition in southwestern 620	

Idaho, static temperature thresholds produced the lowest proportion (68%) whereas a linear-621	

based model produced the highest proportion (75%) of snow, respectively (Marks et al., 2013). 622	

Generally these accuracy assessments demonstrated that static threshold methods produced the 623	

greatest errors, whereas sigmoidal relationships produced the smallest errors, although variations 624	

to this general rule existed across sites. 625	

 626	

Near surface humidity also influences precipitation phase (see Section 2). Three humidity-627	

dependent precipitation phase identification methods are found in the literature: 1) dewpoint 628	

temperature (Td), 2) wet bulb temperature (Tw), and 3) psychometric energy balance. The 629	

dewpoint temperature is the temperature at which an air parcel with a fixed pressure and 630	

moisture content would be saturated. In one approach to account for measurement and 631	

instrument calibration uncertainties of ±0.25 °C each, Td and Tw below -0.5 °C was assumed to 632	

be all snow and above +0.5 °C all rain, with a linear relationship between the two being a 633	

proportional mix of snow and rain (Marks et al., 2013). Td of 0.0 °C performed consistently 634	

better than Ta in one study by Marks et al. (2001) while a Td of 0.1°C for multiple stations in 635	

Sweden was less accurate than a Ta of 1.0 °C (Feiccabrino et al., 2013). The wet or ice bulb 636	

temperature (Tw) is the temperature at which an air parcel would become saturated by 637	

evaporative cooling in the absence of other sources of sensible heat, and is the lowest 638	

temperature that falling precipitation can reach. Few studies have investigated the feasibility of 639	

Tw for precipitation phase prediction (Olsen, 2003; Ding et al., 2014; Marks et al., 2013). Tw 640	

significantly improved prediction of precipitation phase over Ta at 15-minute time steps, but only 641	

marginally improved prediction at daily time steps (Marks et al., 2013). Ding et al. (2014) 642	

developed a sigmoidal phase probability curve based on Tw and elevation that outperformed Ta 643	

threshold-based methods across a network of sites in China. Conceptually, the hydrometeor 644	

temperature (Ti) is similar to Tw but is calculated using the latent heat and vapor density gradient. 645	
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Use of computed Ti value significantly improved precipitation phase estimates over Ta, 646	

particularly as time scales approached one day (Harder and Pomeroy, 2013). 647	

  648	

There has been limited validation of humidity-based precipitation phase prediction techniques 649	

against ground-truth observations. Ding et al. (2014) showed that a method based on Tw and 650	

elevation increased accuracy by 4.8% to 8.9% over several temperature-based methods. Their 651	

method was more accurate than a simpler Tw based method by (Yamazaki, 2001). Feiccabrino et 652	

al. (2013) showed that Td misclassified 3.0% of snow and rain (excluding mixed phased 653	

precipitation), whereas Ta only misclassified 2.4%. Ye et al. (2013) found Td less sensitive to 654	

phase discrimination under diverse environmental conditions and seasons than Ta. Froidurot et 655	

al. (2014) evaluated several techniques with a critical success index (CSI) at sites across 656	

Switzerland to show the highest CSI were associated with variables that included Tw or relative 657	

humidity (CSI=84%-85%) compared to Ta (CSI=78%). Marks et al. (2013) evaluated the time at 658	

which phase transitioned from snow to rain against field observations across a range of 659	

elevations and found that Td most closely predicted the timing of phase change, whereas both Ta 660	

and Tw estimated earlier phase changes than observed. Harder and Pomeroy (2013) compared Ti 661	

with field observations and found that error was <10% when Ti was allowed to vary with each 662	

daily time-step and >10% when Ti was fixed at 0 °C. The Ti accuracy increased appreciably (i.e. 663	

5%-10% improvement) when the temporal resolution was decreased from daily to hourly or 15-664	

minute time steps. The validation studies consistently showed improvements in accuracy by 665	

including humidity over PPM based only on temperature. 666	

 667	

Hydrological models employ a variety of techniques for phase prediction using ground based 668	

observations (Table 1). All discrete hydrological models (i.e. not coupled to an atmospheric 669	

model) investigated used temperature based thresholds that did not consider the near-surface 670	

humidity. Moreover, most models use a single static temperature threshold, which was 671	

consistently shown to produce lower accuracy than multiple temperature methods. Hydrological 672	

models that are coupled to atmospheric models were more able to consider important controls on 673	

precipitation phase, such as humidity and atmospheric profiles. This compendium of model PPM 674	

highlights the current shortcomings in phase prediction in conventional discrete hydrological 675	

models. 676	
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 680	

4.2 Prediction Techniques Incorporating Atmospheric Information 681	

While many hydrologic models have their own formulations for determining precipitation phase 682	

at the ground, it is also possible to initialize hydrologic models with precipitation phase fraction, 683	

intensity, and volume from numerical weather simulation model output. Here we discuss the 684	

limitations of precipitation phase simulation inherent to WRF (Kaplan et al., 2012; Skamarock et 685	

al., 2008) and other atmospheric simulation models. The finest scale spatial resolution employed 686	

in atmospheric simulation models is ~1 km and these models generate data at hourly or finer 687	

temporal resolutions. Regional climate models (RCM) and global climate models (GCM) are 688	

typically coarser than local mesoscale models. The physical processes driving both the removal 689	

of moisture from the air and the precipitation phase (Section 2) occur at much finer spatial and 690	

temporal resolutions in the real atmosphere than models typically resolve, i.e. <1 km. As with all 691	

numerical models, the representation of sub-grid scale processes requires parameterization. At 692	

typical scales considered, characterization of mixed phase processes within a condensing cloud 693	

depends on both cloud microphysics and kinematics of the surrounding atmosphere. Replicating 694	

cloud physics at the multi-kilometer scale requires empiricism. The 30+ cloud microphysics 695	

parameterization options in the research version of WRF (Skamarock et al., 2008) vary in the 696	

number of classes described (cloud ice, cloud liquid, snow, rain, graupel, hail, etc.), and may or 697	

may not accurately resolve changes in hydrometeor phase and horizontal spatial location (due to 698	

wind) during precipitation. All microphysical schemes predict cloud water and cloud ice based 699	

on internal cloud processes that include a variety of empirical formulations or even simple 700	

lookup tables. These schemes vary greatly in their accuracy with “mixed phase” schemes 701	

generally producing the most accurate simulations of precipitation phase in complex terrain 702	

where much of the water is supercooled (Lin, 2007; Reisner et al., 1998; Thompson et al., 2004; 703	

Thompson et al., 2008; Morrison et al., 2005; Zängl, 2007; Kaplan et al., 2012). Comprehensive 704	

validation of the microphysical schemes over different land surface types (e. g. warm maritime, 705	

flat prairie, etc.) with a focus on different snowfall patterns is lacking. In particular, in transition 706	

zones between mountains and plains or along coastlines, the complexity of the microphysics 707	

becomes even more extreme due the dynamics and interactions of differing air masses with 708	

distinct characteristics. The autoconversion and growth processes from cloud water or ice to 709	

hydrometeors contain a strong component of empiricism, in particular the nucleation media and 710	
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their chemical composition. Different microphysical parameterizations lead to different spatial 717	

distributions of precipitation and produce varying vertical distributions of hydrometeors 718	

(Gilmore et al., 2004). Regardless, precipitation rates for each grid cell are averages requiring 719	

hydrological modelers to consider the effects of elevation, aspect, etc. in resolving precipitation 720	

phase fractions for finer-scale models. 721	

 722	

Numerical models that contain sophisticated cloud microphysics schemes allow assimilation of 723	

additional remote sensing data beyond conventional synoptic/large scale observations (balloon 724	

data). This is because the coarse spatial and temporal nature of radiosonde data results in the 725	

atmosphere being sensed imperfectly/incompletely compared with the scale of motion that 726	

weather simulation models can numerically resolve. These observational inadequacies are 727	

exacerbated in complex terrain, where precipitation phase fraction can vary on small scales but 728	

radar can be blocked by topography and therefore, rendered useless in the model initialization. 729	

Accurate generation of liquid and frozen precipitation from vapor requires accurate depiction of 730	

initial atmospheric moisture conditions (Kalnay and Cai, 2003; Lewis et al., 2006). In 731	

acknowledgement of the difficulty and uncertainty of initializing numerical simulation models, 732	

atmospheric modelers use the term “bogusing” to describe incorporation of individual 733	

observations at a point location into large scale initial conditions in an effort to enhance the 734	

accuracy of the simulation (Eddington, 1989). They also employ complex assimilation 735	

methodologies to force the early period of the model solutions during the time integration 736	

towards fine scale observations (Kalnay and Cai, 2003; Lewis et al., 2006). These asynoptic or 737	

fine scale data sources often substantially improve the accuracy of the simulations as time 738	

progresses.  739	

 740	

Hydrologists are increasingly using output from atmospheric models to drive hydrologic models 741	

from daily to climate or multi-decadal timescales (Tung and Haith, 1995; Pachauri, 2002; Wood 742	

et al., 2004; Rojas et al., 2011; Yucel et al., 2015). These atmospheric models suffer from the 743	

same data paucity and scale issues that likewise challenge the implementation and validation of 744	

hydrologic models. Uncertainties in their output, including precipitation volume and phase, 745	

begins with the initialization of the atmospheric model from measurements, increases with model 746	

choice and microphysics as well as turbulence parameterizations, and is a strong function of the 747	
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scale of the model. The significance of these uncertainties varies by application, but should be 749	

acknowledged. Furthermore, these uncertainties are highly variable in character and magnitude 750	

from day to day and location to location. Thus, there has been very little published concerning 751	

how well atmospheric models predict precipitation phase. Finally, lack of ground measurements 752	

leaves hydrologists with no means to assess and validate atmospheric model predictions. 753	

 754	

5. Research Gaps 755	

The incorrect prediction of precipitation phase leads to cascading effects on hydrological 756	

modeling (Figure 1). Meeting the challenge of accurately predicting precipitation phase requires 757	

the closing of several critical research gaps (Figure 4). Perhaps the most pressing challenge for 758	

improving PPM is developing and employing new and improved sources of data. However, new 759	

data sources will not yield much benefit without effective incorporation of data into predictive 760	

models (Figure 4). Additionally, both the scientific and management communities lack data 761	

products that can be readily understood and broadly used. Addressing these research gaps 762	

requires simultaneous engagement both within and between the hydrology and atmospheric 763	

observation and modeling communities. Changes to atmospheric temperature and humidity 764	

profiles from regional climate change will likely challenge conventional precipitation phase 765	

prediction in ways that demand additional observations and improved forecasts. 766	

 767	

5.1 Conduct focused field campaigns 768	

Intensive field campaigns are extremely effective approaches to address fundamental research 769	

gaps focused on the discrimination between rain, snow, and mixed-phase precipitation at the 770	

ground by providing opportunities to test novel sensors, and detailed datasets to develop remote 771	

sensing retrieval algorithms, and improve PPM estimation methods. The recent Global 772	

Precipitation Measurement (GPM) Cold Season Precipitation Experiment (GCPEx) is an 773	

example of such a campaign in non-complex terrain where simultaneous observations using 774	

arrays of both airborne and ground-based sensors were used to measure and characterize both 775	

solid and liquid precipitation (e.g. Skofronick-Jackson et al., 2015). Similar intensive field 776	

campaigns are needed in complex terrain that is frequently characterized by highly dynamic and 777	

spatially variable hydrometeorological conditions. Such campaigns are expensive to conduct, but 778	

can be implemented as part of operational nowcasting to develop rich data resources to advance 779	
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scientific understanding as was very effectively done during the Vancouver Olympic Games in 784	

2010 (Isaac et al., 2014; Joe et al., 2014). The research community should utilize existing 785	

datasets and capitalize on similar opportunities and expand environmental monitoring networks 786	

to simultaneously advance both atmospheric and hydrological understanding, especially in 787	

complex terrain spanning the rain-snow transition zone.  788	

 789	

5.2 Incorporate humidity information 790	

Atmospheric humidity affects the energy budget of falling hydrometeors (Section 4.1), but is 791	

rarely considered in precipitation phase prediction. The difficulty in incorporating humidity 792	

mainly arises from a lack of observations, both as point measurements and distributed gridded 793	

products. For example, while some reanalysis products have humidity information (i.e. National 794	

Centers for Environmental Prediction, NCEP reanalysis) they are at spatial scales (i.e. > 1 795	

degree) too coarse for resolving precipitation phase in complex topography. Addition of high-796	

quality aspirated humidity sensors at snow monitoring stations, such as the SNOTEL network, 797	

would advance our understanding of humidity and its effects on precipitation phase in the 798	

mountains. Because dry air masses have regional variations controlled by storm tracks and 799	

proximity to water bodies, sensitivity of precipitation phase to humidity variations driven by 800	

regional warming remains relatively unexplored. 801	

 802	

Although humidity datasets are relatively rare in mountain environments, some gridded data 803	

products exist that can be used to investigate the importance of humidity information. Most 804	

interpolated gridded data products either do not include any measure of humidity (e.g. Daymet or 805	

WorldClim) or use daily temperature measurements to infer humidity conditions (e.g. PRISM). 806	

In complex terrain, air temperature can also vary dramatically at relatively small scales from 807	

ridgetops to valley bottoms due to cold air drainage (Whiteman et al., 1999) and hence can 808	

introduce errors into inferential techniques such as these. Potentially more useful are data 809	

assimilation products, such as NLDAS-2, that provide humidity and temperature values at 1/8th 810	

of a degree scale over the continental U.S. In addition, several data reanalysis products are often 811	

available at 1 to 3 year lags from present, including NCEP/NCAR, NARR, and the 20th Century 812	

reanalysis. Given the relatively sparse observations of humidity in mountain environments, the 813	

accuracy of gridded humidity products is rarely rigorously evaluated (Abatzoglou, 2013). More 814	
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work is needed to understand the added skill provided by humidity datasets for predicting 817	

precipitation phase and its distribution over time and space. 818	

 819	

5.2 Incorporate atmospheric information 820	

We echo the call of  Feiccabrino et al. (2015) for greater incorporation of atmospheric 821	

information into phase prediction and additional verification of the skill in phase prediction 822	

provided by atmospheric information. 823	

 824	

Several avenues exist to better incorporate atmospheric information into precipitation phase 825	

prediction, including direct observations, remote sensing observations, and model products. 826	

Radiosonde measurements made daily at many airports and weather forecasting centers have 827	

shown some promise for supplying atmospheric profiles of temperature and humidity (Froidurot 828	

et al., 2014). However, these data are only useful to initialize the larger scale structure of 829	

temperature and water vapor, and may not capture local-scale variations in complex terrain. It is 830	

also their lack of temporal and spatial frequency that prevents their use in accurate precipitation 831	

phase prediction, which is inherently a mesoscale problem, i.e., scales of motion <100 km. 832	

Atmospheric information on the bright-band height from Doppler radar has been utilized for 833	

predicting the altitude of the rain-snow transition (Lundquist et al., 2008; Minder, 2010), but has 834	

rarely been incorporated into hydrological modeling applications (Maurer and Mass, 2006; 835	

Mizukami et al., 2013). In addition to atmospheric observations, modeling products that 836	

assimilate observations or are fully physically-based may provide additional information for 837	

precipitation phase prediction. Numerous reanalysis products (described in Section 2.2) provide 838	

temperature and humidity at different pressure levels within the atmosphere. To our knowledge, 839	

information from reanalysis products has yet to be incorporated into precipitation phase 840	

prediction for hydrological applications. Bulk microphysical schemes used by meteorological 841	

models (i.e. Weather Research and Forecasting WRF model) provide a physically-based estimate 842	

of precipitation phase. These schemes capture a wide-variety of processes, including 843	

evaporation, sublimation, condensation, and aggradation, and output between two and ten 844	

precipitation types. Historically, meteorological models have not been run at spatial scales 845	

capable of resolving convective dynamics (e.g. <2 km), which can exacerbate error in 846	

precipitation phase prediction in complex terrain with a moist neutral atmosphere. Coarse 847	
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meteorological models also struggle to produce pockets of frozen precipitation from advection of 853	

moisture plumes between mountain ranges and cold air wedged between topographic barriers. 854	

However, reduced computational restrictions on running these models at finer spatial scales and 855	

over large geographic extents (Rasmussen et al., 2012) are enabling further investigations into 856	

precipitation phase change under historical and future climate scenarios. This suggests that finer 857	

dynamical downscaling is necessary to resolve precipitation phase which is consistent with 858	

similar work attempting to resolve winter precipitation amount in complex terrain (Gutmann et 859	

al., 2012). A potentially impactful area of research is to integrate this information into novel 860	

approaches to improve precipitation phase prediction skill. 861	

 862	

5.3 Disdrometer networks operating at high temporal resolutions 863	

An increase in the types and reliability of disdrometers over the last decade has provided a new 864	

suite of tools to more directly measure precipitation phase. Despite this new potential resource 865	

for distinguishing snow and rain, very limited deployments of disdrometers have occurred at the 866	

scale necessary to improve hydrologic modeling and rain-snow elevation estimates. The lack of 867	

disdrometer deployment likely arises from a number of potential limitations: 1) known issues 868	

with accuracy, 2) cost of these systems, and 3) power requirements needed for heating elements. 869	

These limitations are clearly a factor in procuring large networks and deploying disdrometers in 870	

complex terrain that is remote and frequently difficult to access. However, we advise that 871	

disdrometers offer numerous benefits that cannot be substituted with other measurements: 1) 872	

they operate at fine temporal scales, 2) they operate in low light conditions that limit other direct 873	

observations, and 3) they provide land surface observations rather than precipitation phase in the 874	

atmosphere (as compared to more remote methods). Moreover, improvements in disdrometer and 875	

power supply technologies that address these limitations would remove restrictions on increased 876	

disdrometer deployment. 877	

 878	

Transects of disdrometers spanning the rain-snow elevations of key mountain areas could add 879	

substantially to both prediction of precipitation phase for modeling purposes, as well as 880	

validating typical predictive models. We advocate for transects over key mountain passes where 881	

power is generally available and weather forecasts for travel are particularly important. In 882	

addition, co-locating disdrometers at long-term research stations where precipitation phase 883	
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observations could be tied to micro-meteorological and hydrological observations has distinct 885	

advantages. These areas often have power supplies and instrumentation expertise to operate and 886	

maintain disdrometer networks. 887	

 888	

5.4 Compare different indirect phase measurement methods 889	

There is an important need to evaluate the accuracy of different PPM to assess tradeoffs between 890	

model complexity and skill (Figure 4). Given the potential for several types of observations to 891	

improve precipitation phase prediction (section 5.1-5.3), quantifying the relative skill provided 892	

by these different lines of evidence is a critical research gap. Although assessing relative 893	

differences between methods is potentially informative, comparison to ground truth 894	

measurements is critical for assessing accuracy. Disdrometer measurements and video imaging 895	

(Newman et al., 2009) are ideal ground truthing methods that can be employed at fine time steps 896	

and under a variety of conditions (section 5.3). Less ideal for accuracy assessment studies are 897	

direct visual observations that are harder to collect at fine time steps and in low light conditions. 898	

Similarly, employing coupled observations of precipitation and snow depth has been used to 899	

assess accuracy of different precipitation phase prediction methods (Marks et al., 2013; Harder 900	

and Pomeroy, 2013), but accuracy assessment of these techniques themselves are lacking under a 901	

wide range of different conditions. 902	

 903	

A variety of accuracy assessments are needed that will require co-located distributed 904	

measurements. One critical accuracy assessment involves the consistency of different 905	

precipitation phase prediction methods under different climate and atmospheric conditions. 906	

Assessing the effects of climate and atmospheric conditions requires measurements from a 907	

variety of sites covering a range of hydroclimatic conditions and record lengths that span the 908	

conceivable range of atmospheric conditions at a given site. Another important evaluation metric 909	

is the performance over different time steps. Harder and Pomeroy (2013) showed that 910	

hydrometeor and temperature-based prediction methods had errors that substantially decreased 911	

across shorter time steps. Identifying the effects of time step length on the accuracy of different 912	

prediction methods has been relatively unexplored, but is critical to selecting the proper method 913	

for different hydrological applications. Finally, the performance metrics used to assess accuracy 914	

should be carefully considered. The applications of precipitation phase prediction methods are 915	
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diverse, necessitating a wide variety of performance metrics, including the probability of snow 920	

versus rain (Dai, 2008), the error in annual or total snow/rain accumulation (Rajagopal and 921	

Harpold, 2016), performance under extreme conditions of precipitation amount and intensity, 922	

determination of the snow-rain elevation (Marks et al., 2013), and uncertainty arising from 923	

measurement error and accuracy. Comparison of different metrics across a wide-variety of sites 924	

and conditions is lacking but is greatly needed to advance cold-region hydrologic science. 925	

 926	

5.5 Develop spatially resolved products 927	

Many hydrological applications will benefit from gridded data products that are easily integrated 928	

into standard hydrological models. Currently, very few options exist for gridded data 929	

precipitation phase products. Instead, most hydrological models have some type of submodel or 930	

simple scheme that specifies precipitation phase as rain, snow, or mixed (see Section 4). While 931	

testing PPM with ground based observations could lead to improved submodels, we believe 932	

development of gridded forcing data may be an easier and more effective solution for many 933	

hydrological modeling applications. 934	

 935	

Gridded data products could be derived from a combination of remote sensing and existing 936	

model products, but would need to be extensively evaluated. The NASA GPM mission is 937	

beginning to produce gridded precipitation phase products at 3-hour and 0.1 degree resolution. 938	

However, GPM phase is measured at the top of the atmosphere, typically relies on simple 939	

temperature-thresholds, and is yet to be validated with ground based observations. Another 940	

existing product is the Snow Data Assimilation System (SNODAS) that estimates liquid and 941	

solid precipitation at the 1 km scale. However, the developers of SNODAS caution that it is not 942	

suitable for estimating storm totals or regional differences. Furthermore, to our knowledge the 943	

precipitation phase product from SNODAS has not been validated with ground observations. We 944	

suggest the development of new gridded data products that utilize new PPM (i.e. Harder and 945	

Pomeroy, 2013) and new and expanded observational datasets, such as atmospheric information 946	

and radar estimates. We advocate for the development of multiple gridded products that can be 947	

evaluated with ground observations to compare and contrast their strengths. Accurate gridded 948	

phase products rely on the ability to represent the physics of water vapor and energy flows in 949	

complex terrain (e.g. Holden et al., 2010) where statistical downscaling methods are typically 950	
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insufficient (Gutmann et al., 2012). This would also allow for ensembles of phase estimates to be 951	

used in hydrological models, similar to what is currently being done with gridded precipitation 952	

estimates.  953	

 954	

5.6 Characterization of regional variability and response to climate change 955	

The inclusion of new datasets, better validation of PPM, and development of gridded data 956	

products will poise the hydrologic community to improve hydrological predictions and better 957	

quantify regional sensitivity of phase change to climate changes. Because broad-scale techniques 958	

applied to assess changes in precipitation phase and snowfall have relied on temperature, both 959	

regionally (Klos et al., 2014; Pierce and Cayan, 2013; Knowles et al., 2006) and globally 960	

(Kapnick and Delworth, 2013; O’Gorman, 2014), they have not fully considered the potential 961	

non-linearities created by the absence of wet bulb depressions and humidity in assessment of 962	

sensitivity to changes in phase. Consequently, the effects of changes from snow to rain from 963	

warming and corresponding changes in humidity will be difficult to predict with the current 964	

PPM. Recent efforts by Rajagopal and Harpold (2016) have demonstrated that simple 965	

temperature thresholds are insufficient to characterize snow-rain transition across the western 966	

U.S. (Figure 3), perhaps because of differences in humidity. An increased focus on future 967	

humidity trends, patterns, and GCM simulation errors (Pierce et al., 2013) and availability of 968	

downscaled humidity products at increasingly finer scales (e.g.: assessments of the relative role 969	

of temperature and humidity in future precipitation phase changes. Recent remote sensing 970	

platforms, such as GPM, may offer an additional tool to assess regional variability, however, the 971	

current GPM precipitation phase product relies on wet bulb temperatures based on model output 972	

and not microwave-based observations (Huffman et al., 2015). Besides issues with either spatial 973	

or temporal resolution or coverage, one of the main challenges in using remotely sensed data for 974	

distinguishing between frozen and liquid hydrometeors is the lack of validation. Where products 975	

have been validated, the results are usually only relevant for the locale of the study area. 976	

Spaceborne radar combined with ground-based radar offers perhaps the most promising solution, 977	

but given the non-unique relationship between radar reflectivity and snowfall, further testing is 978	

necessary in order to develop reliable algorithms.  979	

 980	
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Future work is needed to improve projections of changes in snowpack and water availability 987	

from regional to global scales. This local to sub-regional characterization is needed for water 988	

resource prediction and to better inform decision and policy makers. In particular, the ability to 989	

predict the transitional rain-snow elevations and its uncertainty is critical information for a 990	

variety of end-users, including state and municipal water agencies, flood forecasters, agricultural 991	

water boards, transportation agencies, and wildlife, forest, and land managers. Fundamental 992	

advancements in characterizing regional variability are possible by addressing the research 993	

challenges detailed in sections 5.1-5.5. 994	

 995	

6. Conclusions 996	
Our review paper is a step towards communicating the potential bottlenecks in hydrological 997	

modeling caused by poor representation of precipitation phase (Figure 1). Our goals are to 998	

demonstrate that major research gaps in our ability to PPM are contributing to error and reducing 999	

predictive skill in hydrological modeling. By highlighting the research gaps that could advance 1000	

the science of PPM, we provide a roadmap for future advances (Figure 4). While many of the 1001	

research gaps are recognized by the community and are being pursued, including incorporating 1002	

atmospheric and humidity information, while others remain essentially unexplored (e.g. 1003	

production of gridded data, widespread ground validation, and remote sensing validation). 1004	

 1005	

The key points that must be communicated to the hydrologic community and its funding 1006	

agencies can be distilled into the following two statements: 1) current PPM algorithms are too 1007	

simple and are not well-validated for most locations, 2) the lack of sophisticated PPM increases 1008	

the uncertainty in estimation of hydrological sensitivity to changes in precipitation phase at local 1009	

to regional scales. We advocate for better incorporation of new information (5.1-5.2) and 1010	

improved validation methods (5.3-5.4) to advance our current PPM methods and observations. 1011	

These improved PPM algorithms and remote-sensing observations will be capable of developing 1012	

gridded datasets (5.5) and providing new insight that reduce the uncertainty of predicting 1013	

regional changes from snow to rain (5.6). A concerted effort by the hydrological and atmospheric 1014	

science communities to address the PPM challenge will remedy current limitations in 1015	

hydrological modeling of precipitation phase, advance of understanding of cold regions 1016	

hydrology, and provide better information to decision makers. 1017	
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 1477	

Figure 1: Precipitation phase has numerous implications for modeling the magnitude, storage, 1478	

partitioning, and timing of water inputs and outputs. Potentially affecting important 1479	

ecohydrological and streamflow quantities important for prediction. 1480	

1481	
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 1483	

Figure 2: The phase of precipitation at the ground surface is strongly controlled by atmospheric 1484	

profiles of temperature and humidity. While conditions exist that are relatively easy to predict 1485	

rain (a) and snow (b), many conditions lead to complex heat exchanges that are difficult to 1486	

predict with ground based observations alone (c). The blue dotted line represents the mixing 1487	

ratio. H, LE, f(sat), and r are abbreviations for sensible heat, latent heat of evaporation, function 1488	

of saturation and mixing ratio respectively. The arrow after H or LE indicate the energy of the 1489	

hydrometeor either increasing (up) or decreasing (down) which is controlled by other 1490	

atmospheric conditions.  1491	
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	1498	

Figure 3: The optimized critical maximum daily temperature threshold that produced the lowest 1499	
Root Mean Square Error (RMSE) in the prediction of snowfall at Snow Telemetry (SNOTEL) 1500	
stations across the western US (adapted from Rajagopal and Harpold, 2016). b) Precipitation day 1501	
relative humidity averaged over 1981-2015 based on the Gridmet dataset (Abatzoglou, 2013).   1502	
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	1504	

	1505	

 1506	

Figure 4: Conceptual representation of the research gaps and workflows needed to advance PPM 1507	

and improve hydrological modeling. 1508	
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Table 1. Common hydrological models and the precipitation phase prediction (PPM) technique 1512	
employed. The citation referring to the original publication of the model is given. 1513	

	1514	

* by default. Temperature-phase-density relationship explicitly specified by user.  1515	

+ A flag is specified which switches between, static threshold,	linear	transition.	1516	

	1517	

	1518	

	1519	

	1520	

	1521	

	1522	

	1523	

Model PPM technique Citations 
Discrete Models (not coupled) 
HBV Static Threshold Bergström, 1995 
Snowmelt Runoff Model Static Threshold Martinec et al., 2008 
SLURP Static Threshold Kite, 1995 
UBC Watershed Model Linear Transition Pipes and Quick, 1977 
PRMS model Minimum & Maximum Temperature Leavesley et al., 1996 
USGS water budget Linear transition between two mean temps McCabe and Wolock, 1999a 
SAC-SMA (SNOW-17) Static Threshold Anderson, 2006 
DHSVM Linear transition (double check) Wigmosta et al., 1994 
SWAT Threshold Model Arnold et al., 2012 
RHESSys Linear transition or input phase Tague and Band, 2004 
HSPF Air and dew point temperature thresholds Bicknell et al., 1997 
THE ARNO MODEL Static Threshold Todini, 1996 
HEC-1 Static Threshold HEC-1, 1998 
MIKE SHE Static Threshold MIKE-SHE User Manual 
SWAP Static Threshold Gusev and Nasonova, 1998 
BATS Static Threshold Yang et al., 1997 
Utah Energy Balance Linear Transition Tarboton and Luce, 1996 
SNOBAL/ISNOBAL Linear Transition* Marks et al., 2013 
CRHM Static Threshold Fang et al., 2013 
GEOTOP Linear Transition Zanotti et al. 2004 
SNTHERM Linear Transition SNTHERM Online Documentation 
Offline LS models 
Noah Static Threshold Mitchell et al., 2005 
VIC Static Threshold VIC Documentation 
CLASS Multiple Methods+ Verseghy, 2009 
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Table 2: Remote sensing technologies useful to precipitation phase discrimination organized into 1524	
ground-based, spaceborne with passive microwave, and passive with active microwave. The 1525	
table describes the variables of interest, their temporal and spatial coverage, and associated 1526	
references. 1527	

Technology Variables  Spatial resolution; 
coverage 

Temporal 
resolution, period of 
record 

References  

Ground-based systems    

Vertically pointing, 
single polarized 915-
MHz Doppler wind 
profilers 

Reflectivity, brightband 
height, Doppler vertical 
velocity 

100 m vertical 
resolution; deployed 
locally in Sierra 
Nevada basins 

Hourly, Winters 
1998, 2001 - 2005 

White et al., 2002; 
Lundquist et al., 2008 

     
NEXRAD  
Dual polarized radar 

Reflectivity1, hydrometeor 
classification1, melting 
layer1, hybrid hydrometeor 
classification1 

0.5° azimuthal by 
250 m; range 460 
km; 
Nationwide2 

5 - 10 minutes; 20113 
- present 

Giangrande et al., 
2008; Park et al., 
2009; Elmore, 2011; 
Grazioli et al., 2015 

     
Spaceborne systems: Passive microwave    

NOAA-15,  
NOAA-16, 
NOAA-17 Advanced 
Microwave Sounding 
Unit-A, B 

Brightness temperature 48 km (AMSU-A), 
16 km (AMSU-B); 
global coverage, 
with 22000 km 
swath  

For two platforms, 6 
hours revisit time; 
three platforms, 4 
hours revisit time4; 
1998 - present 

Kongoli et al., 2003 

     
SUOMI-NPP 
Advanced Technology 
Microwave Sounder 

Brightness temperature 15 - 50 km; global 
coverage, with 2200 
km swath  

Daily; 2011 - present Kongoli et al., 2015 

     
GPM Core 
Observatory 
Microwave Imager 
 

Brightness temperature 4.4 km by 7.3 km; 
global coverage, 
904 km swath 

2014 to present Skofronick-Jackson 
et al., 2015 

Spaceborne systems: Active microwave     

Cloud Profiling Radar 
(CPR) 

Radar reflectivity, 
2C-SNOW-PROFILE 

1.4 by 1.7 km; 
swath 1.4 km 

16 days; 2006 to 
present 

Wood et al., 2013; Cao 
et al., 2014; Kulie et al., 
2016; 

     
GPM Core 
Observatory Dual-
frequency Precipitation 
Radar 

Radar reflectivity 5 km; global 
coverage, 120 - 245 
km swath 

2 – 4 hours; 2014 to 
present 

Skofronick-Jackson et 
al., 2015 

      
Notes: 1528	
1. Operational products available from NOAA (2016). The operational products are not ground validated, except 1529	
where analyzed for specific studies.  1530	
2. The dates given here represent the first deployments. Data temporal coverage will vary by station.  1531	
3. Gaps in coverage exist, particularly in Western States. 1532	
4. Similar instruments mounted on the NASA Aqua satellite and the European EUMETSAT MetOp series. Taking 1533	
into account the similar instrumentation on multiple platforms increases the temporal spatial resolution 1534	
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schemes and the potential influence of temperature-only PPM in large-scale forecasting 
of phase under changing climate.  Line numbers refer to track changes version of 
document. 
Response to specific comments: 

1) Line 21: Change “The review” to “This review” or “Our review”. The previous sen 
tence structure made it unclear which review is being referred to and required the reader 
to go back to the previous sentence wondering what review is being mentioned.  
This was changed.  We also made similar changes on line 154 and 998. 

2) Line 184: either here or elsewhere, it should be mentioned that it is important to 
validate these microphysics (or other properties if you move this to the discussion) over 
various land surfaces / types. A microphysics scheme that performs well in Iowa (flat 
prairie) may not perform well over Idaho (complete mountain terrain) or the Oregon 
Cascades (coastal warm snow).  
This was expanded on line 235 to read “The rain-snow line predicted by atmospheric 
models is very sensitive to these microphysics (Minder, 2010) and validating the 
microphysics across locations with complex physiography is challenging.” 

We agree that a discussion of verifying the microphysics schemes, in particular for the 
complex terrain that is the focus of the paper, would strengthen the paper.  We have a 
added several sentences beginning on line 701-709: “These schemes vary greatly in their 
accuracy with “mixed phase” schemes generally producing the most accurate simulations 
of precipitation phase in complex terrain where much of the water is supercooled (Lin, 
2007; Reisner et al., 1998; Thompson et al., 2004; Thompson et al., 2008; Morrison et al., 
2005; Zängl, 2007; Kaplan et al., 2012). Comprehensive validation of the microphysical 
schemes over different land surface types (e. g. warm maritime, flat prairie, etc.) with a 
focus on different snowfall patterns is lacking. In particular, in transition zones between 
mountains and plains or along coastlines, the complexity of the microphysics becomes 
even more extreme due the dynamics and interactions of differing air masses with distinct 
characteristics.” 

3) Line 248: The “(“ should be moved to before 1967 based on how the reference is 
integrated into the sentence  

This was corrected. 
4) Line 303: need parenthesis instead of brackets 

This was corrected. 
5) Lines 433, 601: a space is needed between references  

This was corrected.   



6) Line 583: what is meant by “performing the best”? The best precipitation over 
mountains? Lowest errors in climatology? Lowest errors in variability? Please clarify.  

This was clarified on line 701: “These schemes vary greatly in their accuracy with 
“mixed phase” schemes generally producing the most accurate simulations of 
precipitation phase in complex terrain where much of the water is supercooled (Lin, 
2007; Reisner et al., 1998; Thompson et al., 2004; Thompson et al., 2008; Morrison et al., 
2005; Zängl, 2007; Kaplan et al., 2012).”   
7) Line 641: “too” not “to”  

This was corrected. 
8) Line 783 and Figure 3: The authors should consider adding an accompanying western 
U.S. climatology map of humidity to show it has significant spatial variability (implied 
by the statement here and similar ones elsewhere, but not presently shown).  

This is a good suggestion.  We will add a map as a second panel to Figure 3 using the 
University of Idaho Gridded Meteorological Datasets, which is essentially NLDAS-2 
data downscaled to 4 km. 
9) Conclusion/Discussion: I would like to see a paragraph added here or in the previous 
section (5.6) discussing the implications of this review / points raised for findings from 
climate change studies focused on snowfall. For example, there are several done at the 
global scale / continental scale (O’Gorman 2014; Cayan and Pierce. 2013; Kapnick and 
Delworth 2012). These studies present large-scale changes in snowfall mainly due to 
temperature (all use temperature-based metrics for phase partitioning), but based on this 
review, miss the non-temperature induced sensitivity of phase type, likely with nonlinear 
consequences. Should the changes found in these studies be expected as the temperature 
signal at some point overwhelms all other signals? Or might the differences due to 
climate change be non-linear in all cases? A nice final point of this manuscript would 
place this study within the framework of these larger scale studies / findings as it is 
implied that reviewing and exploring phase type will have consequences for 
understanding future water availability and change.  

This is an excellent point that was hinted at in the discussion but not fully addressed.  We 
expanded section 5.6 on line 861 to read: “Because broad-scale techniques applied to 
assess changes in precipitation phase and snowfall have relied on temperature, both 
regionally (Klos et al., 2014; Pierce and Cayan, 2013; Knowles et al., 2006) and globally 
(Kapnick and Delworth, 2013; O’Gorman, 2014), they have not fully considered the 
potential non-linearities created by the absence of wet bulb depressions and humidity in 
assessment of sensitivity to changes in phase.”   
The questions raised about the non-temperature induced sensitivity of phase type in the 
future is an excellent point for future work, and is beyond the scope of this review. Future 
work to address these questions is now called for in this paragraph with explicit 
references to studies and data products that could enable such investigations to proceed 
on line 867: “An increased focus on future humidity trends, patterns, and GCM 
simulation errors (Pierce et al., 2013) and availability of downscaled humidity products at 
increasingly finer scales (e.g.: Abatzoglou, 2013; Pierce and Cayan, 2016) will enable 



detailed assessments of the relative role of temperature and humidity in future 
precipitation phase changes.” 
 
10) Figure 1: The arrows and curly bracket should be changed to be a different color (not 
grey) to provide contrast. Perhaps red or blue? They presently do not stand out easily / 
show the movement of information as presently shown. A more contrasting color choice 
will make this figure easier to read and understand.  
We agree and have made these changes to a new figure. 



Response to reviewer #2 

We appreciate the reviewer’s constructive and specific comments on the manuscript.  We 
have addressed all the minor editorial comments and responded to the more detailed 
comments in blue text below.  We agree that the sign of a good review paper is creating 
something new from the gathered information, which was the objective of Section 5.  We 
will bolster that effort by following the reviewer’s recommendation about more details on 
the incorporation of atmospheric models into PPM and better explaining the 
importance/role of complex terrain. Line numbers refer to track changes version of 
document. 
 

2 Specific comments  
2.1 Synopsis of remotely sensed information  

Section 3.2 and 3.3 are quite long indicating an emphasis on remotely sensed 
observations. After reading the two sections I feel that a synopsis is missing with general 
information about the applicability of those observations for PPM, which seems a bit lost 
in the detailed description in these long sections. I would suggest a summarizing 
paragraph, or an overview table with the following items, for example: description, 
coverage, availability, resolution, validated, references. The remotely sensed observations 
do also hardly appear in section 5 (Research Gaps), while the need to validate these 
products, was mentioned in the abstract. This synopsis can also be placed in the very 
short Conclusion section, in which the remotely sensed observations are also only very 
briefly mentioned (line 800).  

We agree that a reader could get lost in the details of this section and not see the bigger 
picture.  To improve this section, we have added both a brief overview at the beginning 
of section 3.2 and 3.3, as well as a table that more succinctly summarizes the 
technologies.  The research gaps section did discuss remote sensing in section 5.2 and 
5.5.  Section 5.6 had the following sentence added on line 970: “Recent remote sensing 
platforms, such as GPM, may offer an additional tool to assess regional variability, 
however, the current GPM precipitation phase product relies on wet bulb temperatures 
based on model output and not microwave-based observations (Huffman et al., 2015). 
Besides issues with either spatial or temporal resolution or coverage, one of the main 
challenges in using remotely sensed data for distinguishing between frozen and liquid 
hydrometeors is the lack of validation. Where products have been validated, the results 
are usually only relevant for the locale of the study area. Spaceborne radar combined with 
ground-based radar offers perhaps the most promising solution, but given the non-unique 
relationship between radar reflectivity and snowfall, further testing is necessary in order 
to develop reliable algorithms.” 
 
The first paragraph of section 3.2 now reads “Ground-based remote sensing observations 
have been available for several decades to detect precipitation phase using radar. Until 
recently, most ground-based radar stations were operated as conventional Doppler 
systems that transmit and receive radio waves with single horizontal polarization. 
Developments in dual polarization ground radar such as those that function as part of the 



U.S. National Weather Service NEXRAD network (NOAA, 2016), have resulted in 
systems that transmit radio signals with both horizontal and vertical polarizations. In 
general, ground-based remote sensing observation, either single or dual-pol, remain 
underutilized for detecting precipitation phase and are challenging to apply in complex 
terrain (Table 2).” 
 
The first paragraph is Section 3.3 now reads “Spaceborne remote sensing observations 
typically use passive or active microwave sensors to determine precipitation phase (Table 
2). Many of the previous passive microwave systems were challenged by coarse 
resolutions and difficulties retrieving snowfall over snow-covered areas. More recent 
active microwave systems have advantage for detecting phase in terms of accuracy and 
spatial resolution, but remain largely unverified. Table 2 provides and overview of these 
space-based remote sensing technologies that are described in more detail below.” 
Table 2 has information on single polarized and dual-polarized ground radar, and 
spaceborne passive and active microwave sensors.  The information in the table will 
include description, spatial resolution, temporal resolution, phase validation, and relevant 
references. 
2.2 Incorporation of atmospheric information  

The authors describe well in section 4.2 the problematic scale issue between kilometer- 
scaled atmospheric models and processes influencing PP which act on a finer resolution. 
They emphasize that “. . .grid cells are averages requiring hydrological modellers to 
consider effects of elevation, aspect, etc. in resolving precipitation phase fractions for 
finer-scaled models.” (l588ff). I think this is a very relevant topic and I would like to see 
this topic further discussed in the research gap section, maybe even with some conceptual 
ideas and/or reference to existing work, or – if not existent – references to similar work 
done by the downscaling community to represent unresolved variability on the sub-grid 
scale.  
We agree that model scale is an important effect to consider and have added text to 
section 5.2 staring on line 845: “Historically, meteorological models have not been run at 
spatial scales capable of resolving convective dynamics (e.g. <2 km), which can 
exacerbate error in precipitation phase prediction in complex terrain with a moist neutral 
atmosphere. Coarse meteorological models also struggle to produce pockets of frozen 
precipitation from advection of moisture plumes between mountain ranges and cold air 
wedged between topographic barriers. However, reduced computational restrictions on 
running these models at finer spatial scales and over large geographic extents (Rasmussen 
et al., 2012) are enabling further investigations into precipitation phase change under 
historical and future climate scenarios. This suggests that finer dynamical downscaling is 
necessary to resolve precipitation phase which is consistent with similar work attempting 
to resolve winter precipitation amount in complex terrain (Gutmann et al., 2012).” 
The authors also promote in section 5.5 (Develop spatially resolved products) the benefit 
of gridded products. Since these products probably suffer the same scale problems as 
mentioned in l588 for atmospheric models, the authors may discuss this aspect of 
including sub-grid variability here as well.  



We agree and add this sentence in section 5.5 beginning on line 948: “Accurate gridded 
phase products rely on the ability to represent the physics of water vapor and energy 
flows in complex terrain (e.g. Holden et al., 2010) where statistical downscaling methods 
are typically insufficient (Gutmann et al., 2012).” 

2.3 Specific conclusions for complex terrain  
The authors mention in the abstract that the manuscript “. . .conveys the advancements 
needed to improve predictions in complex terrain...” (l22f) and that in complex terrain 
robust observation networks are missing (l26f). I cannot find many details in the 
manuscript which allow formulating such a focus on complex terrain in the abstract. I 
suggest adding a paragraph in the research gap section summarizing specific issues in 
complex terrain.  
The reviewer makes an important point that we address in numerous places within the 
manuscript.  On line 235: “The rain-snow line predicted by atmospheric models is very 
sensitive to these microphysics (Minder, 2010) and validating the microphysics across 
locations with complex physiography is challenging.”  Line 250: “Few research stations, 
however, have this benefit, particularly in many remote regions and in complex terrain.”. 
On line 349: “In general, ground-based remote sensing observation, either single or dual-
pol, remain underutilized for detecting precipitation phase and are challenging to apply in 
complex terrain (Table 2).”  On line 701: “These schemes vary greatly in their accuracy 
with “mixed phase” schemes generally producing the most accurate simulations of 
precipitation phase in complex terrain where much of the water is supercooled (Lin, 
2007; Reisner et al., 1998; Thompson et al., 2004; Thompson et al., 2008; Morrison et al., 
2005; Zängl, 2007; Kaplan et al., 2012). Comprehensive validation of the microphysical 
schemes over different land surface types (e. g. warm maritime, flat prairie, etc.) with a 
focus on different snowfall patterns is lacking. In particular, in transition zones between 
mountains and plains or along coastlines, the complexity of the microphysics becomes 
even more extreme due the dynamics and interactions of differing air masses with distinct 
characteristics.”   

We add a new section (5.1) in at the beginning of the research gap section: “Intensive 
field campaigns are extremely effective approaches to address fundamental research gaps 
focused on the discrimination between rain, snow, and mixed-phase precipitation at the 
ground by providing opportunities to test novel sensors, and detailed datasets to develop 
remote sensing retrieval algorithms, and improve PPM estimation methods. The recent 
Global Precipitation Measurement (GPM) Cold Season Precipitation Experiment 
(GCPEx) is an example of such a campaign in non-complex terrain where simultaneous 
observations using arrays of both airborne and ground-based sensors were used to 
measure and characterize both solid and liquid precipitation (e.g. Skofronick-Jackson et 
al., 2015). Similar intensive field campaigns are needed in complex terrain that is 
frequently characterized by highly dynamic and spatially variable hydrometeorological 
conditions. Such campaigns are expensive to conduct, but can be implemented as part of 
operational nowcasting to develop rich data resources to advance scientific understanding 
as was very effectively done during the Vancouver Olympic Games in 2010 (Isaac et al., 
2014; Joe et al., 2014). The research community should utilize existing datasets and 
capitalize on similar opportunities and expand environmental monitoring networks to 
simultaneously advance both atmospheric and hydrological understanding, especially in 



complex terrain spanning the rain-snow transition zone. ”  We also add this sentence to 
section 5.2: “In complex terrain, air temperature can also vary dramatically at relatively 
small scales from ridgetops to valley bottoms due to cold air drainage (Whiteman et al., 
1999) and hence can introduce errors into inferential techniques such as these.”  Multiple 
sentences are added to section 5.3: “Historically, meteorological models have not been 
run at spatial scales capable of resolving convective dynamics (e.g. <2 km), which can 
exacerbate error in precipitation phase prediction in complex terrain with a moist neutral 
atmosphere. Coarse meteorological models also struggle to produce pockets of frozen 
precipitation from advection of moisture plumes between mountain ranges and cold air 
wedged between topographic barriers. However, reduced computational restrictions on 
running these models at finer spatial scales and over large geographic extents (Rasmussen 
et al., 2012) are enabling further investigations into precipitation phase change under 
historical and future climate scenarios. This suggests that finer dynamical downscaling is 
necessary to resolve precipitation phase which is consistent with similar work attempting 
to resolve winter precipitation amount in complex terrain (Gutmann et al., 2012).”  And 
an additional sentence in section 5.5: “Accurate gridded phase products rely on the ability 
to represent the physics of water vapor and energy flows in complex terrain (e.g. Holden 
et al., 2010) where statistical downscaling methods are typically insufficient (Gutmann et 
al., 2012).”               
2.4 Formality issues  

I would in general like to see page numbers to relevant sections when citing a book (or 
similar). One prominent example is the book authored by the U.S. Army Corps of 
Engineers, which regularly is available as a non-searchable pdf document or as a 
hardcopy. It contains various topics relevant to snow hydrology. To find the cited 
paragraph without mentioning page numbers is nearly impossible. I think this example 
shows that the standard of including page numbers when citing books and similar long 
references should be used. Similarly, the authors have not included access dates for all 
cited URL (e.g. line 200, line 1077 and others). Some cited references appear different 
than others (sometimes white spaces between “;” sometimes italic “et al.”, sometimes 
with square brackets). More importantly, there are a few citations which do not appear in 
the reference list. These points are mentioned in my section “Comments line by line” 
below.  

We appreciate the reviewer’s attention to detail and have corrected these in the text and 
references. 

2.5 Motivate Figures in the text  
Figure 1 and Figure 4 are hardly described in the text, although containing important 
information. I would suggest that the authors link their text closer to those Figures, 
especially to Figure 1 which shows the consequences of wrong PP in a hydrological 
model.  
This is a good point by the reviewer.  We add additional references to Figure 1 in the 
introduction.  We also add this sentence to the beginning of section 5: “The cascading 
effects of incorrectly predicting precipitation phase lead to cascading effects on 
hydrological modeling (Figure 1).”  We also better reference Figure 4 at the beginning of 
section 5 and within section 5.5.   



2.6 Explain abbreviations and lines in Figure 2  
It is not clear to me what the blue dotted line is (probably the mixing ratio). I would also 
suggest to add the used abbreviations for H, LE, f(sat), r etc in the caption. The arrow 
after H or LE should probably indicate that the energy of the hydrometeor is increasing 
because of a sensible heat transfer? Please clarify these uncertainties.  
The following lines have been added to the caption for figure 2: “The blue dotted line 
represents the mixing ratio. H, LE, f(sat), and r are abbreviations for sensible heat, latent 
heat of evaporation, function of saturation and mixing ratio respectively. The arrow after 
H or LE indicate the energy of the hydrometeor either increasing (up) or decreasing 
(down) which is controlled by other atmospheric conditions.” 

 
3 Comments line-by-line 
Line 33ff: This sentence is the same as the previous.  
This was deleted. 

Line 200/208: Please use access dates with URLs. I suggest putting the links in the 
reference list.  

This was corrected throughout the document. 
Line 231: Lejeune not in reference list. 

This was incorrect and changed to L'hôte et al., 2005. 
Line 265. Not clear which the comparison study is. 

This was corrected to read: In a comparison study by Caraccioloa et al., (2006), the 
PARSIVEL optical disdrometer, originally described by Loffler-Mang et al. (1999) did 
not perform well against a 2DVD because of problems related to the detection of slow 
fall velocities for snow. 
Line 354. The cited study is called Arkin and Ardanuy (1998). 
This was corrected to 1989. 
Line 411 and elsewhere: Kulie and Bennartz (2003) not in reference list  
This was corrected. 

Line 539: Froidurot wrongly spelled. 
This was corrected 
Line 945: no page numbers 
This was corrected 
Line 973: Krug (1995) and Bergström (1995) refer to the same document . 
This was corrected 

Line 978: Missing page numbers 
This was corrected 
Line 1037/1040: Please use McCabe and Wollock (1999a) and (1999b)  
This was corrected. 



Line 1213: two times YE et al. (2013) in reference list 
This was corrected 
Line 1178: delete “publication info” and add page numbers 
This was corrected 
Table 1: McCabe and Wollock (2009) not in reference list.  
This was corrected 

 
 


