Response to the referee comments on the manuscript originally titled “Evaluating the value of a network
of cosmic-ray probes for improving land surface modelling” by Baatz et al. on behalf of all co-authors
submitted to Hydrology and Earth System Sciences — Discussion.

We thank the Editor for his guidance through the revision process.

We thank the reviewers for their time reviewing the manuscript and their suggestions for improving the
manuscript. We appreciate their constructive comments and changed the manuscript in the following
main points:

o All comments of the reviewers were addressed throughout the manuscript

o Three new experiments with four instead of nine cosmic ray neutron sensors were conducted

e Two new experiments with the FAO soil map were conducted

e These additional five experiments were addressed/included in Abstract, Introduction, Methods,
Results & Discussion, Conclusion

e “Discussion” was merged into results section; now “Results and discussion”

e The Tables with detailed site-wise results were moved into the Annex, and two shorter
summarizing Tables were included instead. This reduces length and increases readability of the
results section.

e Introduction and Results were shortened, as suggested by the reviewers

e Discussion was improved including results on evapotranspiration and new important references

The title of the manuscript was changed as suggested by Referee #1 and #3 to “Evaluation of a cosmic-
ray neutron sensor network for improved land surface model prediction”.

Sincerely,

Roland Baatz and co-authors



Text formats:

Referee — bold

Answer of the authors — non-bold
Reviewer 1
Received and published: 14 September 2016
GENERAL COMMENTS

The manuscript is well written and clear. The topic is of interest for the HESS readership as cosmic-ray
probes represent a relatively new technology for ground measuring soil moisture over large areas.
Therefore, we need to assess the impact of this new technology for improving land surface modelling.
The paper describes several assimilation experiments in which soil moisture data from cosmic-ray
probes are used for improving soil moisture modelling through CLM land surface model. Results are
(quite) well described and clearly structured. However, in my opinion, several aspects should be
improved/changed before the publication. | reported below a list of the general comments to be
addressed with also the specification of their relevance.

Thank you for your positive evaluation and for your time reviewing this manuscript. We carefully address
your comments in the following.

1) MAJOR: Some of the results shown in the paper are well-known. | am aware that it is important to
show real-world experiments, mainly by considering new technology, but the main results given in the
paper were already reported in several previous studies: a) the assimilation of ground-based soil
moisture data is able to improve soil moisture modelling, b) the joint state-parameter assimilation is
better than the state assimilation only, and c) the assimilation is more effective when soil texture
information are wrong (i.e., there’s larger room for improvement). | believe that the paper results
need to be published, but | would like to see some new findings that can be obtained by using the
same material (data and modelling) presented in the paper.

Thank you, we understand that the novelty of this paper needs to be more clearly pointed out. The main
novelty is the use of the cosmic ray probe to measure soil moisture at the intermediate scale and update
soil moisture at the larger catchment scale. Although it is true that points a, b and ¢ have been
demonstrated in other papers, this has never been done for the cosmic ray probe at the larger
catchment scale. We added now begin the abstract with:

Page 1 line 5:“In this study, the potential of a network of CRNS installed in the 2354 km? Rur catchment
(Germany) for estimating soil hydraulic parameters and improving soil moisture states was tested.”

CRNS, catchment wide, used for parameter updates, this is clearly novel.

Another key finding was pointed out in the abstract, where we quantified the possible improvement of
soil moisture prediction using a land surface model:



Page 2 line 11-14: “For the FAO soil map and the biased soil map soil moisture predictions improved
strongly to a root mean square error of 0.03 cm?®/cm?® for the assimilation period and 0.05 cm?®/cm? for
the evaluation period. Improvements were limited by the measurement error of CRNS (0.03 cm*/cm?). “

Demonstrating a way to propagate CRNS measurements into horizontal space using the local ensemble
transform Kalman Filter is novel. The improved parameterization in catchment space was not
demonstrated before. Therefore we state in the abstract:

Page 2 line 15-17: “The results demonstrate that assimilated data of a CRNS network can improve the
characterization of soil moisture content at the catchment scale by updating spatially distributed soil

IM

hydraulic parameters of a land surface mode
For instance:

A) What are the results if only one (or two) cosmic-ray probes are assimilated? In the real world it is
expected that the number of probes will be limited and, hence, the use of a limited number of probes
is surely of great interest.

Thank you for the suggestion. Many further (synthetic) studies are possible, but a publication generally
has limited space available. However, we add to the manuscript three additional simulation experiments
with a smaller number (four) of cosmic ray neutron sensors for assimilation. This allows verification at
the five remaining cosmic ray neutron sensors. Please see the manuscript for further details.

B) What is the impact in terms of fluxes? In section 4.6 a comparison of annual evapotranspiration
maps without and with the assimilation is carried out, but simply showing that the resulting maps are
different.

Thank you. We agree that the figure demonstrates an impact of soil moisture and soil parameter updates
on latent heat flux during the evaluation period. We added more information to the caption:

Page 35 line 1:“Annual evapotranspiration (ET) is shown in the year 2013 (evaluation period, no
assimilation). This figure demonstrates the impact of parameter updates (PAR-S80-10 and PAR-BK50-10)
in comparison to open loop (OL-S80) and reference soil map (OL-BK50). ET changes in the North but not
as much in the South.”

However, it is obvious that changing soil moisture will change evapotranspiration. Is it possible to
perform an independent validation by using data about the actual evapotranspiration in the basin? Or
likely by using discharge observations? | believe that some new results should be included in the paper
(even though | am aware that authors are usually reluctant to perform additional analyses). Moreover,
the results in terms of soil moisture simulation should be synthetized (see Comment 5).

We agree that a comparison to evapotranspiration (ET) observations would be beneficial. However, a
comparison of catchment ET or observed ET at a representative number of sites is beyond the scope of
this paper because uncertainties in upscaling of ET are large. Impacts on ET are discussed in a paragraph:

Page 20 line 25-page21: “Additionally, the impact of soil parameter estimates on ET is different in the
North of the catchment compared to the South. While ET in the North of the catchment was impacted by



the estimated soil properties during the evaluation period 2013 for PAR-S80-10, ET in the South was not
as much impacted by estimated soil properties. This is related to the fact that in the North ET is moisture
limited in summer, whereas in the South this is not moisture limited but energy limited. Therefore, ET in
the North is sensitive to variations in soil hydraulic parameter values, whereas in the South this is not the
case. In the South, ET is sensitive to model forcings like incoming shortwave radiation. Nearing et al.
(2016) came to the conclusion that soil parameter uncertainty dominates soil moisture uncertainty and
forcing uncertainty dominates ET uncertainty. Our findings in the southern part of the catchment
support their conclusion, but in the northern part of the catchment soil parameter uncertainty strongly
affect ET. Hence particularly in the northern part of the catchment, further observations such as ET
measurements are desirable for further improving the land surface model. These additional observations
could be used for future land surface model benchmarking (Best et al., 2015) or for more constrained
parameter estimates (Shi et al., 2015).”

2) MAJOR: The description of the data assimilation experiments should be improved. As usually, a
number of subjective choices were made in the setup of the data assimilation experiments, and these
choices may have a significant impact on the results. For instance, a fixed error for soil moisture
estimates from cosmic-ray probes is considered (0.03 cm3/cm3). Similarly, the perturbation factors for
input data (precipitation and shortwave radiation) and parameters (10 and 30%) are arbitrarily
selected. A sensitivity analysis on these choices should be carried out. It might be that different
choices produce very different results.

Thank you for these constructive suggestions. We agree that a number of assumptions needed to be
made. The assumption on the measurement error for the soil water content was thoroughly evaluated
and more details can be found in our earlier papers on this (e.g., Bogena et al., 2013; Baatz et al., 2014;
Baatz et al., 2015). We feel that there is no need to repeat experiments with other values for the
measurement error given the earlier work:

Page 13 line 24: “Based on previous work (Baatz et al., 2015), the SWC retrieval uncertainty for CRNS was
estimated to be 0.03 cm?/cm? while fluctuations in the measurement standard deviation, related to the
non-linear relation between observed neutron intensity and SWC, were assumed negligible.”

However, we agree that perturbation of meteorological forcings and soil hydraulic parameters are
subject to larger uncertainty. We applied a 10% and 30% perturbation and think covers adequately the
uncertainty with respect to texture. Simulations were not strongly affected by the magnitude of the soil
perturbations:

Page 15 line 25-28:“The Egys and bias for simulations with 10 % and 30 % perturbation of soil texture
only showed very small differences (smaller than 0.01 cm®/cm?).”

We feel that the applied perturbations are realistic and the difference in the two applied perturbations
was already large.



We also already tested two different magnitudes of perturbation of precipitation, including a 50% and
100% error but this did not affect the simulation results:

Page 13 line 23: “In this work, only results for precipitation perturbation with ¢ = 0.5 will be shown as
results for o = 1.0 were similar.”

The simulations are also CPU-intensive. We expect that an extension of the experiments for further
magnitudes of perturbation would not supply significant additional insights.

3) MODERATE: Similarly as above, the selection of one single biased soil texture map is arbitrary. Why
only one soil map? Why 80% of sand content and 10% of clay content is selected? What is the average
sand and clay content percentage in the basin? Again, a sensitivity analysis is needed. Otherwise, it
might be that a very large error in the soil map is used to highlight the positive impact of assimilating
soil moisture data. What happens for a less biased map? This aspect should be clarified.

Thank you for this suggestion. In the revised version, we include a simulation with a third (FAO) soil map
that may be close to the expected values of the BK50 soil map. Table 1 shows the sand content at the
nine sites for the BK50 soil map. We added information on catchment wide average sand and clay
content, and what was the motivation to select the biased soil map as initial soil map in part of the
simulation experiments:

Page 12 line 15-18: “Alternative simulations were also performed with the FAO soil map of the global
Harmonized World Soil Database (FAO, 2012) and with a biased soil texture with a fixed sand content of
80 % and clay content of 10 % (S80 soil map). Average sand and clay content are 22.5% and 21.4% for the
BK50 soil map and 39% and 22% for the FAO soil map. The FAO soil map and the biased soil map
represent large error with respect to the soil properties of the BK50 soil map.”

The new simulation results with the FAO soil map are discussed in detail.

4) MINOR: In CLM the subsurface lateral flow is not considered. It has an impact on soil moisture
simulation and, mainly, on the capability to modify soil moisture simulations at unmonitored
locations. Therefore, | expect that the assimilation of in situ soil moisture data will have a local effect.
However, the jackknifing data assimilation experiments show that the assimilation produces
significant changes also at unmonitored locations. Why does it happen? | believe it should be clarified
in the paper.

Thank you for this detail. It is correct that CLM does not consider subsurface lateral flow. The updates of
soil moisture in space depend on spatial correlations of soil moisture. In this study, spatial correlations of
soil moisture are the consequence of spatial correlations of the atmospheric forcings, spatial correlations
of soil hydraulic parameters and their interaction with the land surface model. Atmospheric reanalysis
data and the soil map provided a good basis for the imposed spatial correlation structure. The imposed



spatial correlation structures on the perturbations determine to a large extend the soil moisture updates
in space. We added:

Page 17 lin 27-29: “Spatial improvements are possible by spatial correlation structures of atmospheric
forcings, soil hydraulic parameters and soil moisture which are taken into account by the local ensemble
transform Kalman filter.”

5) MINOR: In sections 4.2 and 4.5, too many details are provided in the description of the results for
each single site. | suggest focusing on the most important results to improve their readability. Also,
discussion section is too generic, especially the first paragraph. In the specific comments, | added some
corrections and suggestions that should be implemented. On this basis, | believe the paper deserves to
be published only after a major revision.

Results section and discussion section were shortened and sharpened, also taking into account the
detailed comments of reviewer #3. We also merged the Results and Discussion section into one section
for more fluent reading.

SPECIFIC COMMENTS (P: page, L: line or lines) Title: The paper, in the current version, demonstrates
that the assimilation of soil moisture data from cosmic-ray probes is able to improve soil moisture
modelling, not “land surface modelling” (e.g., evapotranspiration or discharge fluxes). Therefore, |
suggest changing the title. Abstract: The abstract should include information on the location of the
study area and on the employed data assimilation technique.

Thank you.
We changed the title to:
“Evaluation of a cosmic-ray neutron sensor network for improved land surface model prediction.”

We now include the employed data assimilation technique and the location of the study area in the
abstract:

Page 2 line 4-9: “In this study, the potential of a network of CRNS installed in the 2354 km?® Rur
catchment (Germany) for estimating soil hydraulic parameters and improving soil moisture states was
tested. Data measured by the CRNS were assimilated with the local ensemble transform Kalman filter in
the Community Land Model v. 4.5.”

P4, L7: Formatting error for Kurtz et al. (2016). Please correct.
Thank you. We corrected this.

P5, L19: It should be COSMIC in place of COMIC.

Thank you. We corrected this.

P12, L11: Is sigma=0.5 considered for perturbing precipitation in all the assimilation



experiments? Please clarify.

Yes. We agree that this was slightly unclear and moved the sentence to the right position in the text.
P12, L25: It should be “four data assimilation scenarios” in place of “six assimilation

scenarios”.

Thank you. We changed this:

Page 15 line 10: “Presented are results for the open loop scenarios with the BK50, FAO and S80, and data
assimilation scenarios.”

P19, L18-19: This sentence is too broad, please modify.
Thank you. We agree and changed the sentence to:

Page 22 line 6-8: “Hence, this study represents a way forward towards the integration of CRNS
information in the calibration or real-time updating of land surface models. “



Anonymous Referee #2

Received and published: 23 September 2016
GENERAL COMMENTS

The authors present an interesting and important study on investigating the benefits of integrating
CRNP in data assimilation to improve atmospheric/land surface modeling. While | am not a data
assimilation expert, this clearly seems to be a path forward on showing the importance and utilizing
long-term monitoring networks for societal benefits. This is a novel study on using a network of CRNP
to improve catchment water and energy balance. The authors show the utility of a network on CRNP
on improving SWC states and soil parameter estimates in areas with poor or low meteorological
coverage and soil information. While the paper is generally well written the authors missed some key
references to put this work into proper context. In particular, the recent paper on the Plumber
experiment of LSMs (Best 2015) and follow up paper on information content (Nearing 2016) should be
discussed in light of this papers major findings. With these additional modifications the paper is
appropriate for publication in HESS.

Thank you for your positive evaluation and reviewing this manuscript. We added two suggested
references relevant to the manuscript. Please see below.

Major Comments.

1. The recent paper by Best (2015) on the plumbing of LSMs needs to be discussed in the introduction
and discussion. In addition, the follow up paper by Nearing (2016) on discussing the information
content of LSMs is critical. Most notably, their findings on the importance parameterization, model
physics, and boundary conditions affecting the partitioning of sensible and latent heat, and
comparisons between a SWC benchmark are important. The authors need to discuss these results and
how their findings agree or disagree with Best (2015) and Nearing (2016). (e.g. Pg. 3L 12, Pg. 17 L 13,
conclusions). Without this it is hard to place this work in its proper context for critical evaluation. 2.
The work of Avery (2016) should also be discussed given the importance of soil and vegetation
parameters discussed in this manuscript. This and point 1 will help update the referencing to be most
up to date. (e.g. Pg. 10 L 25, Pg. 18 L 18).

Thank you. We agree that the study of Nearing et al. (2016) and Best et al. (2015) is related to this work.
We add to the discussion:
Page 20 line 31-page21: “Nearing et al. (2016) came to the conclusion that soil parameter uncertainty

dominates soil moisture uncertainty and forcing uncertainty dominates ET uncertainty. Our findings in
the southern part of the catchment support their conclusion, but in the northern part of the catchment
soil parameter uncertainty strongly affect ET. Hence particularly in the northern part of the catchment,
further observations such as ET measurements are desirable for further improving the land surface
model. These additional observations could be used for future land surface model benchmarking (Best et
al., 2015) or for more constrained parameter estimates (Shi et al., 2015).”

We also found the reference of Avery et al. (2016) being useful and added:
Page 10 line 19: “This would require calibration data throughout the catchment which is only feasible
using spatially distributed data sets (e.g. Avery et al., 2016).”



Minor Comments:

Pg 4. L 6. The cases illustrate a way. . .
Thank you. We changed this.

Pg 4. L 15-16. Sentence is awkward please revise.

Thank you. We rephrased:

Page 4 line 32-page5: “They showed that the nonlinear character of the soil moisture retention
characteristic is critical for joint state-parameter estimation in data assimilation systems and showed
that the Particle Filter is an interesting alternative for soil hydraulic parameter estimation for 1D
problems.”

Referecnes:
Avery, W.,, C. Finkenbiner, T. E. Franz, T. Wang, A. L. Nguy-Roberston, A. Suyker, T. Arkebauer, and F.
Munoz-Arriola. 2016. Incorporation of globally available datasets into the roving cosmic-ray neutron
probe method for estimating field-scale soil water content. HESS 20: 3859-3872. do0i:10.5194/hess-20-
3859-2016.

Best, M. J., G. Abramowitz, H. R. Johnson, A. J. Pitman, G. Balsamo, A. Boone, M. Cuntz, B. Decharme,
P. A. Dirmeyer, J. Dong, M. Ek, Z. Guo, V. Haverd, B. J. J. Van den Hurk, G. S. Nearing, B. Pak, C. Peters-
Lidard, J. A. Santanello, L. Stevens, and N. Vuichard. 2015. The Plumbing of Land Surface Models:
Benchmarking Model Performance. J. Hydrometeorol. 16:3: 1425-1442. d0i:10.1175/jhm-d-14-0158.1.

Nearing, G. S., D. M. Mocko, C. D. Peters-Lidard, S. V. Kumar, and Y. L. Xia. 2016. Benchmarking NLDAS-
2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions. J. Hydrometeorol. 17:3:
745-759. doi:10.1175/jhm-d-15-0063.1.



Anonymous Referee #3

Received and published: 27 September 2016

GENERAL COMMENTS

The presented manuscript applies time-series data from 9 cosmic-ray neutron stations to the land-
surface model CLM in the Rur catchment. The authors assimilate the data using an ensemble Kalman
filter technique to update states and parameters of their model. The added value of training data in
years 2011 to 2012 is assessed (1) by testing the model performance in year 2013, (2) by testing the
model adaption capabilities to an invalid soil map, and (3) by jackknifing single stations from the
training period. The application of the cosmic-ray neutron method in large-scale models is one of the
challenges in state-of-the-art hydrology and thus the present study is worth to be published in the
scope of HESS after major revision.

Thank you for your positive evaluation. We sincerely appreciate your time reviewing the manuscript. We
carefully addressed your suggestions and comments to further strengthen the manuscript.

1 Evaluating the overall quality

Large parts of the manuscript are written in the style of a protocol, by listing lots of other publications
who used similar approaches, by mentioning tools that were used, and by reporting every step of the
performed analysis. However, | believe that scientific articles should be entitled to challenge their own
strategy by discussing alternative methods, by justifying their selection of tools and decisions, and by
explaining the corresponding implications. | would thus recommend to rewrite and extend major parts
of the introduction and method section. Therein, some literature reviews are unnecessary and
probably unrelated to the study and can be omitted or need further explanation (see line-by-line
comments). Here, | would suggest to follow the guideline that cited papers should be discussed, and
not just mentioned. Other parts concerning the data integration and the SWC model need to be
described in more detail. | would further recommend to reduce the detail of the results section, which
is hard to follow without proper discussion, and thus to merge it with the discussion section. The
results of the study were well structured and decribed, but are not entirely novel, and not sufficient to
provide answers to all research questions raised by the authors. For example, to assess the value of a
CRNS network of certain density to the performance of a land-surface model, various fractions of the 9
stations should be tested as requested by Referee #1.

We shortened and sharpened the indicated parts of the manuscript to further increase its readability.
Where appropriate, we added additional discussion to the mentioned references. In the revised version
we state more clearly, how the research questions were answered by this study.

As pointed out in the answer to Referee #1, new simulations were run with a more limited number of
cosmic-ray neutron sensors (4) to emphasize the additional value of a network of CRNS using five CRNS
for evaluation and with a third soil map.

Furthermore, the study uses some questionable assumptions, like a constant error of soil moisture
data (although neutron measurement uncertainty highly varies with wetness condition), or the



assimilation of SWC data assuming homogeneous vertical profiles and no changes of seasonal biomass
(see line-by-line comments for details). Another questionable approach is to allow static site-specific
parameters to be variable in time, e.g., hydraulic conductivity or soil porosity.

Thank you. We address these questions exhaustively in the line-by-line comments in the following pages.

This is highly counter-intuitive and should be discussed with respect to uncertain data and/or model
conceptualization. | agree to most of the general comments made by Referee #1 and will thus
compensate the previous reviews by detailed line-by-line comments below.

2 Line-by-line comments, scientific questions/issues, and technical corrections

o Title (“Evaluating the value of a network of cosmic-ray probes for improving land

surface modelling”): I'd suggest to remove “the value of” to simplify the title. Furthermore, state
observations usually do not improve a model, they rather improve model results, e.g. predictions.
Thank you for this suggestion. We agree and suggest to change the title towards:

“Evaluation of a cosmic-ray neutron sensor network for improved land surface model prediction”

Page 2
¢ L1: “Land surface models can model”: bad phrasing, replace “can model” e.g. by “describe”.
We changed this to “describe”.

® L3: “CRP”, please use the newly accepted abbreviation CRNS (cosmic-ray neutron sensing/sensor)
with regards to the recent 5th COSMOS workshop.
We agree and changed this throughout the manuscript.

¢ L14: improve readability, split in two sentences.
Thank you, we did split the sentence.

¢ L18: please add a statement about the impact of your findings for the scientific community.

The impact on the scientific community can only crystalize after publication. The expected scientific
impact is highly speculative and in my opinion not suitable for the abstract.

We conclude the abstract with the key finding summarizing the detailed results of the study in a general
way and think this is sufficient for the abstract:

“The results demonstrate that assimilated data of a CRNS network can improve the characterization of
soil moisture content at the catchment scale by updating spatially distributed soil hydraulic parameters

III

of a land surface mode

e 1 21-22: this sentence needs a reference.
We added: Brutsaert, W.: Hydrology : an introduction, Cambridge University Press, Cambridge ; New
York, xi, 605 p. pp., 2005.

e 124: " and is "> “while it is”
We changed this.



e L27-28: the given number of references here appears to overwhelm the statement and its low
relevance to your paper. Please use only the 1 or 2 most important citations.
We agree and removed some references of less relevance.

e L30-31: Please discuss the alternatives in more detail to strengthen your decision to use CRNS
technology. Were space-borne remote-sensing products assimilated to LSMs before? Why wasn’t it
successful? What about the use of airborne products with higher resolution and depth? You could also
mention point-scale or large-scale soil moisture monitoring networks which have been used for
evaluation of land surface models.

These methods were successful in some cases, but have deficiencies particularly in respect to dense
vegetation as mentioned here:

Page 2 line 31-page3: “Soil moisture measured by space-borne remote sensing technologies provides
information over large areas but is strongly affected by vegetation and surface roughness (e.g. Temimi et
al., 2014). Therefore, in this paper an alternative source for soil moisture information is explored which
can measure soil moisture more accurately under dense vegetation (Bogena et al., 2013).”

We mention successful applications of remote sensing data e.g. here:

Page 3 line 27: “Reichle et al. (2002) performed a synthetic experiment using L-band microwave
observations of the Southern Great Plains Hydrology Experiment (Jackson et al., 1999) to analyse the
effect of ensemble size and forecast errors.”

And here:

Page 3 line 32-page4: “More recently, state updates with the EnKF were tested for the Soil Moisture
Ocean Salinity (SMOS, Kerr et al., 2012) mission. De Lannoy and Reichle (2016) assimilated SMOS
temperature brightness and soil moisture retrievals into a land surface model with large improvements
in surface soil moisture.”

Following your previous argumentation on limiting the introduction to relevant publications, we
constrain the introduction to cosmic-ray neutron sensors, mentioning alternative techniques.
Additionally, we give a limited overview on important literature of earlier work done particularly on
methods used in this study.

¢ L31: “not reliable for areas with dense vegetation”: a paper by the same first author recently found
that CRNS is also influenced by dense vegetation. Is it more reliable?

Yes, CRNS are more accurate under dense vegetation than remote sensing products. We added:

Page 2 line 31: “Soil moisture measured by space-borne remote sensing technologies provides
information over large areas but is strongly affected by vegetation and surface roughness (e.g. Temimi et
al., 2014). Therefore, in this paper an alternative source for soil moisture information is explored which
can measure soil moisture more accurately under dense vegetation (Bogena et al., 2013).”

¢ 133: the selection of citations for this statement appears to be random/unrelated. If you want to
provide references for the “intermediate scale”, Zreda 2008 and Kéhli 2015 might be appropriate.
We state this more precise now:



Page 3 line 3-5: “Cosmic-ray neutron sensors (CRNS) measure fast neutron intensity at an intermediate
scale of ~15 ha (Kohli et al., 2015;Zreda et al., 2008) which is the desired application scale of land surface
models (Ajami et al., 2014;Chen et al., 2007;Shrestha et al., 2014).”.

¢ L34: “desired application scale of land surface models”: please make the reader happy by finally
providing concrete information. What is the scale? Are you talking about centimeters or lightyears?
Please do not use citations inflationary and do not keep them untouched. How do the three citations
help you to support your argumentation?

Thank you, we are precise by now stating the observation scale (15ha, see comment before), but the
model resolution is stated in the methods section which is common sense in literature of hydrologic
modelling.

Page 3

e L1: omit “fast” as it repeats with the next sentence.

In accordance with your following comment, we prefer to stay clear and keep “fast”:

Page 3 line 5-8: “Fast neutrons originate from collisions of secondary cosmic particles from outer space
with terrestrial atoms. Fast neutrons in turn are moderated most effectively by hydrogen because the
mass of a neutron is similar to that of a nucleus of the hydrogen atom.”

o L3: add “fast” to make clear that the sensor measures the non-moderated neutrons.
We added “fast”.

e L4: “15 ha”, your SWC range seems to be 10 to 40%, which leads to an approximate CRNS footprint of
7 to 14 ha following Kohli 2015, excluding vegetation and altitude influence. You could write
“maximum area of 15 ha” to circumvent mentioning this variability.

Thank you for the suggestion. We see your point, however, the newest research is not always carved into
stone and figures are evolving as research continues and is discussed. Take for example the all very
recent publications that address the cosmic ray neutron sensor footprint defined to 300m radius (Zreda
et al., 2008), 300m radius and less (Desilets and Zreda, 2013, on the footprint specifically) and 200m
radius and less (Kohli et al, 2015 on the footprint specifically).

However, this is not a major focus of this study. We changed to:

Page 3 line 4: “intensity at an intermediate scale of ~15 ha (Kohli et al., 2015;Zreda et al., 2008)”

® L6: omit “Desilets and Zreda, 2013” as it does only marginally address heterogeneous averaging.
Franz 2013a is already a great reference to this topic, Kéhli 2015 also touched this.

We agreed and changed to:

Page 3 line 11: “are averaged over a larger area (Franz et al., 2013a; Kohli et al., 2015).”

¢ L8: Bogena et al. 2013 did not perform simulations to the penetration depth. Instead, Franz et al.
2012 (d0i:10.1029/2012WR01187) and K&hli et al. 2015 provided simulations that both support these
values.

We changed this:



Page 3 line 12-15: “Vertical measurement depth ranges from a maximum of ~70 cm under completely
dry conditions and decreases to roughly ~12 cm under wet conditions (e.g. 40 vol. % soil moisture) (Kohli
et al., 2015;Franz et al., 2012).”

e L11: add a reference for COSMOS-UK, Evans et al. 2016, 10.1002/hyp.10929
Thank you. We added:
Page 3 line 17: “and the British COSMOS-UK (Evans et al., 2016).”

¢ L13-15: please rephrase to make clear what data assimilation is and is not.

Thank you. We rephrased:

Page 2 line 28: “Data assimilation of soil moisture provides a way to improve imperfect land surface
model predictions. Here, soil moisture measurements are used to update model predictions by optimally
considering the uncertainty of model initial conditions, model parameters and model forcings. “

e L15: It is not clear why you choose EnKF. Please at least mention other techniques and provide
reasons for your choice. The sentence further should be moved to the end of the paragraph after you
have introduced the history of DA.

We added:

Page 3 line 23: “The EnKF is much less CPU intensive compared to alternative methods such as the
particle filter (e.g. Montzka et al., 2011) because for high dimensional problems the EnKF requires a

much smaller ensemble size to achieve reasonable good predictions.
We considered moving the ‘sentence further’, but find it is located well at that spot.

e L16-34: This historical overview appears to be unnecessary in the context of your study. Neither do
you explain what things like "four-dimensional variational DA" are, nor is the relation to your work
described. Furthermore, citations are used inflationary again. Please reduce this paragraph to the key
publications which support your study. Also think about moving certain studies about ensemble size,
multiple time steps, and other filtering approaches to the methodology section, where you need
justification for your approach.

Thank you. We shortened the literature review slightly, but include previous work on state updates and
joint state-parameter updates.

e L30-32: Just to emphasize the previous comment, these lines particularly carry no information for
non-experts due to the lack of explanation.
Thank you. We removed this section out.

Page 4

e L1-19: As stated before, the whole literature review appears to be random and irrelevant to your
work. Or at least the relations are not explained. For example, work from Montzka 2011;2013 and Han
2014b appear to be of some relevance for you, prior to others.



The literature review puts this work into the context of soil moisture data assimilation and the joint
state-parameter estimation. We may be too broad for you in this literature review but may not be too
broad for other reviewers who desire a literature review.

e L23-24: “Its capability to propagate surface soil moisture information into the deeper soil column
was analyzed by Rosolem et al. (2014)”, what does this sentence mean?

We rephrase:

Page 5 line 21-25:“The surface soil moisture information was propagated into greater soil depth than
only the measurement depth using COSMIC in combination with data assimilation (Rosolem et al.,
2014).”

® L26: “The COSMIC operator”, third repetition as a sentence starter.
We reformulated

® L27-29: combine those sentences: “neutron observations have been used to update states (... ) and
hydraulic parameters (... )"

We considered to combine the sentences but it is better as is:

Page 5 line 24-28:“Neutron counts measured by CRNS have been used in data assimilation studies to
update model states (Han et al., 2015;Rosolem et al., 2014). Soil hydraulic parameters were also updated
by assimilation of neutron counts in one synthetic study (Han et al., 2016), showing its feasibility.”

® L29: “showed” - “demonstrated”
We changed.

¢ L29-30: be more correct in phrasing. Rephrase that Villarreyes 2014 used a different model, but also
estimated hydr. parameters by inversion.

We state:

Page 5 line 27: “CRNS were also used for inverse estimation of soil hydraulic parameters of the Hydrus-
1D model (Villarreyes et al., 2014).”

Han 2016 did so too, using support from neutron data, but neutron assimilation alone does not
“update” a hydraulic parameter.

We rephrase:

Page 5 line 24: “Soil hydraulic parameters were also updated by assimilation of neutron counts in one
synthetic study (Han et al., 2016), showing its feasibility.”

¢ L31: “This work further explores”, omit “further”. Until now it is not clear what this work does, you
only told stories about work of others. Please summarize which of the presented approaches you are
picking up and what scientific novelty you add.

“This work further...” links to the previous paragraph and the meaning of “further” means to expand the
work that has been done by the community, not necessarily by the authors themselves. It is placed
correctly in this context.



Page 5

e L3-4: “the soil moisture characterization at the larger catchment scale”, what exactly is meant by
these terms, and how do you measure improvement?

Thank you. We removed “larger” and hope this is clearer now.

¢ L4: “how dense the CRP network should be”, do you answer this question?
Thank you. We removed this question, as this should be addressed in a synthetic study and is most
probably catchment specific.

® L7-8: “soil maps and atmospheric forcings show spatial correlations over larger distances”, this is an
interesting point, please provide reference. Isn’t the largescale heterogeneity of soil maps only an
artefact of soil data scarcity?

These correlations are generated by large scale atmospheric processes, geomorphology, vegetation, and
last but not least anthropogenic activities such as land use. We added three relevant references:

Page 6 line 6-9: “On the other hand, soil moisture, soil maps and atmospheric forcings show spatial
correlations over larger distances (Kirkpatrick et al., 2014;Korres et al., 2015) which suggests that CRNS
measurements potentially carry important information to update soil moisture contents for larger
regions (e.g. Han et al., 2012).”

e L9: “10 stations”, do you assimilate all 10, or just 9?
Thank you. We corrected this, it is nine stations.

e L15: “feasibility of the updated large scale soil hydraulic parameters”, how can a parameter be
feasible? Please clarify your novel research question.
We removed “of the feasibility”.

¢ L18-19: The sentences can be omitted as being obvious.
We prefer to keep these sentences.

Page 6

¢ L6: correct wording, a “process” can not be “solved”

We rephrased:

Page 7 line 10: “Some of the key processes which are modelled by CLM are radiative transfer...”

¢ L10: “Oleson et al. (2013) provide further details on CLM4.5”, redundant information with regard to
L5-6.
Thank you. We removed this sentence.

e L10-12: provide reasons why you artificially limit the scope and complexity of your study. What
process would a “biogeochemical module” have added and why are they not important here
compared to a prescribed LAI?

This would be beyond the scope of this study as invoking the biogeochemical module would require a
model spin-up of 1000 years for the catchment. It would have allowed to model vegetation development



dynamically and model the biomass development. It was however already explained elsewhere in this
response letter that little additional gain is expected from this, which would not have balanced the great
additional complexity introduced in the modelling process. We added:

Page 7 line 15-19: “To limit the scope and complexity of this study, CLM was run using satellite
phenology e.g. prescribed leaf area index data and the biogeochemical module turned off. The
biogeochemical module allows CLM to model the vegetation development dynamically, but it requires a
large spin-up of 1000 years and little additional gain is expected for this study from these additionally
modelled processes.”

¢ L14: please finally (after lots of references in the introduction) provide concrete information about
the grid size in your study (the reader is still lost between centimeters and lightyears)

In hydrologic literature it is common to provide the numbers for the model setup in the corresponding
section. We added there:

Page 12line 10-11: “The model of the Rur catchment was spatially discretized by rectangular grid cells of
0.008 degree size (~750 m).”

¢ L23: use standard format for functions, k[z] - k(z)
Thank you, changed

o L24: formatz > z
We modified.

¢ L24: what is the difference between “soil moisture” and SWC? Why are you using the expression &

here, while SWC is used elsewhere (e.g., eqs. 24 and 25)?
Thank you. Agreed. We changed the term SWC in Egs. 24 and 25.

e L25: use the more convenient expression k,:(z),

We agree and modified it.

® 126 (eq. 1):

- format k[z] = k(z),

Agreed.

— rewrite ks, > ksa(2) as this is a functional relationship. In contrast, indexing a state variable 8; is ok.
We agree and modified it.

. . D'E [a.T4
— omit occurrences of 0.5 since P 1,

Agreed.

— case conditions (e.g., 1 <i< N...) are usually preceded by a comma in each line
We added comma.

— the curly bracket on the right is not common in multi-case equations.

Thank you. We removed it.

Page 7



¢ eq. 3 and 5: reformat sand - sand, same for clay.
This was changed.

¢ L6: “whereas”, split sentence here.
Thank you. We will split the sentence.

® eqs. 9 and 10: this is a single equation, requiring only a single equation number, and a multi-case
alignment using a curly bracket
Thank you, this was modified.

o L12: reformat mm - mm,
This was corrected

¢ whole page: please motivate the reader why these details are important for your research question.
Also provide information where all these empirical (fixed) parameters (or regression coefficients) are
coming from. Is the underlying theory so well understood that no uncertainties or further
dependencies are required?

We agree that this is important. We added motivation to this section:

Page 9 line 24-29:“The joint state-parameter estimation used in this study updates soil texture and
organic matter in CLM. Hence, parameter estimates directly determine soil hydraulic properties in CLM.
The following equations describe how soil texture and organic matter define the soil hydraulic properties

III

in CLM such as porosity, hydraulic conductivity, the empirical exponent B and soil matric potentia

Page 8

e L4: “COSMIC parameterizes interactions”. The interactions are parameterized by the underlying
physical cross-section data. COSMIC rather parameterizes the neutron transport.

We rephrased:

Page 9 line 9:“COSMIC parameterizes neutron transport within the soil subsurface and was calibrated
against the more complex Monte Carlo Neutron Particle model MCNPx (Pelowitz, 2005).”

e L7-8: Repetition from the introduction.
We removed.

¢ L10: “high energy neutrons are reduced” - “the number of high energy neutrons is reduced”
We modified as suggested.

e L11: “with less energy in each soil layer”, misleading/unphysical. Fast neutrons typically evaporate
with constant energy.

We modified:

Page 9 line 14:“ In the soil, the number of high energy neutrons is reduced by interactions within the soil
leading to generation of fast neutrons in each soil layer.”

e L12: rewrite “soil interaction”, as fast neutrons predominantly interact with the water.



Agreed. However, bulk density plays a major role in parameterizing COSMIC.
We changed to:
“...interactions within the soil...”

e L16-22 and eq. 14: this part can be omitted, since it is already well described in papers from
Shuttleworth and Baatz, and does not add to the message of this paper. If you decide not to omit it,
replace © in eq. 14 to avoid confusion with soil moisture.

Thank you. We replaced & accordingly.

e L22: explain to the reader how the 300 soil layers in COSMIC communicate with the 10 soil layers
from CLM.

We rephrased:

Page 10 line 13-14: “In this study, the contribution of each CLM soil layer was used to calculate the
weighted CLM SWC retrieval corresponding to the vertical distribution of simulated SWC in each grid
cell.”

And

Page 10 line 16-18: “Measured neutron intensity of CRNS was used to inversely determine a CRNS SWC
retrieval as by Baatz et al. (2014) assuming a homogeneous vertical SWC distribution. Then, the weighted
CLM SWC retrieval is used in the data assimilation scheme to relate the CRNS SWC retrieval to the model
state.”

Further explanation is given in the next section on data assimilation.

¢ L.26: what is a “COSMIC soil surface”?
We rephrase: “the soil surface in COSMIC”

e L25ff: it looks like you are not assimilating neutrons, but reiterating SWC from neutron data. The
whole paragraph creates a great confusion about what the difference is between SWC, CLM SWC,
weighted CLM SWC, and CRP SWC. In contrast to other less relevant paragraphs in this section, this
part is highly unclear and simultaneously highly important to understand the most important part of
your model. Please rephrase the whole paragraph and clarify to the reader what exactly you do, and
why (i.e., why not assimilating N directly?)

It is stated several times that SWC retrievals are assimilated updated and not neutron data e.g.:

Page 10 line 16-18: “Then, the weighted CLM SWC retrieval is used in the data assimilation scheme to
relate the CRNS SWC retrieval to the model state.”

The first sentence of this paragraph states what observation is assimilated:

Page 10 line 26-27:“To further expand the work of Han et al. (2016), this study uses the local ensemble
transform Kalman filter (LETKF) (Hunt et al., 2007) to assimilate SWC retrievals by CRNS into the land
surface model CLM. “

We then clearly state what is updated in CLM:



Page 10 line 28-29: “Updates were calculated either for SWC states or jointly for SWC states and soil
parameters depending on the experiment setup.”

We also added to the previous paragraph why SWC retrievals were assimilated, and not neutron flux:
Page 10 line 16-24: “Measured neutron intensity of CRNS was used to inversely determine a CRNS SWC
retrieval as by Baatz et al. (2014) assuming a homogeneous vertical SWC distribution. Then, the weighted
CLM SWOC retrieval is used in the data assimilation scheme to relate the CRNS SWC retrieval to the model
state. Alternatively, neutron flux data could be assimilated directly within the catchment. This would
require calibration data throughout the catchment which is only feasible using spatially distributed data
sets (e.g. Avery et al., 2016). However, high stands of biomass are a major factor for calibration in the
Rur catchment (Baatz et al., 2015) and estimates of biomass come along with high uncertainties. To
circumvent introducing these additional uncertainties, SWC retrievals are assimilated in this study.
Changes in on-site biomass were assumed negligible.”

Page 9

e L5-10: Your paper is not a protocol. Again, it is described what you are using and who else used it,
but the reader is left with the question why you (and others) made this decision. Shortly explain
advantages of your strategy and why it serves your research question better than others.

Thank you. We now state:

Page 10 line 26: “To further expand the work of Han et al. (2016), this study uses the local ensemble
transform Kalman filter (LETKF) (Hunt et al., 2007) to assimilate SWC retrievals by CRNS into the land
surface model CLM. “

We also argue:

Page 3 line 22-25: “The EnKF is much less CPU intensive compared to alternative methods such as the
particle filter (e.g. Montzka et al., 2011) because for high dimensional problems the EnKF requires a
much smaller ensemble size to achieve reasonable good predictions.”

e L11: whatis fin xf ?

We adde at page 11 line 3: “f marks the model prediction or forecast before the update”

e L19: confusing typesetting. Is it ﬁ as a function of the COSMIC model, or is ﬁ identical with the
COSMIC operator?

We now state:

Page 11 line 11-13: “the observation operator H (COSMIC) is applied on the measured neutron intensity
in order to obtain the expected weighted SWC retrieval at each of the observation locations for each of
the stochastic realizations” to explain that H is neither identical nor a function.

e eq. 19: do not use T as a symbol for transposition, there is a reserved symbol for this: Y.

Thank you. We change T to the reserved symbol.



Page 10
¢ L18: redundant sentence.
The sentence was removed.

e L20: why these values? is it comparable with the catchment-mean texture? If your question is, what
impact a rough and uncertain soil map in data scarce region would have, wouldn’t it be more
reasonable to smooth out the existing soil map to a very rough degree, rather than using a completely
arbitrary soil map?

Thank you for your questions. We did calculations with the globally available but coarse FAO soil map for
the revised version of the manuscript (see responses to reviewer #1).

We add information on catchment wide average sand and clay content, and what was the motivation to
select the biased soil map as initial soil map in part of the simulation experiments:

Page 12 line 15-24: “Alternative simulations were also performed with the FAO soil map of the global
Harmonized World Soil Database (FAO, 2012) and with a biased soil texture with a fixed sand content of
80 % and clay content of 10 % (S80 soil map). Average sand and clay content are 22.5% and 21.4% for the
BK50 soil map and 39% and 22% for the FAO soil map. The FAO soil map and the biased soil map
represent large error with respect to the soil properties of the BK50 soil map. The FAO soil map and S80
soil map simulations allow evaluating the joint state-parameter estimation approach because given the
expected bias, we can evaluate to what extent the soil properties are modified by the data assimilation.
This is important because in many regions across the Earth a high resolution soil map is not available.
Land surface models are applied for those regions, for example in the context of global simulations, and
hence might be strongly affected by the error in soil properties.”

The new simulation results and discussion on the FAO soil map simulations were added.

Page 11
¢ L3-5: omit physical units (they are irrelevant in this context).
Omitted as suggested.

¢ 1 8-11: How do you justify the perturbation of physical soil parameters like porosity and texture?
Does the uncertainty of the soil map justify the huge variation ranges applied in this work? Are models
allowed to adapt their physical basement to hydrological data (which also show uncertainty)?
Perturbation of physical soil parameters like porosity and texture is a general standard procedure in data
assimilation and numerous papers use this approach mentioned in the introduction of joint state-
parameter estimation.

With the perturbation we account for uncertainty in these soil parameters. One of the main relevant
sources of uncertainty in our modelling here is the uncertainty with respect to the soil parameters. The
variation ranges are not so huge, considering that CLM assumes a single set of pedotransfer functions
being valid throughout the globe. We added:

Page 13 line 12: “Soil texture perturbation considers that in CLM a single set of pedotransfer functions is
assumed to be valid throughout the globe while usually pedotransfer functions are specific for regions



(e.g. Patil and Singh, 2016). In other words, the perturbation of soil texture also covers the uncertainty in
the pedotransfer function itself.”

e L15: omit “=”
We agree and modifed.

¢ How was the CRP SWC uncertainty determined? Assuming a constant CRNS error is not physical and
might have substantial influence on the results (to be tested). For example, the error of neutron
observations N is pN, while N can almost double from very wet to very dry conditions, which leads to a
variation of the neutron uncertainty by 30%. This can propagate through the non-linear relation to soil
moisture in such a way that your observed SWC is significantly more uncertain in wet periods
compared to dry periods. Consequently, the DA approach should give more weight to dry periods
during assimilation.

This is a good point. The uncertainty of the neutron count intensity can be modelled by the Poisson
distribution, and sampling this distribution and processing it through the non-linear equation which links
neutron count intensity and weighted soil water content, allows deriving the measurement error in
terms of SWC, also as function of SWC. This was not done here and we used results from earlier work
that focused explicitly on estimating the measurement standard deviation of SWC. Based on this work
we assume a fixed measurement standard deviation of 0.03 cm?®/cm?® here. We added:

Page 13 line 24-27: “Based on previous work (Baatz et al., 2015), the SWC retrieval uncertainty for CRNS
was estimated to be 0.03 cm?®/cm?® while fluctuations in the measurement standard deviation, related to
the non-linear relation between observed neutron intensity and SWC, were assumed negligible.”

Page 12

e L16: Why do you use RMSE, although many alternative measures are accepted as state-of-the-art
measures for time series evaluation, e.g., KGE or NSE, in order to assess bias, deviation, and
correlation simultaneously?

RMSE is a standard measure used in the data assimilation community, whereas NSE is not standard. KGE
is indeed an interesting measure which was however not considered here.

® egs. 23 and 24: reformat SWC - SWC, same with RMSE and bias, as those are single multi-letter
variables, not products of multiple single-letter variables. Following this style guide, rewrite Ezys 2
Erms- You can even omit “RMS” since E is the only error used in this work. This would improve
readability of the results section.

Thank you for the suggestion. We reformatted the equation.

Page 16

e L17-26: It is argued that changes in SWC states have impact to simulated ET flux. However, only for
state-parameter updates (L19). Why is ET not affected by (SWC) state updates only?

No, we did not argue this. The impact on ET was explored in less detail, partly because ET is most of the
year close to potential ET, especially in the southern part of the catchment (hills). For illustration



purposes, we showed here the impact on ET by comparing open loop simulations and simulations with
joint state-parameter updating.

e L32: “to Exys-values”, omit “-”
Thank you, agreed.

Page 17

¢ L9: if precipitation data from COSMO_DE was used, why was this information omitted in the method
section (only mentioning DWD)?

We added this now to the method section.

® L26: replace “fast” with “quickly”.
Thank you. Done.

Page 18

¢ L10-23: This question already needs an answer in the method section, I'd suggest to move the whole
paragraph.

We agree and moved the paragraph to the method section.

e L10-23: | cannot follow the argumentation. Baatz et al. 2014 suggested a correction function for
neutron counts based on vegetation estimates.
Baatz et al. (2016) suggested such a correction function.

In your model, you already have LAl data every month, implementation of the correction functions in
the model would probably be straight forward. Furthermore, to convert neutron data to SWC, some
vegetation correction would be necessary, too.

LAl is not modelled dynamically (predicted) by CLM, but is a model forcing. In addition, LAl data from
satellite are not as accurate (bias, scale mismatch) and the conversion from LAl to biomass is also
affected by significant uncertainty. We do not expect additional gain from assimilating neutron count
intensity instead of converted neutron count intensity.

The conversion of neutron data to SWC does not require vegetation correction per-se. If on-site
calibration is done (which was the case for all nine locations) seasonal biomass changes are normally
negligible. If biomass changes are not negligible (fast growing crops), at the sites more precise
information on biomass is needed than at other catchment locations. Therefore the translation of
neutron counts into SWC is reliable at the sites, and SWC can be interpolated dynamically afterwards
with data assimilation. It is unclear what extra information can be gained if neutron count intensity is
assimilated, given the less precise information on for example biomass at other locations in the
catchment.

Third, assimilating CRP SWC assumes homogeneous vertical SWC profiles (before iteration), this
assumption would be unnecessary if neutrons would be assimilated directly. | am afraid that this topic



is more complex and needs further discussions and tests. It would be most convincing if you could
show that neutron assimilation indeed gives different results than CRP SWC assimilation.

This would be ideal but should be subject of another study. We clarify the paragraph, put it into the
method section and rephrased:

Page 10 line 16: “Measured neutron intensity of CRNS was used to inversely determine a CRNS SWC
retrieval as by Baatz et al. (2014) assuming a homogeneous vertical SWC distribution. Then, the weighted
CLM SWOC retrieval is used in the data assimilation scheme to relate the CRNS SWC retrieval to the model
state. Alternatively, neutron flux data could be assimilated directly within the catchment. This would
require calibration data throughout the catchment which is only feasible using spatially distributed data
sets (e.g. Avery et al., 2016). However, high stands of biomass are a major factor for calibration in the
Rur catchment (Baatz et al., 2015) and estimates of biomass come along with high uncertainties. To
circumvent introducing these additional uncertainties, SWC retrievals are assimilated in this study.
Changes in on-site biomass were assumed negligible.”

e L27: “neutron flux intensity”, do you mean flux or intensity or both?
Thank you. We removed intensity.

e L27: “Although . . . only available at few locations”, write more positively. Neutron data was
available at up to 9 locations, which was intended to be the amazing novelty compared to other
catchments!

Thank you. We removed this part of the sentence.

Figures

1. South = south, same with North.

Thank you, we considered but according to Bryan A. Garner “The Oxford Dictionary of Usage and Style”
(2000) Oxford University Press:

“The words north, south, east and west should not be capitalized when used to express directions <we
went north>. They are properly capitalized when used as nouns denoting regions of the world or of a
country <Far East> <the South>.

But when a directional word appears as an adjective before a geographic proper name, it is lower case
<eastern United States> <southern Italy>. If, however, the adjective is part of the proper name, it should
be capitalized <North Dakota> <East Anglia>.”

In this study, the North of the catchment is a geographic region. Hence, we keep “the North” and “the
South”.

2. Please add grid lines
We added horizontal grid lines.

3. Please add grid lines
We added horizontal grid lines.

4. Please add grid lines



We added horizontal grid lines.

5. It is hard to distinguish two black lines with different meaning. Further indication of the expected
“true” sand content (given by the soil map or soil samples) would be helpful to evaluate these plots.
We added a marker for the value of the BK50 soil map.

6. This figure is not understandable without the text. Please shortly provide information about the B
parameter in the caption to understand the message of this figure.
We added information to the caption.

7. replace k(sat) 2 kg It would be interesting to also show the evolution of the soil porosity
parameter together with an indication of its measured value. Why does hydraulic conductivity (and
probably also porosity) vary over time at individual sites? Those are expected to be constant physical
parameters of the sites. In my opinion this is a serious flaw of the DA approach used here.

Thank you. We replaced ksat. We rephrase the figure caption to be more clear:

Page 32 line 3-6: “At nine sites, estimates of percentage sand content are shown for simulations with
parameter update: PAR-S80-30 (green), PAR-S80-10 (light green), PAR-BK50-30 (red), PAR-BK50-10 (light
red), jk8-S80-* (black) and jk8-BK50-* (black). The value of the BK50 soil map is marked at the second y-
axis.”

The period with parameter updates should be considered as calibration period where parameters are
allowed to change. Notice also that simulations were made for a verification period with constant
parameters (estimated during the assimilation period). We would like therefore to stress the importance
of the evaluation period with temporally constant (estimated) parameter values.

8. The purpose of this figure is not clear, as no observation data is provided to evaluate the model
performance with respect to simulated latent heat.

Thank you. We rephrased the caption:

Page 35 line 2-6: “Annual evapotranspiration (ET) is shown in the year 2013 (evaluation period, no
assimilation). This figure demonstrates the impact of parameter updates (PAR-S80-10 and PAR-BK50-10)
in comparison to open loop (OL-S80) and reference soil map (OL-BK50). ET changes in the North but not
as much in the South.”

Tables

1. what is C3? Replace “non arctic” with “non-arctic”, probably add a citation to the caption for plant
functional types.

C3 is a type of carbon fixation.

We added:

Page 36 line 1: “CLM plant functional type (Bonan et al., 2002)”

And removed “non” as there is not “arctic grass” in the catchment.

3. improve readability by increasing font weight (boldness) for particularly good cases below an RMSE
threshold, which is a common strategy in many journals.
Thank you for the suggestion. We added:



Page 40 line 5: “The best cases are marked bold.”

4. same as 3. Rephrase the last sentence.
Thank you. We rephrased.

5.same as 4.
Thank you. We rephrased.
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GENERAL COMMENTS

OVERALL QUALITY

The paper by Baatz et al. (2016-432) describes an effort to use soil moisture data from nine closely-
spaced (2000 km2) cosmic-ray probes (CRPs) with data assimilation scheme to improve the assessment
of soil moisture in land-surface models. The goal is worthy and the execution is thorough. The results
are significant: (1) the joint state (soil moisture) and parameter (soil properties, like sand percentage)
estimation within data assimilation scheme produces better results than just state estimation; (2) in
absence of soil data and meteorological data, CRPs alone can improve data assimilation results. On
that account, the paper is suitable for publication in HESS.

Thank you for the positive overall evaluation of the manuscript. We appreciate your effort in reviewing
the manuscript. In the forthcoming revision we will consider each of your suggestions and expand the
discussion to answer the questions raised.

However, | am less certain about the significance of these results in light of the finding that the
parameters change in time and in many cases never converge. This is only possible if the parameters
are fitting parameters rather than physical parameters. So we end up with better results, but possibly
only by statistical manipulation rather than by improved understanding of the physics. Is this
progress? | would like to see at least some discussion of this issue in the paper in its final form.

We will expand the discussion on this issue in the revised version of the manuscript. Regarding the
change of parameters, those should be considered as parameter estimates. Notice also that simulations
were made for a verification period with constant parameters (estimated in the assimilation period).
Regarding uncertainty of parameters and the fact that those are not

We added possible reasons and discussion:

Page 19 line 26: “Temporally not stable parameter estimates imply that there may be multiple or
seasonal optimal parameter values. This is also supported by the findings of the temporal behaviour of
site average Egys (Error! Reference source not found.) e.g. during the evaluation period when in the dry
summer 2013 the Ezys peaks for the PAR-S80-30 simulation. In this context, it is important to mention
that many possible error sources were not subject to calibration in this study but could be crucial for an
even better modelled soil moisture and more reliable soil parameter estimation. In this study we only
considered uncertainty of soil parameters, but also vegetation parameters are uncertain. Also a number
of other CLM-specific hydrologic parameters (e.g. decay factor for subsurface runoff and maximum
subsurface drainage) strongly influence state variables in CLM and hence show potential for optimization
(Sun et al., 2013). Considering this uncertainty from multiple parameters could give a better parameter
uncertainty characterization (Shi et al., 2014). Precipitation is also an important forcing for hydrologic
modelling. For this study, precipitation data from the COSMO_DE re-analysis were used. A product which
optimally combines precipitation estimates from radar and gauge measurements is expected to give
better precipitation estimates than the reanalysis. This could improve the soil moisture characterization
and also potentially lead to better parameter estimates. Further improvements and constraining of
parameter uncertainty is also possible using multivariate data assimilation with observations such as
latent heat flux (e.g. Shi et al., 2014). Also other error sources related to the model structure play a
significant role. These options should be subject of future investigations. “



SPECIFIC COMMENTS

Why are RMSE and bias discussed separately if they are essentially the same information? One is
computed on squares of differences and therefore has a positive sign; the other is computed on
differences and therefore has a sign. Wouldn’t the bias suffice? If you keep both, please explain why
they are both needed and how they are different.

We add a motivation for using bias as second error measurement:
Page 15 line 4-5: “The second evaluation measurement in this study is the bias which is, in contrast to
the Egms, @ measure for systematic deviation:”

How are the results evaluated? What is the gold standard for soil properties? Pedotransfer functions?
What is it for soil moisture? At some of the sites extensive networks of TDR probes exists. Would it be
possible to include TDR data in the evaluation?

Thank you for the suggestions.

TDR probes work on a scale of few dm? which is significantly smaller than the scale of the land surface
model (1 km?). Hence, TDR probes are not suitable for a direct evaluation whereas cosmic-ray neutron
sensors (CRNS) measure soil moisture at an equivalent scale.

While TDRs are hardly the gold standard in soil moisture measurements, they would provide
independent soil moisture data. By the same token, have soil properties been measured at some of
the sites? Using the pedotransfer functions to derive unsaturated hydraulic conductivities is hardly the
gold standard, and hard to defend.

Using pedotransfer functions is common sense in land surface modeling such as the land surface model
used in this study (CLM) or the Noah land surface model. Those models need to be calibrated by some
sort of measurements which are scale consistent data measured by cosmic-ray neutron sensors in this
study.

| suggest that the authors make at least some effort to provide independent data on soil moisture and
hydraulic properties.

We note that soil moisture measurements by CRNS were already independent from the prediction of the
land surface model during the verification period. Soil hydraulic properties at the desired scale of the
land surface model were not measured.

We also acknowledge that measurements on evapotranspiration would be desirable, but those are not in
the scope of this paper which focuses on soil moisture predictions:

Page 21 line 2-6: “Hence particularly in the northern part of the catchment, further observations such as
ET measurements are desirable for further improving the land surface model. These additional
observations could be used for future land surface model benchmarking (Best et al., 2015) or for more
constrained parameter estimates (Shi et al., 2015).”
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Please, see the annotated pdf manuscript.

For technical corrections we refer to the annotated pdf manuscript.



References

Ajami, H., McCabe, M. F., Evans, J. P., and Stisen, S.: Assessing the impact of model spin-up on surface
water-groundwater interactions using an integrated hydrologic model, Water Resour Res, 50, 2636-2656,
10.1002/2013wr014258, 2014.

Avery, W. A,, Finkenbiner, C., Franz, T. E., Wang, T. J., Nguy-Robertson, A. L., Suyker, A., Arkebauer, T.,
and Munoz-Arriola, F.: Incorporation of globally available datasets into the roving cosmic-ray neutron
probe method for estimating field-scale soil water content, Hydrol Earth Syst Sc, 20, 3859-3872,
10.5194/hess-20-3859-2016, 2016.

Baatz, R., Bogena, H. R., Hendricks Franssen, H. J., Huisman, J. A., Qu, W., Montzka, C., and Vereecken,
H.: Calibration of a catchment scale cosmic-ray probe network: A comparison of three parameterization
methods, J Hydrol, 516, 231-244, http://dx.doi.org/10.1016/j.ihydrol.2014.02.026, 2014.

Baatz, R., Bogena, H. R., Hendricks Franssen, H. J., Huisman, J. A., Montzka, C., and Vereecken, H.: An
empirical vegetation correction for soil water content quantification using cosmic ray probes, Water
Resour Res, 51, 2030-2046, 10.1002/2014WR016443, 2015.

Best, M. J., Abramowitz, G., Johnson, H. R., Pitman, A. J., Balsamo, G., Boone, A., Cuntz, M., Decharme,
B., Dirmeyer, P. A,, Dong, J., Ek, M., Guo, Z., Haverd, V., Van den Hurk, B. J. J., Nearing, G. S., Pak, B.,
Peters-Lidard, C., Santanello, J. A., Stevens, L., and Vuichard, N.: The Plumbing of Land Surface Models:
Benchmarking Model Performance, J Hydrometeorol, 16, 1425-1442, 10.1175/Jhm-D-14-0158.1, 2015.
Bogena, H. R., Huisman, J. A., Baatz, R., Hendricks-Franssen, H. J., and Vereecken, H.: Accuracy of the
cosmic-ray soil water content probe in humid forest ecosystems: The worst case scenario, Water Resour
Res, 49, 10.1002/wrcr.20463, 2013.

Chen, F., Manning, K. W., LeMone, M. A., Trier, S. B., Alfieri, J. G., Roberts, R., Tewari, M., Niyogi, D.,
Horst, T. W., Oncley, S. P., Basara, J. B., and Blanken, P. D.: Description and evaluation of the
characteristics of the NCAR high-resolution land data assimilation system, J Appl Meteorol Clim, 46, 694-
713, 10.1175/Jam2463.1, 2007.

De Lannoy, G. J. M., and Reichle, R. H.: Assimilation of SMOS brightness temperatures or soil moisture
retrievals into a land surface model, Hydrol Earth Syst Sc, 20, 4895-4911, 10.5194/hess-20-4895-2016,
2016.

FAO, I., ISRIC, ISSCAS, J: Harmonized World Soil Database v1.2, Rome, Italy, 2012.

Franz, T. E., Zreda, M., Ferre, T. P. A., Rosolem, R., Zweck, C., Stillman, S., Zeng, X., and Shuttleworth, W.
J.: Measurement depth of the cosmic ray soil moisture probe affected by hydrogen from various sources,
Water Resour Res, 48, Artn W08515

Doi 10.1029/2012wr011871, 2012.

Han, X., Li, X., Franssen, H. J. H., Vereecken, H., and Montzka, C.: Spatial horizontal correlation
characteristics in the land data assimilation of soil moisture, Hydrol Earth Syst Sc, 16, 1349-1363,
10.5194/hess-16-1349-2012, 2012.

Han, X., Franssen, H. J. H., Rosolem, R., Jin, R, Li, X., and Vereecken, H.: Correction of systematic model
forcing bias of CLM using assimilation of cosmic-ray Neutrons and land surface temperature: a study in
the Heihe Catchment, China, Hydrol. Earth Syst. Sci., 19, 615-629, 10.5194/hess-19-615-2015, 2015.

Han, X., Franssen, H.-J. H., Bello, M. A. J., Rosolem, R., Bogena, H., Alzamora, F. M., Chanzy, A., and
Vereecken, H.: Simultaneous Soil Moisture and Properties Estimation for a Drip Irrigated Field by
Assimilating Cosmic-ray Neutron Intensity, J Hydrol, http://dx.doi.org/10.1016/].jhydrol.2016.05.050,
2016.

Hunt, B. R., Kostelich, E. J., and Szunyogh, I.: Efficient data assimilation for spatiotemporal chaos: A local
ensemble transform Kalman filter, Physica D, 230, 112-126, DOI 10.1016/j.physd.2006.11.008, 2007.



http://dx.doi.org/10.1016/j.jhydrol.2014.02.026
http://dx.doi.org/10.1016/j.jhydrol.2016.05.050

Jackson, T. J., Le Vine, D. M., Hsu, A. Y., Oldak, A., Starks, P. J., Swift, C. T., Isham, J. D., and Haken, M.:
Soil moisture mapping at regional scales using microwave radiometry: The Southern Great Plains
Hydrology Experiment, leee T Geosci Remote, 37, 2136-2151, Doi 10.1109/36.789610, 1999.

Kerr, Y. H., Waldteufel, P., Richaume, P., Wigneron, J. P., Ferrazzoli, P., Mahmoodi, A., Al Bitar, A., Cabot,
F., Gruhier, C., Juglea, S. E., Leroux, D., Mialon, A., and Delwart, S.: The SMOS Soil Moisture Retrieval
Algorithm, leee T Geosci Remote, 50, 1384-1403, Doi 10.1109/Tgrs.2012.2184548, 2012.

Kirkpatrick, J. B., Green, K., Bridle, K. L., and Venn, S. E.: Patterns of variation in Australian alpine soils and
their relationships to parent material, vegetation formation, climate and topography, Catena, 121, 186-
194, 10.1016/j.catena.2014.05.005, 2014.

Kohli, M., Schron, M., Zreda, M., Schmidt, U., Dietrich, P., and Zacharias, S.: Footprint characteristics
revised for field-scale soil moisture monitoring with cosmic-ray neutrons, Water Resour Res, 51, 5772-
5790, 10.1002/2015WR017169, 2015.

Korres, W., Reichenau, T. G., Fiener, P., Koyama, C. N., Bogena, H. R., Comelissen, T., Baatz, R., Herbst,
M., Diekkruger, B., Vereecken, H., and Schneider, K.: Spatio-temporal soil moisture patterns - A meta-
analysis using plot to catchment scale data, J Hydrol, 520, 326-341, 10.1016/j.jhydrol.2014.11.042, 2015.
Montzka, C., Moradkhani, H., Weihermuller, L., Franssen, H. J. H., Canty, M., and Vereecken, H.:
Hydraulic parameter estimation by remotely-sensed top soil moisture observations with the particle
filter, J Hydrol, 399, 410-421, DOI 10.1016/j.jhydrol.2011.01.020, 2011.

Nearing, G. S., Mocko, D. M., Peters-Lidard, C. D., Kumar, S. V., and Xia, Y. L.: Benchmarking NLDAS-2 Soil
Moisture and Evapotranspiration to Separate Uncertainty Contributions, J Hydrometeorol, 17, 745-759,
10.1175/Jhm-D-15-0063.1, 2016.

Patil, N. G., and Singh, S. K.: Pedotransfer Functions for Estimating Soil Hydraulic Properties: A Review,
Pedosphere, 26, 417-430, 10.1016/5S1002-0160(15)60054-6, 2016.

Pelowitz, D. B.: MCNPX user’s manual, version 5, Rep. LA-CP-05-0369, Los Alamos National Laboratory,
Los AlamosLA-CP-05-0369, 2005.

Reichle, R. H., MclLaughlin, D. B., and Entekhabi, D.: Hydrologic data assimilation with the ensemble
Kalman filter, Mon Weather Rev, 130, 103-114, Doi 10.1175/1520-
0493(2002)130<0103:Hdawte>2.0.Co;2, 2002.

Rosolem, R., Hoar, T., Arellano, A., Anderson, J. L., Shuttleworth, W. J., Zeng, X., and Franz, T. E.:
Translating aboveground cosmic-ray neutron intensity to high-frequency soil moisture profiles at sub-
kilometer scale, Hydrol. Earth Syst. Sci., 18, 4363-4379, 10.5194/hess-18-4363-2014, 2014.

Shi, Y. N., Davis, K. J., Zhang, F. Q., Duffy, C. J., and Yu, X.: Parameter estimation of a physically based land
surface hydrologic model using the ensemble Kalman filter : A synthetic experiment, Water Resour Res,
50, 706-724, 10.1002/2013wr014070, 2014.

Shi, Y. N., Davis, K. J., Zhang, F. Q., Duffy, C. J., and Yu, X.: Parameter estimation of a physically-based
land surface hydrologic model using an ensemble Kalman filter: A multivariate real-data experiment, Adv
Water Resour, 83, 421-427, 10.1016/j.advwatres.2015.06.009, 2015.

Shrestha, P., Sulis, M., Masbou, M., Kollet, S., and Simmer, C.: A Scale-Consistent Terrestrial Systems
Modeling Platform Based on COSMO, CLM, and ParFlow, Mon Weather Rev, 142, 3466-3483,
10.1175/Mwr-D-14-00029.1, 2014.

Sun, Y., Hou, Z., Huang, M., Tian, F., and Leung, L. R.: Inverse modeling of hydrologic parameters using
surface flux and runoff observations in the Community Land Model, Hydrol Earth Syst Sc, 17, 4995-5011,
10.5194/hess-17-4995-2013, 2013.

Temimi, M., Lakhankar, T., Zhan, X. W., Cosh, M. H., Krakauer, N., Fares, A., Kelly, V., Khanbilvardi, R., and
Kumassi, L.: Soil Moisture Retrieval Using Ground-Based L-Band Passive Microwave Observations in
Northeastern USA, Vadose Zone J, 13, 10.2136/vzj2013.06.0101, 2014.

Villarreyes, C. A. R., Baroni, G., and Oswald, S. E.: Inverse modelling of cosmic-ray soil moisture for field-
scale soil hydraulic parameters, Eur J Soil Sci, 65, 876-886, 10.1111/ejss.12162, 2014.



Zreda, M., Desilets, D., Ferre, T. P. A,, and Scott, R. L.: Measuring soil moisture content non-invasively at
intermediate spatial scale using cosmic-ray neutrons, Geophys Res Lett, 35, 10.1029/2008GL035655,
2008.



10

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-432, 2016 Hydrology and

Manuscript under review for journal Hydrol. Earth Syst. Sci. Earth System
Published: 26 August 2016 Sciences
(© Author(s) 2016. CC-BY 3.0 License. Discussions

Evaluating the value of a network of cosmic-ray probes for
improving land surface modelling

Roland Baatz'?, Harrie-Jan Hendricks Franssen'?, Xujun Han'? Tim Hoar’, Heye R. Bogena' and
Harry Vereecken?

!Agrosphere (IBG-3), Forschungszentrum Jillich GmbH, 52425 Jiilich, Germany.
2HPSC-TerrSys , 52425 Jiilich, Germany.
*NCAR Data Assimilation Research Section, Boulder, CO, USA.

Correspondence to: Roland Baatz (r.baatz@fz-juelich.de)



10

15

20

25

30

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-432, 2016 Hydrology and
Manuscript under review for journal Hydrol. Earth Syst. Sci. Earth System
Published: 26 August 2016 Sciences
(© Author(s) 2016. CC-BY 3.0 License.

Discussions

Abstract: Land surface els can model matter and energy fluxes between the land surface and atmosphere, and provide a
lower boundary condition to atmospheric circulation models. For these applications, accurate soil moisture quantification is

ly desirable but not always possible given ted observations and limited subsurface data accuracy. Cosmic-ray probes
@Ps) offer an esting alternative to indirg measure soil moisture and provide an observation that can be assimilated
into land surface models for improved soil moisture prediction. Synthetic studies have shown the potential to estimate
subsurface parameters of land surface models with the assimilation of CRP observations. In this study, the potential of a
network of CRPs for estimating subsurface parameters and improved soil moisture states is tested in a real-world case
scenario using the local ensemble transform Kalman filter with the Community Land Model. The potential of the CRP
network was tested by assimilating CRP-data for the years 2011 and 2012 (with or without soil hydraulic parameter
estimation), followed by the verification year 2013. This was done using (i) the regional soil map as input information for the
simulations, and (ii) an erroneous, biased soil map. For the regional soil map, soil moisture characterization was only
improved in the assimilation period but not in the verification period. For the biased soil map, soil moisture characterization
improved in both periods strongly from af=my|s of 0.11 cm®cm® to 0.03 cm®/cm? (assimilation period) and from 0.12 cm®cm?®
to 0.05 cm*/cm? (verification period) and@estimated soil hydraulic parameters were after assimilation closer to the ones of
the regional soil map. Finally, the value of the CRP network was also evaluated with jackknifing data assimilation
experiments. It was found that the CRP network is able to improve soil moisture estimates at locations between the
assimilation sites from a Egys of 0.12 cm*/cm® to 0.06 cm*/cm® (verification period), but again only if the initial soil map

was biased.

1 Introduction

Soil water content (SWC) is a key variable of land surface hydrology and has a strong control on the partitioning of net
radiation between latent and sensible heat flux. Knowledge of SWC is relevant for the assessment of plant water stress and
agricultural production, as well as runoff generation as a response to precipitation events (Vereecken et al., 2008;Robinson et
al., 2008). In atmospheric circulation models, SWC is important as a lower boundary condition and is calculated as a state
variable in land surface models. Coupling of atmospheric circulation models and land surface models allows quantifying the
role of soil moisture on atmospheric processes such as soil moisture-precipitation feedbacks (Koster et al., 2004;Eltahir,
1998) and summer climate variability and drought (Oglesby and Erickson, 1989;Sheffield and Wood, 2008;Seneviratne et
al., 2006;Bell et al., 2015). It is therefore important to improve the modelling and prediction of SWC, but this is hampered
by model deficiencies and lack of high quality data (Vereecken et al., 2016). Soil moisture measured by e-born remote
sensing technologies provides information over large areas (e.g. imi et al., 2014). However, space-born remote sensing
supplies only information on the upper few centimeters, and data are not reliable for areas with dense vegetation. Therefore,
in this paper an alternative source for soil moisture information is explored. Cosmic-ray probes (CRPs) measure fast neutron
@usity which allows estimating SWC at an intermediate scale (Zreda et al., 2008;Desilets et al., 2010;Cosh et al., 2016;Lv

|

et al., 2014) which is closer to the desired application scale of land surface models (Ajami et al., 2014;Chen et al.,

2
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Q ;Shrestha et al., 2014). Fast neutrons originate from moderation of secondary cosmic particles from outer space by

Qestrial atoms. These particles are mainly fast neutrons, which are moderated most effectively by hydrogen because of the

similar atomic mass. Therefore, the corresponding neutron intensity measured by CRPs strongly depends on the amount of
hydrogen within the CRP footprint, allowing for a continuous non-invasive soil moisture estimate over an area of ~15 ha
(Kohli et al., 2015). The spatial extens his measurement is desirable as it matches with the desired grid cell size of a land
surface model (Crow et al., 2012) and::J:

I scale heterogeneities are averaged over a larger area (Franz et al., 2013a;Desilets
and Zreda, 2013). Vertical measurement depth ranges from a maximum of ~70 ¢cm under completely dry conditions and
decreases to roughly ~12 cm under wet conditions (e.g. 40 vol. % soil moisture) (Bogena et al., 2013). Worldwide several
CRP networks exist, like the North American COSMOS network (Zreda et al., 2012), the German CRP network (Baatz et
al., 2014) installed in the context of the TERENO infrastructure measure (Zacharias et al., 2011) and the Australian
COSMoZ network (Hawdon et al., 2014).

moisture data assimilation provides a way to improve imperfect land surface model predictions with measured soil
moisture data by merging model predictions and data, and can consider the uncertainty of initial conditions, model

parameters and model forcings. Ensemble Kalman Filtering (EnKF) is one of the most commonly applied data assimilation

methods (Evensen, 1994;Burgers et al., 1998). Soil-moisture data-assimilation-has-been-the subject-of intensive study fo

mproved n o on—o0 ne lower—pbounad ondition—fo n—athosphe on—mogde

variational-data—assimilation—approach. More recently, the Ensemble Kalman Filter (Reichle et al., 2002a;Dunne and
Entekhabi, 2005;Crow, 2003), the Extended Kalman Filter (Draper et al., 2009;Reichle et al., 2002b), four-dimensional
variational methods (Hurkmans et al., 2006) and the Local Ensemble Transform Kalman Filter (Han et al., 2015;Han et al.,
2013) were applied for updating soil moisture states in land surface models. Reichle et al. (2002a) performed a synthetic
experiment using L-band microwave observations of the Southern Great Plains Hydrology Experiment (Jackson et al., 1999)
to analyze the effect of ensemble size and prediction error. Dunne and Entekhabi (2005) showed that an Ensemble Kalman
Smoother approach, where data from multiple time steps was assimilated to update current and past states, can yield a

reduced prediction error compared to a pure filtering approach.

More recent work addressed joint state-parameter estimation in hydrologic land surface models with data assimilation
methods. t state-parameter estimation with EnKF is possible by an augmented state vector approach (Chen and Zhang,
2006), a Qapproach (Moradkhani et al., 2005) or an approach with an additional external optimization loop (Vrugt et al.,
2005). Pauwels et al. (2009) optimized soil hydraulic parameters of a land surface model with synthetic aperture radar data.

Lee (2014) used Synthetic Aperture Radar soil moisture data to estimate soil hydraulic properties at the Tibetan plateau

3
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using the EnKF and a Soil Vegetation Atmosphere Transfer model. Bateni and Entekhabi (2012) assimilated land surface
temperature with an Ensemble Kalman Smoother and achieved a better estimate of the partitioning of energy between
sensible and latent heat fluxes. Han et al. (2014b) updated soil hydraulic parameters of the Community Land Model (CLM)
by assimilation of synthetic brightness temperature data with the Local Ensemble Transform Kalman Filter (LETKF) (Hunt
et al., 2007). Shi et al. (2014) used the Ensemble Kalman Filter for a synthetic multivariate data assimilation problem with a
land surface model and then applied it to real data (Shi et al., 2015). The cases illustrated a way to use real world data for
estimating several parameters in hydrologic land models. (Kurtz et al., 2016) developed a particular CPU-efficient data
assimilation framework for the coupled land surface-subsurface model TerrSysMP (Shrestha et al., 2014). They successfully
updated 2 x 10’ states and parameters in a synthetic experiment. Whereas these studies were made with land surface models,
also in soil hydrological applications recently data assimilation was used to estimate soil hydraulic parameters. Early work
was by Wu and Margulis (2011, 2013) in the context of real-time control of waste water reuse in irrigation. Erdal et al.
(2014) investigated the role of bias in the conceptual soil model and explored bias aware EnKF as a way to deal with it.
Erdal et al. (2015) focused on handling of strong Gaussianity of the state variable in EnKF under very dry conditions.
Montzka et al. (2013;2011) explored the role o@ particle filter for handling non-Gaussianity in soil hydrology data
assimilation. They showed that the ability of a data assimilation system to correct the soil moisture state and estimate
hydraulic parameters strongly depends on the nonlinear character of the soil moisture retention characteristic. Song et al.
(2014) worked on a modified iterative filter to handle the non-linearity and non-Gaussianity of data assimilation for the
vadose zone. For a further literature review on data assimilation in the context of hydrological and land surface models we
refer to Reichle (2008) and Montzka et al. (2012).

Shuttleworth et al. (2013) developed the Cosmic Ray Soil Moisture Interaction Code (COSMIC), which is a forward
operator to be applied for assimilating neutron intensity observations from CRPs. The COSMIC code was evaluated for
several sites (Baatz et al., 2014;Rosolem et al., 2014). Its capability to propagate surface soil moisture information into the
deeper soil column was analyzed by Rosolem et al. (2014). The COSMIC operator was successfully implemented in the Data
Assimilation Research Testbed (Rosolem et al., 2014) to allow for state updating by the Ensemble Adjustment Kalman Filter
(Anderson, 2001). The COSMIC operator was implemented in a python interface that couples the land surface model CLM
and the LETKEF for joint state parameter updating (Han et al., 2015). Neutron counts measured by CRP have been used in
data assimilation studies to update model states (Han et al., 2015;Rosolem et al., 2014). Soil hydraulic parameters were also
updated by assimilation of neutron counts (Han et al., 2016), but only for a synthetic study which showed its feasibility.

CRPs were also used for inverse estimation of soil hydraulic parameters of the Hydrus-1D model (Villarreyes et al., 2014).

This work further explores the value of measured neutron intensity by CRPs to improve modelling of terrestrial systems at

the catchment scale (Simmer et al., 2015) using a land surface model. pa the main novelties are:



reviewer K
Highlight
I am not sure if this word exists. Suggest writing "non-Gaussian behavior" or distribution.

reviewer K
Cross-Out
unnecessary

r.baatz
Notiz
Beside the reference, there is a wikipedia article on non-Gaussianity..

r.baatz
Notiz
We will delete this.


10

15

20

>

30

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-432, 2016 Hydrology and
Manuscript under review for journal Hydrol. Earth Syst. Sci. Earth System
Published: 26 August 2016 Sciences
(© Author(s) 2016. CC-BY 3.0 License.

Discussions

(i) Data from a network of nine CRPs were assimilated in the Community Land Model version 4.5 (CLM) with an evaluation
of the information gain by this assimilation at the larger catchment scale. Until now evaluations with CRPs were made for a
single location, but not for a complete network of CRPs. It is a very important question whether CRPs can also improve the
soil moisture characterization at the larger catchment scale and how dense the CRP network should be. The high variability
of soil moisture at a short distance could potentially limit the CRP measurement value and make updating of soil moisture
contents further away from the sensor meaningless. On the other hand, soil maps and atmospheric forcings show spatial
correlations over larger distances which suggests that CRP measurements potentially carry important information to update
soil moisture contents for larger regions. If it is found that CRP networks with a density like in this study (10 stations per
2354 km?) can improve soil moisture content characterization at the larger catchment scale, this is of high relevance and
importance for agricultural applications, flood prediction and protection, and regional weather prediction (Whan et al.,
2015;Koster et al., 2004;Seneviratne et al., 2010). The main research question addressed in this paper is therefore whether a
CRP network of the density in this study can improve large scale soil moisture characterization by state and parameter
updates.

(i) Soil hydraulic parameters were updated together with the soil moisture states in a real-world case study at the larger
catchment scale. The study in this paper also allows some evaluation of the feasibility of the updated large scale soil

hydraulic parameters.

In the following paragraphs are presented the model site and the measurements (2.1), the Community land Model and its
parameterization (2.2), the@\/llc forward model (2.3) and the data assimilation procedure (2.4).

2 Materials and methods
2.1 Site description and measurements
@ model domain, the Rur catchment (2354 km?), is situated in western Germany and illustrated in Fig. 1. Most prominent

(mainly in the North), grassland, and coniferous and deciduous forest. The altitude
varies between 15 ma.s.l. in the flat northern part and 690 m a.s.l. in the hilly southern part. Precipitation, evapotranspiration
and land use follow the topography. Annual precipitation ranges between less than 600 mm in the North 200 mm in the
hilly South (Montzka et al., 2008). Annual potential evapotranspiration varies between 500 mm in the So@and 700 mm in
the North (Bogena et al., 2005). The Rur catchment CRP network comprises nine CRPs (CRS1000, Hydrolnnova LLC,
2009) which were installed in 2011 and 2012 (Baatz et al., 2014). Climate and soil texture of the CRP sites can be found in
Table 1 CRPs were calibrated in the field using gravimetric soil samples. At each site, 18 soil samples were taken along
three ciI:?e—srwith distances of 25, 75 and 175 meters from the CRP, six samples evenly distributed along each circle. Each
sample was extracted with a 50.8 x 300 mm round HUMAX soil corer (Martin Burch AG, Switzerland). The samples were
split into 6 sub-samples with 5 cm length each and oven dried at 105 °C for 48 hours to measure dry soil bulk density and

soil moisture.@ice water was determined for each site using a heat conductivity detector. Soil bulk density, soil moisture,
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I@fe water and our averaged measured neutron intensity were used to determine@ration parameters specific for
each CRP and the COSMIC operator.

2.2 Community land model and parameterization

The Community Land Model version 4.5 (CLM) was the land surface model of choice for simulating water and energy
exchange between the land surface and the atmosphere (Oleson et al., 2013). Some of the key processes which are solved by
CLM are radiative transfer in the canopy space, interception of precipitation by the vegetation and evaporation from
intercepted water, water uptake by vegetation and transpiration, soil evaporation, photosynthesis, as well as water and energy
flow in the subsurface. SWC in CLM is influenced by precipitation, infiltration into the soil, water uptake by vegetation,
surface evaporation and surface and subsurface runoff. Oleson et al. (2013) provide further details on CLMA4.5. To limit the
scope and complexity of this study, CLM was run using satellite phenology, e.g. prescribed leaf area index data and the

biogeochemical module turned off.

The spatial domain is discretized by rectangular grid cells by CLM. Each grid cell may have several types of land cover:
Lake, urban, vegetated, wetland, and glacier. The vegetated part of the grid cell can be covered by several plant functional
types which are all linked to a single soil column. The soil column is vertically discretized by ten soil layers and five bedrock
layers. Layer thickness increases exponentially from 0.007 m at the surface to 2.86 m for layer 10. Vertical water flow in

is modelled by the 1D Richards equation. Soil hydraulic parameters are determined from sand and clay content using
p@itransfer functions for the mineral soil fraction (Clapp and Hornberger, 1978;Cosby et al., 1984), and organic matter

content for the organic soil fraction (Lawrence and Slater, 2008).

The following equations describe how soil texture and organic matter define the soil hydraulic properties in CLM such as
porosity, hydraulic conductivity, the empirical exponent B and soil matric potential. Hydraulic conductivity (k[z] in mm/s)
at the depth z between two layers (i and i+1) is a function of soil moisture (6 in m*m?® in layers i and i+1), saturated

hydraulic conductivity (kg in mm/s at z), saturated soil moisture (64, in m*m®) and the empirical exponent B:

= Bicesae (

where ¢, is the ice impedance factor. The ice impedance factor was implemented to simplify an increased tortuosity of

2B;+3
0'5(9i+9i+1) t

0'5(95at,i+95at,i+1)
2B;+3
0; ) L

esat,i

¢iceksat,z [ 1<i< Nlevsoi -1

L= Nlevsoi

water flow in a partly frozen pore space. It is calculated with ¢;,, = 10~%ice using the resistance factor Q = 6 and the
frozen fraction of soil porosity Fi., = 0;c./0sq:,;- SOil hydraulic properties are calculated separately for the mineral (min)

and organic matter (om) soil components. Total porosity 6, ; is calculated using the fraction of organic matter (£, ;) with:
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gsat,i = (1 - fom,i)gsat,min,i + fom,igsat,om 2

where the organic matter porosity is 654 o, = 0.9 and sand content in % determines the mineral soil porosity 8¢ mn 8s:
Osatmin = 0.489 — 0.00126 X %sand 3

Analogous, the exponent B is calculated with
B, = (1 - fom,i)Bmin,i + fom,iBom 4
Where B,,,, = 2.7 is the organic exponent and the mineral exponent B,,,;, ; is determined by clay content in % with:

Bmini = 2.91 + 0.159 X %clay 5

Saturated hydraulic conductivity is calculated for a connected and an unconnected fraction of the grid cell with:

ksat [Zi] = (1 - fperc)ksat,uncon [Zi] + fperc,iksat,om [Zi] 6

where fyerc; is the fraction of a grid cell where water flows with saturated hydraulic conductivity of the organic matter
(Ksat,om[2:] in mm/s) through the organic material only, the so called connected flow pathway, whereas the saturated
hydraulic conductivity of the unconnected part (ksq¢unconlz:] in mm/s) depends on organic and mineral saturated soil

hydraulic conductivity:

1 _fom +fom - fperc>_1 !

ksat,uncon = (1 - fperc) (k . k .
sat,min sat,om

where saturated hydraulic conductivity for mineral soil is calculated from the grid cell sand content as:

ksat,min [Zl'] = 0.0070556 x 10—0.884—+0.0153X%Sand 8

The fraction f,,. is calculated with:

foere = 0.908 X (fo — 0.5)°13% £, >0.5 9

fperc =0 fom < 0.5 10

Soil matric potential (mm) is defined as function of saturated soil matric potential (mm) with:

6; \ 6; \ 11
Y, = lIJsat:,i <_> = [(1 - fom,i)qjsat,min,i + fom,iqjsat,om] <—)

Gsat,i gsat,i
where saturated organic matter matric potential is Wsqe0m = —10.3 mm and saturated mineral soil matric potential is

calculated from sand content as:
—10.0 x 101.88—0.0131><%sand b

lIjsat,‘min,i
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2.3 Cosmic-ray forward model
SWC retrievals were calculated from neutron intensity observations with the mic-ray Soil Moisture Interaction Code
MIC (Shuttleworth et al., 2013) following calibration results and the procedure of Baatz et al. (2014). COSMIC
parameterizes interactions between neutrons and atoms in the subsurface, relevant for soil moisture estimation. COSMIC
was calibrated against the more complex Monte Carlo Neutron Particle model MCNPx (Pelowitz, 2005) and needs
considerably less CPU-time than the MCNPx model. The reduced CPU-time need and the physically based parameterization
make COSMIC a suitable data assimilation operator. The code was tested at multiple sites for soil moisture determination
(Baatz et al., 2014;Rosolem et al., 2014) and analyzed in detail by Rosolem et al. (2014).

COSMIC assumes that high energy neutrons enter the soil. In the soil, high energy neutrons are reduced by
interaction with the soil Teading to opic generation of fast neutrons@ less energy in each soil layer. Before
rfacing, fast neutrons are ced again by interaction (Shuttleworth etal., 2013). The number of neutrons Np that

reaches the CRP can be summarized in a single integral as

Nerp = Neosmic f {A(Z) [aps(z) + py,(2)]exp (‘ [mz—iZ) + mVZ—Z(Z)D} ~dz 13

where Ngosmic 1S an empirical coefficient that is CRP specific and needs to be estimated by calibration, A(z) is the
integrated average attenuation of fast neutrons, a« = 0.404 — 0.101 X ps is the site specific empirical coefficient for the
creation of fast neutrons by soil, ps is the dry soil bulk density in g/cm?, p,, is the total soil water density in g/cm?, mg and

are the mass of soil and water, respectively, per area in g/cm?. L, = 162.0 g cm? and L, = 129.1 g cm™ are empirical
|gl"ficients that were estimated using the MCNPx code (Shuttleworth et al., 2013). The integrated average attenuation of
fast neutrons A(z) can be found numerically by solving

/2
(2 -1 [ms(2) my,(2) 14
A(Z)_<E)f exP(cos(G) L + Ly >.d9

0

where 6 is the angle along a vertical line below the CRP detector to the element that contributes to the attenuation of fast

rons, Ly = —31.65 + 99.29 X ps is determined from soil bulk density and L, = 3.16 g cm? is another empirical
coefficient estimated using the MCNPx code (Shuttleworth et al., 2013). The COSMIC operator is discretized into 300

ical layers of one cm thickness up to a depth of three meters. For each CLM grid cell in the model domain, simulated
QC is used to generate a SWC retrieval using the COSMIC code. Simulated SWC is handed from the CLM simulation
history files to the COSMIC operator. Given the vertical SWC distribution of the individual CLM soil column, COSMIC
internally calculates the contribution of each layer to the simulated neutron intensity signal at the COSMIC soil surface. In
this study, the contribution of each layer was used to calculate the weighted CLM SWC retrieval corresponding to the

vertical distribution of simulated SWC in each grid cell. Measured neutron intensity of CRPs was used to inversely
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determine a CRP SWC retrieval as by Baatz et al. (2014) assuming a homogeneous vertical SWC distribution. Then, the

weighted CLM SWC retrieval is used in the data assimilation scheme to relate the CRP SWC retrieval to the model state.

2.4 Data assimilation

This study uses the local ensemble transform Kalman filter (LETKF) (Hunt et al., 2007) to assimilate SWC retrievals by
CRPs into the land surface model CLM. Besides other Ensemble Kalman Filter variants, the LETKF is applied in
atmospheric sciences (Liu et al., 2012;Miyoshi and Kunii, 2012), ocean science (Penny et al., 2013) and also in land surface
hydrology (Han et al., 2014a;Han et al., 2015). Updates were calculated either for states or jointly for states and parameters.
For state updates only, the LETKF was used as proposed by Hunt et al. (2007). Calculations were made for an ensemble of

model simulations which differed related to variations in model forcings and input parameters. The states of the different
ensemble members are indicated by xif where i=1, ...., N and N is the number of ensemble members. The individual state
vectors x{ contain the CLM-simulated SWC of the ten soil layers and the vertically weighted SWC retrieval obtained with

the COSMIC operator. For each grid cell, a vector X/ can be constructed which contains the deviations of the simulated

states with respect to the ensemble mean X/ :

X =[x -%, .. x} - %] 15

In case of joint state-parameter updates, a state augmentation approach was followed (Hendricks Franssen and Kinzelbach,
2008;Han et al., 2014b). In this case, the augmented model state vector X/ is constructed from the weighted SWC, and the

grid cell's sand, clay and organic matter content.

In order to relate the measured neutron intensity with the simulated SWC of CLM, the observation operator H (COSMIC) is
applied on the measured neutron intensity in order to obtain the expected weighted SWC retrieval for each of the stochastic

realizations:
f_ f 1
yi = H(Xi) 6

The ensemble realizations of the modelled SWC retrieval yf to y}:, with respect to the ensemble mean y/ are stored in the

vector Y":

Y =yl -7, vh -] 17
The observation error correlation was reduced in space by the factor f,., using the spherical model:

frea =1 — (1.5 X d/dpmqay) + (0.5 X [d/dmax]3) 18

where d is the distance to the observation and d,,,, = 40km is the maximum observation correlation length, about half the

size of the catchment. Only SWC retrievals within the maximum observation correlation length were used for assimilation.
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This leads to a ‘localized’ size of Y/ and the observation error covariance matrix R. The intermediate covariance matrix P¢
(also called analysis error covariance matrix) is calculated according to:
P% = [(N - DI+ YTR™1Y/] 19

In addition, the mean weight vector w is obtained as follows:
wé = PanTR—l(yO _ 7)‘) 20

where y° is CRP SWC retrieval. In the ensemble space, a perturbation matrix W is calculated from the symmetric square
root of P%:

We = [(N — 1)P?]1/? 21

The final analysis X is obtained from:

X2 =% + X [W? + W] 22

A more detailed description of the LETKF can be found in (Hunt et al., 2007) and details on the implementation of the
LETKF in combination with CLM are given by (Han et al., 2015).

3 Model and Experiment Setup

3.1 Model Setup

In this study, discretization and parameterization of the hydrological catchment was done on the basis of high resolution
data. The Rur catchment domain is spatially discretized by rectangular grid cells of 0.008 degree size (~750 m). The model
time step was set to hourly. Land cover was assumed to consist of vegetated land units only, and a single plant functional
type (PFT) for each grid cell was defined. The plant functional types were derived from a remotely sensed land use map
using RapidEye and ASTER data with 15 m resolution (Waldhoff, 2012). Sand content, clay content and organic matter
content were derived from the high resolution regional soil map BK50 (Geologischer Dienst Nordrhein-Westfalen, 2009).
The BK50 soil map provides the high resolution soil texture for the catchment and is the most detailed soil map available for
the defined region. As an alternative, simulations were also performed for a biased soil texture distribution with a fixed sand
content of 80 % and clay content of 10 % (S80 soil map). This represents a large error with respect to the expected true soil

properties. It allows evaluating the joint state-parameter estimation approach because given the expected bias, we can

evaluate whether and to what exten soil properties are modified by the data assimilation to be closer to the available
high resolution soil map. dditior:jmany regions across the Earth a high resolution soil map is not available and land
surface models which are applied for those regions, for example in the context of global simulations, might be strongly
affected by the error in soil properties.@as tested how this impacted the simulation results. Maximum saturated fraction, a
surface parameter which is used for runoff generation, was calculated from a 10 meter digital elevation model @nds

GmbH, 2010). Leaf area index data were derived from monthly averaged Moderate Resolution Imaging Spectrometer data

10
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(MODIS). CLM was supplied with hourly atmospheric forcing data from a reanalysis data set for the years 2010 to 2013
from the German Weather Service (DWD). The data was downscaled from a resolution of 2.8 km? to the CLM resolution
using linear interpolation based on Delaunay triangulation. Forcing data include precipitation in mm/s, incident solar and
longwave radiation in W/m?, air temperature in K, air pressure in hPa, wind speed in m/s and relative humidity in kg/kg at
the lowest atmospheric level.

3.2 Model ensemble
Uncertainty was introduced into the regional CLM model by perturbed soil parameters and forcings. Contents of sand, clay
and organic matter were perturbed with spatially correlated noise from a uniform sampling distribution with mean zero and
standard deviation 10 % or 30 % (Han et al., 2015). By perturbing texture, soil parameters are also perturbed through the
pedotransfer functions used in CLM as specified in Sect. 2.2. Precipitation (¢ = or 1.0; lognormal distribution) and
shortwave radiation 0.3; lognormal distribution) were perturbed with multip@ive noise with mean equal to one.
Longwave radiation @= 20 W m®) and air temperature (o = 1K) were perturbed with additive noise. The forcing
perturbations were imposed with correlations in space (5 km) using a fast Fourier transform. Correlation in time was
introduced with an AR(1)-model with autoregressive parameter=0.33. These correlations and standard deviations were
chosen based on previous data assimilation experiments (Reichle et al., 2010;Kumar et al., 2012;De Lannoy et al., 2012;Han
et al., 2015). In this work, only results for precipitation perturbation with ¢ = 0.5 will be shown as results for ¢ = 1.0 were
similar. An ensemble size of 95 realizations was used in the simulations. Based on previous work (Baatz et al., 2015),

the SWC retrieval uncertainty for CRPs was estimated to be 0.03 cm®cm®.

3.3 Experiment set-up

All simulation experiments in this study used initial conditions from a single five year spin-up run. For the five year spin-up
run, a single forcing data set of the year 2010 was repeatedly used as atmospheric input. The soil moisture regime became
stable after five years spin-up period, and additional spin-up simulations would not affect soil moisture in the consecutive
years. After this five year spin-up, soil parameters and forcing data of the consecutive years were perturbed. From 1% Jan.
2011 onwards, CLM was propagated forward with an ensemble of 95 realizations. On 20" Mar. 2011, the first SWC retrieval
was assimilated and assimilation of SWC retrievals continued until 31% Dec. 2012. From 1% January 2013 to 31* December
2013 the model was propagated forward without data assimilation but with an ensemble of 95 realizations. The year 2013

was used exclusively as evaluation period for data assimilation experiments.

In total, 26 simulation experiments were carried out using different setups (Table 2). Two open loop simulations were run for
the BK50 soil map (OL-BK50) and the S80 soil map (OL-S80), respectively, without data assimilation and soil parameter
perturbation of 30 %. These simulations are referred to as reference runs for the respective soil map. Simulation results of

data assimilation runs were compared to the reference runs for quantification of data assimilation benefits. Simulations were
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done with joint state-parameter estimation (PAR-), two for the S80 soil map (PAR-S80-) and two for the BK50 soil map
(PAR-BKH50-), for which soil texture was perturbed by 10 % and 30 %. Two simulations were done with state updates only
for the BK50 soil map (Stt-BK50) and the S80 soil map (Stt-BK50), where soil texture was perturbed by 30 %. These eight

simulations form the basic set of experiments.

Besides the data assimilation experiments also a larger number of jackknifing simulations was run to evaluate the data
assimilation performance. These simulations allow evaluating the impact of the CRP network to improve SWC
characterization at other locations, without CRP. In a jackknife experiment, data from eight CRP locations were assimilated
and one CRP was excluded from the assimilation for evaluation purpose. At the evaluation location, simulated SWC (which
is affected by the assimilation of the other eight probes) was compared to CRP SWC retrievals. For jackknife simulations,
the perturbation of soil texture was set to 30 % and precipitation perturbation was done with o= 0.5. States and parameters at
these sites were jointly updated, and simulations were made using the BK50 and the S80 soil maps as input. Therefore, a
total of 18 jackknife simulations (jk-S80-* and jk-BK50-*) was performed (two soil maps times nine different simulations
leaving away one CRP at a time).

Simulation results were evaluated with the root mean square error @3):

23

2
RMSE :\j ?=1(SWCC,CLM B SWCt,CRP)
n

where n is the total number of time steps, SWC, ¢,y is the CLM SWC retrieval at time step t and SWC; cge is the CRP SWC
retrieval at time step t. In case SWC was assimilated at the corresponding time step, SWC; ¢, is SWC prior to assimilation.
In the case the Erys is estimated at a single point in time over all CRPs available, the number of time steps n can be replaced

by the number of CRPs available. The second evaluation measurement in this study@e bias:

pigs = 2t=1(SWCrciw = SWCicre) 24
n

4 Results

4.1 General Results

Table 3 summarizes the performance statistics in terms of Erys for the assimilation period (2011 and 2012). Presented are
results for the open loop scenario and six data assimilation scenarios. Errors of open loop simulations are higher for the S80-
simulation than for the BK50-simulation at all sites but Merzenhausen. At Merzenhausen Egrys was 0.054 cm®/cm? for the
S80 soil map and 0.067 cm*/cm?® for the BK50 soil map. Open loop simulations with the S80 soil map resulted in Egus-
values above 0.10 cm®cm?® at five of nine sites. At all sites data assimilation results with the S80 soil map improved SWC

compared to the open loop simulations. This was also the case for the BK50 soil map simulations at all sites but Aachen
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where Egrus Was larger than for the open loop run. In general, data assimilation improved simulations more for the S80 soil
map (Erms reduced by 0.079 cm*cm®) than for the BK50 soil map (Erwms reduced by 0.01 cm*cm®). Room for improvement
with the BK50 soil map runs was more limited because of the smaller open loop errors. Nevertheless, after state updating
alone the BK50 soil map still gave smaller errors than the S80 soil map. However, joint state-parameter estimation further
improved simulation results by reducing Egrmws-values and the parameter updating resulted in similar Erys-values for the
BK50 (0.028 cm®*/cm?) and S80 soil map (0.03 cm®/cm?). The Egws for simulations with 10 % and 30 % perturbation of soil

texture values@not show very different results.

The temporal course of soil moisture in 2011 at the two sites Gevenich and Merzenhausen is shown in Fig. 2. The flgur

illustrates that SWC at both sites was lower with the S80 soil map than with the BK50 soil map. In—Gevenich—and

mean open loop SWC in 2011 was 0.17 cm*/cm?® for the S80 soil map at both sites and 0.27 cm*/cm?® for the

BK50 soil map at both sites. CRP measurements at Merzenhausen started in May 2011. In the data assimilation runs SWC
was immediately affected at the Merzenhausen and Gevenich sites as soon as Merzenhausen CRP SWC retrievals were
assimilated. The simulated SWC for the PAR-S80-30 data assimilation run increased as compared to the S80 open loop
simulation. The first observation at Gevenich was recorded on July 7", 2011. By that date, the simulated CLM SWC
retrieval was already close to the CRP SWC retrieval at the Gevenich site (Fig. 2) due to SWC updates which showed to
have a beneficial impact. Fig. 2 also shows that the@‘so open loop run was close to the observed SWC at both sites, even

without data assimilation.

Fig. 3 shows the temporal course of SWC from January 2011 to December 2013 at Heinsberg and Wildenrath. Assimilation
and evaluation results are shown for the case of joint state-parameter updates (PAR-S80-30), only state updates (Stt-S80),
open loop (OL-S80) and CRP SWC retrievals. At Heinsberg, results show that assimilated SWC was closer to the CRP SWC
retrieval when both states and parameters were updated (PAR-S80-30) than if only states were updated (Stt-S80). This is the
case in the assimilation period and in the evaluation period. At the beginning of the evaluation period, the Stt-S80 simulation
shows an increase in bias between modeled CLM SWC retrievals and CRP SWC retrieval within the first few days of 2013.
The bias of Stt-S80 remained throughout the evaluation period. In contrast, modeled SWC during the evaluation period was

close to the CRP SWC retrieval if parameters were previously updated (PAR-S80-30).

The CRP at Wildenrath started operating on May 7™, 2012. SWC retrievals at other CRPs were assimilated already from
May 2011 onwards and affected SWC at Wildenrath (Fig. 3). Until May 2012, Fig. 3 shows assimilated SWC (Stt-S80 and
PAR-S80-30) was higher than open loop SWC. However, no SWC retrievals were available at the Wildenrath site for
comparison during this period. When SWC retrievals from the CRP at Wildenrath became available and were assimilated
into the model, assimilated (Stt-S80 and PAR-S80-30) and open loop (OL-S80) SWC were close to CRP SWC retrievals.
This was the case throughout the remaining assimilation and evaluation period. These results suggest that the high sand
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content of the biased soil map is not far from the optimal sand content at Wildenrath. Therefore, at Wildenrath, the high sand
content of both soil maps (60 % and 80 %) resulted in good modeling results already for the open loop runs. This suggests
that before May 2012, simulated SWC of the open loop runs with either soil map represented more realistic SWC than

assimilated SWC during this period. This will be discussed further in the discussion section.

4.2 Verification period

The year 2013 was the verification year without data assimilation. Egys values for the evaluation period 2013 are reported in
Table 4. On the one hand, BK50 data assimilation runs with joint state-parameter estimation resulted in improved SWC at
three out of the nine sites compared to open loop BK50-runs. For the other six sites results worsened compared to the
corresponding BK50 open loop run. Egys values increased from an average of 0.041 cm*cm?® (OL-BK50) over all sites to
0.047 cm®cm® (PAR-BK50-30). On the other hand, for the S80 soil map, all sites except Wildenrath had significantly
reduced Erys Vvalues for the case of data assimilation including parameter updating compared to the S80 open loop run. For
the S80 simulations, average Erms over all sites for 2013 was on average 0.12 cm®/cm? for the open loop run and 0.04
cm®/cm® for the run including data assimilation. In case only states were updated (Stt-S80 and Stt-BK50), Egus Was also
slightly reduced (compared to open loop runs) for the majority of sites during the evaluation period in 2013. On average, this
reduction was 0.016 cm®cm? for the S80 soil map (Stt-S80) and 0.002 cm*/cm® for the BK50 soil map (Stt-BK50). At sites,
where Erys Was larger for data assimilation runs with state updating (compared to open loop runs), the increase was only
0.001 cm*/cm®.

Bias calculated on the basis of a comparison of hourly SWC measured by CRP and simulated for 2013 is reported in Table 5.
The average bias for the S80 open loop run is 0.11 cm*/cm?® while it is 0.02 cm*/cm?for the BK50 open loop run. Bias of the
BK50 open loop run was positive at Merzenhausen, Gevenich, Heinsberg, and Aachen, and it was negative at Rollesbroich,
Kall, RurAue, and Wuestebach. Bias was zero at Wildenrath for the BK50 open loop run. Bias of the S80 open loop run was
negative at all sites indicating that modeled SWC was higher than measured SWC. Joint state-parameter updates reduced the
absolute bias on average to 0.03 cm*/cm® (PAR-S80-30) and 0.02 cm®cm?® (PAR-S80-10) for the S80 soil map. In case of the
BKS50 soil map, the bias in 2013 increased to 0.03 cm*/cm® by joint state-parameter updates. State updates without parameter
updates reduced the biases only marginally to 0.01 cm*/cm? for the BK50 soil map and to 0.09 cm*/cm? for the S80 soil map.
This indicates that state updates also can slightly improve SWC-characterization in the verification period due to improved
initial conditions.

4.3 Temporal evolution of mean Egys
Fig. 4 shows the temporal evolution of the hourly Egys calculated for all nine CRPs. Erys was highest for the S80 open loop
run and lowest for the PAR-S80-30 simulation. State updates did not improve modeled SWC as much as joint state-

parameter updates improved modeled SWC. The Erys in case of Stt-S80 also falls behind the Erys of the BK50 open loop
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run through most of the time. Joint state-parameter updates for the S80 soil map improved the Egws throughout most of the
time compared to the open loop simulations based on the BK50 and S80 soil maps. During the assimilation period 2011-
2012, the PAR-S80-30 simulation performed best out of the four simulations. During the evaluation period 2013, OL-BK50
and PAR-S80-30 performed equally well except in summer 2013 when the PAR-S80-30 simulation yielded much higher
Erwvs-values than the BK50 open loop run.

4.4 Jackknife simulations

The jackknife simulations investigated the impact of the network of CRPs for improving estimates of SWC at locations
between the CRPs, outside the network. The errors shown in Table 4 refers to the two open loop simulations (for the S80 soil
map and the BK50 soil map) and the 18 jackknife simulations. All simulations with the S80 soil map resulted in an improved
Erws in the jackknife simulations compared to the open loop simulation, except for Wildenrath. In all cases the Egys Was
smaller than 0.10 m*m?. Error reduction was smaller at sites where the open loop error was smaller. At sites with large open
loop Erws, the assimilation could reduce the Egus by 50 % or more. In case of the BK50 soil map, the jackknife simulations
resulted in Erus-values below 0.10 m*m? at all sites. However, in this case only at Merzenhausen the Egyvs was reduced
during the data assimilation period. At Wildenrath, the Egus was highest for jk-BK50 (0.091 m*¥m®) and jk-S80 (0.095
m*/m®). The average absolute bias for the jackknife experiments was 0.04 cm®cm? for both soil maps, BK50 and S80, in the
evaluation period 2013 (Table 5). Hence, bias in the jk-S80-* simulations improved compared to the open loop run but not in

the jk-BK50-* simulations, where bias was already small.

4.5 Temporal evolution of parameters
The temporal evolution of the percentage sand content during the assimilation period for the nine CRP sites is shown in Fig.
5 for PAR-S80-30, PAR-S80-10, PAR-BK50-30, PAR-BK50-10, jk-S80-30* and jk-BK50-30*. Time series start on March
20™, 2011, the date of the first assimilated CRP SWC retrieval at Wuestebach. Wuestebach and sites within the influence
sphere of Wuestebach (Aachen, Kall and Rollesbroich) show also a change in sand content from this date onwards. All other
sites show a change in sand content in May 2012 when Rollesbroich and Merzenhausen start operating and their data is
assimilated. sites show variability in sand content over time. Wuestebach, Kall, RurAue, Rollesbroich and Heinsberg
show some Qs in the time series. Merzenhausen, Aachen, Gevenich, and Wildenrath show a smoother course compared to
ther sites. Sand levels approach a constant site-specific value for the sites Merzenhausen (45 %), Kall (30 %), Gevenich
%ﬁ%), RurAue (30 %), Heinsberg (42 %) and Wildenrath (62 %) with a reasonable spread amongst the experiments. The
spread in estimated sand content for the sites Wuestebach, Aachen and Rollesbroich is larger, and it seems not to have
stabilized at the end of the assimilation. Sand content estimates of the jackknife simulations was close to the sand content of
the other data assimilation experiments with joint state-parameter estimation at the sites Merzenhausen, Gevenich, RurAue
and Heinsberg. Evolution of the sand content for the jackknife simulations showed larger deviations from the sand content

estimated by other data assimilation experiments for the sites Wuestebach, Kall, Aachen, Rollesbroich and Wildenrath.
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The soil hydraulic parameter B and saturated hydraulic conductivity are shown in Fig. 6 and Fig. 7 for PAR-S80-30, PAR-
S80-10, PAR-BK50-30, PAR-BK50-10, jk-S80-30* and jk-BK50-30*. Updates of soil hydraulic parameters start in March
and May 2011 with the assimilation of SWC retrievals depending on the location. The B parameter increases for all
simulations. Throughout the whole assimilation period B varies considerably within short time intervals. The total range of
the B parameter is between 2.7 and 14 at all sites. At the sites Merzenhausen, Kall, Aachen, Gevenich and Rollesbroich, it
generally ranges between 6 and 10. At Wuestebach, Heinsberg and RurAue, B ranges most of the time between 8 and 12,
and at Wildenrath, B is below 8. Initial saturated hydraulic conductivity is rather high (k,,:>0.015 mm/s) in case of high
sand content i.e. for the S80 soil map, and rather low (k,,,<0.005 mm/s) in case of low sand content i.e. for the BK50 soil
map. In case of the S80 soil map, at all sites except Wildenrath, high initial saturated hydraulic conductivity decreases
quickly by parameter updates to values below 0.01 mm/s. The initial spread in kg, values amongst the simulation scenarios
decreases at most sites. At Wuestebach, Merzenhausen, Aachen, Gevenich, RurAue and Heinsberg, the spread is rather small
particularly at the end of the assimilation period, while at Wildenrath k.. ranges from 0.005 to 0.015 for individual

experiments at the end of the assimilation period. The discussion section will elaborate more on this.

4.6 Latent heat and sensible heat

Latent heat flux or evapotranspiration (ET) is another important diagnostic variable of the CLM model and of importance for
atmospheric models. Results of the data assimilation experiments showed that soil texture updates altered soil moisture states
significantly. In Fig. 8 it is shown that joint state-parameter estimation also altered ET. Fig. 8 shows ET within the
evaluation period 2013 across the whole catchment for four simulations. On the one hand, ET was similar for both open loop
simulations in the South of the catchment. On the other hand, ET in the North was up to 80 mm per year lower for the S80
open loop run compared to the BK50 open loop run. Regarding open loop runs, the differences can be linked to the drier soil
conditions in case OL-S80 compared OL-BK50 simulation results. For PAR-S80-10, ET increased by up to 40 mm per year
in the Northern part of the catchment through data assimilation. The differences between open loop ET and data assimilation
ET were larger for the S80 soil map than for the BK50 soil map. This could be related to the larger update in SWC in case of
the S80 scenario compared to the BK50 scenario.

5 Discussion

The applied data assimilation scheme improved soil moisture characterization in the majority of simulation experiments with
the regional Community Land Model (CLM). During 2011 and 2012, the biased S80 soil map gave a Erys up to 0.17
cm*/cm? (at Rollesbroich) in the open loop simulation which left plenty of room for improvements. The soil map BK50 led
to Erms-values in open loop simulations below 0.05 cm®/cm?® which left little room for error reduction considering the
measurement error of 0.03 cm®cm?®. For the simulations starting with 80 % sand content, sand content was closer to the

values of the BK50 soil map after joint state-parameter estimation. However, the temporal evolution of the updated soil
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texture and the soil hydraulic parameters was not stable. Temporal fluctuations imply that there may be multiple or seasonal
optimal parameter values. This is also supported by the findings of the temporal behavior of Erys during the evaluation
period e.g. when in the dry summer 2013 the Egys peaked in the PAR-S80-30 simulation. Many possible error sources were
not subject to calibration in this study but they could be crucial for an even better soil moisture and more stable soil
parameter estimation. In this study we only considered uncertainty of soil parameters, but also vegetation parameters are
uncertain. Also a number of other CLM-specific hydrologic parameters (e.g. decay factor for subsurface runoff and
maximum subsurface drainage) strongly influence state variables in CLM and hence show also potential for optimization.
Considering this uncertainty could give a better uncertainty characterization. Precipitation is an important forcing for the
model calculations and its estimate could be improved. For this study, precipitation data from the COSMO_DE re-analysis
were used. A product which optimally combines gauge measurements and precipitation estimates from radar could give
better precipitation estimates. This could improve the soil moisture characterization and also potentially lead to better
parameter estimates. Also other error sources like the ones related to the model structure play a significant role. This should

be subject of future investigation.

Evaluation simulations for 2013 led to partly improved and partly deteriorated Egys values when the BK50 soil map was
used as prior information on the soil hydraulic properties. The simulations with the S80 soil map on the contrary showed an
improved soil moisture characterization in all simulation scenarios and the updated soil hydraulic parameter estimates for
those simulations approached the values of the BK50 soil map. These results indicate that the soil hydraulic parameters
derived from the BK50 soil map were already well suited for soil moisture predictions and updating soil texture and soil

ymeters could not improve further the results. Erys values for simulations with state updates only (Stt-BK50 and Stt-
0) in 2013 imply the beneficial role of state updates only. However, the improvements in the evaluation period by state
updates (without parameter values) are small compared to the improvements obtained by joint state-parameter estimation.
This illustrates the benefits of joint state-parameter updates compared to state updates only, and that soil moisture states are
strongly determined by soil hydraulic parameters. It also illustrates that the improved characterization of soil moisture states
in the assimilation period which results in improved initial states for the verification period loses its influence in the

verification period fast over time.

The jackknife simulations illustrated that a network of CRPs can improve modeled SWC if the soil map information is not
sufficient. Temporal evolution of subsurface parameters of the jackknife simulations (e.g. jk-S80-*) was close to the
evolution of parameter estimates by other simulations (e.g. PAR-S80-10). Parameter estimates at jackknife test sites were
inferred from multiple surrounding CRP sites, while updates at sites with CRP information were strongly inferred from
single site information. A comparison of parameter estimates at the end of the assimilation period indicates that initial soil
parameterization has a limited effect on the resulting parameter estimates. Parameter estimates of jk-BK50-30* and jk-S80-

30* are close together at the end of the assimilation period. The CRP network led to improved results for the jackknife
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evaluation simulations in case of the biased soil map. This suggests that assimilation of CRP data is particularly useful for
regions with little information on subsurface parameters. We expect a tradeoff between the initial uncertainty on soil
moisture content (related to the quality of the soil map and meteorological data) and the density of a CRP network. In case of
a large uncertainty, like in regions with limited information about soils and a low density of meteorological stations, a sparse
network of probes can already be helpful for improving soil moisture characterization. On the other hand, in regions with a
high density of meteorological stations and a high resolution soil map it can be expected that a high resolution CRP network
is needed to further lower the error of soil moisture characterization. Further experiments in other regions with networks of
CRPs are needed to get more quantitative information about this.

A question that remains to be answered is whether it is more beneficial to assimilate neutron counts measured by CRPs
directly or to assimilate CRP SWC retrievals derived from the neutron counts, as done in this study. Fast neutron intensity
measured by CRPs is also affected by vegetation. Neutron count rate decreases with increasing biomass because of the
hydrogen content in vegetation (Baatz et al., 2015). Seasonal biomass changes at a single site have a rather small impact on
neutron intensity compared to differences between grass land site and a forest site (Baatz et al., 2015). Therefore, using
measured neutron flux directly in a data assimilation framework in a catchment with different vegetation types would require
to account for the effects of vegetation types on neutron intensity. Hence, vegetation estimates for each grid cell would be
necessary. At present, there are two methods that include biomass in the CRP calibration process (Baatz et al., 2015;Franz et
al., 2013b) but both methods naturally require accurate biomass estimates, which are typically not available. Besides the
uncertainty associated with CRP methods using biomass in the calibration process, biomass estimates also come along with
high uncertainties. Therefore, in the case of a catchment with different vegetation types, it is desirable to circumvent the use
of biomass estimates, and assimilate directly SWC retrievals obtained at the observation sites instead of assimilating neutron
intensity. Therefore, this study uses CRP SWC retrievals in the data assimilation scheme assuming that seasonal changes of

biomass can be neglected.

6 Conclusions and Outlook

This study demonstrates the benefits of assimilating data from a network of nine cosmic-ray probes (CRP) in the land
surface model CLM version 4.5. Although information on neutron flux intensity was only available at few locations in the
catchment, the local ensemble transform Kalman filter (LETKF) allows updating of soil water content (SWC) at
unmonitored locations in the catchment considering model and observation uncertainties. Joint state-parameter estimates
improved soil moisture estimates during the assimilation and during the evaluation period. The Egys and bias for the soil
moisture characterization reduced strongly for simulations initialized with a biased soil map and approached values similar
to the ones obtained when the regional soil map was used as input to the simulations. Egys-values in simulations with a
regional soil map were not improved, because open loop simulation results were already close to the observations. The

beneficial results of joint state-parameter updates were confirmed by additional jackknife experiments. This real-world case
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study on assimilating CRP SWC retrievals into a land surface model shows the potential of CRP networks to improve
subsurface parameterization in regional land surface models, especially if prior information on soil properties is limited. In
many areas of the world, less detailed soil maps are available than the high resolution regional soil map applied in this study.
In these areas, more advanced sub-surface characterization is possible using CRP measurements and the data assimilation
framework presented in this study.

For now, CRP neutron intensity observations were not assimilated directly. In future studies it would be desirable to use the
COSMIC operator for assimilating neutron intensity observations directly. However, in this case the impact of biomass on
the CRP measurement signal would have to be taken into account. Therefore, it is desirable to further develop the COSMIC
operator to include the impact of biomass on neutron intensities. Using the biogeochemical module of CLM would then
allow to characterize local vegetation states as input for the measurement operator. Remotely sensed vegetation states are
another option to characterize vegetation states as input for the measurement operator. Both methods require additional field
measurements for the verification of vegetation state estimates. The further extension of the data assimilation framework
would also enable the estimation of additional sub-surface parameters. The impact of other sub-surface parameters such as
subsurface drainage parameters and the surface drainage decay factor on SWC states and radiative surface fluxes has already
been shown (Sun et al., 2013). Estimation of these parameters is desirable because of the inherent uncertainty of these
globally tuned parameters. However, estimation of soil texture and organic matter content was demonstrated to be already
beneficial for improved SWC modeling. Hence, this study represents a way forward towards the integration of CRP

information in the calibration of large scale weather prediction models.

Data Availabilitiy

Most data presented in this study are freely available via the TERENO data portal TEODOOR (http://teodoor.icg.kfa-

juelich.de/). Atmospheric data were licensed by the German Weather Service (DWD), and the BK50 soil map was licensed
by the Geologischer Dienst Nordrhein-Westfalen.
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Fig. 1. Map of the Rur catchment and locations of the nine cosmic-ray probes. The hilly South of the catchment is prone to more rainfall,
5  lower average temperatures and less potential evapotranspiration than the North of the catchment.
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Fig. 2. Temporal evolution of simulated SWC, calculated with open loop (OL-*) simulations and data assimilation including parameter
updating (PAR-S80-30), together with the CRP soil water content retrieval (SWC) during the first year of simulation at the sites
Merzenhausen and Gevenich. Simulated SWC was vertically weighted using the COSMIC operator to obtain the appropriate SWC
corresponding to the CRP SWC retrieval.
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Fig. 3. Temporal evolution of simulated SWC retrievals, calculated with open loop (OL-S80), data assimilation with state update only (Stt-
BK50), and data assimilation including parameter updating (PAR-S80-30), together with the CRP soil water content (SWC) retrieval at the
sites Heinsberg and Wildenrath for the data assimilation period 2011 and 2012, and the evaluation period 2013. Simulated SWC was
vertically weighted to obtain the appropriate SWC corresponding to the CRP SWC retrieval.
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Fig. 4. Temporal evolution of root mean square error (Egrws) for hourly SWC retrievals. Egys is calculated hourly for nine CRP’s for open
loop runs for soil maps S80 and BKS50, joint state-parameter updates (PAR-S80-30) and state updates only (Stt-S80) during the
assimilation period (2011 and 2012) and verification period (2013).
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Fig. 5. Temporal evolution of the percentage sand content for simulations with parameter update: PAR-S80-30 (green), PAR-S80-10 (light
green), PAR-BK50-30 (red), PAR-BK50-10 (light red), jk-S80-30* (black) and jk-BK50-30* (black).
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Fig. 6. Temporal evolution of the B parameter (top 15cm) for simulations with parameter update: PAR-S80-30 (green), PAR-S80-10 (light
green), PAR-BK50-30 (red), PAR-BK50-10 (light red), jk-S80-30* (black) and jk-BK50-30* (black).

29



Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-432, 2016 Hydrology and

Manuscript under review for journal Hydrol. Earth Syst. Sci. Earth System
Published: 26 August 2016 Sciences
(© Author(s) 2016. CC-BY 3.0 License. Discussions
Wuestebach Merzenhausen Kall
£ e o :
E 27 S =
c 2 < -
2w o) w0
3 E- 3 g
© © | | © T T
2012 2013 2012 2013
Gevenich RurAue
Z © ] 1
£ S 0 0
= S A S
c s =
= w ] 0
8 S 8 | S
© T T o T T © T B T
2012 2013 2012 2013 2012 2013
Rollesbroich Heinsberg Wildenrath
T © 1 i
E S - 2 0
E o <k S
s A < S
PN o i
& 8- 8 A 0
X o I A = O O S
T T f T : T T
2012 2013 2012 2013 © 2012 2013

Fig. 7. Temporal evolution of saturated hydraulic conductivity (top 15cm) for simulations with parameter update: PAR-S80-30 (green),
PAR-S80-10 (light green), PAR-BK50-30 (red), PAR-BK50-10 (light red), jk-S80-30* (black) and jk-BK50-30* (black).
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Fig. 8. Annual evapotranspiration in the evaluation period (year 2013) for simulations OL-S80, OL-BK50, PAR-S80-10 and PAR-BK50-
10.
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Tables

Table 1: Site information on elevation (m.a.s.l.), average annual precipitation (mm/year), CLM plant functional type, sand content (%),

clay content (%), and the date of the first SWC retrieval assimilated.

Name m.a.s.l. | Precip. | Plant functional type Sand | Clay | Date of first assimilation
Aachen 232 952 Crops 22 23 13.01.2012
Gevenich 108 884 Crops 22 20 07.07.2011
Heinsberg 57 814 Crops 18 19 09.09.2011
Kall 504 935 C3 non arctic grass 20 22 15.09.2011
Merzenhausen | 94 825 Crops 21 22 19.05.2011
Rollesbroich 515 1307 | C3 non arctic grass 22 23 19.05.2011
RurAue 102 743 C3 non arctic grass 19 26 08.11.2011
Wildenrath 76 856 Broadleaf deciduous 65 12 07.05.2012
temperate tree
Wouestebach 605 1401 Needleleaf evergreen 19 23 20.03.2011
temperate tree
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Table 2: Overview of simulation scenarios: Open loop (OL-*) with variation in the soil map BK50 or S80, data assimilation run with state
update (Stt) or joint state- and parameter update (PAR) with variation in the soil map perturbation (-10 or -30), and jackknife evaluation
runs (jk-S80-1 to 9, and jk-BK50-1 to 9).

Soil Perturbation Sand Content Update
Simulation Code
10 30 BK50 | 80 % fix | State | Parameter
OL-BK50 + +
OL-S80 + +
Stt-BK50 + + +
Stt-S80 + + +
PAR-BK50-30 + + + +
PAR-BK50-10 + + + +
PAR-S80-30 + + + +
PAR-S80-10 + + + +
jk-BK50-1t0 9 + + + +
jk-S80-1t0 9 + + + +
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Table 3: Erums (cm®/cm®) at CRP sites for open loop runs and different data assimilation scenarios, for the assimilation period
(2011 and 2012).

Rolles- Merzen- | Geve- Heins- Kall RurAue | Wueste- | Aachen | Wilden- | Average
2011 & 2012 ] )
broich hausen nich berg bach rath Erms

OL-BK50 0.054 | 0.067 | 0.039 | 0.035 | 0.042 | 0.027 | 0.041 | 0.032 | 0.017 | 0.039
Stt-BK50 0.033 | 0.041 | 0.021 | 0.022 | 0.030 | 0.024 | 0.038 | 0.023 | 0.017 | 0.028
PAR-BK50-10 | 0.036 | 0.036 | 0.019 | 0.021 | 0.033 | 0.025 | 0.035 | 0.045 | 0.015 | 0.029
PAR-BK50-30 | 0.031 | 0.034 | 0.018 | 0.019 | 0.027 | 0.023 | 0.040 | 0.044 | 0.016 | 0.028
jk-BK50-* 0.070 | 0.058 | 0.073 | 0.035 | 0.048 | 0.050 | 0.053 | 0.050 | 0.091 | 0.059

OL-S80 0.170 | 0.053 | 0.081 | 0.117 | 0.149 | 0.158 | 0.065 | 0.169 | 0.020 | 0.109
Stt-S80 0.104 | 0.020 | 0.087 | 0.051 | 0.083 | 0.056 | 0.060 | 0.086 | 0.018 | 0.057
PAR-S80-10 | 0.032 | 0.038 | 0.024 | 0.023 | 0.033 | 0.023 | 0.036 | 0.048 | 0.015 | 0.030
PAR-S80-30 | 0.029 | 0.035 | 0.018 | 0.019 | 0.027 | 0.023 | 0.039 | 0.068 | 0.016 | 0.030
jk-580-* 0.082 | 0.038 | 0.063 | 0.026 | 0.062 | 0.034 | 0.038 | 0.073 | 0.095 | 0.057
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Table 4: Exus (cm*/cm®) at CRP-sites for open loop, data assimilation and jackknife simulations on the basis of a comparison
with CRP SWC retrievals during the verification period (2013). For each jackknife simulation only one Egys is reported: The

Erwms Of the location that is meant for evaluation.

Rolles- | Merzen- | Geve- Heins- Kall RurAue | Wueste- | Aachen | Wilden- | Average

Year 2013 broich hausen nich berg bach rath Erms

OL-BK50 0.044 | 0.065 | 0.036 | 0.027 | 0.048 | 0.038 | 0.048 | 0.042 | 0.017 | 0.041
Stt-BK50 0.041 | 0.054 | 0.034 | 0.027 | 0.049 | 0.038 | 0.048 | 0.041 | 0.018 | 0.039
PAR-BK50-10 | 0.068 | 0.062 | 0.036 | 0.038 | 0.056 | 0.056 | 0.043 | 0.058 | 0.017 | 0.048
PAR-BK50-30 | 0.052 | 0.061 | 0.035 | 0.033 | 0.068 | 0.048 | 0.043 | 0.048 | 0.035 | 0.047
jk-BK50-* 0.036 | 0.047 | 0.028 | 0.025 | 0.042 | 0.031 | 0.040 | 0.054 | 0.106 | 0.045

OL-S80 0.157 | 0.062 | 0.106 | 0.115 | 0.160 | 0.154 | 0.099 | 0.167 | 0.019 | 0.115
Stt-S80 0.100 | 0.063 | 0.107 | 0.106 | 0.099 | 0.146 | 0.097 | 0.158 | 0.020 | 0.100
PAR-580-10 0.060 | 0.039 | 0.043 | 0.040 | 0.064 | 0.043 | 0.052 | 0.060 | 0.019 | 0.047
PAR-580-30 0.049 | 0.059 | 0.037 | 0.036 | 0.053 | 0.032 | 0.046 | 0.047 | 0.035 | 0.044
jk-S80-* 0.079 | 0.046 | 0.042 | 0.036 | 0.059 | 0.038 | 0.063 | 0.044 | 0.105 | 0.057
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Table 5: Bias (cm®/cm®) at CRP-sites for open loop, data assimilation and jackknife simulations compared to CRP SWC
retrievals during the verification period (2013). For each jackknife simulation only one bias is reported: The bias of the

location that is meant for evaluation.

Rolles- | Merzen- | Geve- Heins- Kall Rur- Woueste- | Aachen | Wilden- | Mean

broich hausen nich berg Aue bach rath absolute
Year 2013 bias
OL-BK50 -0.03 0.06 0.01 0.00 -0.02 | 0.00 -0.02 0.01 0.00 0.02
Stt-BK50 -0.01 0.04 0.00 0.00 -0.01 | -0.01 | -0.02 0.00 0.00 0.01

PAR-BK50-10 0.06 0.05 0.01 | 0.02 0.04 | 0.04 0.02 -0.04 | 0.00 0.03
PAR-BK50-30 0.03 0.05 0.00 | 0.02 0.04 | 003 | -0.01 -0.03 | 0.03 0.03
jk-BK50-* -0.02 0.04 001 | -0.01 | -0.03 | -0.02 | -0.03 -0.05 | 0.11 0.04

OL-S80 -0.17 | 005 | -0.08 | -0.12 | -0.15 | -0.16 | -0.09 -0.17 | -0.01 0.11
Stt-S80 -0.09 | 005 | -0.10 | -0.10 | -0.08 | -0.14 | -0.09 -0.15 | -0.01 0.09
PAR-S80-10 0.03 005 | -0.01 | 0.02 0.03 | 001 | -0.01 -0.03 | 0.03 0.02
PAR-S80-30 0.04 0.02 | -0.03 | 0.02 0.05 | 0.03 0.03 -0.04 | -0.01 0.03
jk-S80-* -0.07 0.03 0.02 0.02 -0.04 | -0.02 | -0.04 -0.03 | 0.10 0.04
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indirecthy-measure-very local soil moisture

medels—fer—mp#evedmeasurements while remotely sensed soil moisture p@éeﬂené&ﬁheﬂc—stu&es—have—shwm

ebservations:is strongly affected by vegetation and surface roughness. In contrast, Cosmic-Ray Neutron Sensors

(CRNS) allow highly accurate soil moisture estimation at the field scale which could be valuable to improve land
surface model predictions. In this study, the potential of a network of CRPSCRNS installed in the 2354 km® Rur

catchment (Germany) for estimating subsurfacesoil hydraulic parameters and imprevedimproving soil moisture
states iswas tested-ir-a—real-world-case-scenario-using. Data measured by the CRNS were assimilated with the

local ensemble transform Kalman filter within, the Community Land Model—Fhe-potential-of the CRP-network

was-tested-by-assimilating-CRP-data-_v. 4.5. Data of four, eight and nine CRNS were assimilated for the years

2011 and 2012 (with erand without soil hydraulic parameter estimation), followed by thea verification year

2013 without data assimilation. This was done using (i) thea regional se-maphigh resolution soil map, (ii) the

FAQ soil map and (iii) an erroneous, biased soil map as input information for the simulations;—and—(i)-an
erroneous;-biased-set-map-. For the regional soil map, soil moisture characterization was only improved in the
assimilation period but not in the verification period. For the FAO soil map and the biased soil map; soil
moisture eharacterizationpredictions improved ir-beth-perieds-strongly fremto a Egmsroot mean square error of
0.41—em*fem®—0—0:03 cm*fem® (for the assimilation period) and from—0-12—em®/em’—t6—0.05 cmcm®

{verificationfor the evaluation period)-and-the-estimated-soit-hydraulic-parameters-were—after—. Improvements
were _limited by the measurement error of CRNS (0.03 cm®cm®). The positive results obtained with data
assimilation eleserto-the-ones-of-of nine CRNS were confirmed by the regional-seH-map—Finally,-the-valueof
the—GRP—HeMeHHNasalseﬂMedAM%hjaekkmﬂﬂgdata—wckkmfe experiments with four and eight CRNS used

for_assimilation-experi
locations—between-the-assimilation-sitesfrom-. The results demonstrate that assimilated data of a Egns-CRNS
network can improve the characterization of soil moisture content at the catchment scale by updating spatially
distributed soil hydraulic parameters of 0-12-em?/erm’-to-0-06-cm’/em’{verification-period)-but-again-orly-if-the
initial-set-map-was-biaseda land surface model.
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1 Introduction

Soil water content (SWC) is a key variable of land surface hydrology and has a strong control on the partitioning
of net radiation between latent and sensible heat flux-_(Brutsaert, 2005). Knowledge of SWC is relevant for the
assessment of plant water stress and agricultural production, as well as runoff generation as a response to
precipitation events (Vereecken et al., 2008;Robinson et al., 2008). In atmospheric circulation models, SWC is
important as a lower boundary condition ardwhile it is calculated as a state variable in land surface models.
Coupling of atmospheric circulation models and land surface models allows quantifying the role of soil moisture
on atmospheric processes such as soil moisture-precipitation feedbacks (Koster et al., 2004;Eltahir, 1998) and
summer climate variability and drought (Seneviratne et al., 2006;0glesby and Erickson, 1989:Sheffield-and
Woeed,-2008;Seneviratne-et-al;—2006:Bell-et-al—2015). It is therefore important to improve the modelling and
prediction of SWC—but-this-is-hampered-by-. Data assimilation of soil moisture provides a way to improve

imperfect land surface model deficiencies—andpredictions. Here, soil moisture measurements are used to update

model predictions by optimally considering the uncertainty of model initial conditions, model parameters and

model forcings. However, there is a lack of high quality_soil moisture data (Vereecken et al., 2016). Soil

moisture measured by space-berrborne remote sensing technologies provides information over large areas {e-g-

amimi—e 014)—Howeve nace-bornremote sensing nolies—onlv—information—on—the—upper—few

centimeters;but _is strongly affected by vegetation, and data—are—not—rehiable—for—areas—with—dense

vegetation-surface roughness (e.g. Temimi et al., 2014). Therefore, in this paper an alternative source for soil

moisture information is explored-_which can measure soil moisture more accurately under dense vegetation
(Bogena et al., 2013). Cosmic-ray prebes{CRPsneutron sensors (CRNS) measure fast neutron intensity whieh
allews-estimating-SWEC-at an intermediate scale of ~15 ha (Kohli et al., 2015;Zreda et al., 2008;:DesHets-et-al;
2010:Cosh-et-al2016:Lbv-et-al—2014) which is-eleserte the desired application scale of land surface models
(Ajami et al., 2014;Chen et al., 2007;Shrestha et al., 2014). Fast neutrons originate from mederationcollisions of
secondary cosmic particles from outer space bywith terrestrial atoms. Fhese—particles—are—mainky—fast-Fast

neutrons;-whieh_in turn are moderated most effectively by hydrogen because ef-the mass of a neutron is similar

atemie—mass:to that of a nucleus of the hydrogen atom. Therefore, the corresponding fast neutron intensity

measured by SRPsCRNS strongly depends on the amount of hydrogen within the ERPCRNS footprint, allowing
for a continuous non-invasive soil moisture estimate everan-area-of ~15-ha-(Kohli-et-al,2015)-at the field scale.
The spatial extendextent of this measurement is desirable as it matches with the desired grid cell size of a_high
resolution land surface model (Crow et al., 2012) and small scale heterogeneities are averaged over a larger area
(Franz et al., 20613a;Desilets-and-Zreda,—2013;Kohli et al., 2015). Vertical measurement depth ranges from a

maximum of ~70 cm under completely dry conditions and decreases to roughly ~12 cm under wet conditions
3
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(e.0. 40 vol. % soil moisture) {Bogena—et-al—2013)—Worldwide-several-CRP(Kohli et al., 2015;Franz et al.,
2012). Worldwide several CRNS networks exist, like the North American COSMOS network (Zreda et al.,
2012), the German CRPCRNS network (Baatz et al., 2014) installed in the context of the TERENO
infrastructure measure (Zacharias et al., 2011)—and, the Australian COSMoZ network {Hawdon—et—al;
2644} (Hawdon et al., 2014) and the British COSMOS-UK (Evans et al., 2016).

Seil-meistureln this work, fast neutron intensity data assimiation-providesmeasured by CRNS are assimilated in

a wayland surface model, to evaluate the impact those data can have to improve imperfeet—soil moisture

characterization and land surface model predictions—with—meastred—soH—moisture—data—by—merging—model

foreings.. The Ensemble Kalman Filtering (EnKF) is one of the most commonly applied data assimilation
methods (Evensen, 1994;Burgers et al., 1998). Seil-meisture-data-assimilation-has-been-the-subject-of-intensive

EnKF is much less CPU intensive compared to alternative methods such as the particle filter (e.g. Montzka et al.,

2011) because for high dimensional problems the EnKF requires a much smaller ensemble size to achieve

reasonable good predictions. The Ensemble Kalman Filter (Reichle et al., 2002a;Dunne and Entekhabi,
2005;Crow, 2003;De Lannoy and Reichle, 2016);, and variants like the Extended Kalman Filter (Draper et al.,
2009;Reichle et al., 2002b), feur-dimensional—variational-methods—{Hurkmans—et—al—2006)-and the Local

Ensemble Transform Kalman Filter (Han et al., 2015;Han et al., 2013) were applied for updating soil moisture

states in land surface models. Reichle et al. (2002a) performed a synthetic experiment using L-band microwave
observations of the Southern Great Plains Hydrology Experiment (Jackson et al., 1999) to aralyzeanalyse the
effect of ensemble size and prediction—errorforecast errors. Dunne and Entekhabi (2005) showed that an
Ensemble Kalman Smoother approach, where data from multiple time steps was assimilated to update current
and past states, can yield a reduced prediction error compared to a pure filtering approach. More recently, state
updates with the EnKF were tested for the Soil Moisture Ocean Salinity (SMOS, Kerr et al., 2012) mission. De

Lannoy and Reichle (2016) assimilated SMOS temperature brightness and soil moisture retrievals into a land

surface model with large improvements in surface soil moisture. However, localized error patterns were not

captured well enough and locally optimized EnKF error parameters would improve prediction results further.
4




10

15

20

25

30

More recent work addressed joint state-parameter—estimationupdating of model states and parameters in
hydrologic and land surface models with data assimilation methods. Joint state-parameter estimation with EnKF
is possible by an augmented state vector approach (Chen and Zhang, 2006), a dual approach (Moradkhani et al.,

2005) or an approach with an additional external optimization loop (Vrugt et al., 2005). In the augmented state

vector approach, parameters are included in the state vector and are updated via cross-covariances between states

and parameters. The cross-covariances are estimated from the ensemble. In the dual approach, first parameters

are updated by data assimilation, and the assimilation step is repeated with the updated parameters to update also

the states by data assimilation. In the approach with an external optimization loop the parameters are not updated

by EnKF, but in an external optimization loop. Pauwels et al. (2009) eptimizedwere one of the first to optimize

soil hydraulic parameters of a land surface model withby data assimilation, assimilating synthetic aperture radar

data. Lee (2014) used Synthetic Aperture Radar soil moisture data to estimate soil hydraulic properties at the
Tibetan plateau using the EnKF and a Soil Vegetation Atmosphere Transfer model. Bateni and Entekhabi (2012)
assimilated land surface temperature with an Ensemble Kalman Smoother and achieved a better estimate of the
partitioning of energy between sensible and latent heat fluxes. Han et al. (2044b2014) updated soil hydraulic
parameters of the Community Land Model (CLM) by assimilation of synthetic brightness temperature data with
the Local Ensemble Transform Kalman Filter (LETKF) (Hunt et al., 2007)-_and showed the potential of this

approach for improving land surface states and fluxes like evapotranspiration. Shi et al. (2014) used the

Ensemble Kalman Filter for a synthetic multivariate data assimilation problem with a land surface model and
then applied it to real data (Shi et al., 2015). FheBoth cases Hustrated-a-way-to-use-real-world-data-for-estimating
severalillustrate that parameters in—hydrologic—tand—medelsfrom different compartments can be updated

successfully by multivariate data assimilation. {Kurtz et al5-. (2016) developed a particular CPU-efficient data

assimilation framework for the coupled land surface-subsurface model TerrSysMP (Shrestha et al., 2014). They
successfully updated 2 x 107 states and parameters in a synthetic experiment. Whereas these studies were made
with land surface models, also in soil hydrological applications recently data assimilation was used to estimate
soil hydraulic parameters. Early work was by Wu and Margulis (2011, 2013) in the context of real-time control

of waste water reuse in irrigation_and showed the potential of EnKF also in soil hydrology. Montzka et al.

2013;2011) explored the role of the particle filter for handling non-Gaussianity in soil hydrology data

assimilation. -They showed that the nonlinear character of the soil moisture retention characteristic is critical for

joint state-parameter estimation in data assimilation systems and showed that the Particle Filter is an interesting

alternative for soil hydraulic parameter estimation for 1D problems. Erdal et al. (2014) investigated the role of

bias in the conceptual soil model and explored bias aware EnKF as a way to deal with it. Erdal-et-al(2615)They
5
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argued that often the exact location of soil layers is not known and that this can severely deteriorate the

performance of EnKF. Song et al. (2014) worked on a modified iterative EnKF-based filter to handle the non-

linearity and non-Gaussianity of data assimilation for the vadose zone. They proposed a modified procedure

which avoids the high CPU-need of a fully iterative method, but which still gives stable results. Also Erdal et al.

(2015) focused on handling of strong non-Gaussianity of the state variable in EnKF under very dry conditions.

They showed that classical EnKF fails under such conditions and proposed two alternative strategies, both

involving transformation of state variables, which performed favourably also under very dry conditions with

strongly skewed pressure distributions. All these studies on joint state-parameter estimation showed in general

that estimation of soil hydraulic or land surface parameters improves model predictions (strongly), but can be

ANMaon

unstable for strongly non-Gaussian distributions and non-linear problems.

vadese-zone: For a further literature review on data assimilation in the context of hydrological and land surface
models we refer to Reichle (2008) and Montzka et al. (2012).

Shuttleworth et al. (2013) developed the Cosmic Ray Soil Moisture Interaction Code (COSMIC), which is a
forward operator to be applied for assimilating neutron intensity observations from €CRPsCRNS. The COSMIC
code was evaluated for several sites (Baatz et al., 2014;Rosolem et al., 2014)—tis-capability-to-propagate-surface

H-moisture-informationi i mnr-was-analyze . The COSMIC
operator was successfully implemented in the Data Assimilation Research Testbed (Rosolem et al., 2014) to

allow for state updating by the Ensemble Adjustment Kalman Filter (Anderson, 2001). The surface soil moisture

information was propagated into greater soil depth than only the measurement depth using COSMIC in

combination with data assimilation (Rosolem et al., 2014). The COSMIC operator was implemented in a python

interface that couples the land surface model CLM and the LETKF for joint state parameter updating (Han et al.,
2015). Neutron counts measured by SRPCRNS have been used in data assimilation studies to update model
states (Han et al., 2015;Rosolem et al., 2014). Soil hydraulic parameters were also updated by assimilation of
neutron counts in one synthetic study (Han et al., 2016), but-onhy-fora-synthetic-study-which-shewedshowing its
feasibility. GRPsCRNS were also used for inverse estimation of soil hydraulic parameters of the Hydrus-1D
model (Villarreyes et al., 2014).
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This work further explores the value of measured neutron intensity by €RPsCRNS to improve modelling of
terrestrial systems at the catchment scale (Simmer et al., 2015) using a land surface model. Cempared-to-existing
waork-theThe main novelties are:

(i) Data from a network of nine €RPsCRNS were assimilated in the Community Land Model version 4.5 (CLM)
with an evaluation of the information gain by this assimilation at the farger—catchment scale. Until now
evaluations with ERPsCRNS were made for a single location, but not for a complete network of ERPsCRNS. It
is a very important question whether CRPsCRNS can also improve the soil moisture characterization at the
larger—catchment scale-and-how-dense-the-CRP-network-sheuld-be.. The high variability of soil moisture at a
short distance could potentially limit the CRPCRNS measurement value and make updating of soil moisture

contents further away from the sensor meaningless. On the other hand, soil moisture, soil maps and atmospheric

forcings show spatial correlations over larger distances (Kirkpatrick et al., 2014;Korres et al., 2015) which

suggests that CRPCRNS measurements potentially carry important information to update soil moisture contents

for larger regions-_(e.g. Han et al., 2012). If it is found that ERRCRNS networks with a density like in this study

(20nine stations per 2354 km?) can improve soil moisture content characterization at the-larger catchment scale,
this is of high relevance and importance for agricultural applications, flood prediction and protection, and

regional weather prediction (Whan et al., 2015;Koster et al., 2004;Seneviratne et al., 2010). The main research

question addressed in this paper is therefore whether a CRPCRNS network of the density as in this study can
improve large scale soil moisture characterization-by-state-and-parameter-updates.

(ii) Soil hydraulic parameters wereare updated in this study together with the soil moisture states in a real-world

case study-at-the-largercatehmentseale.. The study in this paper also allows some evaluation of the feasibiity-of

the-updated large scale soil hydraulic parameters.

2 Materials and methods

2.1 Site description and measurements

The model domain, the Rur catchment (2354 km?), is situated in western Germany and illustrated in Fig. 1. Mest

decidueousforest—The altitude varies between 15 m a.s.l. in the flat northern part and 690 m a.s.l. in the hilly

southern part. Precipitation, evapotranspiration and land use follow the topography. The dominant land use types

are agriculture (mainly in the North), grassland, and coniferous and deciduous forest. Annual precipitation
7
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ranges between less than 600 mm in the North teand 1200 mm in the hilly South (Montzka et al., 2008). Annual
potential evapotranspiration varies between 500 mm in the South and 700 mm in the North (Bogena et al., 2005).
The Rur catchment ERPCRNS network comprises nine ERPsCRNS (CRS1000, Hydrolnnova LLC, 2009) which
were installed in 2011 and 2012 (Baatz et al., 2014). Climate and soil texture of the CRPCRNS sites can be
found in Table 1.

The SRPsCRNS were calibrated in the field using gravimetric soil samples. At each site, 18 soil samples were
taken along three circles with distances of 25, 75 and 175 meters from the €RRPCRNS, six samples evenly
distributed along each circle. Each sample was extracted with a 50.8 x 300 mm round HUMAX soil corer
(Martin Burch AG, Switzerland). The samples were split into 6 sub-samples with 5 cm length each and oven
dried at 105 °C for 48 hours to measure dry soil bulk density and soil moisture. Lattice-waterwas-determined-for
each-site-using-a-heat-conductivity-detector-Lattice water, hydrogen from organic and an-organic sources, was

determined for each site using a heat conductivity detector (Ray, 1954). Soil bulk density, soil moisture, lattice

water and 12 hour averaged measured neutron intensity were used to determine calibration parameters specific

for each CRP-and-the COSMIC—operator=CRNS and the COSMIC operator. This represents a compromise

between the measurement noise (which follows a Poisson distribution) and the assumed variation of

environmental variables over the averaging time window (Ilwema et al., 2015).

2.2 Community land model and parameterization

The Community Land Model version 4.5 (CLM) was the land surface model of choice for simulating water and
energy exchange between the land surface and the atmosphere (Oleson et al., 2013). Some of the key processes
which are selvedmodelled by CLM are radiative transfer in the canopy space, interception of precipitation by the
vegetation and evaporation from intercepted water, water uptake by vegetation and transpiration, soil
evaporation, photosynthesis, as well as water and energy flow in the subsurface. SWC in CLM is influenced by
precipitation, infiltration into the soil, water uptake by vegetation, surface evaporation and surface and

subsurface runoff. Olesen-et-al+(20 provide-further-details-on M4.5—To-limit the-scope-and-complexityo

module-turned-offTo limit the scope and complexity of this study, CLM was run using satellite phenology e.qg.

prescribed leaf area index data and the biogeochemical module turned off. The biogeochemical module allows

CLM to model the vegetation development dynamically, but it requires a large spin-up of 1000 years and little

additional gain is expected for this study from these additionally modelled processes.
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the-surface-to-2.86-m-for-layer10—Vertical water flow in soils is modelled by the 1D Richards equation. Soil

hydraulic parameters are determined from sand and clay content using pedotransfer functions for the mineral soil

fraction (Clapp and Hornberger, 1978;Cosby et al., 1984), and organic matter content for the organic soil
fraction (Lawrence and Slater, 2008).

The joint state-parameter estimation used in this study updates soil texture and organic matter in CLM. Hence,

parameter estimates directly determine soil hydraulic properties in CLM. The following equations describe how

soil texture and organic matter define the soil hydraulic properties in CLM such as porosity, hydraulic
conductivity, the empirical exponent B and soil matric potential. Hydraulic conductivity (kfz}(z;) in mm/s) at

the depth z between two layers (i and i+1) is a function of soil moisture (6 in m*m® in layers i and i+1),

saturated hydraulic conductivity (kgq-in-mmis-atz)—saturated-soH-moisture (6. in-m/m°)-and-the-empirical

exponent-B:(z,)_in mm/s), saturated soil moisture (6,,.in m*m?) and the empirical exponent B (Oleson et al.,

2013):

\l
k(z) =
J

( 2B;+3
] , 1< i< Npysoi — 1

(0i+6i4+1)
| (pice ksat (Zi) [14H1

(esat,i+esat,i+1)

g, \2Bit3
L¢iceksat (z) (—l) , i = Nievsoi

Osat,i
where ¢, is the ice impedance factor. The ice impedance factor was implemented to simplify an increased
tortuosity of water flow in a partly frozen pore space. It is calculated with ¢;,, = 10~%Fice using the resistance
factor Q = 6 and the frozen fraction of soil porosity Fi., = 0;ce/05q:,. SOil hydraulic properties are calculated
separately for the mineral (min) and organic matter (om) soil components. Total porosity 6, ; is calculated

using the fraction of organic matter (f,,, ;) with:

gsat,i = (1 - fom,i)esat,min,i + fom,igsat,om
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where the organic matter porosity is 854 o, = 0.9 and sand content in % determines the mineral soil porosity

esat,min as:

Osatmin = 0.489 — 0.00126 X %sandsand

Analogous, the exponent B is calculated with

Bi = (1 - fom,i)Bmin,i + fom,iBom

Where B,,,, = 2.7 is the organic exponent and the mineral exponent B,,;, ; is determined by clay content in %
with:
Bunini = 2.91 + 0.159 X %elayclay

Saturated hydraulic conductivity is calculated for a connected and an unconnected fraction of the grid cell with:

ksat{‘zﬂ'(zi) = (1 - fperc)ksat,uncon‘gzi}(zi) + fperc,iksat,om{'z'&'}(zi)

where fperc, is the fraction of a grid cell where water flows with saturated hydraulic conductivity of the organic
matter (ksqromfzd(2z;) in mm/s) through the organic material only, the so called connected flow pathway;
whereas-the, The saturated hydraulic conductivity of the unconnected part (ksq¢yncontzd(2;) in mm/s) depends
on organic and mineral saturated soil hydraulic conductivity:

1 o fom = fpere)
ksat,uncan = (1 - fperc) ( om + om perc)

ksat,min ksat,om

where saturated hydraulic conductivity for mineral soil is calculated from the grid cell sand content as:
ksat,min[zi] = 0.0070556 X %9—%8444%3%—%5%41070.884+0.0153x%sand

The fraction f,., is calculated with:

0.908 X (f,, —0.5)%13, £ >05

£ = 0908 % (£ 056439 £ 0 l:f —
Jpere Urruo Tom o7 Jom — Y™7)perc
0, fom < 0.5
£ =0 £ 0.5
Jpere e Jom i

Soil matric potential (mm) is defined as function of saturated soil matric potential (mm) with:

6\
y; = lI"saz:,i <e_l>

sat,i

6 \
[(1 - fom,i)wsat,min,i + fom,iwsat,om] <6_l>

sat,i
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‘ where saturated organic matter matric potential is Ysqs o = —10.3 #mmm and saturated mineral soil matric
potential is calculated from sand content as:
‘ quatmini = _100 X 491788—91913%5&&4101.88—0.0131><%5and

2.3 Cosmic-ray forward model

SWC retrievals were calculated from neutron intensity observations with the SesmieCOsmic-ray Soil Moisture
Interaction Code (COSMIC) (Shuttleworth et al., 2013) following calibration results and the procedure of Baatz
et al. (2014). COSMIC parameterizes interactions—-between-neutrons—and-atoms—aneutron transport within the
soil subsurface—+elevant-for-soil-meoisture-estimation—COSMIC and was calibrated against the more complex
Monte Carlo Neutron Particle model MCNPx (Pelowitz, 2005)-are. COSMIC needs considerably less CPU-time

than the MCNPx model.-Fhe-reduced-CPU-time-nee come ok s B Lt on-make-COSMIC

a-suitable-data-assimilation-eperator- The code was tested at multiple sites for soil moisture determination (Baatz
et al., 2014;Rosolem et al., 2014) and analyzed in detail by Rosolem et al. (2014).

COSMIC assumes that a number of high energy neutrons enter the soil. In the soil, the number of high energy
neutrons areis reduced by interaction-with-interactions within the soil leading to isetrepie-generation of fast
neutrons with-less-energy-in each soil layer. Before resurfacing, the number of fast neutrons areis reduced again
by their interaction with nuclei of elements within soil-interaction (Shuttleworth et al., 2013). The number of

neutrons N gp that reaches the CRRPCRNS can be summarized in a single integral as

Negp = NCOSMICJ. {A(z)[aps(z) * Puw(@]exp <_ [mZEZ) * mlzz(Z)D} e

0
where N¢osuic 1S an empirical coefficient that is GRPCRNS specific and needs to be estimated by calibration,

A(2) is the integrated average attenuation of fast neutrons, a = 0.404 — 0.101 X py is the site specific empirical
coefficient for the creation of fast neutrons by soil, ps is the dry soil bulk density in g/cm?, p,, is the total soil
water density in g/cm®, m; and m,, are the mass of soil and water, respectively, per area in g/cm? L, = 162.0 g
cm? and L, = 129.1 g cm™ are empirical-coefficientsscattering lengths for fast neutrons in solids and water,
respectively, that were estimated using the MCNPx code (Shuttleworth et al., 2013). The integrated average

attenuation of fast neutrons A(z) can be found numerically by solving

/2
_(2 (= [ | me]) -1 [m(@  m,@]).
A(Z)—(n) \eest®| Lz~ I J/J’ exP(cos(y)[ L, + L, D dédy
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where 8y is the angle along a vertical line below the CRPCRNS detector to the element that contributes to the

attenuation of fast neutrons, L; = —31.65 + 99.29 X pg is-determined—from-soil-bulk—density-and L, = 3.16 g

cm? is—another—empirical-coefficient—estimatedare the scattering length for fast neutrons in soil and water,
respectively, determined using the MCNPx code (Shuttleworth et al., 2013). The COSMIC operator is

discretized into 300-vertical layers of one cm thickness up to a depth of three meters. For each CLM grid cell in
the model domain, simulated SWC in all CLM layers is used to generate a_weighted SWC retrieval using the
COSMIC code. Simulated SWC is handed from the CLM simulation history files to the COSMIC operator.
Given the vertical SWC distribution of the individual CLM set-eelumngrid cell, COSMIC internally calculates
the contribution of each layer to the simulated neutron intensity signal at the GOSMC-soil surface_in COSMIC.
In this study, the contribution of each_CLM soil layer was used to calculate the weighted CLM SWC retrieval

corresponding to the vertical distribution of simulated SWC in each grid cell.

Measured neutron intensity of SRPSCRNS was used to inversely determine a GRRPCRNS SWC retrieval as by
Baatz et al. (2014) assuming a homogeneous vertical SWC distribution. Then, the weighted CLM SWC retrieval
is used in the data assimilation scheme to relate the CRP-SWC+etrieval-to-the-model-stateCRNS SWC retrieval

to the model state. Alternatively, neutron flux data could be assimilated directly within the catchment. This

would require calibration data throughout the catchment which is only feasible using spatially distributed data

sets (e.g. Avery et al., 2016). However, high stands of biomass are a major factor for calibration in the Rur

catchment (Baatz et al., 2015) and estimates of biomass come along with high uncertainties. To circumvent

introducing these additional uncertainties, SWC retrievals are assimilated in this study. Changes in on-site

biomass were assumed negligible.

24 Data assimilation

FhisTo further expand the work of Han et al. (2016), this study uses the local ensemble transform Kalman filter

(LETKF) (Hunt et al., 2007) to assimilate SWC retrievals by €RPsCRNS into the land surface model CLM.

al—ZO—:L4a+Lame&a4—201—5%Updates were calculated either for SWC states or jointly for SWC states and soil
parameters_depending on the experiment setup. For state updates only, the LETKF was used as proposed by

Hunt et al. (2007). Calculations were made for an ensemble of model simulations which differed related to

variations in model forcings and input parameters. The states of the different ensemble members are indicated by

12
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x{ where i=1, ...., N and N is the number of ensemble members:, f marks the model prediction or forecast before

the update. The individual state vectors x/ contain the CLM-simulated SWC of the ten soil layers and the
vertically weighted SWC retrieval obtained with the COSMIC operator. For each grid cell, a vectermatrix X/ can
be constructed which contains the deviations of the simulated states with respect to the ensemble mean %/ :

Xf=[x{—)_(f,...,x£—)_(f] 14

In case of joint state-parameter updates, a state augmentation approach was followed (Hendricks Franssen and

Kinzelbach, 2008;Han et al., 204452014). In this case, the augmented model state veetermatrix X/ is constructed

from the simulated SWC of the ten soil layers, weighted SWC, and the grid cell's sand, clay and organic matter

content.

In order to relate the measured neutron intensity with the simulated SWC of CLM, the observation operator H
(COSMIC) is applied on the measured neutron intensity in order to obtain the expected weighted SWC retrieval

at each of the observation locations for each of the stochastic realizations:

The ensemble realizations of the modelled SWC retrievalretrievals at the measurement locations y{ to y,’f, with

respect to the ensemble mean 3/ are stored in the vectormatrix Y":

Y =y ¢, ..y, -] 16

The observation error correlation was reduced in space by the factor f,..4 using the spherical model:
frea =1— (1.5 % d/dmax) + (0.5 x [d/dmax]3) 17

where d is the distance to the observation and d,,,., = 40km is the maximum observation correlation length,
about half the size of the catchment. Only SWC retrievals within the maximum observation correlation length
were used for assimilation. This leads to a ‘localized’ size of Y/ and the observation error covariance matrix R.

The intermediate covariance matrix P¢ (also called analysis error covariance matrix) is calculated according to:

P¢ = [(N— DI+ YTR1Y/] 18
In addition, the mean weight vector w? is obtained as follows:
we = PY/TR(y° — 3/) 19

13
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where y° is-CRPcontains the CRNS SWC retrievalretrievals at the measurement locations. In the ensemble

space, a perturbation matrix W is calculated from the symmetric square root of P¢:
Wa = [(N — 1)P*]*/2

The final analysis X% is obtained from:
X% =%/ + X [Ww? + W9

A more detailed description of the LETKF can be found in (Hunt et al., 2007) and details on the implementation

of the LETKF in combination with CLM are given by {Han-etal2015}Han et al. (2015).

3 Model and Experiment Setup

3.1 Model Setup

In this study, discretization and parameterization of the hydrological catchment was done on the basis of high
resolution data. The model of the Rur catchment demain-iswas spatially discretized by rectangular grid cells of
0.008 degree size (~750 m). The model time step was set to hourly. Land cover was assumed to consist of
vegetated land units only, and a single plant functional type (PFT) for each grid cell was defined. The plant
functional types were derived from a remotely sensed land use map using RapidEye and ASTER data with 15 m
resolution (Waldhoff, 2012). Sand—cententContents of sand, clay eertent-and organic matter—centent were
derived from the high resolution regional soil map BK50 (Geologischer Dienst Nordrhein-Westfalen, 2009). Fhe

error-with-respect-to-the-expected-truesoH-properties—H-aHowsAlternative simulations were also performed with
the FAO soil map of the global Harmonized World Soil Database (FAO, 2012) and with a biased soil texture

with a fixed sand content of 80 % and clay content of 10 % (S80 soil map). Average sand and clay content are
22.5% and 21.4% for the BK50 soil map and 39% and 22% for the FAO soil map. The FAQ soil map and the

biased soil map represent large error with respect to the soil properties of the BK50 soil map. The FAO soil map

and S80 soil map simulations allow evaluating the joint state-parameter estimation approach because given the

expected bias, we can evaluate whether-ane-to what extendextent the soil properties are modified by the data

. This is important because in many

regions across the Earth a high resolution soil map is not available-and-tand. Land surface models which-are

14
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applied for those regions, for example in the context of global simulations, and hence might be strongly affected

by the error in soil properties.-H-was-tested-hew-this-impacted-the-simulation-results:

Maximum saturated fraction, a surface parameter which is used for runoff generation, was calculated from a 10
meter digital elevation model (scilands GmbH, 2010). Leaf area index data were derived from monthly averaged
Moderate Resolution Imaging Spectrometer data (MODIS). CLM was suppliedforced with hourly atmospheric
forcing-data from athe COSMO_DE reanalysis data set for the years 2010 to 2013 from the German Weather
Service (DWD). The data was downscaled from a resolution of 2.8 km? to the CLM resolution using linear
interpolation based on Delaunay triangulation. Forcing data include precipitation—+a-rmfs, incident solar and
longwave radiation-in\W/m?, air temperature-inK, air pressure-in-hPa, wind speed in-m/s-and relative humidity
nkgtkg at the lowest atmospheric level.

3.2 Model ensemble
Uncertainty was introduced into the regional CLM model by perturbed soil parameters and external model
forcings. Contents of sand, clay and organic matter were perturbed with spatially correlated noise from a uniform

sampling distribution with mean zero and standard deviation-10-%-or30-%{Han-et-al—2015).deviations 10 %

and 30 % (Han et al., 2015). Soil texture perturbation considers that in CLM a single set of pedotransfer

functions is assumed to be valid throughout the globe while usually pedotransfer functions are specific for

regions (e.g. Patil and Singh, 2016). In other words, the perturbation of soil texture also covers the uncertainty in

the pedotransfer function itself. By perturbing texture, soil parameters are also perturbed through the

pedotransfer functions used in CLM as specified in Sect. 2.2. Precipitation (¢ = 0.5 or 1.0; lognormal
distribution) and shortwave radiation (¢ = 0.3; lognormal distribution) were perturbed with multiplicative noise
with mean equal to one. Longwave radiation (6 = 20 W m™) and air temperature (c = 1K) were perturbed with
additive noise. The forcing perturbations were imposed with correlations in space (5 km) using a fast Fourier
transform. Correlation in time was introduced with an AR(1)-model with autoregressive parameter=_0.33. These
correlations and standard deviations were chosen based on previous data assimilation experiments (Reichle et al.,
2010;Kumar et al., 2012;De Lannoy et al., 2012;Han et al., 2015). In this work, only results for precipitation
perturbation with ¢ = 0.5 will be shown as results for 6 = 1.0 were very-similar. An ensemble size of 95

realizations was used in the simulations. Based on previous work (Baatz et al., 2015), the SWC retrieval

uncertainty for CRPSCRNS, was estimated to be 0.03 cm®/cm® while fluctuations in the measurement standard

deviation, related to the non-linear relation between observed neutron intensity and SWC, were assumed

negligible,
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3.3 Experiment set-up

All simulation experiments in this study used initial conditions from a single five year spin-up run—Ferthe-five
year-spin-tp-+uf;_in which a single forcing data set of the year 2010 was repeatedly used as atmospheric input.
The soil moisture regime became stable after the five years spin-up period, and additional spin-up simulations
would not affect soil moisture in the consecutive years. After this five year spin-up, soil parameters and forcing
data of the consecutive years were perturbed. From 1% Jan. 2011 onwards, CLM was propagated forward with an
ensemble of 95 realizations. On 20" Mar. 2011, the first SWC retrieval was assimilated and assimilation of SWC
retrievals continued until 31% Dec. 2012. From—1"January-2013-to-31" December2013In the data assimilation
period soil properties were estimated at every time step when observations were made available. For the year

2013, the model was propagated forward without data assimilation but with an ensemble of 95 realizations. The

year 2013 was used exclusively as evaluation period for data assimilation experiments.

In total, 2631 simulation experiments were carried out using different setups (Table 2). FweThe present setups
are intended to cover three different initial soil maps, three different sizes of a CRNS network and two different
parameter perturbations. Three open loop simulations were run for-the-BK50-seH-map{OL-BK50)-and-the-S86

sot-map{OL-S80),respeetively,-without data assimilation and soil parameter perturbation of 30 %:% for the
BKS50 soil map (OL-BK50), the FAO soil map (OL-FAQ) and the S80 soil map (OL-S80). These simulations are

referred to as reference runs for the respective soil map. Simulation results of data assimilation runs were

compared to the reference runs for quantification of data assimilation benefits. Simulations were done with joint
state-parameter estimation (PAR-}—twe—for-the-S80-sot-map(RPAR-S80-)and-*), two for the BK50 soil map
(PAR-BK50-)—forwhich-soil-*), one for the FAO soil map (PAR-FAO-30), and two for the S80 soil map (PAR-
S80-*). Soil texture was perturbed by 10 % aned-30-%-0r 30 % as indicated by the experiment name (Table 2).
Two simulations were done with state updates only for the BK50 soil map (Stt-BK50) and the S80 soil map (Stt-
BK50),-where-soi-texture-was-perturbed-by-30-%-—Fhese-eight). These ten simulations form the basic set of

experiments.

Besides the data assimilation experiments also a larger number of jackknifing simulations was—runwere

conducted to evaluate the impact of the CRNS data assimilation performance—TFhese—simulations—aHow
evaluating-the-impact-of-the- CRP-network—to-improveon SWC characterization-at etherunobserved locations;
witheut-CRP-_in the model domain. In anine jackknife experimentexperiments, data from eight CRPCRNS

locations werewas assimilated (jk8-* simulations) and data of the one €RPremaining CRNS was excluded-from
16
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the-assimiationnot assimilated but kept for evaluation-purpese-. In addition, three simulations were conducted

where data of four CRNS were assimilated (jk4-* simulations) and data of the five remaining CRNS was used

for evaluation. These three simulations represent a CRNS network with much less than the existing nine CRNS.

At the evaluation leeationlocations, simulated SWC (which is affected by the assimilation of the other eight
probes) was compared to ERPCRNS SWC retrievals. For jackknife simulations, the perturbation of soil texture

was set to 30 Y%-and-precipitationperturbation-was-done-with-6—0-5-%. States and parameters at these sites were
jointly updated, and simulations were made using either the BK50 andor the S80 soil maps as iaputinitial

parameterization. Therefore, a total of 4821 jackknife simulations (jk-S80-*and-}k-BK50-*)-waswere performed

Simulation results were evaluated with the root mean square error (Erws):
2 2
RMSE— fz%feswem—éwemﬂm _ [ ZEa(Becim — Oecrns)
\J n n
where n is the total number of time steps, SW-Cerr0; 1 IS theSWC simulated by CLM SWC-retrieval-at time
step t and SWGC, cpeb; crivs,is the GRPCRNS SWC retrieval at time step t. In case SWC was assimilated at the

22

corresponding time step, SUW-C 10, 11 1S SWC prior to assimilation. In-the case the Egys is estimated at a
single point in time over all CRPsCRNS available, the number of time steps n can be replaced by the number of

CRPsCRNS available. The second evaluation measurement in this study is the bias_which is, in contrast to the

Erwms, @ measure for systematic deviation:

s {swe SW-Ererm) i1 (6 -0 23
bias — - - Zt—l( t,CLM t,CRNS)
ki3 n
4 Results and Discussion
4.1 General Results

Fable-3Table 3 summarizes the performance statistics in terms of Egrys and bias for the assimilation period (2011

and 2012).) and evaluation period (2013). Presented are results for the open loop seerarioscenarios with the

BK50, FAO and sixS80, and data assimilation scenarios. Errors of open loop simulations are-higherwere highest
for the S80-simulation than—fer(0.11 cm®cm?®), followed by the BK50-FAQO simulation at—aH—sites—but

Merzenhausen—At-MerzenhausenErys-Was-0-054-em’fem® for-the-S80-soil-map-and-(0.06707 cm®*/cm®-for) and
the BK50 seil-map-—Open-loop-simulations-with-the-S80-soil-map-resulted-in-Epys-values-above 0.10-em®lem®-at
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open-loop-simulations—This-was-also-the-casesimulation (0.04 cm®/cm®). Mean absolute bias was highest for the
S80 soil map (0.11 cm*/cm?), now as high for the FAO soil map (0.06 cm*cm?®) and lowest for the BK50 soil
Map sasetepsra s es b fachanurhere o s apeer b o e s oon s cepam e (0,07
cm®cm®). Data assimilation improved simulations more for the S80 soil map (Erus reduced by 0.67908
cm®cm®) than for_the FAO soil map (Egws_reduced by 0.04 cm®/cm?®) or the BK50 soil map (Egwms reduced by
0.01 cm¥cm®). R i i e

values—and-the—parameter—The BK50 soil map led to Erwms values in open loop simulations lower than 0.05

cm®/cm® which left little room for error reduction considering a measurement error of 0.03 cm*/cm®. However,

slight improvements by 0.01 cm®cm?® were possible at monitored locations in the data assimilation period but not

in the evaluation period. Joint state-parameter estimation improved simulation results as shown by the reduced

Erws and bias for the S80 and the FAO soil maps. The verification period (2013) with the updated soil hydraulic

parameters for the FAO soil map resulted in an Egys_value of 0.05 cm*/cm? also clearly an improvement

compared to the open loop run with an Egys of 0.07 cm*cm?® (Table 3). Joint state-parameter updating resulted

in similar Egms-_values for the-BK50-{all three initial8-828-cm*/em®)-and-S80 soil map—(0-03-em’em®)—The
Ermsmaps the BK50, FAO and S80 soil map (each 0.03 cm®/cm®). State updates (Stt-S80) improved Erwvs and

bias for the S80 soil map (Egms_= 0.06 cm*cm?® for assimilation period) but much less compared to the joint

state-parameter updates (PAR-S80-30). The Egryvs and bias for simulations with 10 % and 30 % perturbation of

soil texture values-did-net-showvery-differentresults-only showed very small differences (smaller than 0.01
cm’/em?).

The temporal course of simulated soil moisture in 2011 at the two sites Merzenhausen and Gevenich ane
Merzenhausen-is shown in Fig. 2. The figuresfigure illustrates that simulated SWC at both sites was tewrerlowest
with the S80 soil map thar(OL-S80), highest with the BK50 soil map—ta-Gevenich-and-Merzenhatsen,—mean
(OL-BK50) and the FAO soil map resulted in intermediate soil moisture (OL-FAQ). Mean open loop SWC in
2011 was 0.17 cm®/cm® for the S80 soil map-at-beth-sites-, 0.24 cm®cm’ for the FAQ soil map and 0.27 cm®/cm®

the first observation at-Gevenich-was recorded on July 7", 2011. In the data assimilation run shown (PAR-S80-
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30) modelled SWC was immediately affected at both sites, Merzenhausen and Gevenich, as soon as data at
Merzenhausen was assimilated. By that-datethe-July, simulated CEM-SWC retrievalwith the biased soil map
and data assimilation (PAR-S80-30) was already close to the CRPCRNS SWC retrieval at the Gevenich site
(Fig. 2)-due—to-SWC—updates—which—shewed-to—have—a—). This demonstrates the beneficial impact_of data

availability for assimilation at one site and the information brought into space by the data assimilation scheme.

Fig. 2 also shows that the BK50 open loop run was close to the observed SWC at both sites, even without data
assimilation.

Fig. 3 shows the temporal course of SWC from January 2011 to December 2013 at Heinsberg and Wildenrath.
Assimilation and evaluation results are shown for the ease—ef-open loop (OL-S80 and OL-FAOQ) simulations,
only state updates (Stt-S80), joint state-parameter updates (PAR-S80-30), enly-state-updates{St-S80)-openloop
{OL-S80)-and-CRPand CRNS SWC retrievals. At Heinsberg, results show that assimilatedsimulated SWC with
assimilation was closer to the CRP-SWCretrieval CRNS when both states and parameters were updated (PAR-
S80-30) than if only states were updated (Stt-S80). This is the case #for both periods the assimilation peried-and

in-the evaluation period. At the beginning of the evaluation period;_(first few days of 2013), the Stt-S80
simulation shows an increase in bias between medeled-CLM-SWCretrievals-and-CRP-SWC-retrieval-within-the
firstfew-days—of-2013:modelled SWC and CRNS. The bias of Stt-S80 remained throughout the evaluation

period. In contrast, medeled Y atHHg—the—evatdaton—perHea—wa ose—to—the RP vy etrieval—if

parameters were previously updated (PAR-S80-30) modelled SWC was close to the CRNS during the evaluation
period. Open loop SWC modelled with the FAO soil map is lower than the CRNS SWC retrievals at Heinsberg
and higher than CRNS SWC retrievals at Wildenrath. At Wildenrath, results of the OL-S80 run suggest that the

initial sand content of the biased soil map is closer to the optimal sand content than the sand content of the FAO

soil map. Consequently, the OL-FAO bias was -0.05 cm®*cm® and 0.05 cm*/cm® for Heinsberg and Wildenrath,

respectively (Table 3 and 4 in Annex). At both sites, bias was reduced with joint state-parameter updates to -0.01

cm®/cm® (S80 soil map) and to 0.00 cm®cm® (FAO soil map). The reduced bias is also well reflected in the

temporal course of modelled SWC with joint state-parameter updates (PAR-S80-30).

It is interesting to notice that the error values for the verification period are very similar if soil hydraulic

parameters were estimated in the assimilation period, independent of the initial soil map (Table 3). Egyvs values
for the 2013 simulations with state updates only (Stt-BK50 and Stt-BK50) show that in the evaluation period the

improvements by state updates (without parameter updates) were small (reduction by 0.02 cm®cm?® and 0.00

cm®/cm® for S80 and BKS50, respectively) compared to the improvements obtained by joint state-parameter
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updates (reduction by 0.08 cm®*cm?® for S80). This illustrates the benefits of joint state-parameter updates
compared to state updates only, and that soil moisture states are strongly determined by soil hydraulic
Qarameters MMW%@W*%%MWW
The case

of only state updates also illustrates that the improved characterization of soil moisture states in the assimilation

period results in improved initial states for the verification period (Table 3) but in the verification period these
improvements lose its influence quickly over time (Fig. 3—5hews—assm4a&edéwe—§u—889—and—PAR—$89-39)
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4.34.2 _Temporal evolution of mean Egus

Fig. 4 shows the temporal evolution of the hourly Egys calculated for all nine ERRsCRNS. Erys was highest for
the S80 open loop run and lowest for the PAR-S80-30 simulation. The FAO soil map resulted in errors mostly

between 0.05 cm*/cm® and 0.1 cm®/cm® which is lower than the S80 soil map but not as good as simulation
results with joint state-parameter updates (PAR-S80-30) or with the BK50 soil map (OL-BK50). State updates
did not improve medeledmodelled SWC as much as joint state-parameter updates-impreved-modeled-SWE-—TFhe
Erus-in-case-of Stt-S80-also-fals-behind. For most of the time, the Erys of the BK50-Stt-S80 run is larger than
the Erws Of the OL-BK50 run. During the evaluation period, also the open loop run through-mest-efwith the
time—JeirtFAO soil map (OL-FAO) performs better than the Stt-S80 run. In contrast, joint state-parameter
updates ferto the S80 soil map improved the Egrys threwgheut-most of the time compared to the-open loop
simulations based-on-the-BK50-and-S80-seil-maps—During-the-assimilation-peried—20 042,(0OL-BK50, OL-
FAO and OL-S80). As shown in Fig. 4, the PAR-S80-30 simulation performed best out of the four simulations
during the assimilation period 2011-2012. During the evaluation period 2013, OL-BK50 and PAR-S80-30

performed equally well except in summer 2013 when the PAR-S80-30 simulation yielded much higher Egys-

values than the BK50 open loop run.

4-44.3  Jackknife simulations
The jackknife simulations investigated the impact of the-retwork-oF-CRPs-CRNS data for improving estimates
ofsimulated SWC at locations between-the-CRPs—outside—the-network—beyond the CRNS stations. Spatial

improvements are possible by spatial correlation structures of atmospheric forcings, soil hydraulic parameters
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and soil moisture which are taken into account by the local ensemble transform Kalman filter. The errers-error
and bias shown in Fable-4Table 4 refersrefer to the-tw
BK50-soi-map)-and-the-18-jackknife simulations-Al-simulations-with-the- with the BK50 and the S80 soil map.

On average over the three runs where only data of four CRNS were assimilated (jk4-S80-*), the Epys Was 0.07

m?m? which is much lower than the Egys for the open loop run (0.12 m*m?), and only a bit higher than the case

where eight CRNS were assimilated (Erms=0.06 m*/m® for jk8-S80-*). The improved simulation results were

also due to the bias reduction from 0.11 m*m?® to 0.05 m*m?® in case of four and eight assimilated CRNS.

However, for the BK50 soil map where Egys (0.04 m*m?) and bias (0.02 m*m?®) of the open loop run were

already good, the jackknife simulations led to slightly higher Egys (0.06 m*m?®) and bias (0.04 m*m®). More

detailed site statistics (Tables 1 to 4 of the Annex) demonstrate that all jackknife simulations with the S80 soil

map resulted in an improved Egys #rat the jackknife-simulationsomitted locations compared to the open loop
simulation, except for Wildenrath. In-al-cases—the Epys—was—smaker—than-0-10-m*/m°—Error—reduction-was
smaker-at-sites-where-the-open-loop-error-was-smaller—At sites with large open loop Erus, the assimilation could

reduce the Erus by 50 % or more.—tr-case-of-the-BK50-soi-mapthejackknife-simulations—resulted+—Erus-
values-below-0-10-m*/m’-at-all-sites-

The jackknife simulations illustrate that a network of CRNS can improve modelled SWC if the soil map

information is not sufficient. This suggests that assimilation of CRNS data is particularly useful for regions with

little information on subsurface parameters. A trade-off can be expected between the initial uncertainty on soil

moisture and parameters, and the density of a CRNS network. In case of a large uncertainty, like in regions with

limited information about soils or a strongly biased soil map (e.g. FAO or S80 soil map) and a low density of

meteorological stations, a sparse network of probes can already be helpful for improving soil moisture

characterization. The results of the real world jackknife experiments demonstrated that already four CRNS are

beneficial but it is desirable to have more CRNS for improved parameter estimates. The results also suggest that

the additional information gain for an extra CRNS reduces for a denser network, because the soil moisture

characterization did not improve so much more if eight instead of four CRNS were used for assimilation.

However, in regions with a high density of meteorological stations and a high resolution soil map it can be
expected that a denser CRNS network is needed than in this ease-enty-at-Merzerhausen-the-Egys-was-reduced
(0.095 qﬂms; The-average-abselute biasfor the jackknife-experiments-was-0.04 erm®lem®_for_both-soil_mans
i i i ias-study to further lower the error of soil

moisture characterization. Further potentially synthetic experiments in the—k-S80-*—simulations—improved
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aHother regions

with networks of CRNS are needed to get more guantitative information about this.

4.54.4 Temporal evolution of parametersparameter estimates and parameter uncertainty

The temporal evolution of the-percentage-sand content estimates during the assimilation period for the nine CRP
sites_with CRNS is shown in Fig. 5 for PAR-S80-30, PAR-S80-10, PAR-BK50-30, PAR-BK50-10, jkjk8-S80-
30*-* and }kjk8-BK50-36*.-*. Time series start on March 20" 2011, the date of the first assimilated CRRCRNS
SWC retrieval at Wuestebach. At Wuestebach and sites within the influence sphere of Wuestebach (Aachen,
Kall and Rollesbroich}-show-alse-a-chanrge-ir), sand content estimates were updated from this-dateMarch 20"
2011 onwards. AHBecause of the localization, all other sites show a ehangefirst update in sand content in May

2012 when Rollesbroich and Merzenhausen start operating, and their data iswas assimilated. AHDuring the data

assimilation period with joint state-parameter updates, all sites show variability in sand content ever—time:

estimates over time with differences in magnitude. Values and spread in sand content estimates amongst the

experiments is smaller at the sites Merzenhausen, Gevenich, RurAue, Heinsberg and Wildenrath, compared to

the sites Wuestebach, kal—Aachen and RusAue—Rollesbroich andHeinsberg—show-—some—peaks—in—the—time

series:were spread is considerably larger. At the sites Merzenhausen, Aachen,-Gevenich—and-\Widenrath-show-a

Merzenhausen—(45-%)—KaH—{(30-%)—Kall, Gevenich—{41-9%),, RurAue {36-%).and Heinsberg—{42%)and

N idenrath+(62-9%)with-a-reasonable-spread

asstmtation—Sand-content-estimates-, sand content estimates of the jackknife simulations waswere close to the

sand content of the other data assimilation experiments with joint state-parameter estimation. A comparison of

parameter estimates at the end of the assimilation period indicates that initial soil parameterization has a limited
effect on the resulting parameter estimates. —at-the—sites—Merzenhausen,—Gevenich—RurAue—and—Heinsberg-

WildenrathParameter estimates of jk8-BK50-* and jk8-S80-* are close together at the end of the assimilation

period.

FheEstimates of the soil hydraulic parameter B and saturated hydraulic conductivity are shown in Fig. 6 and Fig.

7 for PAR-S80-30, PAR-S80-10, PAR-BK50-30, PAR-BK50-10, }«jk8-S80-36%-* and }kjk8-BK50-36%.-*,

Updates of soil hydraulic parameters start in March and May 2011 with the assimilation of CRNS SWC
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retrievals depending on the location. The B parameter inereasesestimates increase for all simulations.

Throughout the whole assimilation period Bthe empirical B parameter varies considerably within short time
intervals. The total range of the B parameter_estimates is between 2.7 and 14 at all sites. At the sites
Merzenhausen, Kall, Aachen, Gevenich and Rollesbroich, #B generally ranges between 6 and 10. At
Wouestebach, Heinsberg and RurAue, B-+angesestimates of B range most of the time between 8 and 12, and at
Wildenrath, B is below 8. Initial saturated hydraulic conductivity k. _is rather high (ksq:>0.015 mm/s) in case
of high sand content i.e. for the S80 soil map, and rather low (k,,;<0.005 mm/s) in case of low sand content i.e.
for the BK50 soil map. In case of the S80 soil map, at all sites except Wildenrath, high initial saturated-hydraulic
eonductivity-deereases k., estimates decrease quickly by-through joint state-parameter updates to values below
0.01 mm/s. The initial spread in k,, valiesestimates amongst the simulation scenarios decreases at most sites.
At Wouestebach, Merzenhausen, Aachen, Gevenich, RurAue and Heinsberg, the spread is rather small
particularly at the end of the assimilation period, while at Wildenrath k.. ranges from 0.005 to 0.015 for
individual experiments at the end of the assimilation period.-Fhe-discussion-section-witl-elaberate-mere-on-this:

Temporally not stable parameter estimates imply that there may be multiple or seasonal optimal parameter

values. This is also supported by the findings of the temporal behaviour of site average Erms (Fig. 4) e.g. during

the evaluation period when in the dry summer 2013 the Egrms peaks for the PAR-S80-30 simulation. In this

context, it is important to mention that many possible error sources were not subject to calibration in this study

but could be crucial for an even better modelled soil moisture and more reliable soil parameter estimation. In this
study we only considered uncertainty of soil parameters, but also vegetation parameters are uncertain. Also a
number of other CLM-specific hydrologic parameters (e.g. decay factor for subsurface runoff and maximum
subsurface drainage) strongly influence state variables in CLM and hence show potential for optimization (Sun

et al., 2013). Considering this uncertainty from multiple parameters could give a better parameter uncertainty

characterization (Shi et al., 2014). Precipitation is also an important forcing for hydrologic modellin

. For this

study, precipitation data from the COSMO DE re-analysis were used. A product which optimally combines

precipitation estimates from radar and gauge measurements is expected to give better precipitation estimates than

the reanalysis. This could improve the soil moisture characterization and also potentially lead to better parameter
estimates. Further improvements and constraining of parameter uncertainty is also possible using multivariate

data assimilation with observations such as latent heat flux (e.g. Shi et al., 2014). Also other error sources related

to the model structure play a significant role. These options should be subject of future investigations.
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4.64.5 Latent heat and-sensible-heatflux
Latent heat flux or evapotranspiration (ET) is another important diagnostic variable of the-CLM-medelland

surface models (e.g. Best et al., 2015) and of importance for atmospheric models. Results of the data assimilation

experiments showed that soil texture updates altered soil moisture states significantly. In Fig. 8 it is shown that

joint state-parameter estimation also altered ET-_during the evaluation period. Fig. 8 shows ET within the

evaluation period 2013 across the whole catchment for four simulations-simulation experiments. On the one
hand, ET was similar for both open loop simulations_(OL-S80 and OL-BK50) in the South of the catchment. On

the other hand, ET in the North was up to 80 mm per year lower for the S80 open loop run compared to the
BK50 open loop run. Regarding-open-toopruns—theThe differences can be linked to the drier soil conditions
easefor OL-S80 compared to OL-BK50 simulation results. The differences in ET between the runs with and

without parameter updates were larger for the S80 soil map than for the BK50 soil map. For PAR-S80-10, ET

increased by up to 40 mm per year in the Nertheranorthern part of the catchment through data assimilation—Fhe
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CRP-information-were-strongly-inferred-from-single-site-information-Additionally, the impact of soil parameter
estimates on ET is different in the North of the catchment compared to the South. While ET in the North of the

catchment was impacted by the estimated soil properties during the evaluation period 2013 for PAR-S80-10, ET

in the South was not as much impacted by estimated soil properties. This is related to the fact that in the North

ET is moisture limited in summer, whereas in the South this is not moisture limited but energy limited.

Therefore, ET in the North is sensitive to variations in soil hydraulic parameter values, whereas in the South this

is not the case. In the South, ET is sensitive to model forcings like incoming shortwave radiation. Nearing et al.
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(2016) came to the conclusion that soil parameter uncertainty dominates soil moisture uncertainty and forcing

uncertainty dominates ET uncertainty. Our findings in the southern part of the catchment support their

conclusion, but in the northern part of the catchment soil parameter uncertainty strongly affect ET. Hence

particularly in the northern part of the catchment, further observations such as ET measurements are desirable for

further improving the land surface model. These additional observations could be used for future land surface

model benchmarking (Best et al., 2015) or for more constrained parameter estimates A
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65 Conclusions and Outlook
This real-world case study demenstrates-the-benefits-of-on assimilating datafrom-a-netwerk-ef-rine-cosmic-ray
probes{CRP)neutron sensors (CRNS) soil water content (SWC) retrievals into a land surface model shows the

potential of CRNS networks to improve subsurface parameterization in regional land surface models, especially

if prior information on soil properties is limited. CRNS SWC retrievals were assimilated into the land surface
model CLM version 4.5-A

the-catehment; using the local ensemble transform Kalman filter (LETKF)-aHows-updating-ofsotl-water-content
{SWCE)). SWC and subsurface parameters were updated with the LETKF at unmonitored locations in the

catchment considering model and observation uncertainties. Joint state-parameter estimates improved soil
moisture estimates during the assimilation and during the evaluation period. The Egyserror and bias for the soil
moisture characterization reduced strongly for simulations initialized with a biased soil map and similarly well if

initialized with the FAO soil map. Simulations initialized with a biased or global soil map approached vatues

similar teerror statistics with joint state-parameter updates as the ones obtained when the regional soil map was

used as input to the simulations. Egps-Error values in simulations with athe regional soil map were not improved

during the evaluation period, because open loop simulation results were already close to the observations. The

beneficial results of joint state-parameter updates were confirmed by additional jackknife experiments—Fhis+eal-

on-soil-properties-istirnited- with eight and four CRNS for assimilation. In many areas of the world, less-detailed
only global soil maps (e.g. the FAO soil map) are available thar-the-but no detailed high resolution regional soil

map-applied-in-this. This study—ta-_has shown that in these areas; a more advanced sub-surface characterization

is possible using ERPCRNS measurements and the data assimilation framework presented in this study.

For now, ERP-neutron intensity observations by CRNS were not assimilated directly. In future studies it would
be desirable to use the COSMIC operator for assimilating neutron intensity observations directly. However, in
this case the impact of biomass on the SRPCRNS measurement signal would have to be taken into account.
Therefore, it is desirable to further develop the COSMIC operator to include the impact of biomass on neutron

intensities. Using the biogeochemical module of CLM would then allow to eharacterizemodel local vegetation
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states as input for the measurement operator. Remotely sensed vegetation states are another option to
characterize vegetation states as input for the measurement operator. Both methods require additional field
measurements for the verification of vegetation state estimates. The further extension of the data assimilation

framework would also enable the estimation of additional sub-land surface parameters. Fheln addition, the

impact of other sub-surface parameters such as subsurface drainage parameters and the surface drainage decay
factor on SWC states and radiative surface fluxes has already been shown (Sun et al., 2013). Estimation of these
parameters is desirable because of the inherent uncertainty of these globally tuned parameters. However,
estimation of soil texture and organic matter content was demonstrated to be already beneficial for improved
SWC medelingmodelling. Hence, this study represents a way forward towards the integration of CRRCRNS
information in the calibration or real-time updating of large-seale-weatherpredictionland surface models.

Data Availabilitiy
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the BK50 soil map was licensed by the Geologischer Dienst Nordrhein-Westfalen.
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evapotranspiration than the North of the catchment.
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Fig. 2. Temporal evolution of simulated soil water content (SWC) retrievals, calculated with open loop

(OL-*) simulations and data assimilation including parameter updating (PAR-S80-30), together with
the CRP-seil-watercontentCRNS SWC retrieval{SWE} during the first year of simulation at the sites
Merzenhausen and Gevenich. Simulated SWC was vertically weighted using the COSMIC operator to

obtain the appropriate SWC corresponding to the CRRCRNS SWC retrieval.
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Fig. 3. Temporal evolution of simulated soil water content (SWC) retrievals, calculated with open loop

(OL-580);-*), data assimilation with state update only (Stt-Bk58580), and data assimilation including

parameter updating (PAR-S80-30), together with the CRP—seil-water—content{SWEICRNS SWC
retrieval at the sites Heinsberg and Wildenrath for the data assimilation period 2011 and 2012, and

the evaluation period 2013. Simulated SWC was vertically weighted to obtain the appropriate SWC
corresponding to the CRRCRNS SWC retrieval.
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Fig. 4. Temporal evolution of root mean square error (Erys) for hourly SWC retrievals. Egys is

calculated hourly for all nine €RP*sCRNS for open loop (OL-*) runs for soil maps S80, BK50 and

BK5OFAOQ, joint state-parameter updates (PAR-S80-30) and state updates only (Stt-S80) during the

assimilation period with joint state-parameter updates (2011 and 2012) and verification period

(2013).
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Fig. 5. TemporalevelutionAt nine sites, estimates of the-percentage sand content_are shown for

simulations with parameter update: PAR-S80-30 (green), PAR-S80-10 (light green), PAR-BK50-30

(red), PAR-BK50-10 (light red), jkjk8-S80-30*-* (black) and jkjk8-BK50-36*-* (black). The value of the

BK50 soil map is marked at the second y-axis.
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Fig. 6. FemporalevolutionAt nine sites, estimates of the B parameter (top 15cm)_are shown for

simulations with parameter update: PAR-S80-30 (green), PAR-S80-10 (light green), PAR-BK50-30
(red), PAR-BK50-10 (light red), jkjk8-S80-36*-* (black) and jkjk8-BK50-30%*-* (black).
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Fig. 7. FemperalevelutionAt nine sites, estimates of saturated hydraulic conductivity (top 15cm)_are

shown for simulations with parameter update: PAR-S80-30 (green), PAR-S80-10 (light green), PAR-
BK50-30 (red), PAR-BK50-10 (light red), jkjk8-580-30%-* (black) and jkjk8-BK50-36*-* (black).
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Fig. 8. Annual evapotranspiration (ET) is shown in the year 2013 (evaluation period-{year20613}-for
simulations OL-S80,0OL-BK50,-, no assimilation). This figure demonstrates the impact of parameter

updates (PAR-S80-10 and PAR-BK50-10) in comparison to open loop (OL-S80) and reference soil map

(OL-BK50). ET changes in the North but not as much in the South.
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Tables

Table 1: Site information on elevation (m.a.s.l.), average annual precipitation (mm/year), CLM plant

functional type; (Bonan et al., 2002), sand content (%), clay content (%), and the date of the first SWC

retrieval assimilated.

Name m.a.s.l. | Precip. | Plant functional type Sand | Clay | Date of first assimilation
Aachen 232 952 Crops 22 23 13.01.2012
Gevenich 108 884 Crops 22 20 07.07.2011
Heinsberg 57 814 Crops 18 19 09.09.2011
| Kall 504 935 C3 nen-arctic-grass 20 22 15.09.2011
Merzenhausen | 94 825 Crops 21 22 19.05.2011
| Rollesbroich 515 1307 | C3 non-aretic-grass 22 23 19.05.2011
| RurAue 102 743 C3 nen-arctic-grass 19 26 08.11.2011
Wildenrath 76 856 Broadleaf deciduous 65 12 07.05.2012
temperate tree
Wouestebach 605 1401 | Needleleaf evergreen 19 23 20.03.2011
temperate tree
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Table 2: Overview of simulation scenarios: Open loop (OL-*) with variation in the soil map BK50-e+,
S80_and FAO, data assimilation run with state update (Stt) or joint state- and parameter update (PAR)

with variation in the soil map perturbation (-10 erand -30), and jackknife evaluation runs (jkjk8-S80-1
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Table 3:-: Root mean square error (Egys in cm®/cm®) and mean absolute bias (cm*/cm®) for open loop

simulations (OL-*), data assimilation with state updates (Stt-*) and joint state-parameter updates

(PAR-*) for the assimilation period (2011 and 2012) and the evaluation period (2013). Error and bias

was averaged over all sites with observations. Site specific errors and biases are provided in the

Annex 1to 4.

R ; Data assimilation Evaluation period
) ) 2011 & 2012 2013

Ernss AbsF)Iute Eruss AbSQIute
Soil map Simulation - bias - bias
BK50 OL-BK50 004 | 002 | 004 | om
) Stt-BK50 0.03 0.01 0.04 0.01
i PAR-BK50-10 | 0.03 0.01 0.05 0.03
i PAR-BK50-30 0.03 0.01 0.05 0.03
FAO OL-FAO 007 | 006 | 007 | o006
i PAR-FAO-30 0.03 0.01 0.05 0.02
Biased (S80) | OL-S80 0.11 0.11 0.12 0.11
i Stt-S80 0.06 0.05 0.10 0.09
i PAR-580-10 0.03 0.01 0.05 0.02
i PAR-S80-30 0.03 0.02 0.04 0.03
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Table 4; Root mean square error (Egys_in cm*/cm®) and mean absolute bias (cm*/cm®) for open loop
(OL-*), jackknife simulations with eight CRNS (simulations jk8-S80-1 to 9 were averaged) and with
four CRNS (simulations jk4-S80-A to C). Results were averaged over the omitted sites only. Data at
omitted sites was not assimilated while at the other sites data was assimilated. At sites were data
was assimilated Egms and bias was equal to the values found in simulation PAR-580-30. Site specific
errors and biases are provided in the Annex 1 to 4.

Site average
Data assimilation Evaluation period

] ] 2011 & 2012 2013
Absolute Absolute
. ) . Erms - Egrws .
Soil map Simulation bias bias
BK50 OL-BK50 0.04 0.02 0.04 0.02
R jk8-BK50-1to 9 0.06 0.04 0.05 0.04
Biased (S80) | OL-S80 0.11 0.11 0.12 0.11
jk8-S80-1to 9 0.06 .05 0.06 0.04

. jk4-580-A 0.08 0.06 0.07 0.04
) jk4-580-B 0.06 0.05 0.06 0.05
. jk4-580-C 0.07 0.05 0.07 0.06
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Annex

Annex 1: Egys (cm®/cm®) at CRNSEuAern’fem’)-at-CRP sites for open loop runs and different data assimilation scenarios, for<
the assimilation period (2011 and 2012). For jackknife experiments (21 in total) only the error of the omitted sites is
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Annex 53: Bias (cm®/cm®) at CRRCRNS-sites for open loop, data assimilation and jackknife simulations compared to<
CRPCRNS SWC retrievals duringfor the wverificationdata assimilation period (26432011 and 2012). For eaeh—jackknife
simulationexperiments (21 in total) only erethe bias_of the omitted sites is reported:. The bias-ofthe-location-thatis-meant

forevaluationbest cases are marked bold.
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Annex 4: Bias (cm®/cm®) at CRNS-sites for open loop, data assimilation and jackknife simulations compared to CRNS SWC

retrievals for the data assimilation period (2011 and 2012). For jackknife experiments (21 in total) only the bias of the

omitted sites is reported. The best cases are marked bold.

ma —
BK50 | OL-BK50 -0.03 0.06 0.01 0.00 -0.02 0.00 -0.02 0.01 0.00 0.02
) Stt-BK50 -0.01 0.04 0.00 0.00 -0.01 -0.01 -0.02 0.00 0.00 0.01
i PAR-BK50-10 0.06 0.05 0.01 0.02 0.04 0.04 0.02 -0.04 0.00 0.03
i PAR-BK50-30 0.03 0.05 0.00 0.02 0.04 0.03 -0.01 -0.03 0.03 0.03
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jk8-S80-1 0 9 -0.07 0.03 0.02 0.02 -0.04 -0.02 -0.04 -0.03 0.10 0.04
Ik4-S80-A 0.00 0.01 0.03 -0.03 : -0.15 : b b 0.04
ik4-S80-B -0.03 0.06 - -0.03 -0.06 -0.06 - - - 0.05
ik4-580-C - 0.04 0.02 - -0.05 - - -0.05 0.13 0.06
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