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Abstract. Commonly used bias correction methods such as quantile mapping (QM) assume the function of error correction

values between modelled and observed distributions are stationary or time-invariant. This article finds that this function of

the error correction values cannot be assumed to be stationary. As a result, QM lacks justification to inflate/deflate various

moments of the climate change signal. Previous adaptations of QM, most notably quantile delta mapping (QDM), have been

developed that do not rely on this assumption of stationarity.  Here, we outline a methodology called scaled distribution

mapping (SDM), which is conceptually similar to QDM, but more explicitly accounts for the frequency of rain days and the

likelihood of individual events. The SDM method is found to outperform QM, QDM and detrended QM in its ability to

better preserve raw climate model projected changes to meteorological variables such as temperature and precipitation.
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1 Introduction

Bias correction of climate model projections is often performed in order to properly assess the impacts of climate change on

human and environmental resources (Berg et al.,  2003; Ines and Hansen, 2006; Muerth et al., 2013; Teng et al.,  2015).

Removing model bias is particularly useful for impact studies involving hydrological models, where runoff is a nonlinear

function of precipitation (Christensen et al., 2008; Mauer and Hidalgo, 2008; Hagemann et al., 2011). Global climate models

(GCMs) provide large-scale projections for many climate variables (IPCC, 2013). However, many climate processes and

landscape features are not resolved at the coarse resolution of current GCMs. To bridge this gap, regional climate models

(RCMs) are commonly used to downscale GCM data to a higher resolution. Even though RCMs can provide added value

(Fowler et al., 2007; Feser et al., 2011; Di Luca et al., 2013; Kotlarski, 2014), systematic errors in the model output still exist

(Mearns et al., 2012; Sillmann et al., 2013). 

Numerous  statistical  bias  correction  methodologies  have  been  developed  to  remove  systematic  model  errors

(Schmidli et al, 2006; Boé et al., 2007; Lenderink et al., 2007; Leander et al., 2008; Gellens and Roulin, 2012; Chen et al.,

1

5

10

15

20

25

30



2013). The methods adjust the modelled mean, variance, and/or higher moments of the distribution of climate variables, to

more closely match the observations. Quantile mapping (QM) has been a widely used method due to its ability to handle

higher order moments in addition to being computationally efficient (Wood et al., 2004; Piani et al., 2010; Themeßl et al.,

2011; Gudmundsson et al., 2012; Teutschbein and Seibert, 2013). Standard QM assumes that the function of error correction

values found in a calibration period can be applied to any time period of interest. This is referred to as the stationarity

assumption or the time-invariant assumption (Christensen et al., 2008; Maraun, 2012; Themeßl et al., 2012; Brekke et al.,

2013; Chen et al., 2013). The assumption of stationarity, in QM, is responsible for inflating (or altering) the raw model

projections of climate change (Maruer and Pierce, 2014). 

In  this  study,  we  focus  specifically  on  the  performance  of  bias  correction  and  not  issues  related  to

downscaling/upscaling (Mauran, 2013). We have divided the study in two main sections: Sect. 3 and Sect. 4. In Sect. 3, first

we begin by testing the stationarity assumption used in QM and the implications of this assumption. Second, we use a

synthetic example to investigate the potential advantages of using a parametric instead of a non-parametric approach. Third,

we illustrate the problems associated with validating bias correction methods using a split-sample or cross-validation test. In

Sect. 4, a new bias correction method called scaled distribution mapping (SDM) is outlined. Finally, Sect. 5 compares and

discusses the performances of SDM with other methods. 

2 Data

Climate model data in this study uses projections of daily mean temperature and precipitation values from the KNMI-

RACMO22E regional climate model. The KNMI-RACMO22E RCM was forced with the ICHEC-EC-EARTH GCM, and it

is one of the model projection runs in the EURO-CORDEX project. The data can be found on any of the ESGF repositories

containing EURO-CORDEX (e.g., https://pcmdi.llnl.gov/projects/esgf-llnl/). The model data for the years 1951-2005 and

2006-2100 correspond to the historical and RCP 8.5 (ESGF naming: r1i1p1) scenarios, respectively. Observational data for

mean temperature and precipitation were obtained from the E-OBS data set (Haylock et al., 2008). The KNMI-RACMO22E

climate data was upscaled from its original 0.11° resolution to the 0.5° E-OBS resolution. 

3 Bias correction: Methods, limitations and evaluation

Over the years, numerous bias correction methods have been developed using univarite and multivariate approaches (Gellens

and Roulin, 1998; Wood et al., 2004; Schmidli et al., 2006; Boe et al., 2007; Leander and Buishand, 2007; Lenderink et al.,

2007; Li et al., 2010; Maraun et al., 2010; Piani et al., 2010; Themeßl et al., 2011; Piani and Haerter, 2012). In this study, we

focus our study on univariate bias correction methods. 

Many popular existing bias correction methods have been reviewed and compared and quantile mapping (QM) was

found to outperform other methods (Gudmundsson et al.,  2012; Teutschbein and Seibert, 2012; Teutschbein and Seibert
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2013; Chen et al., 2013). At the same time, studies have pointed out serious problems that arise when using QM for bias

correction (Hagemann et al., 2011; Themeßl et al., 2012). In particular, the method can alter the raw model projected changes

(Themeßl et al., 2012; Maurer and Pierce, 2014). This inflation or deflation of the raw simulated climate change signal exists

as an artefact of the stationarity assumption. The impact that the stationarity assumption has on QM bias corrected data is

discussed in more detail in Sect. 3.1. 

More recently,  the standard non-parametric  QM method has been adapted to more explicitly preserve the raw

modelled climate change signals (Michelangeli et al., 2009; Olsson et al., 2009; Willems and Vrac, 2011; Sunyer et al., 2014;

Wang and Chen, 2014; Cannon et al., 2015). Hempel et al. (2013) and Bürger et al. (2013) both used a form of detrended

QM (DETQM) that better preserved monthly trends, but the daily values still are subject to the stationarity assumption which

can ultimately result in altering the raw modelled projected change. Extending previous work (e.g., Olsson et al., 2009;

Bürger et al., 2013), Cannon et al. (2015) modified the QM method and outlined an approach called quantile delta mapping

(QDM). QDM is a break from other typical QM methods insofar that it is not constrained by the stationarity assumption. An

example of QM versus QDM is shown in Figure 1. In the traditional QM method, a raw modelled value is always corrected

by the same value of bias or error that is determined by its respective quantile in the calibration period. On the other hand,

QDM multiplies observed values by the ratio of the modelled values (period of interest divided by calibration period) at the

same quantiles. Our proposed bias correction methodology, scaled distribution mapping (SDM), share some similarities with

QDM, however there are three important distinctions: 1) SDM uses a parametric model instead of a non-parametric one, 2)

SDM and QDM handle days with zero rainfall very differently, and 3) SDM more accurately accounts for the differences in

the modelled variances, for temperature, between the period of interest and the calibration period.   

3.1 Stationarity and quantile mapping

Independent  of  downscaling,  bias  correction with QM is  well  known to alter  the  raw modelled  climate change signal

(Hagemann et al., 2011; Themeßl et al., 2012; Brekke et al., 2013; Maurer et al., 2013; Pierce et al., 2013; Maurer and

Pierce, 2014). This alteration of the raw modelled climate change signal can be attributed to the stationarity assumption

which implies that the error correction values established in a calibration period can be applied to any time period within or

outside the calibration time period. These error correction values can differ, in both magnitude and sign, as a function of

quantile. In the context of a warming climate, raw model projected temperature values will result in QM disproportionately

sampling error correction values from higher quantiles that were established in the calibration period. Depending on whether

the error correction values at the higher quantiles are greater or lesser than those at lower quantiles, this will inflate or deflate

the raw model projected climate change. For example, consider a model (in the calibration period) has an uncorrected (raw)

value of 10°C that corresponds to the quantile where the empirical cumulative distribution function (ECDF) equals 0.8, and a

value of 0°C corresponds to the quantile where ECDF equals 0.2. While at these same quantiles (ECDFs of 0.8 and 0.2),

observations are 12°C and 3°C, respectively. Furthermore, the model is projecting more future values at 10°C. As a result,
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QM will deflate or under-represent the raw model projected change. This is due to the fact that QM is more often using a

2°C error correction value (12°C-10°C, at ECDF of 0.8) instead of the 3°C (3°C-0°C, at ECDF of 0.2) correction. 

Altering of the raw model’s climate change signal could be justified with QM if one finds that the stationarity

assumption  is  justified.  We tested  the  stationarity assumption  by investigating  whether  the  error  correction  values  are

independent  of  the  calibration period.  To do this,  the same daily data in  the future time period (2071-2100) was bias

corrected via standard QM, separately for each month, using two different calibration periods (1951-1980 and 1976-2005).

Figure 2 shows how sensitive QM is to using two different calibration periods to bias correct these same future values.

Figures  2a  and  2b  show the  sensitivity for  temperature  and  precipitation,  respectively.  There  are  instances  where  this

sensitivity to the calibration period is nearly as large as the raw model projected mean changes. This illustrates how unstable

the error correction values in QM can be. If stationarity was a valid assumption, all the map colours in Figure 2 would be

much closer to grey. The calibration period largely influences the error correction values, and as a result, the stationarity

assumption is invalid. As an additional test, we performed the bias correction using a parametric implementation of QM and

found the error correction values to be equally sensitive to the chosen calibration period.

The results shown in Figure 2 have broad implications for QM. First, it shows that one cannot confidently correct a

specific modelled value with a specific error correction value.  As an example, a raw modelled value of 50 mm can be

corrected by -15 mm using one calibration period and +5 mm in another, leading to two very different bias corrected values

of 35 mm and 55 mm, respectively. The effect that the calibration period has on QM can be mitigated to some extent by

calibrating on longer historical records (Teng et al., 2015). However, one can never be sure that these error correction values

have converged to be completely independent of time. Second, due to the fact that the error correction values in QM are not

stationary, the altering of the climate change signal that results from this assumption is unjustified. Therefore, until some bias

correction method provides proper justification to manipulate and alter the raw model projected climate change signal, a

better performing method should strive to preserve the original projected changes.

3.2 Parametric versus non-parametric methodological approaches

In a non-parametric method such as QM, there is an implicit assumption that each respective quantile is equally probable. In

other words, the largest observed and modelled quantiles both correspond to the same empirical cumulative distribution

function (ECDF) value. Therefore, is it safe to assume that events that share the same ECDF value are equally probable? To

test this assumption, synthetic precipitation data was used to evaluate if events of equal quantiles can be treated as being

equally probable. Figure 3 shows two distributions (referred to as Obs and Mod), each consisting of 200 values randomly

sampled from the same gamma distribution with shape parameter equal to 0.8 and scale parameter equal to 12.0. Figure 3a

shows the empirical distributions, while Figure 3b shows the fitted distributions of the same data. In this example, the largest

quantiles from Obs and Mod are 32.8 and 57.3. In a non-parametric method like standard QM, the correction applied to the

largest Mod quantile (to bias correct this quantile) is simply the difference between the largest quantile from Mod and Obs
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(depicted by the blue line with arrows). The absolute value of this difference is 24.5. When gamma distributions are fit to the

empirical Obs and Mod data, it is found that the largest quantile of Obs (with the value of 32.8) corresponds to a fitted CDF

of 0.993 while the largest quantile of Mod (with the value of 57.3) corresponds to a fitted CDF of 0.998. Using the fitted

distributions, one can find the corresponding Mod value at the same expected Obs CDF of 0.993. In this example, that value

is 44.8. Then our expected difference between events of the same expected probability has been reduced from 24.5 to 12.0

(where 24.5 = 57.3-32.8 and 12.0 = 44.8-32.8), depicted again as the blue line with arrows in Figure 2b. With this one

example case, it is impossible to know if we are truly gaining information by accounting for differences in event likelihood. 

Figure 4 shows the results of a 1000 randomly generated Obs and Mods values for distribution sizes of 100 and

10,000. Again, the values are randomly sampled from the same gamma distribution with shape parameter equal to 0.8 and

scale parameter equal to 12.0. Figures 4a and 4d show the possible scenarios of ECDFs for the different distribution sizes.

Figures 4b and 4e show the counts of the absolute differences between the extreme values using the non-parametric method

(blue line) and the parametric method (green line). Similarly, Figures 4c and 4f show the counts of the absolute differences,

averaged over the entire distribution, between the values using the non-parametric and the parametric method. One can

clearly see the usefulness of a parametric method over a non-parametric method as the sample size increases. With a sample

size of 10,000 values, there can still be large differences between the most extreme quantiles of each distribution. However,

with larger sample sizes, we are converging on identical distributions for Obs and Mod. Therefore, the magnitude of the

differences between extreme quantiles, is simply due to sampling noise. On the other hand, if a distribution is fit to the data

first, then one gains information regarding the expected probabilities of specific events taking place with respect  to the

underlying distribution. This allows the parametric method to reduce the error associated with sampling noise over that of the

non-parametric method. 

3.3 Validating bias correction methods

Split-sample  or  cross-validation tests  are  commonly used  to  validate  how well  bias  correction methods perform under

changing conditions (Maurer and Pierce, 2014; Klemeš, 1986; Wang and Chen, 2014; Piani et al., 2010). Typically, a period

is  chosen  for  calibrating  the  bias  correction  parameters  and  then  different  bias  correction  methods'  performances  are

compared in a validation period. For example, bias correction parameters might be fit in a calibration period such as 1951-

1980. Then, the performances of different methods are evaluated by comparing the bias corrected data to observations for the

period 1981-2010. Unfortunately, split-sample tests that directly compare observations to bias corrected model data, for a

time  period  outside  of  calibration,  cannot  distinguish  between  bias  correction  methodological  performance  and  the

performance of the underlying raw model. In this study. we define model performance by how well the raw model simulates

changes to the statistical distribution of a climate variable with respect to observed changes to the distribution. 

The following example  is  used  to  illustrate  how split-sample  tests  are  not  suitable  to  validate  bias  correction

methods. Standard QM was used to bias correct  daily values of June temperature for the period 1981-2010 (validation
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period) after calibrating on the period 1951-1980. In this example, evaluation of performance was measured by the mean

absolute error (MAE) between observed and bias corrected quantiles. Lower values of MAE indicate better performance and

reflect better distributional agreement between the bias corrected and observed values, averaged across all quantiles. Figure

5a shows a Q-Q plot corresponding to the grid cell marked by the black X in Figures 5b and 5c. These are the temperature

quantiles, in the validation period, of the bias corrected modelled data and the observed data for that specific grid cell. One

can  observe  that  the  bias  corrected  modelled  data  is  overestimating  the  temperature  in  this  grid  cell  with  respect  to

observations. The MAE for this grid cell is 1.5°C (average absolute difference between all quantiles). Figure 5b shows the

MAE values across all grid cells in the European domain. Figure 5c shows the model performance error of the mean, which

is the difference between the raw model projected mean temperature changes (1981-2010 with respect to 1951-1980) and the

observed mean temperature changes (1981-2010 with respect to 1951-1980). It should be noted that the values in Figure 5c

are completely independent of any bias correction method being implemented; the values are solely dependent on observed

and raw model values. Figure 5d shows a scatter plot of the values corresponding to the grid cells in Figures 5b and 5c.

There is clearly a strong relationship between the apparent performance of the QM, as it varies spatially, and how similar the

raw modelled  projected  mean  change  is  to  the  observed  change.  Most  of  the  variability  pertaining  to  methodological

performance (in a split-sample test) can be explained by the model performance error of the mean. If the raw modelled

projected mean change in some grid cell is close to the observed change that took place (whether due to long-term forcing or

internal climate variability), then it will appear that QM performs better in this grid cell, and vice-versa.

Next, the differences between the raw modelled changes and the observed changes (depicted by Figure 5c) are

removed  from each  grid  cell.  The  copper  scatter  in  Figure  5e  shows  the  QM bias  corrected  data  after  removing  the

temperature model performance error of the mean (1.4°C, fuchsia X on the x-axis of Figure 5d). The model performance

error of the mean was similarly removed for all grid cells. After removing the mean temperature model performance error,

the MAE of the QM bias corrected data can be seen in Figure 5f. The apparent performance of the QM method can now be

attributed to the model performance error of the standard deviation (Figure 5g).  Again, much of  the perceived method

performance is simply due to how well the raw model simulated changes to the standard deviation (Figure 5h). Figures 5i-l

further adjusts the QM bias corrected data by removing both the model performance errors from the mean and standard

deviation. Still, there is statistically significant relationship (p<.01) between method performance and the model performance

error of the skewness. 

Figure  5  illustrates  how  a  split-sample  or  cross-validation  test  does  not  distinguish  between  methodological

performance and raw model performance. Using pseudo-realities (Maraun et al., 2010) could tell us something more about

the robustness of methods in different scenarios, but the performance of the bias correction method still cannot be separated

from how well individual models simulate raw projected changes relative to the other models. In our example, we only

looked at QM method performance and how this relates to model performance. Obviously, there will be differences from one

bias correction method to another. However, in a split-sample test, method and model performance are conflated. Consider a

case, where a raw model projects changes across Europe that are 1°C less than what was observed. Additionally, a particular
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bias correction method inflates these projected changes by 1°C, thereby cancelling out the model performance error of the

mean. It would appear that this particular method is performing better simply due to influence of model performance on

validation.

Part of the validation procedure must ensure that  the observed and modelled distributions in the calibration or

historical period are statistically similar (Maraun et al., 2015). However, as shown here, validating bias corrected data in

another  period  outside  of  the  calibration  period  against  observations  will  not  isolate  bias  correction  methodological

performance.  Model  performance  will  obscure  the  performance  of  the  bias  correction  method.  Instead,  validation  (or

evaluation) should measure how well the raw modelled projected changes to the entire distribution are captured or preserved

by the bias correction method between any two periods. 

4 Scaled distribution mapping: Method description and performance

Previous sections have shown that QM lacks justification for introducing inflation/deflation to the climate change signal

(Sect. 3.1). This section introduces a bias correction method named scaled distribution mapping (SDM) and its performance

is compared to standard QM in addition to more resent and similar methods such as DETQM and QDM.  Methodological

performance  is  evaluated  using  raw model  projected  changes  to  the  leading  moments  (mean,  standard  devaition,  and

skewness) instead of individual quantiles because of our findings concerning the sampling noise associated with extreme

values in the distributions (Sect. 3.2).

4.1 Scaled distribution mapping

A new bias correction methodology, called scaled distribution mapping (SDM), is proposed in this study. The conceptual

framework of the method is quite similar to QDM (Figure 1). However, as previously mentioned, our method has important

differences that will be discussed in more detail in Performance (Sect. 4.2). The SDM method makes no assumption of

stationarity.  It  scales  the  observed  distribution  by raw model  projected  changes  in  magnitude,  rain-day frequency (for

precipitation) and likelihood of  events.  The scaling changes  as  a  function of  the bias  correction period.  The next  two

subsections outline the SDM methodology for precipitation and temperature. Similar to other bias correction methods, a pre-

screening of appropriate GCMs/RCMs is advised. Bias correction will not, and should not be expected to, fix serious model

deficiencies  (garbage  in  -  garbage  out,  e.g.,  Noguer  et  al.,  1998).  There  are  a  few important  differences  between  the

implementation  of  SDM  for  precipitation  and  temperature.  First,  SDM  scales  the  distribution  of  precipitation  by  a

multiplicative  or  relative  amount  and  temperature  is  scaled  by  an  absolute  amount.  Second,  only  values  of  positive

precipitation exceeding a specified threshold (e.g., .1 mm) are used to build the distributions, while with temperature all

values are used. Third, temperature data is first detrended, then bias corrected, and finally, the trends are added back in. As a

result, the variance is not inflated by temporal trends.
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Bárdossy and Pegram (2012) showed that bias corrected data can still have systematic biases at different spatial

scales.  They illustrated  that  when raw modelled  precipitation  is  less  correlated  across  grid  cells  (lower  average  of  its

correlation matrix) than observations, the modelled extremes will be systematically underestimated for larger spatial scales

(averaging across tens to hundreds of grid cells) with respect to observations. Similarly, an RCM with a higher average

correlation matrix, with respect to observations, will overestimate extremes. We agree that this can be problematic for impact

studies that rely on spatially distributed data across multiple grid cells (e.g., modelling hydrological extremes). In an effort to

properly reflect the statistical properties of the observations in the calibration period at a variety of scales, we advocate

recorrelating the data (Bárdossy and Pegram, 2012) prior to implementing SDM.  

4.1.1 Precipitation

The SDM methodology for bias correcting daily precipitation is illustrated by the example in Figure 6. The observed and

modelled data are from the same grid cell in the European domain for the month of April. The observed and historical model

periods correspond to 1971-2000. The future model period is 2071-2100. The future period can more generally be thought of

as any time period one desires to bias correct, and it can be the same period as the raw historical model period. To illustrate

the SDM methodology, we have chosen to fit a gamma distribution to the observed and modelled data for all grid cells.

However, the gamma distribution will likely not be suitable for all studies involving precipitation, especially with respect to

extremes (Papalexiou et  al.,  2013).  Depending on the type of analysis involved (e.g.,  changes to extreme precipitation,

projected changes to the number of days with precipitation above 0.1 mm), the data should be fit  with the distribution

deemed most appropriate by the user. If a user does choose to fit a different distribution, that distribution can simply take the

place of the gamma distribution outlined in the methodology. The SDM methodology for precipitation is now outlined in the

following steps. 

Step 1) Set a raw modelled minimum precipitation threshold. In this study, we have used 0.1 mm as a threshold

(which is the minimum amount of observed precipitation). When presenting the results, we additionally look at the impact of

using a larger threshold of 1.0 mm. Any values below the threshold are set to 0.0 mm. Next, the days with precipitation are

separated  from days  with no rainfall.  Figure 6a  shows the sorted values  of  precipitation for  the observations,  the raw

historical model, and the raw future model. In this example, there are 434 observed rain days, 525 raw historical model rain

days, and 593 raw future model rain days. Our expected number of bias corrected future model rain days, RDBC , can be

defined as:

RDBC=RDMODF×
RDOBS /TDOBS
RDMODH /TDMODH

,

(1)

8

225

230

235

240

245



where TDOBS and TDMODH are the total number of days including non-rain days for observations and raw historical

model,  while  RDMODF , RDOBS and  RDMODH  are  the  number  of  rain  days  for  the  raw  model  future,

observations and raw historical model. In this example, the total number of days including non-rain days is 900 for both the

observations and the raw historical model (30 years times 30 days in April). These lengths of days are included to allow the

flexibility of different calibration period lengths. Then, RDBC  is found to be 593*(434/900)/(525/900) = 490 days (490

is the nearest integer value).

Step 2) Fit gamma distribution parameters (or similarly the most appropriate distribution determined by the user),

using maximum likelihood, to the positive observed precipitation values (Figure 6b),  and the raw historical  and future

modelled values (Figure 6c). The probability density function of the gamma distribution is:

f ( x;k ,θ )=
xk−1exp (−x /θ)

θkΓ (k )
,

(2)

where k(>0) is the shape parameter, θ(>0) is the scale parameter, x(>0) is the precipitation amount, and  Γ(k) is the gamma

function evaluated at k. Next, use the fitted shape and scale parameters to find the corresponding CDF values of the positive

precipitation events in the three time series. Set an upper threshold for the CDF values (e.g., 0.9999999) since imprecise

rounding can lead to the cdf function providing a value of 1.0, which corresponds to an infinite precipitation amount.

Step  3)  Calculate  the  scaling  between  the  fitted  raw  future  model  distribution  and  the  fitted  raw  historical

distribution at all of the CDF values corresponding to the precipitation events of the raw future model time series. The

scaling is calculated as:

SF R=
ICDFMODF (CDFMODF )
ICDFMODH (CDFMODF )

,

(3) 

where SF R  is an array of relative scaling factors (the length is equal to number of rain days in the raw future model,

which in this case is 593 values),  ICDFMODF  and ICDFMODH  are the inverse cumulative distribution functions

(ICDFs),  or  the  percent  point  functions,  for  the  fitted  future  and  historical  model  distributions,  respectively,  while

CDFMODF  are the estimated CDF values for the future raw model corresponding to the fitted distribution. The relative

scaling factors, for each raw future modelled value, can be seen in Figure 6d. As an example, lets find the scaling factor that

would correspond to the largest value in the raw future model time series. In the raw future model time series, this value is

35.8 mm. Using the fitted raw future model distribution, this event  corresponds to a  CDF value of  0.9974. The value

ICDFMODF ( .9974 ) will yield the original value of 35.8 mm, while ICDFMODH (.9974 )  is equal to 30.6 mm. The

most extreme value that  is  bias  corrected will  have a relative scaling factor  equal  to 1.17 (35.8 mm /  30.6 mm). For
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reference, the largest value in the raw historical model time series is 40.6 mm (seen in Figure 6a). That value is more

extreme with respect to its own distribution, with a corresponding CDF value of .9995. However, we want to compare events

that are equally probable (as discussed in Section 3.3). 

Step  4)  Calculate  the  recurrence  intervals  for  the  three  sorted  arrays  of  positive  precipitation.  The recurrence

interval array, RI, is calculated as:

RI=
1

1−CDF
,

(4)

where CDF is the array of values found in Step 2. Proceeding with the values from the previous step, the largest modelled

event in the future period had a corresponding CDF value of 0.9974, which corresponds to a return period of 385 days (seen

as the largest value of the blue line in Figure 6e). Similarly, the largest recurrence intervals of the observations and raw

historical model are 1667 and 2000 days, respectively. To compare the recurrence intervals across the entire distribution, the

observed and raw historical model RIs are linearly interpolated. Figure 6e shows the linearly interpolated RIs (the linear

interpolation stretches or contracts the values along the x-axis, keeping the original range). 

Step 5) Find the scaled or adjusted RI for the raw future model. This is calculated as:

RI SCALED=max(1, RI IOBS×RIMODFRI IMODH ) ,

(5)

where RIMODF  is the RI for the raw future model and RI IOBS  and RI IMODH  are the linearly interpolated RIs for

the observations and raw historical model, respectively. The maximum value, which is greater than or equal to 1, is used to

evaluate each value in the  RI SCALED array. This is necessary (especially for temperature) to ensure that the values of

CDFSCALED  in Eq. (6) are between 0 and 1. RI SCALED  is shown in Figure 6f as the gold line. This modifies or scales

the RI of observed events by the projected changes to the extremity of modelled events. RI SCALED , for the most extreme

value, is found to be 321 days = 1667*385/2000. As a result, the return period of the most extreme observed value is reduced

because the raw future modelled extreme value was more likely (smaller return period) than that  of  the raw historical

modelled extreme value. Use the RI SCA LED  to find the corresponding scaled CDF values with:

CDFSCALED=1−
1

RI SCALED
,

(6)

where the CDFSCALED  array is subsequently sorted in descending order and reflects the scaling of the modelled change

in event likelihood with respect to the observed likelihoods. 

Step 6) The initial array of bias corrected values can now be calculated as:
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BC INITIAL=ICDFOBS (CDF SCALED)×SF R ,

(7)

where ICDFOBS  is the inverse cumulative distribution function for the observed fitted distribution and CDFSCALED

and SF R  are obtained from Eqs. (6) and (3). Figure 6g shows BC INITIAL  as the gold line. Lastly, the frequency of

rain days needs to be adjusted. Recall from Eq. (1), RDBC  is equal to 490 days. BC INITIAL  is linearly interpolated

from a length of 593 days to 490 days. This yields the bias corrected values which can be seen as the black line in Figure 6h. 

Step 7) As a final step, the bias corrected values for positive rain days, are placed back into the modelled time series

in the correct temporal locations. Consider in this example that the maximum raw modelled precipitation amount fell on

April 28, 2078. Then, the largest bias corrected value will be reinserted back into that day. This is applied to the rest of the

489 positive values of precipitation. Originally, there were 593 raw modelled future rain days, and therefore, the smallest 103

raw modelled values will have no precipitation after bias correction. Similar to this example, GCMs/RCMs more often

overestimate the frequency of rain days (Leander et al., 2008). However, in the case of the model underestimating the rain

day frequency, the SDM method is currently not adjusting the original raw modelled rain day frequency. It should be kept in

mind, however, that even if the model underestimated the frequency, the impact on the distribution is significantly less. In

this example,  if  the raw model had 10% fewer rain days than observations, that  would have only translated to a 0.4%

reduction in total precipitation. This is due to the fact that the method is preferentially filling the largest events first. 

In the case that the historical model period and the bias correction period of interest completely overlap, the bias

corrected data will be exactly the same as the observed distribution. There would be no difference between the distributions

in magnitude, likelihood, nor rain-day frequency, and therefore the observed distribution undergoes no scaling.

4.1.2 Temperature

The SDM methodology for temperature is outline in the following steps. Again, the future period is a general representation

of any time period one desires to bias correct, and it can be the same period as the raw historical model period.

Step 1) Detrend the raw modelled and observed time series in order to get a more accurate measure of the natural

variability (we have used a linear trend, though any trend line could be used).  These trends are added back in at the end, but

until then, all subsequent steps use the detrended time series.

Step 2) Fit a normal probability distribution function to the detrended observed, raw historical modelled, and the

raw future modelled time series. For a normal distribution, the fitted parameters are simply the empirical mean and standard

deviation. Next, using these fitted normal distributions, find the corresponding CDF values for the temperature events that

occurred in the three time series. Similarly to precipitation, set an upper and lower threshold for the CDF values (e.g.,

0.0001, 0.9999). Again, imprecise rounding can lead to the cdf function providing a value of 1.0 or 0.0, which corresponds to

an infinite temperature values.
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Step  3)  Calculate  the  scaling  between  the  fitted  raw  future  model  distribution  and  the  fitted  raw  historical

distribution at each probability of the events taking place in the raw future model time series. The scaling is then calculated

as: 

SF A=[ICDFMODF (CDFMODF )−ICDFMODH (CDFMODF )]×( σOBS
σMODH ) ,

(8) 

where  SF A  is  an  array  of  absolute  scaling  factors,  ICDFMODF  and  ICDFMODH  are  again  the  inverse

cumulative distribution functions (ICDFs) for the fitted future and historical model distributions, CDFMODF  is an array

with  the  estimated  CDF values  for  the  future  raw model  corresponding  to  the  fitted  distribution,  and  σOBS  and

σMODH  are the standard deviations of the observed and raw historical distributions.  

Step 4) Next, calculate the recurrence intervals for the three sorted arrays of temperature with:

RI=
1

0.5−|CDF−0.5|
,

(9)

Eq. (9) is different from Eq. (4) to reflect the two-tailed nature of a normal distribution.

Step 5) Find RI SCALED  for the raw future model using Eq. (5). If the lengths of the time series are the same for

the  historical  and  future  periods,  no  linear  interpolation  is  required.  Then,  use  the  RI SCALED array  to  find  the

corresponding modified CDF values with:

CDFSCALED=0.5+sgn(CDFOBS−0.5)×|0.5− 1
RI SCALED| ,

(10)

. 

Step 6) The initial array of bias corrected values can now be calculated as:

BC INITIAL=ICDFOBS (CDF SCALED)+SF A ,

(11) 

where all variables have been previously defined. 

Step 7) Reinsert the bias corrected values, BC INITIAL , back into the correct temporal locations from the original

raw future modelled time series. Lastly, the trend of the raw future modelled time series is added back into the bias corrected

time series. Like with precipitation, when the historical model period and the bias correction period of interest completely

overlap, the bias corrected temperature data will be exactly the same as the observed distribution (except the trend of the bias

corrected data will be that of the modelled trend and not of observations).
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4.1.3 SDM and the temporal evolution of climate change

The SDM method presented in subsections 4.1.1 and 4.1.2 attempts to best preserve the raw model projected changes to

different moments of the distribution. However, the temporal evolution of the climate change signal might not be captured.

Consider  the case  where  SDM is  used  to  bias  correct  January temperature  values  for  the period 2011-2100 using the

calibration period 1971-2000. Then, the changes to the bias corrected distribution of 2011-2100 versus 1971-2000 will be

very similar to the raw model projected changes to the distribution. On the other hand, investigating a temporal subset of the

bias correction period can yield undesirable results. For example, the mean change between 2011-2040 and 1971-2000 might

not be as close for the bias corrected and the raw data. If one desires to have the climate change signal properly preserved

across a variety of time scales, the SDM method must be discretized into smaller blocks. For this study, the authors used 30-

year periods with a 10-year sliding window in order to bias correct the middle 10-years. We began by bias correcting the

period 2011-2020 using the period 2001-2030 as our period of interest (future period) and 1971-2000 as our calibration

period. Next, we bias corrected 2021-2030 using the period 2011-2040 (period of interest) along with the same calibration

period. With no modelled data beyond 2100, the period 2091-2100 used 2081-2100 as the period of interest. A user can

adjust the amount of years to bias correct length of the period, amount of years to save and the length of the sliding window

to more/less strongly follow the raw modelled temporal evolution of climate change. 

4.2 Performance

Figure 7 illustrates the amount of inflation (or deflation) that was introduced to the raw model projected change to the mean

by the SDM and standard QM methods. The mean climate change was evaluated between the periods 2071-2100 and 1971-

2000. Figures 7a and 7b show the difference, by month, between the raw mean temperature changes and the bias corrected

mean temperature changes when using SDM and QM, respectively. Similarly, Figures 7c and 7d show the same but for

relative change to  precipitation.  For both temperature  and  precipitation,  SDM has  minimal  inflation to  the raw model

projected mean change. In contrast, using QM leads to inflation greater than 1°C and 10%, for temperature and precipitation

respectively, across large regions of Europe. Figure 8 is the same as Figure 7, but depicting the inflation of the standard

deviation  for  SDM versus  QM.  Again,  SDM much better  preserves  the  raw model  projected  changes  to  the  standard

deviation.

The temporal evolution of the SDM and QM performance, for all grid cells, is illustrated for temperature in Figure

9. As discussed in subsection 4.1.3, the authors implemented SDM using 30-year periods with a 10-year sliding window in

order to bias correct the middle 10-years. The amount of inflation/deflation to the climate change signals is illustrated for the

mean, standard deviation, skewness, and the trend. Each coloured grid cell in the figure depicts the spatial mean absolute

error (MAE) between the raw model and bias corrected changes for all grid cells. For example, consider the lower left grid

cell situated in the SDM column and Mean row. This grid cell shows the spatial MAE between the raw modelled and bias

corrected mean changes between the periods 2071-2100 and 1971-2000 for the month of January (it is the spatial MAE of
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the January subplot of Figure 7a). What is most noticeable is how the QM's alteration (inflation/deflation) of the climate

change signal increases as a function of the projected time period. When the projected period is furthest from the calibration

period (2071-2100), the alteration to the leading three moments are the greatest. In contrast, SDM is seen to outperform QM

in its ability to better preserve the raw projected changes. Furthermore, the performance of SDM does not degrade as a

function of the projected time period. Figure 10 shows the same as Figure 9, but for precipitation. Again, SDM performs

much better in preserving the raw projected changes. This is especially true for projected changes to the mean and the

standard deviation. It should be noted that all methods perform worse for precipitation in the summer months. This can be

explained by some regions (e.g.,  Spain)  having very few days with precipitation, which cannot be fit  well  by either  a

parametric or a non-parametric method. Using a t-test, the average MAEs for Figures 9 and 10 (averaged over all months and

outlook periods) are found to be statistically significantly smaller for SDM versus the other three methods (p < 0.01) for the

leading three moments of the distribution.

Figure 11 compares the temperature performances of SDM to the more recent and similar methods of QDM and

DETQM. SDM is seen to perform best with respect to better preserving the raw projected changes for the leading three

moments of the distribution. Both SDM and QDM perform equally well for preserving changes to the mean. However, SDM

better minimizes MAE for standard deviation and skewness. This can be attributed to one of the main differences between

the SDM and QDM methods. QDM scales the observed distribution by absolute difference between modelled quantiles

(future - past), though, this does not properly scale the higher moments of the distribution. In contrast, SDM applies the

rightmost term, (σOBS / σMODH), in Eq. (8). This results in more appropriately scaling the higher moments of the bias

corrected temperature data.  The other  difference between the methods is  that  SDM is parametric,  while  QDM is  non-

parametric or empirical. 

Figure 12 compares the performances of the same three methods, but for precipitation. Again, SDM outperforms

QDM and DETQM. Again, the average MAE for Figures 11 and 12 are statistically significantly smaller for SDM (p < 0.01)

for the leading three moments of the distribution. In the case of precipitation, though, SDM shows the greatest improvement

in its ability to preserve the raw projected mean change. This can be explained by the different ways that SDM, QDM and

DETQM handle days with zero precipitation. DETQM removes the mean modelled trend, but still performs poorly because

the  detrended  error  correction  values  are  still  assumed  to  be  stationary.  Like  SDM, QDM implements  a  threshold  of

modelled precipitation. Then, these days of zero precipitation are filled with non-zero uniform random values below the trace

threshold prior to bias correction. The multiplicative scaling amounts are subsequently found between all quantiles and

applied to the observed quantiles. After bias correction, the values below the trace threshold are set back to zero. With that

approach,  the  scaling is  unstable  when there  is  a  mismatch  in  rain-day frequency.  For  example,  consider  a  simplified

example where the observed, raw future model and raw historical model have sorted arrays of precipitation amounts in mm

of [0,1,4,15], [0,1,3,10], [0,0,1,8], respectively. After filling with uniform non-zero amounts, assume these arrays become

[.02,1,4,15],  [.04,1,3,10],  [.02,.04,1,8].  The  scaling  array  would  then  be  [2,25,3,1.25]  =  [.04,1,3,10]/[.02,.04,1,8].

Multiplying the scaling array by the observed array gives [.04,25,12,18.75]. The raw mean change would then be 1.56 =
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mean([0,1,3,10])/mean([0,0,1,8]),  while  after  bias  correction  it  is  2.79  =  mean([0,25,12,18.75])/mean([0,1,4,15]).  This

simplified  example  illustrates  how implementing  QDM with  a  mismatch  of  the  rain-day  frequency can  alter  the  raw

modelled mean change. As shown in the SDM methodology, linear interpolation is used to address the issue of different rain-

day frequencies. This scales similar parts of the distribution and more explicitly changes the number of bias corrected rain-

days, and as a result, SDM much better preserves raw modelled changes to the mean.

Additionally, we investigated the impact of using a different precipitation threshold. A precipitation value of 0.1 mm

is very small and will have no noticeable impact for many applications. In those cases, it may be more appropriate to have a

larger precipitation threshold. Figure 13 shows average performances for each method when using a precipitation threshold

of 0.1 mm and 1.0 mm, respectively. The performance of SDM improves as a result of using a larger threshold, while the

performances of other methods remain approximately the same. The improvement of SDM with the 1.0 mm threshold can be

explained by the fact that a larger threshold leads to a better fit to the distribution. For observations, averaged across all grid

cells, we found that precipitation amounts of less than 1.0 mm (and >= 0.1 mm) made up 21.6% of all positive precipitation

days, while the sum of these low values only comprised 2.4% of the total precipitation. Similarly for the modelled data,

41.3% of all positive precipitation days had precipitation amounts of less than 1.0 mm (and >= 0.1 mm) which cumulatively

comprised 5.4% of the total precipitation. As a result, we found that using a smaller threshold can adversely affect the quality

of the fit especially with respect to the extremes.

5 Conclusions

Bias correction methods are used extensively in impact assessment studies (Ines and Hansen, 2006; Muerth et al., 2013; Teng

et al.,  2015).  The application of these methods, however,  is  not  without controversy (Ehret  et  al.,  2012).  A number of

important  questions  that  require  consideration  are:  1)  Does  independently  applying  bias  correction  to  different

meteorological  variables  (separately to  precipitation  and  temperature)  adversely alter  the  thermodynamically  consistent

spatio-temporal  fields  provided  by climate  models?  2)  Do bias  correction methods avoid  pushing the corrected values

beyond physically realistic limits? 3) Can GCMs/RCMs with large biases be reliable in their projections of climate change?

4) How can substantial model deficiencies not simply be falsely treated as bias and corrected as such? These are difficult

questions, and more reflection and investigation is required before we find answers that are indisputable. In any regard, for

the foreseeable future, there will continue to be scientists that use bias correction methods for impact assessment studies.  

Statistical  bias  correction methods vary considerably and  can  have a large  influence on the expected regional

impacts of climate change. Multiple studies have previously come to the conclusion that QM is one of the better existing bias

correction methods (Gudmundsson et al., 2012; Teutschbein and Seibert, 2012; Teutschbein and Seibert 2013; Chen et al.,

2013).  However,  our  analysis  highlighted  two  issues  that  challenge  this  conclusion.  First,  we  demonstrated  that  the

stationarity assumption is invalid and, as a result, the climate change signal cannot be justifiably altered using QM. Second,

split-sample or cross-validation evaluation tests do not isolate the performance of the bias correction methods themselves.
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These performances are conflated with how well the raw model(s) simulate the observed changes to the leading moments of

the distribution. In light of these issues, the performance of a bias correction method should be validated on how well it

preserves raw model projected changes across the entire distribution. 

In this study, we presented the SDM bias correction methodology which scales the observed distribution by raw

model projected changes to magnitude, rain-day frequency (for precipitation) and the likelihood of events. The performance

of SDM was evaluated and found to perform better than traditional QM along with recent methods that are more similar such

as QDM and DETQM. We advocate using a bias correction method, like SDM, which scales the observed distribution by

simulated changes across the modelled distribution. As a result, one need not rely on the invalid stationarity assumption. 

Data and code availability

The data is available at ESGF (e.g., https://pcmdi.llnl.gov/projects/esgf-llnl/) and the python codes for running the SDM

methodology are available upon request from the corresponding author. A reference implementation can be obtained from

https://github.com/wegener-center/pyCAT.
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Figure 1:  Schematic  of  the quantile  mapping versus  quantile  delta  mapping methodologies.  The red  lines  are  the bias

corrected values for the future model. The arrows in each subplot illustrate the bias correction of a future modelled value at

ECDF = 0.8. 
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Figure 2: The sensitivity of quantile mapping (QM) to the calibration period. The same daily data in the future time period

(2071-2100) was bias corrected, separately for each month, using two different calibration periods (1951-1980 and 1976-

2005).  Subplots (a) and (b) show the sensitivity for temperature and precipitation, respectively. Grey reflects no senstitivity

of QM to calibration period, while increased saturation of warmer and cooler colors depict non-stationary error correction

values used by QM.
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Figure 3: Synthetic data of observations (Obs) and modelled (Mod) data. Each data set consist of 200 values randomly

sampled from the same gamma distribution with shape parameter equal to 0.8 and scale parameter equal to 12.0. Suplot (a)

shows the empirical distance (blue arrow) between the largest quantile of each distribution. Subplot (b) shows the difference

after fitting distributions and evaluating the largest events at the same CDF value (in this case the fitted CDF value of the

observations).
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Figure 4: Observed (Obs) and modelled (Mods) values for distribution sizes of 100 and 10,000. As in Figure 3, the values are

randomly sampled from the same gamma distribution with shape parameter equal to 0.8 and scale parameter equal to 12.0.

Subplots (a) and (d) show the possible scenarios of ECDFs for the different distribution sizes. Subplots (b) and (e) show the

counts  of  the  absolute  differences  between  the  extreme  values  using  the  non-parametric  method  (blue  line)  and  the

parametric method (green line). Similarly, subplots (c) and (f) show the counts of the absolute differences, averaged over the

entire distribution, between the values using the non-parametric and the parametric method. 
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Figure 5: Conflation of apparent bias correction skill (using QM) and model performance. The data are daily temperature values for

the month of June for the period 1981-2010 after calibrating on the period 1951-1980. Suplot (a) shows a Q-Q plot of an example

grid cell delineated by the black X in the map subplots and fuschia scatter point in (d), (h) and (l). Subplot (b) shows the mean

absolute error (MAE) of the Q-Q plots from each grid cell, while (c) shows the raw model performance error of the mean. CCS

refers to the climate change signal. Suplot (d) shows the scatter and correlation between (b) and (c). The colormaps of the second

and third columns can be inferred from the scatter in the fourth column. After removing the raw model performance error of the

mean, the Q-Q plot becomes the copper scatter in (e). The QM MAE in (f) is the result of all the raw model mean performance

errors being removed from each grid cell, (g) is the raw model performance error of the standard deviation, and (h) shows the

scatter and correlation between (f) and (g). The raw model performance errors of the mean and the standard deviation are then

removed, and the Q-Q plot becomes the green scatter in (i). After removing these errors for all grid cells, suplots (j), (k) and (l)

show the relationship between QM MAE and raw model performance error of the skewness.
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Figure 6: Illustration of the scaled distribution mapping (SDM) methodology for precipitation. Subplot (a) shows the sorted

positive precipitation values for observations, along with the raw historical and raw future model. Subplots (b) and (c) show

the empirical and fitted distributions. The scaling factors between the raw modelled future and historical time periods is

shown in (d). The return periods and the scaled return period are plotted in (e) and (f), respectively (the (I) indicates the

linear interpolation). Subplot (g) shows the initial bias corrected precipitation values in gold and the final bias corrected

values for the future model period is shown as the black line in (g) and (h). 
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Figure 7: The amount of inflation (or deflation) introduced to the raw model projected change to the mean by the SDM and

QM methods. The mean climate change was evaluated between the periods 2071-2100 and 1971-2000. Subplots (a) and (b)

show  the  monthly  differences  between  the  raw  and  bias  corrected  mean  temperature  changes  using  SDM  and  QM,

respectively. Similarly, (c) and (d) show the same but for relative change to precipitation. 
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Figure 8: Same as Figure 7, but depicting the inflation of the standard deviation for SDM versus QM.
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Figure 9: Performance of SDM and QM for bias correcting temperature with varying outlook periods (i.e., 2011-2040, 2021-

2050, …). The colorbars correspond to the mean absolute error (MAE) between the raw model and bias corrected changes

for the leading three moments of the distribution in addition to trends. The lower left grid cell situated in the SDM column

and Mean row is the spatial MAE between the raw modelled and bias corrected mean changes between the periods 2071-

2100 and 1971-2000 for the month of January (it is the MAE over all of Europe calculated from Figure 7a). 
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Figure 10: Same as Figure 9, but for precipitation. 
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Figure 11: Same as Figure 9, but compares the temperature performances of SDM to the more recent and similar methods of

QDM and DETQM. 

31

805

810

815



Figure 12: Same as Figure 10, but compares the precipitation performances of SDM to the more recent and similar methods

of QDM and DETQM. 
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Figure 13: The impact of using different precipitation thresholds on methodological performance. Each bar is the average

MAE across all grid cells, months and outlook periods (e,g,, blue bar in subplot (a) is the average of the Mean SDM subplot

of Figure 12). The upper and lower rows correspond to a 0.1 mm and 1.0 mm threshold applied to both observed and

modelled precipitation, respectively. 
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